SR 520: I-5 to Medina Bridge Replacement and HOV Project

Geology and Soils Discipline Report

Washington State Department of Transportation

Federal Highway Administration
Contents

Acronyms and Abbreviations ... v
Introduction .. 1
 Why are geology and soils considered in an environmental impact statement? ... 1
 Why are geology and soils considered in an environmental impact statement? ... 1
 What are the key points of this discipline report? .. 1
 What are the key points of this discipline report? .. 1
 What is the I-5 to Medina: Bridge Replacement and HOV Project? ... 2
 What is the I-5 to Medina: Bridge Replacement and HOV Project? ... 2
 What are the project alternatives? ... 4
 What are the project alternatives? ... 4
 Affected Environment ... 15
 How was the information collected? ... 15
 How was the information collected? ... 15
 What are the existing geology and soil characteristics of the study area? ... 17
 What are the existing geology and soil characteristics of the study area? ... 17
 Do the existing geology and soil conditions pose any geologic hazards for the study area? ... 33
 Do the existing geology and soil conditions pose any geologic hazards for the study area? ... 33
 Potential Effects of the Project ... 41
 What methods were used to evaluate the project’s potential effects? ... 41
 What methods were used to evaluate the project’s potential effects? ... 41
 How would construction of the project affect geology and soils? .. 43
 How would construction of the project affect geology and soils? .. 43
 How would operation of the project permanently affect geology and soils? .. 56
 How would operation of the project permanently affect geology and soils? .. 56
 Mitigation ... 65
 What has been done to avoid or minimize negative effects? .. 65
 What has been done to avoid or minimize negative effects? .. 65
 What would be done to mitigate negative effects that could not be avoided or minimized? 73
 What would be done to mitigate negative effects that could not be avoided or minimized? 73
 What negative effects would remain after mitigation? .. 73
 What negative effects would remain after mitigation? .. 73
 References and Bibliography .. 75

Attachments

1 Collected Existing Geotechnical Information
2 Subsurface Profiles from Preliminary 10-Percent Design Geotechnical Report

List of Exhibits

1 Project Vicinity Map
2 No Build Alternative Cross Section
3 6-Lane Alternative Cross Section
4 Options A, K and L: Montlake and University of Washington Areas
6-Lane Alternative at the Evergreen Point Bridge (Common to all Options)

Possible Towing Route and Pontoon Outfitting Locations

Geographic Areas along SR 520 and Project Phasing

Summary of Surficial Soil Properties as Classified by the NRCS

Surficial Geology

Summary of Geologic Units Potentially Underlying the Study Area

Summary of Typical Engineering Properties and Hazard Susceptibility of Geologic Units

General Suitability of Deposit Types for Support of Embankments and Structures

Area-specific Subsurface Conditions

Potential Seismic Source Zones in the Pacific Northwest

Geological Hazard Areas

Published Faults

Semi-quantitative Measures of Potential Effects

Semi-quantitative Relative Soils and Geology Project Effects

Summary of Area-specific Effect Potential during Construction

Summary of Area-specific Effect Potential during Operation

Limits of Slope Stability Analysis
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP</td>
<td>best management practice</td>
</tr>
<tr>
<td>CTC</td>
<td>Concrete Technology Corporation</td>
</tr>
<tr>
<td>Ecology</td>
<td>Washington State Department of Ecology</td>
</tr>
<tr>
<td>EIS</td>
<td>environmental impact statement</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>GIS</td>
<td>geographic information system</td>
</tr>
<tr>
<td>HCT</td>
<td>high-capacity transit</td>
</tr>
<tr>
<td>HOV</td>
<td>high-occupancy vehicle</td>
</tr>
<tr>
<td>I-5</td>
<td>Interstate 5</td>
</tr>
<tr>
<td>NAVD88</td>
<td>North American Vertical Datum of 1988</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>SDEIS</td>
<td>Supplemental Draft Environmental Impact Statement</td>
</tr>
<tr>
<td>SEM</td>
<td>sequential excavation method</td>
</tr>
<tr>
<td>SPUI</td>
<td>single-point urban interchange</td>
</tr>
<tr>
<td>SPT</td>
<td>standard penetration test</td>
</tr>
<tr>
<td>SR</td>
<td>State Route</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>WDNR</td>
<td>Washington State Department of Natural Resources</td>
</tr>
<tr>
<td>WSDOT</td>
<td>Washington State Department of Transportation</td>
</tr>
</tbody>
</table>
Introduction

Why are geology and soils considered in an environmental impact statement?

The geology and soils within a proposed project site are considered in an environmental impact statement (EIS) for three main reasons:

1. They influence the type and size of foundation required for structures, which, in turn, affect the project cost, footprint, noise level, and amount of ground disturbance created by construction equipment, and they determine the volume of excavated soils.

2. The composition, location relative to the water table, and density of soils that would be excavated determine the suitability of the soils for reuse as fill on the project. The suitability of soil for reuse affects truck traffic beyond the project boundaries and space available for placement of waste or excess fill.

3. The presence of geologic hazards (such as active seismicity and the potential for liquefaction) increases the mitigation costs for the project. Unmitigated hazards may pose risks to the users of the facility, adjacent landowners, and the aquatic environment.

What are the key points of this discipline report?

The proposed project would have the following geology and soil effects:

- Option K could use up to 320,000 cubic yards of soil and rock materials, which would contribute to aggregate (that is, crushed stone) depletion from aggregate quarries in the Puget Sound region and western Washington.

- An abundance of compressible and low-strength soils in a region with high seismicity greatly increases the cost of a project. The greatest effect of the soils and geology on the I-5 to Medina: Bridge Replacement and High-Occupancy Vehicle (HOV) Project would be that deep foundations would be required to support many of the proposed structures in deep, weak, and compressible soils. The cost and time required to construct the structures is further increased by
the high seismicity of the region and the difficulties of constructing over water or weak soils.

- The 6-Lane Alternative would be designed to withstand an earthquake with a 1,000-year recurrence interval (that is, a 7 percent probability of exceedance over the 75-year design life of the structure). With the No Build Alternative, the existing Portage Bay Bridge and western approach structures and ramps for the Evergreen Point Bridge could fail during a seismic event with a 210-year recurrence interval (WSDOT 2002). The already limited remaining design life of these existing bridges could be shortened by smaller events.

- The landslide hazards, soft soils of Portage Bay and Lake Washington, and active seismicity of the region could add substantially to the cost and complexity for constructing the 6-Lane Alternative. Increased complexity often translates to increased construction duration and more or larger construction machinery. While the geologic conditions could be challenging, modern engineering and construction techniques have been developed to deal with these challenges. For example, landslide failure during construction is a noted risk, and there are engineering practices to mitigate that risk. The risk of triggering landslides or inducing unwanted settlement during construction and over the design life of the facility would be relatively small.

- The affected environment for geology and soils and the construction and operational effects on geology and soils for the Phased Implementation scenario would be the same as for the full-build 6-Lane Alternative.

What is the I-5 to Medina: Bridge Replacement and HOV Project?

The Interstate 5 (I-5) to Medina: Bridge Replacement and High-Occupancy Vehicle (HOV) Project is part of the State Route (SR) 520 Bridge Replacement and HOV Program (SR 520 Program) (detailed in the text box below) and encompasses parts of three main geographic areas—Seattle, Lake Washington, and the Eastside. The project area includes the following:

- Seattle communities: Portage Bay/Roanoke, North Capitol Hill, Montlake, University District, Laurelhurst, and Madison Park
• Eastside communities: Medina, Hunts Point, Clyde Hill, and Yarrow Point
• The Lake Washington ecosystem and associated wetlands
• Usual and accustomed fishing areas of tribal nations that have historically used the area’s aquatic resources and have treaty rights

The SR 520 Bridge Replacement and HOV Project Draft Environmental Impact Statement (EIS), published in August 2006, evaluated a 4-Lane Alternative, a 6-Lane Alternative, and a No Build Alternative. Since the Draft EIS was published, circumstances surrounding the SR 520 corridor have changed in several ways. These changes have resulted in decisions to forward advance planning for potential catastrophic failure of the Evergreen Point Bridge, respond to increased demand for transit service on the Eastside, and evaluate a new set of community-based designs for the Montlake area in Seattle.

To respond to these changes, the Washington State Department of Transportation (WSDOT) and the Federal Highway Administration (FHWA) initiated new projects to be evaluated in separate environmental documents. Improvements to the western portion of the SR 520 corridor—known as the I-5 to Medina: Bridge Replacement and HOV Project (the I-5 to Medina project)—are being evaluated in a Supplemental Draft EIS (SDEIS); this discipline report is a part of that SDEIS. Project limits for this project extend from I-5 in Seattle to 92nd Avenue NE in Yarrow Point, where it transitions into the Medina to

What is the SR 520 Program?
The SR 520 Bridge Replacement and HOV Program will enhance safety by replacing the aging floating bridge and keep the region moving with vital transit and roadway improvements throughout the corridor. The 12.8-mile program area begins at I-5 in Seattle and extends to SR 202 in Redmond.

In 2006, WSDOT prepared a Draft EIS—published formally as the SR 520 Bridge Replacement and HOV Project—that addressed corridor construction from the I-5 interchange in Seattle to just west of I-405 in Bellevue. Growing transit demand on the Eastside and structure vulnerability in Seattle and Lake Washington, however, led WSDOT to identify new projects, each with a separate purpose and need, that would provide benefit even if the others were not built. These four independent projects were identified after the Draft EIS was published in 2006, and these now fall under the umbrella of the entire SR 520 Bridge Replacement and HOV Program:

• I-5 to Medina: Bridge Replacement and HOV Project replaces the SR 520 roadway, floating bridge approaches, and floating bridge between I-5 and the eastern shore of Lake Washington. This project spans 5.2 miles of the SR 520 corridor.
• Medina to SR 202: Eastside Transit and HOV Project completes and improves the transit and HOV system from Evergreen Point Road to the SR 202 interchange in Redmond. This project spans 8.6 miles of the SR 520 corridor.
• Pontoon Construction Project involves constructing the pontoons needed to restore the Evergreen Point Bridge in the event of a catastrophic failure and storing those pontoons until needed.
• Lake Washington Congestion Management Project, through a grant from the U.S. Department of Transportation, improves traffic using tolling, technology and traffic management, transit, and telecommuting.
SR 202: Eastside Transit and HOV Project (the *Medina to SR 202 project*). Exhibit 1 shows the project vicinity.

What are the project alternatives?

As noted above, the Draft EIS evaluated a 4-Lane Alternative, a 6-Lane Alternative (including three design options in Seattle), and a No Build Alternative. In 2006, following Draft EIS publication, Governor Gregoire identified the 6-Lane Alternative as the state’s preference for the SR 520 corridor, but urged that the affected communities in Seattle develop a common vision for the western portion of the corridor.

Accordingly, a mediation group convened at the direction of the state legislature to evaluate the corridor alignment for SR 520 through Seattle. The mediation group identified three 6-lane design options for SR 520 between I-5 and the floating span of the Evergreen Point Bridge; these options were documented in a Project Impact Plan (WSDOT 2008). The SDEIS evaluates the following:

- No Build Alternative
- 6-Lane Alternative
 - Option A
 - Option K
 - Option L

These alternatives and options are summarized below. The 4-Lane Alternative and the Draft EIS 6-lane design options have been eliminated from further consideration. More information on how the project has evolved since the Draft EIS was published in 2006, as well as more detailed information on the design options, is provided in the Description of Alternatives Discipline Report (WSDOT 2009b).

What is the No Build Alternative?

Under the No Build Alternative, SR 520 would continue to operate between I-5 and Medina as it does today: as a 4-lane highway with nonstandard shoulders and without a bicycle/pedestrian path. (Exhibit 2 depicts a cross section of the No Build Alternative.) No new facilities would
be added to SR 520 between I-5 and Medina, and none would be removed, including the unused R.H. Thomson Expressway ramps near the Washington Park Arboretum. WSDOT would continue to manage traffic using its existing transportation demand management and intelligent transportation system strategies.

The No Build Alternative assumes that the Portage Bay and Evergreen Point bridges would remain standing and functional through 2030 and that no catastrophic events, such as earthquakes or extreme storms, would cause major damage to the bridges. The No Build Alternative also assumes completion of the Medina to SR 202 project as well as other regionally planned and programmed transportation projects. The No Build Alternative provides a baseline against which project analysts can measure and compare the effects of each 6-Lane Alternative build option.

What is the 6-Lane Alternative?

The 6-Lane Alternative would complete the regional HOV connection (3+ HOV occupancy) across SR 520. This alternative would include six lanes (two 11-foot-wide outer general-purpose lanes and one 12-foot-wide inside HOV lane in each direction), with 4-foot-wide inside and 10-foot-wide outside shoulders (Exhibit 3). The proposed width of the roadway would be approximately 18 feet narrower than the one described in the Draft EIS, reflecting public comment from local communities and the City of Seattle.

![6-Lane Alternative Cross Section](image)

NOTE: Dimensions shown on the diagram are on the Evergreen Point Bridge.

Exhibit 3. 6-Lane Alternative Cross Section

SR 520 would be rebuilt from I-5 to Evergreen Point Road in Medina and restriped and reconfigured from Evergreen Point Road to 92nd Avenue NE in Yarrow Point. A 14-foot-wide bicycle/pedestrian path
would be built along the north side of SR 520 through the Montlake area and across the Evergreen Point Bridge, connecting to the regional path on the Eastside. A bridge maintenance facility and dock would be built underneath the east approach to the Evergreen Point Bridge.

The sections below describe the 6-Lane Alternative and design options in each of the three geographical areas the project would encompass.

Seattle

Elements Common to the 6-Lane Alternative Options

SR 520 would connect to I-5 in a configuration similar to the way it connects today. Improvements to the I-5/SR 520 interchange would include a new reversible HOV ramp connecting the new SR 520 HOV lanes to existing I-5 reversible express lanes. WSDOT would replace the Portage Bay Bridge and the Evergreen Point Bridge (including the west approach and floating span), as well as the existing local street bridges across SR 520. New stormwater facilities would be constructed for the project to provide stormwater retention and treatment. The project would include landscaped lids across SR 520 at I-5, 10th Avenue East and Delmar Drive East, and in the Montlake area to help reconnect the communities on either side of the roadway. The project would also remove the Montlake freeway transit station.

The most substantial differences among the three options are the interchange configurations in the Montlake and University of Washington areas. Exhibit 4 depicts these key differences in interchange configurations, and the following text describes elements unique to each option.

Option A

Option A would replace the Portage Bay Bridge with a new bridge that would include six lanes (four general-purpose lanes, two HOV lanes) plus a westbound auxiliary lane. WSDOT would replace the existing interchange at Montlake Boulevard East with a new, similarly configured interchange that would include a transit-only off-ramp from westbound SR 520 to northbound Montlake Boulevard. The Lake Washington Boulevard ramps and the median freeway transit stop near Montlake Boulevard East would be removed, and a new bascule bridge (i.e., drawbridge) would be added to Montlake Boulevard NE, parallel to the existing Montlake Bridge. SR 520 would maintain a low profile through the Washington Park Arboretum and flatten out east of Foster Island, before rising to the west transition span of the Evergreen Point
Bridge. Citizen recommendations made during the mediation process defined this option to include sound walls and/or quieter pavement, subject to neighborhood approval and WSDOT’s reasonability and feasibility determinations.

Suboptions for Option A would include adding an eastbound SR 520 on-ramp and a westbound SR 520 off-ramp to Lake Washington Boulevard, creating an intersection similar to the one that exists today but relocated northwest of its current location. The suboption would also include adding an eastbound direct access on-ramp for transit and HOV from Montlake Boulevard East, and providing a constant slope profile from 24th Avenue East to the west transition span.

Option K

Option K would also replace the Portage Bay Bridge, but the new bridge would include four general-purpose lanes and two HOV lanes with no westbound auxiliary lane. In the Montlake area, Option K would remove the existing Montlake Boulevard East interchange and the Lake Washington Boulevard ramps and replace their functions with a depressed, single-point urban interchange (SPUI) at the Montlake shoreline. Two HOV direct-access ramps would serve the new interchange, and a tunnel under the Montlake Cut would move traffic from the new interchange north to the intersection of Montlake Boulevard NE and NE Pacific Street. SR 520 would maintain a low profile through Union Bay, make landfall at Foster Island, and remain flat before rising to the west transition span of the Evergreen Point Bridge. A land bridge would be constructed over SR 520 at Foster Island. Citizen recommendations made during the mediation process defined this option to include only quieter pavement for noise abatement, rather than the sound walls that were included in the 2006 Draft EIS. However, because quieter pavement has not been demonstrated to meet all FHWA and WSDOT avoidance and...
minimization requirements in tests performed in Washington State, it cannot be considered as noise mitigation under WSDOT and FHWA criteria. As a result, sound walls could be included in Option K. The decision to build sound walls depends on neighborhood interest, the findings of the Noise Discipline Report (WSDOT 2009b), and WSDOT’s reasonability and feasibility determinations.

A suboption for Option K would include constructing an eastbound off-ramp to Montlake Boulevard East configured for right turns only.

Option L

Under Option L, the Montlake Boulevard East interchange and the Lake Washington Boulevard ramps would be replaced with a new, elevated SPUI at the Montlake shoreline. A bascule bridge (drawbridge) would span the east end of the Montlake Cut, from the new interchange to the intersection of Montlake Boulevard NE and NE Pacific Street. This option would also include a ramp connection to Lake Washington Boulevard and two HOV direct-access ramps providing service to and from the new interchange. SR 520 would maintain a low, constant slope profile from 24th Avenue East to just west of the west transition span of the floating bridge. Noise mitigation identified for this option would include sound walls as defined in the Draft EIS.

Suboptions for Option L would include adding a left-turn movement from Lake Washington Boulevard for direct access to SR 520 and adding capacity on northbound Montlake Boulevard NE to NE 45th Street.

