Reduce, Reuse and Recycle within the State Materials Lab building

The WSDOT State Materials Lab has taken action close to home to reduce, reuse and recycle. We now recycle nearly every type of material we encounter: testing waste (aggregates, concrete, asphalt and steel), paper, cardboard, plastics and plastic sheeting, wooden pallets and even kitchen waste (wet or soiled paper towels, food waste, coffee grounds — all are taken for compost). The local waste hauler has certified the State Materials Lab as a Certified Green Program. Additionally, WSDOT’s State Materials Lab reviewed chemicals stored in the Chemistry Lab, evaluating the real need for having them on hand. By reducing those chemicals on hand (eliminating over 600 chemicals) we reduced consumption, the risk of storing potentially hazardous chemicals and the associated costs. Now, if we need a specialty chemical for a specific test, small quantities are ordered and after completion of the expected testing the remainder is recycled, greatly reducing hazardous chemical storage onsite.

Future Activities

Limestone in Portland Cement

Since 2008, WSDOT has allowed up to 5% limestone in portland cement, reducing greenhouse gas emissions while not affecting quality. Current studies underway are reviewing the opportunity of using even greater levels of limestone in hydraulic cements.

Solar Powered Traffic Systems

Solar power holds promise for a variety of traffic systems, especially in remote locations. We are examining solar powered systems for both new installations and for retrofitting old locations. In the right location solar power can reduce greenhouse gas emissions, reduce consumption and decrease costs.

More Warm Mix Asphalt

Asphalt pavement makes up 63% of our state highways. Making asphalt pavement requires heating up the rock and asphalt binder (the “glue”) to drive off moisture and make it pliable when it is placed. New technologies can reduce the mixing temperatures by 50° F or more, in a process called “warm mix asphalt or WMA (as opposed to the current ‘hot mix asphalt). Less heat means less fuel and lower emissions, conserving fossil fuels while reducing greenhouse gasses. WSDOT performed trial installations in 2008 and 2009 and in 2010 WSDOT opened up the use of WMA on all projects calling for asphalt pavement.

For more information contact:

Tom Baker
State Materials Engineer
360-709-5401

Jeff Uhlmeyer, PE
State Pavement Engineer
360-709-5485

Kurt Williams, PE
Construction Materials Engineer
360-709-5410

Sustainability means many things to many people: businesses and our economy, spending time and money wisely, preserving our natural environment, investing in people and communities. Recently these principals have taken on new relevance and urgency. Highway materials, used to build embankments, pavements, bridges and other items, offer opportunities to innovate while improving the environment. Changes to hydraulic cements allow the substitution of limestone for cement, decreasing greenhouse gas production while preserving quality. In 2009, we eliminated coal tar emulsion treatments from the parking areas in our rest stops. The new emulsions used to protect the parking areas do not contribute to polycyclic aromatic hydrocarbon (PAH) pollution, unlike the coal tars. These innovations, and other opportunities, continue to address and improve our sustainability.

At WSDOT, a sustainable transportation system is a system that preserves the environment, is durable and takes into account how we build and the materials we use. We manage and operate this system using policies and strategies that meet society’s present needs without compromising the ability of future generations to meet their own needs.

Secretary of Transportation
Paula Hammond, P.E.
Three Key Words
Reduce, Reuse, Recycle: three key words in the world of sustainability. You reduce by building to last and by not using as much material in the first place. You reuse by taking what you have built, building higher quality, longer lasting facilities reduces the need to regularly replace those facilities. Better roads and bridges last longer, reduce the need for maintenance and repair, and reduce the consumption of resources. WSDOT designs highways to be functional and durable. The basic infrastructure for any highway, the embankment and the roadbed, do not need replacement once built. The basic alignment and the roadway beneath the pavement remain in place indefinitely.

Pavement Design
Asphalt pavement designs preserve the pavement structure by driving the distress to the surface. The surface course is easily replaced, leaving the pavement’s base course and subbase course untouched. Today’s asphalt pavement structures will need to be rehabilitated for very long periods of time, exceeding 30 years or more. Asphalt pavement right in the field.

Pavement Management
WSDOT’s Pavement Management System (PWMS) increases pavement life while providing pavements at the lowest life cycle cost. The lowest life cycle cost occurs when you replace the surface course too soon and pavement life is wasted. Replace the surface course too late and the costly pavement repair becomes necessary. Each year we measure all WSDOT pavements for smoothness, structural condition and rutting to find that specific point of lowest life cycle cost. Knowing when to replace the surface course safely preserves the pavement, decreases resource use and increases sustainability.

Alternative Hydraulic Cements
Portland cement is a wonderful material: it creates the concrete that meets many needs in construction. Production of portland cement, though, produces significant quantities of greenhouse gases, both from the fuels used in the manufacturing and the CO2 off the mineral used to make portland cement. Alternative hydraulic cements allow WSDOT to reduce the amount of portland cement used while still producing a high quality, durable concrete. Many of the alternative cements were once categorized as hazardous wastes and were disposed of in landfills. Today, materials such as flyash, microsilica and ground, granulated blast furnace slag find uses in a wide variety of WSDOT concretes, reducing the need for greater quantities of portland cement.

LED Traffic Signal Heads
WSDOT aggressively updated signal heads from incandescent lamps to light emitting diode (LED) lamps, dramatically reducing energy consumption. LEDs are more durable and last much longer than incandescent lamps, saving even more money and reducing consumption, improving sustainability.

Warm Mix Asphalt: New Technology
Heating the aggregate and the asphalt binder to make asphalt pavement more expensive and consumes considerable fuel (less of lower grades of bunker fuel), Warm Mix Asphalt (WMA) uses special modifiers that lower the mixing temperature for asphalt. Decreases of 50˚F or more are possible. We placed our first test section on I-90 in 2008 and more will follow.

Reclaimed Asphalt Pavement (RAP) pile at an asphalt paving company yard.

WSDOT's Reclaimed Asphalt Pavement (RAP) pile at an asphalt paving company yard.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Warm Mix Asphalt Recycling
Warm Mix Asphalt Recycling reduces the amount of fuel used by the asphalt plants while reducing the amount of emissions from the asphalt plants. It also allows for the reuse of the asphalt binder, which can be recycled into new asphalt pavements.

Recycled Asphalt Pavement
Recycled asphalt pavements are made from old asphalt pavements that have been milled and mixed with new aggregate and asphalt binder. This process helps reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.

Cold-In-Place Recycling
Cold-In-Place recycling technologies are used to extend the life of existing pavements by milling and mixing in-place. This process can help reduce the amount of new materials needed to construct new pavements and is more environmentally friendly.