Transportation Impact Discipline Report Checklist

Project Name: ______________________________ Job Number: ________________________
Contact Name: ______________________________
Date Received: _____________ Date Reviewed: _____________ Reviewer: _____________

(SAT = Satisfactory; INC = Incomplete; MIS = Missing; N/A = Not Applicable)

Answers are required for questions which have no N/A box.

A Transportation Impacts Discipline Report can be highly detailed or extremely concise depending upon whether the level of impact or controversy is substantial or minimal. Project teams should take care to “right-size” the discipline report so it adequately addresses the impacts and controversy without over-analyzing or providing unnecessary information.

I. Summary

This section should summarize key information in sections II though VI of the report and present any conclusions reached. It should be written in Plain Talk language so it can be included in the EIS, EA, or DCE with only minor modification.

SAT INC MIS N/A

A. What is the reason for publishing this report? Summarize the purpose of the report (organization and scope)?

1. What is the purpose and need of this project?

2. What are the alternatives analyzed?

 a. Exhibit – Location Map – show state or region where project is located

 b. Exhibit – Vicinity Map – show all alternatives and major features

3. How were the study limits determined?

4. What methodology was used for traffic analysis and identifying transportation facilities within the area

B. What are the transportation elements and systems within the study area? Summarize the existing conditions with respect to transportation in the study area. (Ferries, airports, transit, county or city roadway systems, rail, etc.)

C. What are the impacts of the alternatives? Summarize any direct, indirect, and cumulative impacts of the project on transportation systems (both temporary and long-term) and indicate whether the project is likely to have more than a moderate effect on transportation systems in the study area (Travel time, traffic loading, safety, neighborhood character, level of service, benefits).

 a. What opportunities are there for Transportation Demand Management (TDM)?

 b. What are the benefits to transportation systems?
c. Are there significant adverse impacts?

E. What measures are proposed to mitigate identified impacts? Summarize any minimization, mitigation, or enhancement measures identified for addressing the direct and indirect transportation impacts of the project.

a. What are the construction mitigation measures?

b. What are the operation mitigation measures?

F. Cumulative Transportation Effects. Summarize any minimization, mitigation, or enhancement measures identified for addressing the direct and indirect transportation impacts of the project.

G. What are the advantages and disadvantages to transportation of each alternative? (Key Points.) Summarize key transportation issues that affect the selection of the preferred alternative for the project.

H. What is the overall conclusion of this transportation study? (Which alternative is preferred from a transportation viewpoint?)

II. Introduction

This section should state the purpose of the report, the purpose and need for the project, and describe the project, including each alternative, if applicable.

A. Purpose of Report. Identify any applicable statutes/guidance and discuss any determinations that must be made regarding transportation impacts for compliance with NEPA and/or SEPA, GMA Transportation Plan Elements, etc.

B. Purpose and Need. Describe the purpose and need for the project.

C. Project Description/Alternatives. Describe and provide exhibit of the project including each alternative.

III. Methodology and Coordination

This section should describe the methodology used to analyze transportation systems, features, and elements. (Methodology identified, documented, and professionally recognized.)

A. How does WSDOT forecast traffic conditions?

1. How was the design year determined?

2. What traffic demand model was used?

 a. How was the model validated?

3. How was the year of opening determined?

4. How were existing and future land uses determined and identified?
5. How were existing and planned transportation networks identified?

B. How was the current Level of Service (LOS) determined?

1. Exhibits of Traffic Peak Hours for each alternative showing opening year and
design year data.

C. What methodology was use for traffic operations analysis?

D. How was non-roadway transportation systems identified?

E. Whom did we coordinate with in developing the transportation analysis?

IV. Affected Environment

This section should map and describe the existing conditions with respect to transportation systems, features,
and elements in the study area.

A. Study area identified.

1. Transportation systems (road networks)
 a. Exhibit for project and transportation study areas
 b. What kind of intersection control is currently used?

2. Vehicular traffic configurations exhibit for existing lane configurations

3. Parking

4. Bicycles, pedestrians, transit facilities

5. Access for persons with disabilities

6. Marine, rail and air transportation systems

7. Emergency services and response times

B. What are the existing operating conditions?

1. Existing traffic volumes

2. Existing corridor operations
 a. Exhibit with table of LOS and delay summary
 b. Exhibit for peak traffic hour volumes

3. Off-corridor intersection operating conditions with an table exhibit of LOS
 and delay summary

4. Collision analysis – safety and crashes including an exhibit with bar graph of
 collision rates
V. Potential Effects

This section should describe the direct, indirect, and cumulative transportation impacts of the project on transportation systems, features, and elements (both temporary and long-term), and indicate whether the project is likely to have more than a moderate effect in the study area. Describe (and quantify where possible) the following by alternative:

SAT INC MIS N/A

A. Temporary construction effects and benefits
 1. No Build Alternative
 2. Build Alternative

B. Long term operational effects and benefits
 1. No Build Alternative
 a. Future network
 b. Operating conditions
 c. Exhibit with table of LOS and delay summary
 d. Off-Corridor Intersection Operating Conditions
 e. Exhibit with table of Off-Corridor LOS and delay summary
 2. Build Alternative
 a. Operating conditions
 b. Exhibit with table of LOS and delay summary
 c. Exhibit comparing no-build and build LOS
 d. Exhibit with build lane configurations
 3. Safety
 4. Intersection control including traffic signal warrant analysis
 5. Storage length requirements
 6. Average corridor speeds and travel times
 7. Access management
 8. Pedestrian, and bicycle access
 9. Emergency services and response times
 10. Transit

C. Transportation systems management strategies
 1. Future road network at the (design year) horizon
 2. Operational analysis
 3. Park and ride analysis
VI. Mitigation

This section should describe any potential and/or recommended mitigation and enhancement measures for addressing any direct and indirect transportation impacts of the project.

A. What design changes were made to avoid impacting other transportation systems?
B. How were impacts to transportation systems and features minimized?
C. What changes in the project design were done to address concerns of local government agencies and the public to compensate for the impacts to access, pedestrian or transit facilities, etc?
D. What features or enhancements were made to the design of the project to meet identified needs by local government or the public?

VII. References

List all published sources of data and other information used in preparing the report.

VIII. Appendix

A. Route or Corridor Modeling Analysis Methodology
B. Baseline Conditions Report
C. Factor to Determine Daily Traffic Volumes – Calculations
D. Level of Service Definitions
E. Field Notes and Inventory of Existing Conditions
F. Transit Route Map
G. Existing – traffic model outputs
H. (year of opening) No Build Alternative – traffic model outputs
I. (year of opening) Build Alternative - traffic model outputs
J. (design year) No Build Alternative - traffic model outputs
K. (design year) Build Alternative - traffic model outputs
L. Traffic Signal Warrant Analysis
M. Data for Noise Analysis
N. Data for Air Quality Analysis

IX. List of Preparers

List name and affiliations of authors and contributors to the report, with education, professional licenses, professional organizations, and year of experience writing transportation impact discipline reports.

General Comments: ___
__