Lake Washington

Floating Bridge

The floating span would be located approximately 190 feet north of the existing bridge at the west end and 160 feet north at the east end (Exhibit 5). Rows of three 10-foot-tall concrete columns would support the roadway above the pontoons, and the new spans would be approximately 22 feet higher than the existing bridge. A 14-foot-wide bicycle/pedestrian path would be located on the north side of the bridge.

The design for the new 6-lane floating bridge includes 21 longitudinal pontoons, two cross pontoons, and 54 supplemental stability pontoons. A single row of 75-foot-wide by 360-foot-long longitudinal pontoons would support the new floating bridge. One 240-foot-long by
Exhibit 5. 6-Lane Alternative at the Evergreen Point Bridge (Common to All Options)

I-5 to Medina: Bridge Replacement and HOV Project
75-foot-wide cross-pontoon at each end of the bridge would be set perpendicularly to the longitudinal pontoons. The longitudinal pontoons would be bolstered by the smaller supplemental stability pontoons on each side for stability and buoyancy. The longitudinal pontoons would not be sized to carry future high-capacity transit (HCT), but would be equipped with connections for additional supplemental stability pontoons to support HCT in the future. As with the existing floating bridge, the floating pontoons for the new bridge would be anchored to the lake bottom to hold the bridge in place.

Near the east approach bridge, the roadway would be widened to accommodate transit ramps to the Evergreen Point Road transit stop. Exhibit 5 shows the alignment of the floating bridge, the west and east approaches, and the connection to the east shore of Lake Washington.

Bridge Maintenance Facility

Routine access, maintenance, monitoring, inspections, and emergency response for the floating bridge would be based out of a new bridge maintenance facility located underneath SR 520 between the east shore of Lake Washington and Evergreen Point Road in Medina. This bridge maintenance facility would include a working dock, an approximately 7,200-square-foot maintenance building, and a parking area.

Eastside Transition Area

The I-5 to Medina project and the Medina to SR 202 project overlap between Evergreen Point Road and 92nd Avenue NE in Yarrow Point. Work planned as part of the I-5 to Medina project between Evergreen Point Road and 92nd Avenue NE would include moving the Evergreen Point Road transit stop west to the lid (part of the Medina to SR 202 project) at Evergreen Point Road, adding new lane and ramp striping from the Evergreen Point lid to 92nd Avenue NE, and moving and realigning traffic barriers as a result of the new lane striping. The restriping would transition the I-5 to Medina project improvements into the improvements to be completed as part of the Medina to SR 202 project.

Pontoon Construction and Transport

If the floating portion of the Evergreen Point Bridge does not fail before its planned replacement, WSDOT would use the pontoons constructed and stored as part of the Pontoon Construction Project in the I-5 to Medina project. Up to 11 longitudinal pontoons built and stored in Grays Harbor as part of the Pontoon Construction Project would be
towed from a moorage location in Grays Harbor to Puget Sound for outfitting (see the sidebar to the right for an explanation of pontoon outfitting). All outfitted pontoons, as well as the remaining pontoons stored at Grays Harbor would be towed to Lake Washington for incorporation into the floating bridge. Towing would occur as weather permits during the months of March through October. Exhibit 6 illustrates the general towing route from Grays Harbor to Lake Washington, and identifies potential outfitting locations.

Exhibit 6. Possible Towing Route and Pontoon Outfitting Locations

The I-5 to Medina project would build an additional 44 pontoons needed to complete the new 6-lane floating bridge. The additional pontoons could be constructed at the existing Concrete Technology Corporation facility in Tacoma, and/or at a new facility in Grays Harbor that is also being developed as part of the Pontoon Construction Project. The new supplemental stability pontoons would be towed from the construction location to Lake Washington for incorporation into the floating bridge. For additional information about pontoon construction, please see the Construction Techniques Discipline Report (WSDOT 2009c).
Would the project be built all at once or in phases?

Revenue sources for the I-5 to Medina project would include allocations from various state and federal sources and from future tolling, but there remains a gap between the estimated cost of the project and the revenue available to build it. Because of these funding limitations, there is a strong possibility that WSDOT would construct the project in phases over time.

If the project is phased, WSDOT would first complete one or more of those project components that are vulnerable to earthquakes and windstorms; these components include the following:

- The floating portion of the Evergreen Point Bridge, which is vulnerable to windstorms. This is the highest priority in the corridor because of the frequency of severe storms and the high associated risk of catastrophic failure.

- The Portage Bay Bridge, which is vulnerable to earthquakes. This is a slightly lower priority than the floating bridge because the frequency of severe earthquakes is significantly less than that of severe storms.

- The west approach of the Evergreen Point Bridge, which is vulnerable to earthquakes (see comments above for the Portage Bay Bridge).

Exhibit 7 shows the vulnerable portions of the project that would be prioritized, as well as the portions that would be constructed later. The vulnerable structures are collectively referred to in the SDEIS as the Phased Implementation scenario. It is important to note that, while the new bridge(s) might be the only part of the project in place for a certain period of time, WSDOT’s intent is to build a complete project that meets all aspects of the purpose and need.

The Phased Implementation scenario would provide new structures to replace the vulnerable bridges in the SR 520 corridor, as well as limited transitional sections to connect the new bridges to existing facilities. This scenario would include stormwater facilities, noise mitigation, and the regional bicycle/pedestrian path, but lids would be deferred until a subsequent phase. WSDOT would develop and implement all mitigation needed to satisfy regulatory requirements.
To address the potential for phased project implementation, the SDEIS evaluates the Phased Implementation scenario separately as a subset of the “full build” analysis. The evaluation focuses on how the effects of phased implementation would differ from those of full build and on how constructing the project in phases might have different effects from constructing it all at one time. Impact calculations for the physical effects of phased implementation (for example, acres of wetlands and parks affected) are presented alongside those for full build where applicable.
Affected Environment

This discipline report discusses the Affected Environment for the I-5 to Medina: Bridge Replacement and HOV Project. The geology and soils study area is shown as the area of construction on Exhibit 4, and the project limits are shown on Exhibit 5. Geologic conditions in the Puget Sound area are also described to provide a regional context.

Additional pontoons and anchors might be constructed at the existing Concrete Technology Corporation (CTC) facility in Tacoma and at a new casting basin facility located in Grays Harbor. The CTC facility is an operating industrial site located in a large industrial park. WSDOT’s proposed use of this site to build pontoons is consistent with its current industrial purpose and location and, therefore, would not produce substantial, unavoidable effects on the geology and soils that would warrant analysis or mitigation measures. Maintenance activities during pontoon construction at the Grays Harbor casting basin facility sites may result in effects on geology and soils. These effects are discussed under the Potential Effects of the Project section below.

How was the information collected?

The geology and soil analysts defined the topography, surficial soils, regional and site geology, soil characteristics, and potential geologic hazards within the study area based on published maps and reports, existing geotechnical information, and a field reconnaissance.

Analysts collected maps and reports published by governmental agencies from the Internet and from the CH2M HILL library in Bellevue, Washington. Key Web sites that were used to collect published maps and reports included the following:

- Surficial soils maps from the Natural Resources Conservation Service (NRCS 2009)
- Geologic maps from GeoMapNW (Pacific Northwest Center for Geologic Mapping Studies, University of Washington 2009)
- Geologic maps from the U.S. Geological Survey (USGS) on-line National Geologic Map Database (USGS 2009a)
- Publications from the USGS on-line publications database (USGS 2009b)
• Groundwater information from the Washington State Department of Ecology (Ecology 2009a)

• Seismic hazard maps from the USGS Earthquake Hazards Program Web site (USGS 2009c)

• Fault and fold maps from the USGS fault and fold map database (USGS 2009d)

• Maps from the City of Seattle, Washington Web site (City of Seattle 2009)

• Topographic maps from the King County, Washington, King County Geographic Information System Center Web site (King County 2009)

• City of Seattle Department of Planning and Development Environmentally Critical Areas Update Web site (City of Seattle Department of Planning and Development 2007)

Geotechnical reports published by consultants and governmental agencies were collected from the GeoMapNW archives (Pacific Northwest Center for Geologic Mapping Studies, University of Washington), City of Seattle Public Utilities Department geotechnical archives, the geotechnical archives at WSDOT in Tumwater, Washington, and from the WSDOT project office. The geotechnical information collected from these sources is listed in Attachment 1. Additional existing geotechnical information was collected from the Ecology Well Logs Web site (Ecology 2009b), which provides a database of driller’s well reports.

The geology and soil analysts reviewed the following key reports when preparing this SDEIS:

• *SR 520 Bridge Replacement and HOV Project, Westside Conceptual Structures Recommendations Technical Memorandum* (HDR Inc. et al. 2009a)

• *SR 520 Westside Construction Techniques Technical Memorandum* (HDR Inc. et al et al. 2009b)

• *Draft Preliminary 10-Percent Design Geotechnical Report* (Shannon and Wilson 2007)
What are the existing geology and soil characteristics of the study area?

The geology and soil analysts collected and reviewed information from the sources listed in the previous section and visited the project site to develop a description of geological conditions within the study area. The general geology and soil conditions interpreted from these reviews are described in the following subsections, which include topography, surficial soils, geology, soil characteristics, groundwater conditions, and existing and potential aggregate sources. The locations of possibly contaminated soils and contaminated groundwater are discussed in the Hazardous Materials Discipline Report (WSDOT 2009d).

Topography

The regional topography consists of a series of north-south trending ridges separated by deep troughs. Streams, lakes, and the waterways of Puget Sound occupy the troughs. Glaciations that moved back and forth across the region thousands of years ago shaped this regional topography. More recently, erosion processes and landform changes made by development of the area have shaped the topography.

The study area transects two north-south trending ridges, two generally flat-lying areas, and the relatively deep trough now filled by Lake Washington. Elevations range between 200 feet (North American Vertical Datum of 1988 [NAVD88]) at the southwestern end of the study area and 5 feet (NAVD88) at the eastern end of the study area, but drop to as low as elevation -200 feet beneath the floating bridge on Lake Washington. As discussed in the subsequent Geology subsection, much of the present topography resulted from multiple glaciations and subsequent human modifications.

Surficial Soils

The NRCS has mapped surficial soils in rural and agricultural areas and has not mapped the surficial soils within the City of Seattle city limits. Surficial soils have been mapped by the NRCS for the study area east of Lake Washington to 92nd Avenue NE.

NRCS field personnel map the surficial soils; they dig shallow (typically 1- to 5-foot-deep) test holes and observe material in roadway and streambed cuts. The maps reflect only the material

Surficial soils: The soils from 0 to 5 feet below the ground surface, described using different criteria than surficial geology. Soils are described using criteria and terms by the NRCS.

Surficial geology: The geologic deposits exposed at the surface. Described using the criteria and terms by the American Society of Testing and Materials. The geology is the parent material to the surficial soils.

Parent material: The underlying geological material (generally bedrock or a superficial or drift deposit) in which soil horizons form. Soils typically get a great deal of structure and minerals from their parent material. Parent materials are made up of consolidated or unconsolidated mineral material that has undergone some degree of physical or chemical weathering.
present in the upper few feet at the time of testing. Although the surficial soils along the project alignment have been modified by development, these soils typically provide an indication of the underlying geologic unit.

Exhibit 8 summarizes typical characteristics and engineering properties of the surficial soils mapped underlying the study area as described by the NRCS. In general, topsoil is removed from beneath roadway embankments and foundations, so the descriptions apply only to “undisturbed” soils adjacent to the roadway.

Alderwood Series

The Alderwood series includes Alderwood gravelly sandy loams (AgC and AgD) and Alderwood and Kitsap soils (AkF). The Alderwood series soils are moderately to well-drained soils that form in uplands in glacial till deposits.

Kitsap Series

The Kitsap series is made up of moderately well-drained soils that formed in glacial lake deposits. The soils are on terraces and strongly dissected terrace fronts. Kitsap silt loam (KpB) is a part of the Kitsap series.

Urban Land

Urban land (Ur) consists of soils that have been modified by disturbance of the natural layers with additions of fill material several feet thick. Fill materials are used to accommodate large industrial and housing developments.

Geology

This section describes how the geology in the region formed then summarizes the geologic information within and near the study area that was used to perform the geology review. Existing information was used to determine the geologic units and soil characteristics encountered within the study area.
Exhibit 8. Summary of Surficial Soil Properties as Classified by the NRCS

<table>
<thead>
<tr>
<th>Soil Unit</th>
<th>Associated Geologic Unit</th>
<th>Slopes (%)</th>
<th>Permeability in Surface and Substratum</th>
<th>Erosion Hazard(a)</th>
<th>Suitability as Source Soil Features Limitations for Adversely Affecting Structures Limitations for Foundations for Low Structures Limitations for Shallow Excavations</th>
<th>Other Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alderwood Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AgC</td>
<td>Glacial till</td>
<td>6-15</td>
<td>Moderately rapid in surface soils and very slow in substratum</td>
<td>Moderate</td>
<td>Fair 6 to 15% slopes; water moves on top of substratum in winter</td>
<td>Moderate; seasonal high water table</td>
</tr>
<tr>
<td>AgD</td>
<td>Glacial till</td>
<td>15-30</td>
<td>Very slow in substratum</td>
<td>Severe</td>
<td>Fair 15 to 30% slopes; water moves on top of substratum in winter</td>
<td>Severe steep slopes</td>
</tr>
<tr>
<td>AkF</td>
<td>Glacial till</td>
<td>25-70</td>
<td>Varies Severe to very severe</td>
<td>Fair</td>
<td>25 to 70% slopes; water moves on top of substratum in winter</td>
<td>Severe steep slopes</td>
</tr>
<tr>
<td>Kitsap Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KpB</td>
<td>Lacustrine deposits</td>
<td>2-8</td>
<td>Moderate in surface soils and very slow in substratum</td>
<td>Slight to moderate</td>
<td>Poor 2 to 8% slopes; water moves on top of substratum in winter; high frost-action potential</td>
<td>Moderate; seasonal high water table, low shear strength</td>
</tr>
<tr>
<td>Urban Land</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ur</td>
<td>Fill</td>
<td>Varies</td>
<td>Varies Slight to moderate Too variable to rate</td>
<td>Too variable to rate</td>
<td>Variable</td>
<td>Variable</td>
</tr>
</tbody>
</table>

\(a\) The ratings (slight, fair, moderate, etc.) are as classified by the NRCS (2009) based on specific criteria determined by NRCS.

Source: NRCS (2009).
Regional Geology

The geomorphology in the Puget Sound region, including the study area, is primarily the result of multiple glaciations that occurred from 2 million to 10,000 years ago. (Geologists refer to this period as the Pleistocene Epoch.) Each advance and retreat of the glaciers during the Pleistocene Epoch modified the land through erosion and deposition of soils.

The repeated glaciation left a deposit of soil in the region that includes the study area. These glacial deposits overlie bedrock. Bedrock is located approximately 1,500 feet below the ground surface (Jones 1996).

Study Area Geology

The geologic units and soil characteristics within the study area were defined using geotechnical information available in public archives and Web sites. The References and Bibliography chapter lists pertinent sources that were collected and used as a basis for preparing this discipline report. The available information consisted of the following:

- Published maps, such as topographic maps, geologic maps, and geologic hazard areas maps
- Collected geotechnical reports, including summaries of existing geological conditions, site plans, boring logs, cross sections of subsurface soil profiles, geotechnical recommendations, and soil index testing results
- Driller’s well logs that included soil descriptions and groundwater information

In addition to the project-specific subsurface exploration (Shannon and Wilson 2007), three of the most important sources of information were the geotechnical archives at WSDOT, the City of Seattle Public Utilities Department, and the GeoMapNW archives (Pacific Northwest Center for Geologic Mapping Studies, University of Washington 2009). These sources included geotechnical data in over 360 boring logs from borings that were drilled within or adjacent to the study area. The test holes provided information about soil types and consistency to depths of up to 280 feet. Test-hole information included visual descriptions of the soil, results from standard penetration tests, and the engineering classifications of the soil. Exhibit 1-1 in Attachment 1 includes a list of collected geotechnical information. The project geotechnical engineers have conducted the standard penetration test (SPT) to obtain a measure of the resistance of the soil and to retrieve a disturbed soil sample. Results of the SPT are presented as the SPT blowcount, “N.” Values of N provide a means for evaluating the relative density of granular (coarse-grained) soils and the consistency of cohesive (fine-grained) soils. Low N-values indicate soft or loose deposits, while high N-values are evidence of hard or dense materials.
combined the most pertinent data into the Draft Preliminary 10-Percent Design Geotechnical Report (Shannon and Wilson 2007) and the SR 520 Bridge Replacement and HOV Project, Existing Geotechnical Data Report (Shannon and Wilson 2006). In these reports, Shannon and Wilson have developed preliminary subsurface profiles and conceptual-level geotechnical design recommendations. Additional subsurface information will continue to be collected to support the detailed design of the selected option.

The geology and soil analysts also reviewed over 300 Ecology (2009b) well logs for borings and wells up to 775 feet deep within and adjacent to the study area. The well logs provided general visual soil descriptions, depths where groundwater was encountered, and groundwater well construction details.

Geologic Units Overview

A description of the geologic units that underlie the study area was developed from geologic maps (Booth et al. 2002 and Troost et al. 2005) and a geotechnical report by Shannon and Wilson (2007). The geologic maps show the geologic units that are encountered at the surface. These maps are generally considered the most recent, authoritative discussion of geology for the Seattle and King County area. More detailed descriptions of the soils underlying the site based on the collected existing geotechnical reports, specifically the Shannon and Wilson (2007) report, are provided in the Geologic Deposits Characteristics Overview subsection on the following page. The Shannon and Wilson (2007) report describes geologic units that are not shown on the surficial geologic maps because the report is based on deposits encountered underlying the site during drilling, not just the surficial geology. The deposits were interpreted to be specific geologic units by Shannon and Wilson (2007).

The surficial geology within the study area is mapped by Booth et al. (2002) and Troost et al. (2005) as modified land, artificial fill, peat, lake deposits, recessional outwash deposits, Vashon till, deposits of pre-Fraser glaciation age, Olympia beds, and deposits of pre-Olympia age, as shown on Exhibit 9. Other surficial geologic units are shown on Exhibit 9 but are not mapped within the study area; therefore, those geologic units are not discussed in this report.
Source: Troost et al (2005) GIS Data (Surficial Geology). Surficial Geology Map: King County (2003) GIS Data. Surficial Geology) based on Booth et al. (2002) and King County (2005) GIS Data (Streets) King County (2007) GIS Data (Water Bodies). Horizontal datum for all layers is NAD83(91); vertical datum for layers is NAVD88.

Exhibit 9. Surficial Geology

I-5 to Medina: Bridge Replacement and HOV Project
Loose and soft surficial deposits are typically underlain by dense to very dense glacial deposits. The top of the dense to very dense deposits are encountered at varying depths within the study area, ranging from 0 to 125 feet below the existing ground surface or mud line (that is, lake bottom).

The project-specific subsurface profiles prepared by Shannon and Wilson (2007) indicate that the study area is generally underlain by artificial fill, colluvium, landslide deposits, peat, lake deposits, recessional outwash deposits, recessional lacustrine deposits, Vashon till, advance outwash deposits, glaciolacustrine deposits (including transitional beds and Lawton clay), and pre-Vashon units (including nonglacial fluvial deposits, nonglacial lacustrine deposits, glacial outwash, glaciolacustrine deposits, glacial till, and glaciomarine deposits). The profiles are included as Attachment 2 to this document.

Exhibit 10 provides a general description of these geologic units, based on mapping and commentary according to Troost et al. (2005) and Shannon and Wilson (2007). Exhibit 11 summarizes typical engineering properties and hazard susceptibilities of the geologic units that are potentially within the project footprint. Geologic hazards are further discussed below in the Do the existing geology and soils conditions pose any geologic hazards for the study area? section.

A more detailed description of the soil characteristics based on available geotechnical reports (specifically the Shannon and Wilson [2007] report), is provided in the Geologic Deposits Characteristics Overview below and subsequent subsections.

Geologic Deposits Characteristics Overview

The characteristics of deposits underlying the study area determine, to a large extent, the methods of design and construction that would be used and the long-term operational issues that must be considered.

In summary, the subsurface conditions encountered during drilling are both cohesive and granular soils that have been glacially overridden. These deposits are at or within several feet of the ground surface beneath topographically elevated areas (Shannon and Wilson 2007). In the intervening swales west of Lake Washington, deposits of predominantly very soft to soft peat and cohesive silt and clay are present. Exhibit 12 describes the general suitability of various deposit types for support of embankments and structures.
Exhibit 10. Summary of Geologic Units Potentially Underlying the Study Area

<table>
<thead>
<tr>
<th>Geologic Unit (Map Symbol)</th>
<th>Description</th>
<th>Density/Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary Deposits—Deposited after the last glacial retreat, within the last 13,500 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified land (shown as speckled pattern on Exhibit 9)</td>
<td>Fill and/or graded natural deposits that obscure or alter the original deposit.</td>
<td>Varies</td>
</tr>
<tr>
<td>Artificial fill (Hf) (shown as hatching pattern on Exhibit 9)</td>
<td>Placed by humans, both engineered and nonengineered. Various materials including debris; cobbles and boulders may be common.</td>
<td>Dense to stiff if engineered, but loose to dense or very soft to stiff if nonengineered</td>
</tr>
<tr>
<td>Colluvium (Hc)</td>
<td>Disturbed heterogeneous mixture of more than one soil type, including organic debris. Hillside slope accumulations.</td>
<td>Loose or soft</td>
</tr>
<tr>
<td>Landslide deposits (Hls)</td>
<td>Disturbed, heterogeneous mixture of one or more soil types; may contain wood or other organics. Normally located at and adjacent to the toe of slopes.</td>
<td>Loose or soft, with random dense or hard pockets</td>
</tr>
<tr>
<td>Peat (Qp/Hp)</td>
<td>Predominantly organic matter consisting of plant material and woody debris accumulated in bodies greater than about 3 feet in thickness of mappable extent. Accumulations greatest in floor of recessional-outwash channels and where lowering of Lake Washington has exposed extensive lake-floor deposits. Commonly interbedded with silt and clay.</td>
<td>Very soft to medium stiff or very loose to medium dense</td>
</tr>
<tr>
<td>Lake deposits (Ql/Hl)</td>
<td>Silt and clay with local sand layers, peat, and other organic sediments deposited in slow-flowing water. Most mapped areas are lake-bottom sediments exposed by the lowering of Lake Washington in 1916.</td>
<td>Very soft to medium stiff or very loose to medium dense</td>
</tr>
<tr>
<td>Deposits of the Vashon Glaciation—the most recent glacial advance and retreat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recessional outwash deposits (Qvr/Qvro)</td>
<td>Layered sand and gravel. Cobbles and boulders common. Discontinuous. May include thin layer on glacial till uplands, although deposits less than 3 feet thick are not shown on Exhibit 9.</td>
<td>Loose to dense; deposited as the glacial ice retreated and glacially overridden</td>
</tr>
<tr>
<td>Recessional lacustrine deposits (Qvrl)</td>
<td>Fine sand, silt, and clay. Glaciolacustrine sediment deposited as glacial ice retreated.</td>
<td>Dense to very dense or soft to hard; not glacially overconsolidated</td>
</tr>
<tr>
<td>Vashon till (Qvt)</td>
<td>Compact diamict of silt, sand, and subrounded to well-rounded gravel. Cobbles and boulders common. Glacially transported and deposited under ice. Commonly fractured and has intercalated lenses. Upper 3 feet of unit generally weathered and only medium dense to dense.</td>
<td>Very dense; overconsolidated by the glacial ice</td>
</tr>
</tbody>
</table>
Exhibit 10. Summary of Geologic Units Potentially Underlying the Study Area

<table>
<thead>
<tr>
<th>Geologic Unit (Map Symbol)</th>
<th>Description</th>
<th>Density/Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance outwash deposits (Qva)</td>
<td>Well-sorted sand and gravel. May grade upward into till. Silt lenses locally present in upper part and are common in lower part. Grades downward into Qvgl with increasing silt content.</td>
<td>Dense to very dense; deposited in advance of the Vashon glaciation and overridden by ice</td>
</tr>
<tr>
<td>Glaciolacustrine deposits (Qvgl) includes transitional beds (Qtb) and Lawton clay (Qvlc)</td>
<td>Very fine-grained flour deposit. Silty clay, clayey silt, with interbeds of silt and fine sand. Scattered organic fragments locally. Includes transitional beds and Lawton clay.</td>
<td>Hard or dense to very dense; deposited in advance of the Vashon glaciation and overridden by ice</td>
</tr>
</tbody>
</table>

Pre-Vashon Units—Overconsolidated by glacial ice

Deposits of pre-Fraser glaciation age (Qpf)	Interbedded sand, gravel, silt, and diamicts of indeterminate age and origin.	Very dense and hard
Nonglacial deposits of pre-Fraser glaciation age (Qpfn)	Sand, gravel, silt, clay, and organic deposits of inferred nonglacial origin based on the presence of peat, paleosols, and tephra layers.	Very dense and hard
Nonglacial fluvial deposits (Qpnf)	Clean to silty sand, gravelly sand, sandy gravel. Alluvial deposits of rivers and creeks.	Very dense
Nonglacial lacustrine deposits (Qpnl)	Fine sandy silt, silty find sand, clayey silt; scattered to abundant fine organics. Lake deposits in depressions.	Dense to very dense or very stiff to hard
Glacial outwash (Qpgo)	Clean to silty sand, gravelly sand, sandy gravel. Glaciofluvial sediment deposited as glacial ice advanced or retreated.	Very dense
Glaciolacustrine deposits (Qpgl)	Silty clay, clayey silt, with interbeds of silt and fine sand.	Very stiff to hard or very dense
Olympia beds (Qob)	Sand, silt (locally organic-rich), gravel, and peat, discontinuously and thinly interbedded; may contain tephra and/or diatomaceous layers.	Very dense and hard
Deposits of pre-Olympia age (Qpo)	Interbedded sand, gravel, silt, and diamicts of indeterminate age and origin.	Very dense and hard
Glacial till (Qtgt)	Gravelly silty sand, silty gravelly sand, cobbles, and boulders common.	Very dense
Glaciomarine deposits (Qpgm)	Till-like deposit with clayey matrix. Variable mixture of clay, silt, sand, and gravel; scattered shells locally; cobbles and boulders common.	Very dense or hard

Source: Booth et. al (2002), Troost et al. (2005), and Shannon and Wilson (2007)

* Map symbol is either that of Troost (2005) or of Shannon and Wilson (2007). Shannon and Wilson uses different geologic map symbols than Troost.
Exhibit 11. Summary of Typical Engineering Properties and Hazard Susceptibility of Geologic Units

<table>
<thead>
<tr>
<th>Geologic Unit</th>
<th>Strength</th>
<th>Permeability</th>
<th>Liquefaction Potentiala</th>
<th>Erosion Hazard on Steep (>15%) Slopeb</th>
<th>Landslide Hazard on Steep (>15%) Slopeb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary Deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial fill (Hf)</td>
<td>Varies</td>
<td>Varies</td>
<td>Varies</td>
<td>Varies</td>
<td>Varies</td>
</tr>
<tr>
<td>Colluvium (Hc)</td>
<td>Low</td>
<td>Varies</td>
<td>Varies</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Landslide deposits (Hls)</td>
<td>Low</td>
<td>Varies</td>
<td>Varies</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Peat (Qp/Hp)</td>
<td>Low</td>
<td>Saturated</td>
<td>N/A</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Lake deposits (QI/Hi)</td>
<td>Low</td>
<td>Low to Medium</td>
<td>Low to Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Deposits of the Vashon Glaciation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recessional outwash deposits (Qvri/Qvro)</td>
<td>Medium</td>
<td>Medium to High</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Recessional lacustrine deposits (Qvri)</td>
<td>Varies</td>
<td>Varies</td>
<td>Low</td>
<td>Low to Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Vashon till (Qvt)</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Advance outwash deposits (Qva)</td>
<td>Highc</td>
<td>Low to Medium</td>
<td>Low</td>
<td>Low to Medium</td>
<td>Low to Medium</td>
</tr>
<tr>
<td>Glaciolacustrine deposits (Qvgl)</td>
<td>Highd, e</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Mediumd, e</td>
</tr>
<tr>
<td>Pre-Vashon Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deposits of pre-Fraser glaciation age (Qpf)</td>
<td>High</td>
<td>Low to High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Nonglacial deposits of pre-Fraser glaciation age (Qpfn)</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Nonglacial fluvial deposits(Qpnf)</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Nonglacial lacustrine deposits (Qpnl)</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Glacial outwash (Qpg0)</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Glaciolacustrine deposits (Qpgl)</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
Exhibit 11. Summary of Typical Engineering Properties and Hazard Susceptibility of Geologic Units

<table>
<thead>
<tr>
<th>Geologic Unit</th>
<th>Strength</th>
<th>Permeability</th>
<th>Liquefaction Potential<sup>a</sup></th>
<th>Erosion Hazard on Steep (>15%) Slope<sup>b</sup></th>
<th>Landslide Hazard on Steep (>15%) Slope<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Olympia beds (Qob)</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Deposits of pre-Olympia age (Qpo)</td>
<td>High</td>
<td>Low to High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Glacial till (Qpgt)</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Glaciomarine deposits (Qpgm)</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Note: The terms low, medium, and high were determined based on professional opinion from experience with the soil types. The hazard susceptibility was determined based on criteria in City of Seattle Municipal Code 25.09.020, City of Medina Municipal Code 18.12.330, and professional opinion.

^aLiquefaction depends in part on density of the material and the groundwater table elevation. These ratings assume groundwater within 5 to 10 feet of the ground surface.

^bBased on City codes and regulations.

^cHigh strength unless cut vertically below the water table, then potentially low to medium strength.

^dFor some materials, like the Lawton clay, there may be preexisting planes of weakness with low strength; excessive deformation may also reduce strength to very low residual levels.

^eLandslide hazards in Lawton clay are high if they have been cut into. If left in place and not disturbed, then the landslide hazard is low.

^fPeat is not liquefiable but could experience some strength loss following seismic shaking.

Exhibit 12. General Suitability of Deposit Types for Support of Embankments and Structures

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial fill</td>
<td>Highly variable depending on material type and placement method. Generally unsuitable for bridge spread footings.</td>
</tr>
<tr>
<td>Colluvium</td>
<td>Properties range from poor to good. Typically acceptable for support of embankments and structural earth walls but poor for bridge support.</td>
</tr>
<tr>
<td>Landslide deposits</td>
<td>Require special attention during design. Frequently have zones of low strength and poor drainage. May be subject to differential settlement.</td>
</tr>
<tr>
<td>Peat</td>
<td>Requires deep foundations for bridge support. Subject to high short-term and long-term settlement under embankments. Weak.</td>
</tr>
<tr>
<td>Lake deposits</td>
<td>Require deep foundations for bridge support. Can be highly compressible and weak.</td>
</tr>
<tr>
<td>Colluvium, peat,</td>
<td>Require deep foundations. In saturated conditions, these soils have the potential to lose strength and undergo settlement and/or lateral movement during a design-level earthquake. Excavations often require dewatering and shoring or relatively flat slopes for temporary support.</td>
</tr>
<tr>
<td>and lake deposits</td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 12. General Suitability of Deposit Types for Support of Embankments and Structures

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vashon recessional outwash deposits</td>
<td>Generally suitable for spread footing and embankment support. Moderately strong. Excavations may require dewatering if below groundwater.</td>
</tr>
<tr>
<td>Vashon recessional lacustrine deposits</td>
<td>Require deep foundations. Compressible and weak.</td>
</tr>
<tr>
<td>Vashon till</td>
<td>Good soils for supporting structures, can be difficult to excavate. Difficult to drive piles in more than a few feet because very compact and frequently contains cobbles and boulders. Stable at relatively steep slopes, makes good embankments and backfill, but highly weather-sensitive due to silt and clay content and cannot be compacted when wet. Glacial till has low permeability.</td>
</tr>
<tr>
<td>Vashon advance outwash deposits</td>
<td>Glacially compressed with high strength and low compressibility. High allowable weight-bearing, stands firm at relatively steep slopes, makes excellent embankment material. May be difficult to compact if exposed to moisture due to variable silt and clay content, but typically less weather-sensitive than till. Variable permeability.</td>
</tr>
<tr>
<td>Vashon glaciolacustrine deposits including transitional beds and Lawton clay</td>
<td>Relatively high potential for instability when excavated. Generally hard and relatively strong in its undisturbed state but loses strength upon deformation such that slope instability might occur during temporary excavations. Design of slopes and structures in this material frequently uses residual strength.</td>
</tr>
<tr>
<td>Deposits deeper than Vashon glaciolacustrine deposits</td>
<td>Glacially compressed with good support characteristics. Typically very strong and incompressible.</td>
</tr>
<tr>
<td>Soft silt or clay</td>
<td>Poor for structural support. Typically requires consolidation time or other mitigation measure for settlement control.</td>
</tr>
<tr>
<td>Medium stiff to hard silt or clay</td>
<td>Occasionally suitable for shallow foundations. Typically acceptable for embankment. Weather-sensitive and easily disturbed when exposed.</td>
</tr>
<tr>
<td>Loose sand</td>
<td>Poor for structural support. Liquefiable if below water. Could require ground improvement near bridge abutments or in embankments behind walls to limit seismic settlement and control lateral deformation.</td>
</tr>
<tr>
<td>Medium-dense to very dense sand</td>
<td>Can be suitable for spread footing support. Typically suitable for embankment support and behind walls.</td>
</tr>
</tbody>
</table>

Exhibit 13 summarizes the subsurface deposits and groundwater conditions for specific areas of the project based on information from Shannon and Wilson (2007) and WSDOT et al. (2006). This summary is based on subsurface drilling and geologic interpretation by Shannon and Wilson (2007).
Exhibit 13. Area-specific Subsurface Conditions

<table>
<thead>
<tr>
<th>Area</th>
<th>Subsurface Soil Conditions</th>
<th>Groundwater Conditions*</th>
<th>Special Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-5 to Portage Bay</td>
<td>Generally underlain by very stiff to hard, silty clay (Qpql and to a lesser extent Qvql). Deposits of very stiff to hard, sandy, silty clay to very dense, gravelly, clayey sand (Qpgm) are also present near the ground surface. On the steep hillside above Portage Bay, these deposits are overlain by softer soils consisting of gravelly, sandy, silty clay to silty clay, which represent landslide deposits (Hls) and colluvium (Hc).</td>
<td>134-foot elevation at Delmar Drive East Undercrossing</td>
<td>The steep hillside between Delmar Drive East and Portage Bay has experienced landsliding in the past. Recent ground cracking was observed as evidence of instability (Shannon and Wilson 2007). Based on previous borings, these landslide deposits and colluvium are typically about 20 feet thick. Near Portage Bay, some of these softer deposits of silty clay likely represent Vashon recessional glacial lacustrine deposits (Qvrl).</td>
</tr>
<tr>
<td>Portage Bay</td>
<td>Underlain by glacially overridden soils consisting of dense to very dense silt to sandy silt and silty sand (Qpnl). The top of these soils are approximately 90 to 100 feet below the water level of Portage Bay. Under portions of the alignment, the Qpnl is overlain by stiff, silty clay with layers of dense sand (Qvrl). The Qpnl and Qvrl deposits are overlain by 50 to 80 feet of normally consolidated sediments consisting of very soft peat (Hp) and silty clay (Hl).</td>
<td>Generally 19-foot elevation. Artesian conditions in the middle and east end of Portage Bay</td>
<td></td>
</tr>
<tr>
<td>Montlake Area</td>
<td>Underlain by very dense or hard soils. The uppermost 30 to 40 feet of soil is very dense, silty, gravelly sand to sand (Qpgt and Qpgo or Qva) with some looser granular soils near Portage Bay and Union Bay.</td>
<td>38- to 48-foot elevation at Montlake Boulevard East undercrossing</td>
<td></td>
</tr>
<tr>
<td>Montlake Area (near Montlake Cut)</td>
<td>South of SR 520, glacially consolidated granular or cohesive soils are likely present within a few feet of the ground surface.</td>
<td>36- to 39-foot elevation</td>
<td>A buried canal may be located within the proposed widened SR 520. The former canal was up to 30 feet deep near Montlake Boulevard East and may be filled with both engineered and nonengineered fill.</td>
</tr>
<tr>
<td>Montlake Area (near Union Bay and Pacific Street vicinity)</td>
<td>The area near Husky Stadium is underlain by very dense, gravelly, silty sand to silty, gravelly sand (Qvt). Fill is underlain by very dense, silty, fine sand to fine sandy silt (Qpfn/Qpnl) and hard, silty clay (Qpgl). Fill thickness ranges from 5 feet overlying the till to 20 feet overlying soft peat and clayey silt (Hl) near Union Bay.</td>
<td>28- to 60-foot elevation</td>
<td>Subsurface conditions are poorly defined (Shannon and Wilson 2007).</td>
</tr>
</tbody>
</table>
Exhibit 13. Area-specific Subsurface Conditions

<table>
<thead>
<tr>
<th>Area</th>
<th>Subsurface Soil Conditions</th>
<th>Groundwater Conditions</th>
<th>Special Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Approach Area (Arboretum vicinity)</td>
<td>West of Foster Island, the alignment is underlain by 25 to 45 feet of very soft peat (Hp), which is typically underlain by 5 to 10 feet of soft to very stiff, silty clay to sandy, silty clay (Hl). Hl is up to 15 feet thick near the existing Lake Washington Boulevard exit overcrossing. East of Foster Island, peat (Hp) has a relative uniform thickness of about 45 feet. Peat is underlain by soft to very stiff, silty clay that is 10 to 35 feet thick.</td>
<td>19-foot elevation</td>
<td>In the central portion of the Arboretum, 19 feet of landfill debris materials underlying a 2-foot soil cap were observed in a boring.</td>
</tr>
<tr>
<td></td>
<td>Peat and clay are underlain by hard silty clay to gravelly, sandy, silty clay and very dense, silty, clayey, gravelly sand (Qpgm) west of Foster Island, and very dense, sandy silt to silty sand and hard, silty clay generally east of Foster Island. The top of the dense to very dense or hard soils is about 40 to 85 feet below the water surface of Union Bay.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Approach Area (Arboretum to East end of West Approach)</td>
<td>East of the Arboretum, very soft to soft peat and clay decrease in thickness. Very dense, silty, gravelly sand (Qpgo/Qva) are present within a few feet of the lake bottom and are generally overlain by a thin layer of peat.</td>
<td>19-foot elevation</td>
<td></td>
</tr>
<tr>
<td>Floating Bridge Area (Lake Washington)</td>
<td>Soils underwater in Lake Washington consist of 20 to 40 feet of soft peat (Hp) underlain by soft to stiff clay and silt (Qvrl) to depths of 150 feet below the lake bottom.</td>
<td></td>
<td>Ground that underlies the water of Lake Washington could be subject to landsliding. Subaqueous deposits of very soft peat and organic silt could move laterally, although there is no evidence that suggests that these soils along the Evergreen Point Bridge are prone to flow (Shannon and Wilson 2007).</td>
</tr>
</tbody>
</table>
Exhibit 13. Area-specific Subsurface Conditions

<table>
<thead>
<tr>
<th>Area</th>
<th>Subsurface Soil Conditions</th>
<th>Groundwater Conditions<sup>a</sup></th>
<th>Special Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Bridge Area (East Approach vicinity)</td>
<td>Soils beneath Lake Washington at the east approach are underlain by very stiff to silt and sandy silt (Qvrl and Qvgl) deposits at the base of the slope and very dense silty gravelly sand (Qvt) and very dense, clayey, silty, gravelly sand (Qpgm) and very dense silt to hard clayey silt (Qvgl) near the top of the slope.</td>
<td>19-foot elevation</td>
<td>Presence of large underwater block slides up to 150 feet thick in the vicinity of the east approach (Kartlin et al. 2004). Collected soil samples did not possess textural features consistent with disturbance in a landslide. The west-facing slope above Lake Washington at the east approach is an area of known or potential instability. There is evidence of slope creep and minor slope movement. Deep-seated instability was not observed (Shannon and Wilson 2007).</td>
</tr>
<tr>
<td>Floating Bridge Area (Maintenance Facility vicinity)</td>
<td>Looser or softer landslide (Hls) or colluvial (Hc) soils likely mantle the steep slope above the eastern shore of Lake Washington, but not of an appreciable thickness. Much of the alignment is underlain by very dense, silty, gravelly sand to silty sand (Qvt/Qpgt), which is present at or near the ground surface. Till soils are underlain by hard, silty clay to clayey silt and very dense, sandy silt to silt (Qvgl/Qpgl/Qpnl).</td>
<td>19-foot elevation</td>
<td>Limited subsurface information (Shannon and Wilson 2007).</td>
</tr>
<tr>
<td>Eastside Transition Area (vicinity between East Approach and 92nd Avenue NE)</td>
<td>Generally underlain by Vashon recessional glacial outwash and till at shallow depths. Very dense, silty, gravelly sand to silty sand (Qvt/Qpgt) is present at or near the ground surface along much of the alignment. These till soils are underlain predominantly by hard, silty clay to clayey silt and very dense, sandy silt to silt (Qvgl/Qpgl/Qpnl). Very dense sand to sandy gravel (Qpgm) and very dense, silty, gravelly sand (Qpgm) was also observed underlying the till. Medium dense, silty sand (Qvro) was encountered to about 8 feet deep at 92nd Avenue NE. Broad swales that the proposed alignment crosses west and east of 84th Avenue NE are likely underlain by less dense or softer recessional soils and peat (Hp). These normally consolidated deposits are underlain by very dense or hard soils at unknown depths.</td>
<td>Not indicated</td>
<td>Limited subsurface information (Shannon and Wilson 2007).</td>
</tr>
</tbody>
</table>

Groundwater Conditions

The study area is located in the Seattle Drift Plain topographic unit (Liesch et al. 1963). There are two distinct aquifers—a perched or semi-perched aquifer and a principal aquifer. The perched or semi-perched aquifer is encountered in the Vashon recessional outwash deposits and Vashon till. Wells that tap this aquifer may go dry in the summer. The principal aquifer is encountered in the gravel underlying the Vashon till.

Results of previous explorations within the study area indicate that the groundwater conditions are variable. In some areas, such as adjacent to Lake Washington and Portage Bay, groundwater is located very close to the surface. In other locations, such as along I-5, groundwater may be encountered greater than 95 feet deep, but there may be zones of perched groundwater at shallower depths. Artesian groundwater conditions occur within and adjacent to Portage Bay (Shannon and Wilson 2007).

For further information on groundwater in the study area, please refer to the Water Resources Discipline Report (WSDOT 2009e).

Existing and Potential Aggregate Sources

Most of the soil types located within the study area would not be good sources of aggregate because of the high fines content and wet conditions. Soils with high fines content are more difficult to work with during construction because they are more moisture-sensitive, making them difficult to compact.

Aggregate quantity requirements for the project are expected to range from 52,000 cubic yards for Option L to 320,000 cubic yards for Option K. Imported aggregate would be required as fill for bridge approaches, lid structures and embankments, temporary access roads, temporary and permanent staging areas, and road subgrades. It would also be needed as backfill for utilities, spread-footing foundations, cut and cover tunnels, sequential excavation method (SEM) tunnels, and around footings prior to removal of cofferdams. Aggregate would also be used in concrete to construct structures such as the roadways, retaining walls, lid structures, foundations, tunnel walls, and pontoons and anchors for the floating bridge span. The location of the project is such that trucks could bring the aggregate...
from borrow sources or barges could bring the aggregate from other locations in the Puget Sound region, as well as from the Aberdeen or Hoquiam areas.

Do the existing geology and soil conditions pose any geologic hazards for the study area?

The geology and soil analysts identified the potential for geologic hazards in the study area by reviewing hazard and critical-area maps published by the City of Seattle, City of Medina, USGS, and Washington State Department of Natural Resources (WDNR) and by interpreting the available geotechnical information.

Geologic hazard areas include areas susceptible to erosion, sliding, earthquakes, or other geologic events. Geologic hazard areas include liquefaction-prone areas, seismic hazard areas, volcanic hazard areas, landslide hazards areas, steep slopes, and erosion hazard areas.

Geologic hazard areas pose a threat to the health and safety of citizens when incompatible commercial, residential, or industrial developments are sited in areas of significant hazard.

Sources of hazard mapping include:

- City of Seattle (2003), King County (2003), and WDNR (2002) geographic information system (GIS) maps and other WDNR maps for the study area identified three types of geologic hazards—erosion potential/landslides, steep slopes, and liquefaction potential zone.

- Interpretations of boring logs collected from GeoMapNW (Pacific Northwest Center for Geologic Mapping Studies, University of Washington 2009), WSDOT, and the City of Seattle archives identified potential hazards from settlement or soft-ground conditions.

The following geologic hazard types have been identified within the study area:

- Seismic hazards
- Erosion hazards
- Steep-slope/landslide hazards
- Settlement or soft-ground hazards
The following subsections discuss the ways in which existing geology and soil conditions pose these hazards and the potential locations of these hazards.

Seismic Hazards

The primary seismic hazards for the study area involve ground-shaking hazards, liquefaction hazards, faulting hazards, and seiche or tsunami hazards. The following sections summarize the extent of these hazards.

Ground-shaking Hazard

The potential for future earthquake-related ground shaking is relatively high in the study area. Earthquakes in the Puget Sound region can result from any one of three sources:

- The Cascadia subduction zone interplate source off the coast of Washington
- The deep intraslab subduction zone located approximately 20 to 40 miles below the area
- Shallow crustal faults (less than 15 miles deep)

Exhibit 14 conceptually shows the causes of the three types of earthquakes and historical examples of each. The ground shaking used for design of the project will be based on probabilistic modeling that combines the effects of potential earthquakes from all three sources at the location of the project site. The ground accelerations developed for design will consider not only the distances from each of
the potential source mechanisms, but also the ways in which the soils area-wide and at the site would dampen or amplify the earthquake effects.

Liquefaction Hazard

Soil liquefaction and the accompanying settlement, lateral spreading, or flotation of buried vaults and pipes could occur where areas are underlain by cohesionless soils (for example, fine-grained sand, silt, or sandy silt) of low relative density that are saturated (that is, below the groundwater table). Soft cohesive soils (for example, clay, some silts, and organic or peaty deposits) may experience strength reduction during an earthquake, even though they may not liquefy in the classic sense. The peat (Qp/Hp), lake deposits (Ql/Hl), and some recessional outwash deposits (Qvr/Qvro) that underlie the study area are loose or soft and saturated; therefore, they are potentially susceptible to liquefaction or strength reduction during earthquake shaking. Portions of the study area are mapped as being in liquefaction-prone areas (Exhibit 15). In addition, a Palmer et al. map (2004) indicates that some portions of the study area have a moderate to high potential for liquefaction.

Faulting Hazard

Two fault zones are located within 20 miles of the study area. The closest fault zone is about 4.5 miles from the study area (Exhibit 16). The USGS refers to these faults as the Seattle Fault Zone (Fault No. 570) and the Southern Whidbey Island Fault Zone (Fault No. 572) and considers them active. A low hazard of surface rupture is anticipated based on the distance (more than 4.5 miles) of the study area from the mapped faults.

Seiche or Tsunami Hazard

Seiches or tsunamis are a possible secondary effect from seismic events or from an underwater landslide (underwater landslides are further discussed under Steep-slopes/Landslide Hazards). Seiches can be induced by earthquakes in lakes, bays, and rivers. The potential magnitude of a seiche event occurring from an earthquake is difficult to predict as the magnitude of the seiche depends on the magnitude of the earthquake, frequency of vibrations, natural period of the water body, sediment thicknesses, presence of thrust faults, and other geologic factors (Barberopoulou 2006).
Project Extent
Limited Improvements
Erosion/Potential Landslide Area
Steep Slope (Only for Seattle)
Liquefaction Zone

Source: King County (1997) GIS Data (Erosion); King County (2003) GIS Data (Landslides and Hillshade); WADNR (2002) GIS Data (Liquefaction); City of Seattle (2002) GIS Data (Erosion/Potential Landslide and Steep Slopes); City of Seattle (1997) GIS Data (Liquefaction); King County (2005) GIS Data (Streets) King County (2007) GIS Data (Water Bodies), CH2M HILL (2008) GIS Data (Parks). Horizontal datum for all layers is NAD83(91); vertical datum for layers is NAVD88.

Exhibit 15. Geological Hazard Areas
I-5 to Medina: Bridge Replacement and HOV Project
In 2002, a seiche damaged houseboats, buckled moorings, and broke water and sewer lines in Lake Union following the Alaskan earthquake with a magnitude of 7.9. Damage was limited to about 20 houseboats. While no historic records are available to document the size of waves produced during this event, Barberopoulou (2006) models estimated maximum wave heights of 1.41 feet (0.43 meter) as a result of this event.

The City of Seattle (under Ordinance 122370) classifies the shoreline and upland areas along Lake Washington within the study area as having an “unknown risk from seiches.” The risk of seiche damage to a new floating bridge over its 75-year design life is probably small. The existing bridges have withstood standing waves up to 8 feet tall (King County Office of Emergency Management 2005). According to WSDOT (P. Clarke, Bridge Engineer, WSDOT, Tumwater, Washington. April 21, 2004. Personal communication), the wave forces generated by a seismic event are likely to be less than the design wind waves.

Erosion Hazards

An erosion hazard is present where soils may experience severe to very severe erosion from construction activity. This hazard typically occurs on a slope of 15 to 40 percent if the soil is erosion-prone. Erosion-prone soils have a high percentage of silt or clay, or they are located above a less permeable soil layer. Erosion hazards occur where steep slopes and landslides are located, as described in the next subsection. Erosion hazards are mapped in the locations shown on Exhibit 15.

Steep-slope/Landslide Hazards

Steep-slope hazards have a slope of over 40 percent or more within a vertical elevation change of at least 10 feet. The following are examples of areas that are landslide-prone:

- Where there are known landslides
- Where there is evidence of past landslides
- In those areas that are described as potential slide areas in *Seattle Landslide Study* (Shannon and Wilson 2000 and 2003)
- In areas with topographic expression of runout zones, such as fans and colluvial deposition at the toes of hillsides
- In areas at the top of very steep slopes or bluffs, depending on soil conditions

Colluvial deposition: Loose bodies of sediment deposited or built up at the bottom of a low-grade slope or against a barrier on that slope, transported by gravity.

Fans: A fan-shaped accumulation of debris deposited at the base of a landslide

Runout zone: The portion of the landslide where the debris typically comes to rest.
The mapped steep-slope and landslide hazard locations are shown on Exhibit 15. Typically, the potential severity of the hazard increases as the steepness of the slope increases. Areas of known and potential instability include the steep hillside between Delmar Drive East and Portage Bay, the west-facing slope above Lake Washington at the east approach to the Evergreen Point Bridge, and localized areas of steep cuts and fills along the existing SR 520 alignment (Shannon and Wilson 2007).

Works by Golder Associates (2003) and Karlin et al. (2004) identified numerous underwater debris and sand flows, slumps, and large block slides around the margins of Lake Washington that were caused by large earthquakes in the Puget Lowland. The debris and sand flows are relatively thin, but the block slides are as much as 150 feet thick. Karlin et al. (2004) documented a large block slide in the vicinity of the east approach to the Evergreen Point Bridge and a sand flow in the vicinity of the west approach to the Evergreen Point Bridge.

Settlement or Soft-ground Hazards

Areas underlain by loose compressible sediments, particularly peat and lake deposits, could be subject to ground settlement during and sometimes after construction. The peat deposits and lake deposits shown on Exhibits 9 and 10 can be considered potential settlement or soft-ground hazards. Structures and buried utilities might settle unevenly and become damaged unless they were supported on piles or the ground was improved. These soft soils could also require the use of special construction procedures during placement of fills. If these procedures were not used, bearing or slope failures could occur when fill heights exceeded certain limits. Generally, areas mapped as seismic hazards associated with liquefaction also coincide with areas of settlement hazard.
Potential Effects of the Project

What methods were used to evaluate the project’s potential effects?

The project’s potential effects on geology and soils were evaluated semi-quantitatively by comparing several measurable quantities among the options of the 6-Lane Alternative. These potential geology- and soil-related effects and the associated measurable quantities are listed in Exhibit 17. The reasons that these methods were used as bases of comparison are discussed in the next subsections, where the construction and operation effects of the project are described.

Exhibit 17. Semi-quantitative Measures of Potential Effects

<table>
<thead>
<tr>
<th>Potential Effect</th>
<th>Comparative Measure</th>
<th>Comments about Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth-related construction disturbance</td>
<td>Total cut-and-fill volume</td>
<td>These effects potentially include dust, noise, and minor erosion and represent temporary effects of construction.</td>
</tr>
<tr>
<td>Erosion of exposed soil where vegetation has been removed</td>
<td>Mainline distance through mapped erosion hazard areas</td>
<td>The product of potentially exposed soil area and duration of exposure might be a better indicator, but it is very difficult to calculate at this stage of design development.</td>
</tr>
<tr>
<td>Potential for slope movement during construction</td>
<td>Length of walls in cut and bridge abutments perpendicular to slope contours in landslide hazard areas</td>
<td>Cut volume or wall area within hazard areas might be a slightly better indicator, but it is not possible to calculate at this stage of design development.</td>
</tr>
<tr>
<td>Space and disturbance associated with demolition of existing structures</td>
<td>Volume of concrete removed</td>
<td>These effects potentially include dust, noise, and ground vibration and represent temporary effects of construction.</td>
</tr>
<tr>
<td>Bridge construction over water</td>
<td>Estimated numbers of new permanent shafts, numbers of temporary piles</td>
<td>These effects potentially include ground vibration, erosion, and the potential for water quality reduction from erosion of soils. They also represent temporary effects of construction.</td>
</tr>
<tr>
<td>Short-term, localized lowering of groundwater table</td>
<td>Length of retaining walls in cuts and bridge abutments in glacial outwash and recent alluvial soils</td>
<td>See Water Resources Discipline Report (WSDOT 2009e) for additional discussion.</td>
</tr>
</tbody>
</table>
Exhibit 17. Semi-quantitative Measures of Potential Effects

<table>
<thead>
<tr>
<th>Potential Effect</th>
<th>Comparative Measure</th>
<th>Comments about Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imported sand and gravel resources for embankment fills</td>
<td>Net embankment, net sand and gravel for all uses (structures, pavements, and embankments)</td>
<td>Reuse of onsite material potentially reduces some of the need for imported material.</td>
</tr>
</tbody>
</table>

Operational Effects

<table>
<thead>
<tr>
<th>Potential Effect</th>
<th>Comparative Measure</th>
<th>Comments about Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of topsoil</td>
<td>Estimated volume of topsoil removed</td>
<td>Not a complete measure of the potential effect because quality topsoil would probably be reused on the project or sold for use in the region.</td>
</tr>
<tr>
<td>Slope stabilizing effects</td>
<td>Length of walls (including lid support walls) and bridge abutments perpendicular to slope contours in landslide hazard areas</td>
<td>Length of wall or structure is more appropriate than area or other quantitative measure because slope would have to be stabilized regardless of cut height or volume of soil removed. This is a relatively crude measure since the existing factor of safety against slope movement is unknown.</td>
</tr>
<tr>
<td>Underground facilities located immediately behind retaining walls</td>
<td>Length of walls (including lid support walls) and bridge abutments perpendicular to slope contours in landslide hazard areas</td>
<td>Same as those described for “Slope stabilizing effects” in the row above.</td>
</tr>
<tr>
<td>Long-term settlement below roadway fill sections</td>
<td>Surface area over areas mapped as peat (Qp) and lake deposits (Ql) where elevation of roadway would be higher than at present</td>
<td>Mapping as lake deposits does not necessarily mean compressible silt, clay, or highly organic material (could be primarily sandy), but peat is compressible highly organic material.</td>
</tr>
</tbody>
</table>

The project’s potential effects would generally result from the following permanent consequences of the 6-Lane Alternative:

- New loads or reductions in loads on the geology and soils as embankments were placed and as areas were excavated
- Loss of soil layers as materials were removed to accommodate project elements (for example, retaining walls) or as soils were removed or replaced to improve the performance of project elements
Depletion of geology and soil resources outside the study area as materials were imported to meet the construction needs.

In addition to permanent effects, a number of construction effects on geology and soils would result. Some of these effects, such as construction noise or vibration, would occur because construction of the project would require modifying study area geology and soils to meet project development requirements.

The geology and soil analysts reviewed the following key reports:

- SR 520 Westside Construction Techniques Technical Memorandum (HDR Inc. et al. 2009b)

How would construction of the project affect geology and soils?

Direct effects involving geology and soils that occur during construction of a project are those that result from changes in the geology or soil conditions or those that are determined by geology and soil conditions. The simplest example of a direct effect is the need to change surface soil elevations to meet roadway grade requirements.

Construction Effects Common to All Project Areas and Options

The geology and soil analysts evaluated potential environmental effects related to geology and soils during construction based on the geology and soil conditions within the study area and the expected types of construction for the project areas and options. The evaluation of environmental effects during construction generally considered the entire study area. Where unique effects would occur for a specific area and option, they are discussed in the next subsection “Area- and Option-specific Temporary Construction Effects.”

The planned construction could result in a number of short-term direct effects on the environment related to geology and soils, including the following:

- **Erosion hazards.** Clearing protective vegetation, fill placement, grading, and spoils removal or stockpiling during construction...
would allow rainfall and runoff to erode soil particles. This would create the potential for loss of soil at the site of disturbance and downslope from the disturbance and a reduction in runoff water quality. The severity of potential erosion would be a function of the Temporary Erosion and Sedimentation Control measures used by the contractor, the quantity of vegetation removed, site topography, rainfall, and the volume and configuration of stockpiled soils.

- **Topographic changes.** The topographic changes to the corridor would be relatively small because the widened roadway would follow the same corridor as the existing roadway. In addition, the footprint would be minimized by using walls to retain most fills and cuts. Earthwork quantities (cut-and-fill volumes) would provide a relative measure of the amount of topographic change. Total cut-and-fill volumes and other semi-quantitative relative soils and geology project effects for each of the areas and options are provided in Exhibit 18.

- **Slope instability and landslides.** Construction of the project would involve grade changes, cuts and fills, and/or installation of bridge and retaining wall structures that have the potential to destabilize landslide-prone hillsides. Slope movement could result in increased erosion and sedimentation, with a possible reduction of surface water quality. Extreme cases of slope instability and landslides could endanger onsite and offsite property. The overall risk of these direct effects is rated low because slope instability is being considered during the design phases of the project.

- **Construction-induced vibrations.** The use of heavy equipment during construction would cause ground vibrations. The direct effects of the vibrations would depend on the type of heavy equipment, the distance between equipment and receptors (for example, people, sensitive structures, or utilities), and the ability of the soil to transmit vibrations. Most construction-related vibrations, with the exception of those related to demolition and pile-driving, should be imperceptible to people outside of the construction zone, especially considering the existing vibrations caused by SR 520 traffic. Demolition, pile installation by vibratory methods, and pile-driving vibrations might be felt a few hundred feet from the source
Exhibit 18. Semi-quantitative Relative Soils and Geology Project Effects

<table>
<thead>
<tr>
<th>Project Effect</th>
<th>Seattle Area</th>
<th>Lake Washington and Eastside Transition Area</th>
<th>Project Totals (from I-5 to 92nd Ave NE in Yarrow Point)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option A</td>
<td>Option K</td>
<td>Option L</td>
</tr>
<tr>
<td>Total estimated excavation (volume of excavation, cy)a</td>
<td>290,000</td>
<td>1,250,000</td>
<td>400,000</td>
</tr>
<tr>
<td>Import fill (total volume of embankment, cubic yards)b</td>
<td>66,000</td>
<td>300,000</td>
<td>32,000</td>
</tr>
<tr>
<td>Lane miles of new roadway not on structure</td>
<td>3.4</td>
<td>3.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Area of new bridges and structures (square feet)b</td>
<td>1,600,000</td>
<td>2,200,000</td>
<td>2,000,000</td>
</tr>
<tr>
<td>Area of walls (square feet, includes all wall types and noise barriers)c</td>
<td>82,000</td>
<td>86,000</td>
<td>78,000</td>
</tr>
<tr>
<td>Length of new concrete barrier (linear feet)d</td>
<td>13,000</td>
<td>9,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Number of new columns and shafts supporting structures over water</td>
<td>309</td>
<td>2,900</td>
<td>310</td>
</tr>
<tr>
<td>Number of temporary piles</td>
<td>3,000</td>
<td>4,000</td>
<td>3,000</td>
</tr>
</tbody>
</table>

- **a** Total excavation is the sum of estimated roadway excavation quantities and structure excavation quantities.
- **b** Area is square footage of the new structures (ramps, bridges, lids, etc.) and does NOT include any temporary structures or demolition.
- **c** Area is for all types of walls including SEW, reinforced concrete retaining, soil nail, soldier pile, soldier pile/cylinder pile, and all noise barrier walls.
- **d** Length of concrete barrier only. Does NOT include guard rail.

Note: Values have been rounded to two significant digits.

Source: HDR Inc. et al. (2009c) and WSDOT et al. (2009)
and would be perceptible to people living or working in the area and could affect fish or other wildlife. These activities might have the potential to cause the settlement of loose sands and might damage sensitive structures within a few feet of the activity. Noise and vibration are discussed in the Noise Discipline Report (WSDOT, 2009b).

- **Utility and buried structure protection.** Excavations for structure foundations and relocation of utilities, if not supported correctly, could result in lateral and vertical movement of the ground next to the excavations. The direct effect of the movement could be damage to buried utilities and to structures or roadways located adjacent to the excavations. The additional load of stockpiles or temporary haul roads could cause settlement of the soil in which utilities were located, potentially damaging the utilities.

- **Hazardous materials.** Soils excavated during construction could be contaminated if the project were to cross areas identified in the Hazardous Materials Discipline Report (2009d). For example, “garbage dump” material is indicated in a boring drilled within the Arboretum Interchange (Shannon and Wilson 2007). If encountered, these contaminated soils would require special handling, transport, and disposal at offsite locations. The direct effect of the hazardous materials would be the extra time and cost of special handling.

- **Excavation of unsuitable soils.** Existing soils excavated during construction that could not be used as structural fill or for landscape material would require removal from the study area and disposal elsewhere.

- **Accelerated wear of existing infrastructure.** Trucks used to bring equipment or construction materials to the site or to remove excess soils and construction debris could accelerate deterioration of nearby streets and roadways. For example, if the trucks’ loads exceeded the strength of the roadway base material, the pavement could crack or develop ruts.

- **Compression of soils.** Fills used for construction or stockpiles of soil used for temporary material storage could compress soils. This might also laterally squeeze existing soils if the soil strength were inadequate. The displacement of the soils could affect facilities constructed on or within the soils.
• **Aggregate depletion.** Aggregate materials would be required for construction. The use of aggregate for construction, including sand and gravel for pavement and structures, could deplete supplies of material that might be used for other purposes. This would be a cumulative effect of construction.

Most of the native materials that would be excavated along the project alignment would contain too much silt and clay to be free draining. That would make these soils very difficult to recompact if wet and they could not be reused. Exhibit 19 assumes that 100 percent of the native materials would be hauled offsite rather than reused, and that 100 percent of the materials used for construction would be imported aggregate.

• **Topsoil depletion.** Construction would require removal or burial of the upper layer of organic-rich soil, resulting in a potential loss of topsoil. However, this material would normally be removed and stockpiled within the study area. Later, the topsoil could be used during landscaping associated with construction, resulting in minimal net direct effects. In addition, in areas where landscaped lids would be constructed, a net increase in the amount of topsoil could occur relative to existing conditions.

• **Change in groundwater flow.** Construction of seepage-cutoff retaining structures (such as secant pile walls) could result in impermeable barriers in the ground that could change groundwater flow conditions. In addition, the compression of soil beneath new approach fills might eventually change groundwater flow or flushing conditions. A possible consequence of this may be a shift in the location of any groundwater contaminant plumes that may exist near the project.

• **Dewatering.** Dewatering of excavations located below the groundwater table could result in quantities of sediment-laden water that would not meet water-quality disposal requirements and would have the potential to change the adjacent water table. Prior to concrete curing, high pH surface runoff from structures could become mixed with dewatering flows, adding to water quality concerns. The potential would be more substantial near Portage Bay, Union Bay, and Lake Washington, where groundwater elevations are near the surface. Dewatering could also result in the settlement of nearby structures, if proper considerations were not given to the effects of water-level changes.
Area- and Option-specific Construction Effects

Exhibit 19 provides a qualitative rating of potential construction effects for specific areas and options within the study area. This qualitative review does not replace the detailed geotechnical work that would be required during the design phases. A qualitative rating of the frequency or seriousness of the potential effects related to geology and soils was assigned, as follows.

- A low rating (L) was given to an effect that would have a low potential of occurring or if the effect would only occur in a localized area.
- A moderate rating (M) was given to an effect that would have a moderate potential to occur or if the effect would occur at multiple locations.
- A high rating (H) was given to an effect that would have a high potential to occur or if it could cause major effects; this rating triggers the need for more detailed studies.

Based on the information that was available when performing this evaluation, none of the effects was determined to be a fatal flaw (an undue risk) that would prevent construction of the project.

In all cases, the evaluation determined that the severity or frequency of the hazard or effect could be avoided or minimized using conventional design and construction methods. Where effects are listed as being moderate to high, more effort is necessary during design to evaluate the severity of the effect and to identify an adequate mitigation method.

The following subsections describe some potential area- and option-specific construction effects.

No Build Alternative

Under the No Build Alternative, the project would not be constructed and the geology and soils would not be affected. The existing geology and soil environment would remain essentially unchanged.

6-Lane Alternative

Seattle

Construction that is common to all the Seattle options would consist of lid construction, retaining walls, temporary bridges, bridge demolition, excavations, embankments, pier foundations, piers, temporary bridge
Exhibit 19. Summary of Area-specific Effect Potential during Construction

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Geologic Hazard</th>
<th>Engineering Design and Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Erosion</td>
<td>Steep Slope/Landslide</td>
</tr>
<tr>
<td>Seattle—Overall</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Seattle—Option A</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Seattle—Option K</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Seattle—Option L</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Lake Washington</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Eastside Transition</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Phased Implementation</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Scenario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Build</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

*Within 0 to 10 feet of the ground surface.

Rating Legend:
- **H** = High potential of occurring. Could cause major effects and might affect construction costs. Would require detailed studies.
- **M** = Moderate potential of occurring or occurs in multiple locations. Could have some effects. Would require special consideration. Can be addressed using normal design and construction methods.
- **L** = Low potential of occurring or localized occurrence. Does not appear to be a design or construction issue. Only a few locations would require consideration during design.
- **N/A** = not applicable
widening, work bridges, temporary access roads, stormwater and other facilities, pile-driving, and cofferdams. Short-term effects on geology and soils from construction of all the Seattle options might include the following:

- Design and construction of temporary excavations would be complicated by the proximity of adjacent structures and foundations. Installing tie-back anchors, for example, might not be possible if an adjacent structure or foundation limited the tie-back length. Alternative excavation/wall systems might need to be considered.

- The existing infrastructure might affect design or construction methods of structures such as retaining walls, bridges, lids, or overcrossings. For example:
 - Soil nails used for retaining walls might have to be of varying lengths or installed at different angles to avoid underground utilities.
 - The freeway widening and construction of new earth retention and bridge structures might compromise the stability of existing structures such that intermediate wall/bracing might be necessary.

- The eastern end of the bridge over Portage Bay and the western end of the Lake Washington west approach structure cross potentially liquefiable areas. The current design development does not require stabilization of these soils, or ground improvement, to prevent collapse or nonrepairable damage to the facilities. If the need for small amounts of ground improvement is identified as design is refined, the ground improvements could consist of construction of stone columns, compaction grouting, deep soil mixing, or jet grouting. These activities disturb the ground surface and produce spoils (that is, waste excavation, which by some construction methods, is soil mixed with cement), which cannot be reused at the construction site. The volume of spoils typically ranges from about 5 to 30 percent of the gross improved volume. These potential effects are unlikely because ground improvement is not anticipated as of 10-percent design.

- Compressible soils might exist beneath the embankments near the abutments on the east side of the Portage Bay Bridge, the west side of the Evergreen Point Bridge, and ramps in the Arboretum area.
Mitigation to prevent damaging settlement could involve lengthening the construction period to allow time for the soils to consolidate before final grading or paving; installing vertical drains to speed consolidation; or reducing the weight of the earth fill by constructing it of closed-cell polystyrene blocks (that is, expanded polystyrene or Geofoam), imported pumice, expanded shale (all three of which are petroleum-intensive), or lightweight cellular concrete.

- Soft soils extend to depths of up to 100 feet in Portage Bay and groundwater is encountered at or within a few feet of the ground surface within and adjacent to Portage Bay, Union Bay, and Lake Washington. These conditions would require deep foundations and construction of temporary work trestles for construction access.

- Construction dewatering could cause ground settlement. The settlement could affect nearby structures or utilities in the zone of influence.

- Construction dewatering could affect water quality. Dewatering systems would need to be located and designed so that groundwater quality would meet discharge requirements before any water was released into stormwater systems or directed to infiltration systems. See Water Resources Discipline Report (WSDOT 2009e) for further discussion of groundwater discharge controls.

- Contaminated material, if present, could affect excavation of soils. Refer to Hazardous Materials Discipline Report (WSDOT 2009d).

- Spread footings are typically founded within 5 to 10 feet of the finished grade elevation. Construction of spread footings would require excavation, temporary dewatering if the excavation is below the water table, and placement of compacted backfill over and around the footing.

- A landslide hazard would exist if temporary slopes or excavations were made without sufficient stabilization or bracing. Extra care in supporting temporary cuts would be required for all options in the locations of past slides and the geologic conditions in which these slides occurred.
• Demolition of bridges would require cutting of piles at or just below the mudline, which would cause some soil disturbance on the water-body floor.

• Artesian groundwater conditions within and adjacent to Portage Bay would affect the type of foundations used for the elevated roadway. Special construction methods could be required to control or offset the high groundwater pressures and the potential for groundwater flow.

• Sand and gravel deposits (such as Vashon recessional outwash deposits) tend to be of moderate to high permeability. If excavations penetrated groundwater, such deposits would likely require dewatering by rigorous methods. This dewatering could lower the groundwater table adjacent to the excavation.

Option A
Construction in Option A that would affect geology and soils consists of work bridges, temporary access roads, pile-driving, cofferdams, bridge foundations and piers, excavations and embankments, temporary and permanent roadways, temporary sheet pile walls, and a bridge construction flyover ramp. Short-term effects on geology and soils from construction of Option A would be the same as those for construction common to all the Seattle options.

Option K
Construction for Option K consists of temporary detour bridges, work bridges, off ramps, access roads to work bridges, cut-and-cover tunnels, roadways several feet below lake and normal groundwater levels, an SEM tunnel, bridge foundations, excavations, and embankments. Short-term effects on geology and soils from construction of Option K might include the following:

• Noise and ground vibration would result from construction of the tunnel by excavation, secant pile and sheet pile wall installation, and drilling (see the Noise Discipline Report [WSDOT 2009b]).

• Dewatering large excavations for cut-and-cover tunnels and a freeze pit might cause settlement of adjacent loose sands.

• Dewatering large excavations would require disposal of a large volume of potentially sediment-laden water. Option K could require the largest amount of dewatering of all the options.

Freeze Pit: Excavation at the beginning of a tunnel with horizontally drilled holes around the perimeter of the tunnel. These holes are cased with pipe which have smaller circulating pipes inside. The circulating pipes circulate freezing liquid to freeze the soil.
• The deep secant pile walls planned for excavation support and groundwater control could be leaky. The following conditions would make water-tight construction of the secant pile walls at this location difficult and risky:

 − Poor soil conditions near the ground surface would make precise pile alignment difficult.

 The great depth of the planned secant pile walls would be at the upper range of precedent for seepage control. At large depths, problems with alignment, material quality control, encountering unanticipated obstructions, and operational and planning control could cause leaks that would be much more difficult to mitigate than at shallower depths and lower groundwater heads.

 − Repair could require grouting or installation of additional secant piles or slurry walls, increasing the disturbance and risk of high pH water release, as well as delaying the project.

• Because of the depth of the excavation for the cut-and-cover tunnels, it would be necessary to install bracing for the slurry walls in the form of tie backs. The lengths of these tie backs would be determined once the local soil parameters were known. However, it is expected that long tie backs would be necessary.

• The SEM requires that the ground be reasonably stable for tunneling. Dewatering of the extensive water-bearing sand layers and lenses anticipated would not be possible. Ground freezing of an annulus around each of the two tunnels appears to be the most reasonable ground stabilization alternative. Ground freezing on a curved alignment approximately 760 feet long would be difficult and of long duration. Using horizontal directional drilling methods to drill the holes for individual freeze pipes, installing the freeze pipes, waiting for ground freezing to occur, excavating the tunnel bore, and installing tunnel lining are time-consuming processes. In addition to the conventional disturbance of construction and fuel usage by heavy equipment, operation of the freezing system would be very energy-intensive and involve some risk of freeze pipe leakage or rupture and loss of brine solution into the surrounding soil.

• Much of the work from the ground surface would be over soft soils near lake level (identified as Qp and Ql in Exhibits 9 and 10), which
would require installation of work trestles or temporary work berms of coarse rock for equipment support.

Option L
Construction in Option L that would affect geology and soils consists of work bridges, temporary access roads, pile-driving, cofferdams, bridge foundations and piers, excavations and embankments, temporary and permanent roadways, temporary sheet pile walls, and a bridge construction flyover ramp. Short-term effects on geology and soils from construction of Option L would be the same as those for construction common to all the Seattle options.

Lake Washington
Construction in the Lake Washington section that would affect geology and soils consists of construction of the floating bridge span (which includes temporary and permanent anchor installation); construction of the east approach (which includes work bridges, pile-driving, cofferdams, bridge-foundation piers, and temporary and permanent roadways); and construction of a maintenance facility that would include permanent and temporary access roads, the permanent dock substructure, excavations and embankments, retaining walls, and buildings. Short-term effects on geology and soils from construction of the Lake Washington elements might include the following:

- Sediment on the lake bottom would be disturbed from temporary and permanent anchor installation. Temporary anchors would be installed either by driving them into the ground or cranes would lower them to the mudline. Permanent anchors would be installed using a combination of their own weight and water or air-jetting to set the anchors below the mud line.

- Construction of bridge foundations and temporary or permanent anchor installation could initiate submarine slope movement. Slope movement could damage underwater structures already in place. The overall risk of these direct effects is low because slope instability is being considered during the design.

- A seiche could occur as a result of an earthquake or submarine slope movement. The risk of a seiche occurring during construction is low because the likelihood of an earthquake or submarine slope movement occurring in that time is low.

- Construction of the maintenance facility would replace soil and an existing slope. It is likely that excavation for the facility could cut
through landslide-prone soils. Evidence of slope creep and minor slope movement was observed on the steep slope between Lake Washington and the existing east bridge abutment; however, deep-seated slope instability was not observed (Shannon and Wilson 2007). Construction of the maintenance facility with cuts in these types of soils would be relatively more expensive than construction of cuts in other soils (such as the Vashon till or Vashon recessional or outwash deposits).

- Construction dewatering could cause ground settlement. The settlement could affect nearby structures or utilities in the zone of influence.

- Construction dewatering could affect water quality. Dewatering systems would need to be located and designed so that groundwater quality would meet discharge requirements before any water was released into stormwater systems or directed to infiltration systems. See the Water Resources Discipline Report (WSDOT 2009e) for further discussion of groundwater discharge controls.

Eastside Transition Area

Construction of temporary and permanent roadways in the Eastside transition area would affect geology and soils. Short-term effects on geology and soils from construction of the Eastside transition area would be the same as the effects of construction common to all the Seattle options.

Construction and outfitting of the pontoons and anchors would require sand and gravel to be used in concrete, which may contribute to aggregate depletion in the region.

Pontoon Production and Transport

The I-5 to Medina: Bridge Replacement and HOV Project would construct an additional 44 supplemental stability pontoons and anchors needed to build a 6-lane floating bridge. Pontoons and anchors may be constructed at the CTC facility in Tacoma and/or at the new Grays Harbor facility constructed for the Pontoon Construction Project. For detailed information about pontoon construction, please see the Construction Techniques Discipline Report (WSDOT 2009c). After construction in a casting basin facility, pontoons would be floated out of the basin into open water and towed to Puget Sound for outfitting or
directly to Lake Washington for incorporation into the new floating bridge.

The new pontoon construction facility at Grays Harbor may require maintenance activities in the launch channel that would be used to float pontoons out of the casting basin and into open water. Underwater currents and other natural processes would deposit soil in the dredged portion of the launch channel and would occasionally need to be removed by dredging. The dredged materials from the launch channel would be removed to an approved disposal site. Launch channel maintenance dredging would be the only activity that affects geology and soils during pontoon construction in Grays Harbor.

Phased Implementation Scenario

Construction of the west and east approaches, the floating bridge, and the Portage Bay Bridge under the Phased Implementation scenario would affect geology and soils. The work that would affect geology and soils is described in previous sections, and the short-term effects on geology and soils from construction would be the same as the short-term effects for construction common to all Seattle options and the Lake Washington section.

How would operation of the project permanently affect geology and soils?

Effects during operation of the project would occur after construction had been completed and the project facilities were being used. These effects would occur throughout the period of operation. Some effects result from facility construction; other effects result from the operation of the system. While the project would not cause seismic events, there is a risk of seismic events occurring during the period of operation.

Permanent Operational Effects Common to All Project Areas and Options

The following operational effects associated with geology and soils are a consideration for the entire study area. The degree of these effects would depend on the specific site conditions, development plans, and final designs. Unique effects that would occur for a specific area and option are discussed in the next subsection, “Area- and Option-specific Permanent Operational Effects.”
The operation of the project could result in a number of direct effects on the environment related to geology and soils, as described in the following sections.

Erosion Hazards

After construction, vegetation would be re-established, or some nonerodible surface, would be installed to limit the effects of erosion. It might take several seasons for the vegetation to reach preconstruction protective levels. During this time, some accelerated erosion might occur, which would be a direct effect from operations. In addition, some surfaces outside the shoulders (for example, ditches) might not be allowed to revert to preconstruction vegetation levels because of maintenance requirements.

The slight acceleration of naturally occurring erosion processes would be considered unmitigatable erosion. For example, runoff might increase when grass and asphalt replaced trees. Even with detention to slow the velocities, such increased runoff might accelerate erosion that would otherwise have occurred over a longer period of time. With proper mitigation, it is not anticipated that the erosion rates would be high enough to change the character of lakebed materials or to affect lake water quality by observable amounts.

Slope Instability and Landslides

The overall risk of slope instability and landslides would be low because the project would be designed to account for steep slopes and unstable soils. In fact, it is likely that construction through some areas would increase long-term stability because the existing slopes are at a lower factor of safety than that which would be required for design of a roadway cut or structure.

Seismic Hazards

The project corridor is located within a seismically active area. The consequences of earthquake-induced ground shaking during a seismic event are considered medium to high. These effects could include liquefaction of loose, saturated, cohesionless soils; settlement from densification of loose soils; instability of steep slopes; downdrag loads on deep foundations; decreased lateral resistance of deep foundations; or increased earth pressures on retaining walls. These direct effects could damage the constructed facilities. The design of the facilities and earth-retaining structures

Densification: To make soft or loose soils stronger by increasing the density of the soil. Various methods of densification can be used, including compaction, preloading, vibration, and dewatering.
would include seismic considerations so that collapse and irrepairable damage do not occur.

Change in Groundwater Flow

Foundations, fills, or ground improvements included in the project design could alter groundwater flow paths beneath the ground surface. By itself, the volume of earth affected by foundations would be very limited relative to groundwater flow regimes in the area. The potential direct effects on groundwater flow are considered low for the options common to all projects.

Long-term Soil Settlement

Settlement of compressible soils beneath retaining structures, lids, or earth fills for bridge approaches or embankments would represent a direct effect. Periodically, soil settlement could require maintenance of the new infrastructure. Long-term soil settlement would be mitigated during design and construction, so its effect during operation should be low.

Area- and Option-specific Permanent Operational Effects

Exhibit 20 provides a qualitative rating of potential permanent effects for specific areas and options within the study area. This qualitative review does not replace the detailed geotechnical work that would be required during the design phases. A qualitative rating of the frequency or seriousness of the potential effects related to geology and soils was assigned, as follows.

- A low rating (L) was given to an effect that would have a low potential of occurring or if the effect would only occur in a localized area.
- A moderate rating (M) was given to an effect that would have a moderate potential to occur or if the effect would occur at multiple locations.
- A high rating (H) was given to an effect that would have a high potential to occur or if it could cause major effects; this rating triggers the need for more detailed studies.

Based on the preliminary information that was available when performing this evaluation, none of the effects was determined to be a fatal flaw (an undue risk) that would prevent operation of the project.
Exhibit 20. Summary of Area-specific Effect Potential during Operation

<table>
<thead>
<tr>
<th>Area</th>
<th>Seismic Ground Shaking</th>
<th>Liquefaction</th>
<th>Seiche Risk</th>
<th>Erosion</th>
<th>Steep Slope/ Landslide</th>
<th>Long-Term Settlement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle—Overall</td>
<td>M-H</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Seattle—Option A</td>
<td>M-H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Seattle—Option K</td>
<td>M-H</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Seattle—Option L</td>
<td>M-H</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Lake Washington</td>
<td>M-H</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Eastside Transition</td>
<td>M-H</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Phased Implementation Scenario</td>
<td>M-H</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>No Build</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

Rating Legend:

- **H** = High potential of occurring. Could cause major effects and might affect construction costs. Would require detailed studies.
- **M** = Moderate potential of occurring or occurs in multiple locations. Could have some effects. Would require special consideration. Can be addressed using normal design and construction methods.
- **L** = Low potential of occurring or localized occurrence. Does not appear to be a design or construction issue. Only a few locations would require consideration during design.
- **N/A** = not applicable

The most important geologic and soil hazard for operations would result from seismic ground shaking. The following subsections describe some potential area-specific operational effects. Geologic and soil issues would be addressed during final design. Experience demonstrates that, with the implementation of appropriate design, potential effects would be avoided.

No Build Alternative

Under the No Build Alternative, because the project would not be built, some of the permanent operational effects noted previously (such as the risk of long-term settlement) would not occur. However, some permanent effects would remain. For example, seismic hazards and the related secondary effects would occur whether or not the project was built. The existing structures were designed without consideration of liquefaction. Therefore, compared to the 6-Lane Alternative, the existing structures would be more susceptible to soil liquefaction effects.

In 1965, a large slope area between 10th Avenue East and Delmar Drive East slid downward shortly after completion of the initial construction...
of SR 520. Seismic loading was not considered in that slide remediation process, so the existing structure would be more vulnerable during a seismic event than the 6-Lane Alternative.

Seismic design was not a consideration in bridges designed prior to about 1972. Over the last several years, WSDOT studies have demonstrated that these aging spans are highly vulnerable to windstorms and earthquakes. The SR 520’s bridges are vulnerable to catastrophic failure section of the Description of Alternatives Discipline Report (WSDOT 2009a) discusses the danger of structural failure of the Evergreen Point Bridge, including its approaches, and the Portage Bay Bridge. Exhibit 1-1 in Attachment 1 of that report shows the vulnerable sections of SR 520 and describes the vulnerabilities.

6-Lane Alternative

Seattle

Permanent effects on geology and soils from operation of all the Seattle options might include the following:

- Steep slopes are located along the existing project alignment, and the roadway passes through areas of historical landsliding and landslide-prone soils. The overall risk of landslide effects would be low because slope stability would be considered during the design phases of the proposed structures.

- The structures would be designed to avoid collapse during the design seismic event. Maximum design shaking could cause damage that would require temporary closures for repair.

- Overall (global) stability analyses would be performed during design, and retaining walls would be engineered to stabilize the slopes. In some cases, the factor of safety with a structure or cut slope in place would be improved over the existing factor of safety. Theoretically, steep slopes along alignments with the potential for sliding would be considered a low risk. However, to account for potential unknowns in subsurface conditions, a low to medium risk has been assigned.

- The eastern end of the bridge over Portage Bay and the western end of the Lake Washington west approach structure would cross potentially liquefiable areas. Liquefaction could cause settlement, reduction in soil support around bridge foundations, or large earth loads on bridge foundations from lateral spreading or lateral flow of liquefied soil.
Compressible soils beneath the embankments near the abutments on the east side of the Portage Bay Bridge, the west side of the Evergreen Point Bridge, and ramps in the Arboretum area might settle over time. Design would include settlement mitigating measures, but there is always some risk that unforeseen subsurface conditions could cause settlement that occurs for longer periods or in excess of that anticipated.

Option A

Permanent effects on geology and soils from operation of Option A would be similar to those described for all the Seattle options. However, the effects would be slightly larger in magnitude because of the extensive structures associated with the bascule bridge.

Operation of the bascule bridge would put large, repeated lateral and vertical loads on the foundation shafts. Shafts with cyclic loading of this type are less commonly designed and constructed than normal shafts, so the risk of long-term reduction in soil strength would be greater. More conservative design parameters would probably be used because of the unknowns, but the risk or construction cost would be increased.

Option K

In addition to the effects common to all Seattle options, Option K would also include potential effects from constructing extensive structures below the lake level.

Piles or tie-down anchors would be required to resist the buoyancy forces that would tend to float the large structural slabs for the roadways below the lake level. Although extensive design and load testing would be performed on these elements, the risk of damage to the facilities would be greater for this option than if the facilities were located above the lake level or with enough mass to prevent floating.

Although the below-water structures, including the tunnels, would be designed to be water-tight, some leakage would occur and an active pumping system would be required to remove water. Redundant systems would be designed to limit the risk of flooding. However, the need for long-term maintenance of these systems and the risk of failure would be larger than for the other options.

Option L

Permanent effects on geology and soils from operation of Option L would be similar to those described for all the Seattle options. However, the effects would be slightly larger in magnitude because of the large,
structure-supported SPUI in the Arboretum area and the extensive structures associated with the bascule bridge.

Operation of the bascule bridge would put large, repeated lateral and vertical loads on the foundation shafts. Shafts with cyclic loading of this type are less commonly designed and constructed than normal shafts, so the risk of long-term reduction in soil strength would be greater. More conservative design parameters would probably be used because of the unknowns, but the risk or construction cost would be increased.

Lake Washington

The City of Seattle (under Ordinance 122370) classifies the shoreline and upland areas along Lake Washington within the study area as having an “unknown risk from seiches.” The floating bridge would be located on Lake Washington. Permanent effects on geology and soils from operation of the Lake Washington elements might include the following:

- Seiche or tsunami risk to the bridge if the Seattle Fault Zone, located at the southern end of Lake Washington, were to rupture. During the design life of the bridge, the likelihood of a seiche or tsunami that would be large enough to damage the Lake Washington elements is considered low.

- Waves from wind in excess of those assumed could damage the structure.

- Unanticipated and undetected settlement of temporary or permanent anchors could damage the cables.

- A submarine landslide initiated by an earthquake might cause anchors to slide (Golder Associates 2003).

- A submarine landslide could induce a seiche. During the design life of the bridge, the likelihood that a submarine landslide would be large enough to induce a seiche of a magnitude that could damage the Lake Washington elements is considered low.

Eastside Transition Area

Permanent effects on geology and soils from operation of the Eastside transition area elements might include the following:

- The City of Seattle (under Ordinance 122370) classifies the shoreline and upland areas along Lake Washington within the study area as having an “unknown risk from seiches.” The maintenance facility
dock would be located on Lake Washington. Lake Washington might also have a tsunami risk if the Seattle Fault Zone, located at the southern end of Lake Washington, were to rupture. Small seiches in Lake Union have damaged docks and pulled them from their moorings. The project’s maintenance facility dock would be designed with seismic considerations in mind. In addition, during the design life of the dock, the likelihood that the Seattle Fault Zone would rupture is considered low. Waves from wind in excess of those assumed could damage the structure.

- The maintenance facility would replace soil and an existing slope with a three-story-high building. This building would be designed to withstand the loads from landslide-prone soils, which would likely increase the stability of the existing slope. However, if unanticipated subsurface conditions exist, long-term, additional loading from increased groundwater levels or an earthquake could damage the structure.

Phased Implementation Scenario

Permanent effects on geology and soils from operation of project elements delivered under a Phased Implementation scenario would be similar to those common to all Seattle options and the Lake Washington section.
Mitigation

What has been done to avoid or minimize negative effects?

This report discusses various procedures that could be implemented to avoid or minimize negative effects of the project related to geology and soils. The mitigation methods and procedures listed in this report are not a comprehensive listing of all mitigation methods and procedures, but they provide potential measures for expected project effects. Mitigation measures could be identified and evaluated during detailed engineering design and construction planning and could be finalized during the Record of Decision process.

Use of Aggregate Resources

One approach to reduce the amount of imported aggregate could be to mix onsite materials that were slightly over optimum moisture content with additives (such as fly-ash or cement) to facilitate their re-use. This approach could be costly and require additional working space and time. Therefore, the trade-offs between re-use and hauling materials offsite would have to be carefully evaluated.

Another way to reduce the amount of imported aggregate could be to recycle existing pavements or structures. It is anticipated that some or all existing pavements and structures might be recycled for this project. Onsite aggregate recycling machinery would comply with applicable noise and air quality regulations. Scheduling and space requirements might limit which recycled materials could be used on this project. However, other projects in the Puget Sound area might need recycled aggregate materials.

Seismic Hazard

Where movement of liquefiable soils could cause collapse or irreparable damage to structures or critical utilities, the liquefiable materials could be stabilized by one of several methods of ground improvement. The zone of improvement commonly extends vertically from the ground surface to the limits of liquefiable material. The horizontal limits of ground improvement could be determined from slope stability analyses. At the current state of design development, no ground improvement is needed or planned. Typically, if ground
improvement is needed, it can be limited horizontally to the area several feet in front of and behind the bridge abutment fill walls. WSDOT policy does not require that liquefaction be prevented, only that soil deformations caused by liquefaction be limited to prevent collapse or irreparable damage to structures, walls, or critical utilities.

Typical methods of ground improvement could include the following:

- Stone columns, which are typically 3-foot-diameter columns of compacted gravel, spaced at approximately 7 to 10 feet
- Ground densification using vibro-densification or vibro-replacement methods
- Grouted columns of cement and soil that range in diameter from 2 to 5 feet
- Excavation and replacement with nonliquefiable soil

Where liquefiable soils are present beneath or adjacent to bridge or elevated structure columns, the soil could be improved or the bridge could be designed to withstand the lateral loading of the liquefied soil. Lightweight embankment materials are sometimes used to reduce the driving loads that could induce movement of the liquefied soil.

Construction methods used to improve soils that are subject to liquefaction during a seismic event could generate earth spoils and water with a high sediment content and high pH where cement was used. Spoils and runoff from spoils could be contained by ditches, silt fences, berms, or possibly sheet pits, depending on the location and topography. Runoff from spoils containment and storage areas could be monitored and treated if necessary to meet specified discharge criteria.

A seismic event could also initiate one of the known submarine landslides in Lake Washington (Golder Associates 2003). The stability of slopes with a history of landsliding will be evaluated in detail during final design so that the integrity of structural anchorages is maintained during the design earthquake.

Long-term Settlement

Much of the roadway is through soils subject to long-term settlement. Deep foundations could support the bridges, with the foundations bearing in very dense, relatively incompressible material. However, in transitional areas, retaining structures and fill materials could be
constructed over normally consolidated (that is, not overridden by glaciers) silt or clay or over existing fill, which could settle over time. Engineering could be implemented to limit long-term settlement to levels that would not damage structures or substantially reduce the life of Portland cement concrete pavement. Example solutions to minimize long-term settlement include the following:

- Preloading the soil so that most of the anticipated primary settlement occurs prior to final grading
- Lengthening the construction period to allow time for the soils to consolidate before final grading or paving
- Installing vertical drains, possibly in combination with preloading, so that the predicted settlements occur quickly, before final grading
- Strengthening the ground by installing soil cement columns or stone columns, or by jet grouting or cement deep-soil mixing so that the total settlement, over any time period, would be reduced
- Reducing the weight of the earth fill by constructing it of closed-cell polystyrene blocks (that is, expanded polystyrene or Geofoam), imported pumice, expanded shale (all three of which are petroleum-intensive), or lightweight cellular concrete so that minimal settlement would be induced
- Constructing the embankment as a pile-supported embankment where deep foundations are used to transfer earth loads to incompressible strata
- Relocating or protecting utilities in locations where ground settlement could not be mitigated
- Underpinning structures if it appeared that new fill materials would cause settlement below existing structures
- Installing recharge wells for de-watering if construction de-watering analyses indicated that de-watering would result in settlement below structures or other settlement-sensitive facilities
- Modifying construction techniques (such as the type of pile or installation equipment)

Pre-, during-, and post-construction surveys of potentially affected structures and a construction monitoring program could be established, where necessary. These could include surface survey points and
subsurface instrumentation. The monitoring program could include the use of slope inclinometers to monitor horizontal movement, borehole extensometers or settlement plates to monitor settlement within different layers, and piezometers to monitor the dissipation of excess pore-water pressures resulting from fill placement.

Groundwater flow conditions, foundation support of adjacent existing structures, and construction scheduling could be considered during design to implement the proper solution for minimizing settlement. Restrictions could be added to construction contracts that specified means to avoid the settlement of nearby facilities during construction. If settlement of facilities is unavoidable or economically infeasible, contingency measures (such as regrading and paving roadways and rerouting or pumping buried utility lines) could be required.

Landslide Hazards

Slopes and earth-retaining structures could be designed to provide either standard factors of safety or limited permanent movement during long-term static and seismic conditions.

Measures that could be used to reduce the risk of landslides include the following:

- Using design soil properties appropriate for the material
- Improving surface and subsurface drainage to increase soil strength
- Using retaining structures or ground anchors to stabilize slope movement
- Incorporating construction specifications and quality assurance programs that would maintain soil strength

The Lawton clay and other similar glacially overconsolidated clays (glaciolacustrine deposits [Qvgl] and transitional beds [Qtb]) are known to be landslide-prone in this area. Where the Lawton clay is present, the major causes of slope instability and methods of mitigation are typically as follows:

- Commonly, in retaining wall design, the soil is allowed to deform so that the interparticle friction takes a large portion of the lateral load. This amount of deformation in the Lawton clay (or similar materials) could result in the material losing a substantial amount of strength. The local design practice developed over several years has been to design walls for this residual soil strength and to limit
the height of temporary unsupported cuts and slopes so that movement was limited.

- Removing upper soil layers can sometimes allow surface water infiltration to saturate preexisting vertical cracks in the top of the Lawton clay; the water reduces the strength of the Lawton clay. Most of the widening could be by constructing walls rather than cutting, so there would be small risk of changing how water infiltrates. The addition of subsurface drainage in the form of seepage collection trenches and horizontal drains could be considered to lower the possibility of additional infiltration into the Lawton clay. Surface water runoff could be diverted around known clay slopes to minimize the risk of infiltration.

- The Lawton clay is frequently interbedded with sandy zones, which tend to convey groundwater at a much higher rate and are frequently under much higher groundwater pressure heads than the adjacent clay and silt layers. Sometimes when these sandier layers are exposed, internal erosion (called piping) due to the groundwater pressure can cause sloughing and destabilization of the face. Drainage blankets, horizontal drains, and confinement of the face could be used to control this type of sloughing.

- Cyclic weathering deterioration can reduce the strength of the Lawton clay. As noted previously, little is planned to change the topography outside of the roadway prism made by retaining walls. In some locations, however, surcharge weights might be considered over exposed Lawton clay to limit this strength loss.

The global stability of a hillside is considered during design. The boundaries of this stability analysis are natural features that tend to halt the natural progression of movement downslope, as illustrated on Exhibit 21. Therefore, the design would consider both the right-of-way and the surrounding property.

Where stability conditions appear to be uncertain, a monitoring program could be developed to monitor changes in pore-water pressures in the soil and horizontal movement during construction.

Erosion and Sedimentation Control

A comprehensive temporary pollution control plan would be required before construction began. The temporary pollution control plan would be implemented using best management practices (BMPs) for erosion
control and a monitoring plan to ensure continued mitigation throughout construction.

Exhibit 21. Limits of Slope Stability Analysis

Erosion and sedimentation could be reduced by limiting the work season to drier months of the year where soil was disturbed or where soil was exposed in erosion and landslide hazard areas. The contractor would be required to implement erosion and sedimentation control practices to limit the amount of suspended solids in the runoff that left the site and to apply BMPs to achieve water quality.

BMPs might include the following:

- Maintaining vegetative growth and providing adequate surface water runoff systems
- Using quarry spalls and, possibly, truck washes at construction vehicle exits from the construction site
- Regularly sweeping and washing adjacent roadways
- Constructing silt fences downslope of all exposed soil
• Using quarry spall-lined temporary ditches, with periodic straw bales or other sediment catchment dams
• Providing temporary covers over soil stockpiles and exposed soil
• Using temporary erosion-control blankets and mulching to minimize erosion prior to vegetation establishment
• Constructing temporary sedimentation ponds for removal of settleable solids prior to discharge
• Limiting the area exposed to runoff at any given time
• Frequently watering exposed surface soils to minimize visible dust

WSDOT, the contractor, and regulatory agency personnel would monitor BMP performance and compliance with all federal, state, and local regulations.

Permanent erosion control could be achieved by as the following:
• Constructing stormwater detention facilities to limit flow velocities
• Reestablishing erosion-resistant vegetation on disturbed slopes
• Collecting concentrated drainage in rock-lined ditches or pipes
• Providing energy dissipation upstream of discharge points where appropriate

These facilities and measures could be monitored to verify function and could be maintained, as necessary, over the life of the project.

Vibration Mitigation

Construction specifications (including demolition specifications) could limit the amount of ground vibrations. The limitations would depend on the types of structures nearby and the consequences of any potential damage to these structures. To minimize the effect of ground vibrations during construction, equipment that minimizes the potential for vibration could be selected or operated.

Methods to minimize vibration may include the following:
• Using drilled piles or shafts instead of pile-driving
• Switching to a different hammer or preboring pilot holes before pile-driving
• Driving piles that are within water bodies inside cofferdams to attenuate vibrations (which could allow pile-driving work to continue during in-water fish windows) or scheduling as much pile-driving as possible to occur outside the fish window to reduce effects to fish

• Using bubble curtains to minimize the effect of in-water vibrations on fish. Bubble curtains are further discussed in the Noise Discipline Report (WSDOT 2009b).

A pile-vibration test program is planned for fall 2009. This test program involves collecting underwater and in-air sound data during test pile-driving using three sound attenuation methods to evaluate the geotechnical sound propagation characteristics in the study area and to provide information necessary for a contractor to design the temporary work trestles.

Contaminated Soils

Contaminated soils, if encountered, could require special handling and disposal considerations. A project-specific health and safety plan could be developed to address potential worker hazards posed by the soil contamination. Workers performing the excavations could be required to wear special protective clothing. Requirements related to contaminated soils might include transporting soils in watertight bed liners, having trucks pass through wheel washes before leaving the work area, and disposing of such soils at regulated landfills. Additional discussions of hazardous waste issues are provided in the *Construction Effects Common to All Project Areas and Options* section and the Hazardous Materials Discipline Report (2009d).

Groundwater

Where construction dewatering could result in settlement that might damage adjacent facilities, mitigation could include the following:

• Reinjecting the pumped groundwater between the dewatering wells and the affected facility

• Using construction methods that do not require dewatering, such as:

 – Slurry cutoff walls, secant pile walls, or sheet pile walls with a bottom tremie plug
Using existing low permeability soil layers to reduce flow under the walls

Ground freezing used as a groundwater cutoff

What would be done to mitigate negative effects that could not be avoided or minimized?

Negative effects on geology and soils could be minimized through mitigation. The only effects that could not be avoided are those related to seismic ground shaking.

What negative effects would remain after mitigation?

An unavoidable adverse effect would be one that has a high likelihood of occurrence and would present a risk to public property or public safety, one that might require new locations for the project, or one that might require a different method of supporting a roadway or structure. An example of an unavoidable adverse effect for geology and soils would be a landslide risk on a new roadway in an area of steep slopes. In this example, it might be necessary to change the roadway alignment to reduce risk to an acceptable level.

The most substantial unavoidable adverse effect related to geology and soils is the potential effect of earthquake ground-shaking on the stability of soils supporting the project structural components. Appropriate mitigation methods are available to deal with the consequences of seismic loading, including mitigation for liquefaction potential and densification of the soil through use of ground improvement methods. In addition, designers must follow WSDOT and American Association of State Highway and Transportation Officials design requirements for seismic loading in their designs of all bridges, retaining walls, and related components of the project.
References and Bibliography

GIS References

King County. 2006. Aerial Photo GIS Data, original source NAIP USDA Imagery (USDA-FSA Aerial Photography Field Office).
http://rocky2.ess.washington.edu/data/raster/naip/King/index.html
King County, GIS Center, Seattle, WA. Accessed October 2006.

CH2M HILL (2008) GIS Data (Park and Trails) include the following datasets:

King County. 2006. Parks GIS Data. King County Standard GIS CD. King County GIS Center, Seattle, WA.

Attachment 1

Collected Existing Geotechnical Information
Exhibit 1-1 lists existing geotechnical reports that were collected and evaluated in support of this Geology and Soils Discipline Report. Those reports that had duplicate information, did not have enough spatial references to be useful, or were of boring logs of less than 15 feet deep have not been included.

Exhibit 1-2 indicates areas for which existing information was collected.
<table>
<thead>
<tr>
<th>General Area</th>
<th>Date</th>
<th>Author or Consultant</th>
<th>Name of Document</th>
<th>Description of Reference</th>
<th>Geologic Descriptions</th>
<th>Geologic Plan View</th>
<th>Profile/Sections</th>
<th>Boring Logs</th>
<th>Slope Stability / Landslides</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 520; Montlake</td>
<td>November 18, 1960</td>
<td>WSDOT</td>
<td>Portland Board Interchange, Final Site Location, Department of Engineering, City of Seattle</td>
<td>Portland Board Interchange, Final Site Location, Department of Engineering, City of Seattle</td>
<td>X</td>
<td>No section.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Montlake Blvd.</td>
<td>June 28, 1947</td>
<td>Dames and Moore</td>
<td>2030 East Rosnyon</td>
<td>2030 East Rosnyon</td>
<td>X</td>
<td>No figures; soil descriptions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montlake Bridge area</td>
<td>1968</td>
<td>Metropolitan Engineers</td>
<td>Final Report, Soil Investigation, Montlake Bridge</td>
<td>Final Report, Soil Investigation, Montlake Bridge</td>
<td>X</td>
<td>No figures; soil descriptions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>September 28, 1961</td>
<td>Johnson, K.A. (WSDOT)</td>
<td>"2nd Lake Washington Bridge, West End," Arboretum Interchange, STA 54+00 to STA 55+00, "Design Soil Engineer, "</td>
<td>"2nd Lake Washington Bridge, West End," Arboretum Interchange, STA 54+00 to STA 55+00, "Design Soil Engineer, "</td>
<td>X</td>
<td>Boring logs in text, location on plan sheet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>October 1961</td>
<td>WSDOT</td>
<td>West-South Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 3</td>
<td>West-South Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 3</td>
<td>X</td>
<td>Boring logs in text, location on plan sheet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>October 1961</td>
<td>WSDOT</td>
<td>West-Montlake Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 2</td>
<td>West-Montlake Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 2</td>
<td>X</td>
<td>Boring logs in text, location on plan sheet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>October 1961</td>
<td>WSDOT</td>
<td>North-South Baseline, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>North-South Baseline, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>X</td>
<td>Boring logs in text, location on plan sheet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>October 1961</td>
<td>WSDOT</td>
<td>East-West Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>East-West Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>X</td>
<td>Boring logs in text, location on plan sheet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>October 1961</td>
<td>WSDOT</td>
<td>North-West Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>North-West Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>X</td>
<td>Boring logs in text, location on plan sheet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>October 1961</td>
<td>WSDOT</td>
<td>North-East Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>North-East Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>X</td>
<td>Boring logs in text, location on plan sheet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>October 1961</td>
<td>WSDOT</td>
<td>North-East Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>North-East Line, West Approach 2nd Lake Washington Bridge, Arboretum Interchange, "Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington, Sheet 1 of 4</td>
<td>X</td>
<td>Boring logs in text, location on plan sheet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 1-1 Existing Geotechnical Information

<table>
<thead>
<tr>
<th>General Area</th>
<th>Date</th>
<th>Author or Consultant</th>
<th>Name of Document</th>
<th>Description of Reference</th>
<th>Geologic Descriptions</th>
<th>Geologic Plan View</th>
<th>Profile/Sections</th>
<th>Boring Logs</th>
<th>Slope Stability / Instabilities</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>March 9, 1961</td>
<td>Bugge, W.A. (WSDOT)</td>
<td>Arboretum IC, letter on boring and lab data.</td>
<td>X</td>
<td>General soil profile descriptions included.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Arboretum I/C</td>
<td>October 5, 1954</td>
<td>Bugge, W.A. (WSDOT)</td>
<td>Arboretum IC, letter on boring log descriptions.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; West Approach</td>
<td>October 1960</td>
<td>WSDOT</td>
<td>2nd Lake Washington Bridge, West Approach Foundation Investigation, Materials Laboratory, Federal Road Division No. 8, Washington</td>
<td>Boring Locations, West Approach</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duplicate.</td>
</tr>
<tr>
<td>SR 520; West Approach</td>
<td>January 61, 1961</td>
<td>WSDOT</td>
<td>Evergreen Point Bridge, West Approach, Test Boring Location & Profile. Federal Road Division No. 8, Washington</td>
<td>Northside of West Approach</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Foster Island Area</td>
<td>1967</td>
<td>WSDOT</td>
<td>West Approach 2nd Lake Washington Bridge, Portage Bay Foundaion Investigation. Federal Road Division No. 8, Materials Laboratory, Sheet 1, 2, and 3 of 3</td>
<td>Foundation Investigation section.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Foster Island Area</td>
<td>1967</td>
<td>WSDOT</td>
<td>West Approach 2nd Lake Washington Bridge, Portage Bay Foundaion Investigation. Federal Road Division No. 8, Materials Laboratory, Sheet 1, 2, and 3 of 3</td>
<td>Foundation Investigation section.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Foster Island Area</td>
<td>1965</td>
<td>WSDOT</td>
<td>West Approach 2nd Lake Washington Bridge, Portage Bay Foundaion Investigation. Federal Road Division No. 8, Materials Laboratory, Sheet 1, 2, and 3 of 3</td>
<td>Foundation Investigation section.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Foster Island to Arboretum IC Area</td>
<td>1965</td>
<td>WSDOT</td>
<td>West Approach 2nd Lake Washington Bridge, Portage Bay Foundaion Investigation. Federal Road Division No. 8, Materials Laboratory, Sheet 1, 2, and 3 of 3</td>
<td>Foundation Investigation section.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Foster Island Area</td>
<td>May 8, 1962</td>
<td>City of Seattle</td>
<td>Post-Path Drive E, W, sewer replacement.</td>
<td>Test hole log and site plan.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Foster Island Area</td>
<td>1967</td>
<td>WSDOT</td>
<td>West Approach 2nd Lake Washington Bridge, Portage Bay Foundaion Investigation. Federal Road Division No. 8, Materials Laboratory, Sheet 1, 2, and 3 of 3</td>
<td>Foundation Investigation section.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Montlake to 15th Ave</td>
<td>1967</td>
<td>WSDOT</td>
<td>West Approach 2nd Lake Washington Bridge, Portage Bay Foundaion Investigation. Federal Road Division No. 8, Materials Laboratory, Sheet 1, 2, and 3 of 3</td>
<td>Foundation Investigation section.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Portage Bay</td>
<td>April 1961</td>
<td>WSDOT</td>
<td>West Approach 2nd Lake Washington Bridge, Portage Bay Foundaion Investigation. Federal Road Division No. 8, Materials Laboratory, Sheet 1, 2, and 3 of 3</td>
<td>Foundation Investigation section.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; 10th Ave and Delmar</td>
<td>July 2, 1967</td>
<td>Shannon and Wilson</td>
<td>Gabrielia Road, Seattle Preparatory School, Sound Transit Park.</td>
<td>Sound Transit Park, Plan and Profiles.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; 10th Ave and Delmar</td>
<td>May 1961</td>
<td>WSDOT</td>
<td>South Lake Washington Bridge, 10th Ave N, Undercrosing and 2nd Lake Washington Bridge, Delmar Drive</td>
<td>2nd Lake Washington Bridge, 10th Ave N, Undercrosing and 2nd Lake Washington Bridge, Delmar Drive</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Rosarioke IC</td>
<td>March 1961</td>
<td>WSDOT</td>
<td>Roseauke Interchange to Evergreen Point Bridge, 10th Ave N, Undercrosing. Materials Lab</td>
<td>Roseauke Interchange to Evergreen Point Bridge, 10th Ave N, Undercrosing.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Delmar</td>
<td>December 21, 1960</td>
<td>WSDOT</td>
<td>Test Boring Information, Evergreen Point Bridge, West Approach, 10th Ave N, Undercrosing.</td>
<td>Test Boring Info for 520 near Delmar Drive.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stick logs and lab data. Could be associated with SR 520; 10th Ave and Delmar and SR 520; Rosarioke IC.</td>
</tr>
<tr>
<td>SR 520; Delmar</td>
<td>August 13, 1958</td>
<td>WSDOT</td>
<td>Test Boring Information, Evergreen Point Bridge, West Approach, 10th Ave N, Undercrosing.</td>
<td>Test Boring Info for 520 near Delmar Drive.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stick logs and lab data. Could be associated with SR 520; 10th Ave and Delmar and SR 520; Rosarioke IC.</td>
</tr>
<tr>
<td>SR 520; 10th Ave and Delmar</td>
<td>1966</td>
<td>Anon. (WSDOT)</td>
<td>Causes, Effect, and Corrective Action. Site Vicinity West of Ramp. Stolen 2341+00 on Right.</td>
<td>Investigation of landslide cause, effect and corrective action.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; 10th Ave and Delmar</td>
<td>January 4, 1965</td>
<td>WSDOT</td>
<td>10th Ave West, 10th Ave East, Region No. 9, Washington</td>
<td>10th Ave West, 10th Ave East, Region No. 9, Washington</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Delmar Drive</td>
<td>December 20, 1960</td>
<td>Johnson, K.A. (WSDOT)</td>
<td>Evergreen Point Bridge, West Approach, RD 463, Structure Foundation, Vicinity of Delmar Drive, District Soil Engineer</td>
<td>Foundation Letter, missing attached figures.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Soil description only, foundation, soils, walls, etc.</td>
</tr>
<tr>
<td>SR 520; Delmar Drive</td>
<td>October 1960</td>
<td>WSDOT</td>
<td>Evergreen Point Bridge, West Approach, Existing Drainage Installations, Delmar Drive to Boyer Avenue.</td>
<td>Existing Drainage Installations, Delmar Drive to Boyer Avenue.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 1-1 Existing Geotechnical Information

<table>
<thead>
<tr>
<th>General Area</th>
<th>Date</th>
<th>Author or Consultant</th>
<th>Name of Document</th>
<th>Description of Reference</th>
<th>Geologic Descriptions</th>
<th>Geologic Plan View</th>
<th>Profile/Sections</th>
<th>Boring Logs</th>
<th>Slope Stability / Landslides</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 520; 10th Ave to Delmar Dr</td>
<td>October 24, 1961</td>
<td>WSDOT and Sound Transit</td>
<td>Primary State Highway No. 1, Spokane Expressway, 10th Avenue North to Delmar Drive</td>
<td>SR 520 As-Builts, 10th Ave to Delmar Dr.</td>
<td>Half-page sheets; some doubles, stick logs & few sheets, wall and slope plans.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Delmar</td>
<td>March 1966</td>
<td>WSDOT</td>
<td>Location of Railroad, Delmar Drive East and 11th Avenue North Slope Area, WPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boyer Ave E, part of SR 520</td>
<td>November 26, 1969</td>
<td>Earth Consultants, Inc.</td>
<td>Geotechnical Engineering Study, Addition to Green信心 Hotel Club Building, 2648 Boyer Avenue E.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Delmar Drive</td>
<td>March 1942</td>
<td>WSDOT</td>
<td>Improvement of Delmar Drive Slope, Drainage Systems, Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5 Mercer & Roosevelt IC</td>
<td>Sound Transit Flats</td>
<td>Sound Transit Flats</td>
<td>Sound Transit Flats boring logs on file at Sound Transit Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Rainsie St</td>
<td>Sound Transit Flats</td>
<td>Sound Transit Flats</td>
<td>Sound Transit Flats boring logs and site plan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Rainsie St</td>
<td>October 1999</td>
<td>Shannon and Wilson</td>
<td>Seattle Freeway, East Galer St. to Lakeside Blvd.; Metro Plans, Washington State Highway Commission, Department of Highways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Galer St to Newton</td>
<td>October 19, 1999</td>
<td>WSDOT</td>
<td>Primary State Highway No. 1, Seattle Freeway, East Galer St. to Lakeside Blvd., Metro Plans, Washington State Highway Commission, Department of Highways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; & E. Galer St.</td>
<td>March 11, 1985</td>
<td>WSDOT</td>
<td>Seattle Freeway East Galer Street Side Control Plans, King County, Sheets 2 through 6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Broadway & Lakeside Blvd</td>
<td>1939</td>
<td>Sound Transit Flats</td>
<td>Sound Transit Flats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; E. Republican to Galer St.</td>
<td>July 1961</td>
<td>WSDOT</td>
<td>Primary State Highway No. 1, Seattle Freeway Plans, Republican Street to East Galer, King County, Washington State Highway Commission, Department of Highways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Shelby to Ship Canal</td>
<td>May 1993</td>
<td>Shannon and Wilson</td>
<td>Geotechnical Seismic Evaluation, 1/5 Ship Canal Bridge, Seattle, Washington, prepared for Anderson Bjerrome Foundation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Shelby to Ship Canal</td>
<td>February 16, 1959</td>
<td>WSDOT</td>
<td>Primary State Highway No. 1, Seattle Freeway Plans, Lake Washington Ship Canal SR, South Approach, Washington State Highway Commission, Department of Highways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Ship Canal</td>
<td>July 3, 1958</td>
<td>WSDOT</td>
<td>Primary State Highway No. 1, Seattle Freeway Plans, Lake Washington Ship Canal Bridge, piers No. 18 to 24, King County, Washington State Highway Commission, Department of Highways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Olive Way to Shelby</td>
<td>1959</td>
<td>WSDOT</td>
<td>Lakefront location, Seattle Freeway Plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Lakeview to Shelby</td>
<td>April 8, 1972</td>
<td>WSDOT</td>
<td>Seattle Freeway, Lakeside to Lakeview, Foundation Investigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Galer St to Shelby</td>
<td>1958</td>
<td>WSDOT</td>
<td>SR 502, Floating Bridge, Foundation Investigation, E. Galer to Shelby, Job No. L-1845</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Galer St to Shelby</td>
<td>August 5, 1958</td>
<td>Johnson, K.A.</td>
<td>Soil Profile, Seattle Freeway, Olive Way to Shelby Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5; Boylston Ave. and Louisa St</td>
<td>July 29, 1966</td>
<td>Earth Consultants, Inc.</td>
<td>Geotechnical Engineering Study, Proposed Seattle Street Renovation, 2518 Boylston Avenue E.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Floating Bridge</td>
<td>March 1960</td>
<td>Shannon and Wilson</td>
<td>Seismic Evaluation, SR 520 Floating Bridge, Seattle, Washington, prepared for KPFF Consulting Engineers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; Floating Bridge</td>
<td>February 2, 1997</td>
<td>WSDOT</td>
<td>SR 520, Evergreen Pt. Bridge, Anchor Cable Replacement, WSDOT, Layouts 1 and 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; East Approach</td>
<td>March 1955</td>
<td>WSDOT</td>
<td>Soil Profile, Lake Washington Floating Bridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; East Approach</td>
<td>February 3, 1961</td>
<td>Bugge, W.A.</td>
<td>SR 520 Second Lake Washington Bridge, Unit No. 2 - East Approach Structure, Foundation Investigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; East Approach</td>
<td>July 1960</td>
<td>WSDOT</td>
<td>Second Lake Washington Bridge, Unit No. 2 - East Approach Structure, Foundation Investigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Area</td>
<td>Date</td>
<td>Author or Consultant</td>
<td>Name of Document</td>
<td>Description of Reference</td>
<td>Geologic Descriptions</td>
<td>Geologic Plan View</td>
<td>Profile/Sections</td>
<td>Boring Logo</td>
<td>Slope Stability / Landslides</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>SR 520; East Approach</td>
<td>December 1980</td>
<td>WSDOT</td>
<td>Second Lake Washington Bridge, Unit No. 2, East Approach Study; Foundation Investigation; Materials Laboratory, Federal Road Division No. 8, Washington</td>
<td>Soil Profiles of each approach</td>
<td>X X</td>
<td>No Plan view. Stick logs included. Duplicate.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; 79th, 84th, 92nd</td>
<td>March 1961</td>
<td>WSDOT</td>
<td>Second Lake Washington Bridge, Unit No. 2, East Approach Study; Foundation Investigation; Materials Laboratory, Federal Road Division No. 8, Washington</td>
<td>Soil Profiles of each approach</td>
<td>X X</td>
<td>Stick logs and foundation types included.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 520; East Approach</td>
<td>March 15, 1961</td>
<td>Bugge, W.A. (WSDOT)</td>
<td>Foundation Investigation Later on SR 520 East Approach - Alignment Change to meet landfills</td>
<td>X X</td>
<td>Location given as, "string Plan View south of Yarrow Bay." Plan & Profiles Included.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SDEIS_DR_GEO1.doc Attachment 1
<table>
<thead>
<tr>
<th>General Area</th>
<th>Date</th>
<th>Author or Consultant</th>
<th>Name of Document</th>
<th>Description of Reference</th>
<th>Geologic Descriptions</th>
<th>Geologic Plan View</th>
<th>Profile/Sections</th>
<th>Boring Logs</th>
<th>Slope Stability / Limitations</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>UW</td>
<td>May 13, 1970</td>
<td>Shannon and Wilson</td>
<td>Foundation Investigation Auxiliary Air System, Kirsten Wind Tunnel</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>March 1968</td>
<td>Dames and Moore</td>
<td>Report of Sole Investigation, Proposed Zoology Building</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>January 10, 1966</td>
<td>Shannon and Wilson</td>
<td>Report on Foundation Investigation for Proposed Pedestrian Tunnel, Central Campus and MRCD Complex</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>May 10, 1969</td>
<td>Dames and Moore</td>
<td>Report of Sole Investigation, Proposed Geotechnical Building, Unit II</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>November 1964</td>
<td>Shannon and Wilson</td>
<td>Foundation Investigation Project x</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>July 21, 1966</td>
<td>Dames and Moore</td>
<td>Report of Sole Investigation, Support of Floor Slab, Robinson Pavilion</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>March 1964</td>
<td>Shannon and Wilson</td>
<td>Atlantic Creek Storm Drainage Project, NE 45th Street Sherman</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>June 27, 1956</td>
<td>Dames and Moore</td>
<td>Report of Geotechnical Investigation, Oceanography Building, 1123</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>August 1965</td>
<td>Shannon and Wilson</td>
<td>Foundation Investigation, Residence Hall Unit IV</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>April 21, 1967</td>
<td>Shannon and Wilson</td>
<td>Phase I, Foundation Investigation, Power Plant Expansion Unit I</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>July 14, 1969</td>
<td>Shannon and Wilson</td>
<td>University of Washington Physical Plan Services Building, Phase II</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>October 1963</td>
<td>Shannon and Wilson</td>
<td>Report on Foundation Investigation, Cooling Towers</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>October 6, 1964</td>
<td>Shannon and Wilson</td>
<td>Administration Building</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>June 7, 1965</td>
<td>Dames and Moore</td>
<td>Report of Sole Investigation, Revised Location, Proposed Intramural Athletics Building</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>July 1962</td>
<td>Shannon and Wilson</td>
<td>Foundation Investigation, Proposed Athletic Department Office Building</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>July 1963</td>
<td>Shannon and Wilson</td>
<td>Foundation Investigation for Proposed Olympic Tennis</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>November 21, 1969</td>
<td>Seattle Engineering Department</td>
<td>Report on 45th Street Pavement Replacement</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>May 12, 1972</td>
<td>Seattle Engineering Department</td>
<td>Report on 45th Street East Approach Replacement</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>May 1965 and July 1965</td>
<td>Dames and Moore</td>
<td>Proposed Intramural Athletics Building and Final Location of Intramural Athletics Building</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>October 14, 1968</td>
<td>Pacific Testing Laboratories</td>
<td>University of Washington Olympic Area Expansion</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>September 1, 1968</td>
<td>Shannon and Wilson</td>
<td>University of Washington Engineering Investigation, Library</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>August 1929</td>
<td>Seattle Engineering Department</td>
<td>Report on 45th Street Foundation Data</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>June 20, 1970</td>
<td>Dames and Moore</td>
<td>Report on Foundation Investigation, Proposed New Science</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>September 1971</td>
<td>Geolab, Inc.</td>
<td>South Campus Center</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>March 26, 1982</td>
<td>Pacific Testing Laboratories</td>
<td>Subgrade Investigation, Teaching Hospital and Ultimate Hospital Development, Division of Health Sciences</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>January 1986</td>
<td>OEO</td>
<td>Site and Exploration Plan, Olympic Stadium Expansion</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>April 27, 1970</td>
<td>Shannon and Wilson</td>
<td>Foundation Investigation for East Approach Replacement, NE 45th Street Viaduct</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>July 12, 1974</td>
<td>Shannon and Wilson</td>
<td>Foundation Investigation for East Approach Replacement, NE 45th Street Viaduct</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>April 17, 1974</td>
<td>Dames and Moore</td>
<td>Report of Sole Investigation, Proposed Aquatic Recreation Facility</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>October 29, 1984</td>
<td>Shannon and Wilson</td>
<td>Geotechnical Report, Montlake Triangle Garage, University of Washington</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>December 14, 2001</td>
<td>Shannon and Wilson</td>
<td>Memorial Stadium, Sound Transit, Central Link Light Rail, Montlake Alignment</td>
<td>Portions of geotechnical report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 1-1 Existing Geotechnical Information

<table>
<thead>
<tr>
<th>General Area</th>
<th>Date</th>
<th>Author or Consultant</th>
<th>Name of Document</th>
<th>Description of Reference</th>
<th>Geologic Descriptions</th>
<th>Profiles/ Sections</th>
<th>Boring Logs</th>
<th>Slope Stability/Landslides</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR 520; Lake Wash</td>
<td>2000</td>
<td></td>
<td>Figure 2: Navigational Corridor, University Bridge to Union Bay; New Lake Washington Project</td>
<td>Navigational corridor of Union to Portage Bay</td>
<td>X</td>
<td></td>
<td></td>
<td>Shows marsh locations.</td>
<td></td>
</tr>
</tbody>
</table>

Anon. = anonymous
HOV = high-occupancy vehicle
I/C = interchange
UW = University of Washington
WSDOT = Washington State Department of Transportation
Exhibit 1-2. Area of Collected Existing Geotechnical Information

1-5 to Medina: Bridge Replacement and HOV Project
Attachment 2

Subsurface Profiles from Preliminary 10-Percent Design Geotechnical Report
G
South

PROPOSED SR 520

PROPOSED
HOV/BIKES

1188-8711
(Offer, 30' U.F.)

Existing 84th Avenue NE
Road Surface

Existing Ground Surface

Existing SR 520 Road Surface

G'
North

MR-Line

Approximate
Existing
SR 520

Approximate Depth Of Grundation

NOTE

See Figure 4, Profile Legend and Geology.

Vertical Scale in Feet

Horizontal Scale in Feet

Vertical Exaggeration = 2.5X

SR 520 Bridge Replacement
10 Percent Design

GENERALIZED SUBSURFACE
CROSS SECTION G-G'
84TH AVENUE NE

May 2007
Z-1-20024-014

SHANNON & WILSON, INC.
Section 11, Final Environmental Docs.

PRELIMINARY
Approximate Extent of Proposed SR 520

Approximate Extent of Existing SR 520

Existing Ground Surface

Estimated Ground Surface

1196-8762
(Class 5-6 E)

1196-8761
(Class 5-6 E)

MR-Line

NOTE
See Figure 4, Profile Legend and Geology:
Unit Identification, for legends and noises.

Vertical Scale in Feet
Horizontal Scale in Feet

Vertical Exaggeration = 2.5X

PRELIMINARY