TABLE OF CONTENTS

SECTION I: DESIGN PROCESS OVERVIEW
- Introduction .. 1
- Report Purpose and Objectives 1
- Design Framework and Process 2
 - Description .. 2
 - Design Advisory Group Design Goals 2
 - Corridor Theme ... 2
 - Corridor Vision .. 2
- Visual Design Principles 2
- Design Team Process ... 3
 - Value Engineering and Urban Design Process ... 3
- Community Process ... 4
 - ECDC Structure and Roles 4
 - ECDC Project Design Goals 4
 - Project Timeline ... 4
- Community Meetings 5
 - Open Houses .. 5
 - Workshops .. 6
 - Technical and Jurisdictional Meetings 17

SECTION II: ARCHITECTURAL CONCEPTS
- Introduction .. 29
- Purpose and Objectives 29
- Wall Analysis - Types and Locations 30
- Urban Design Contextual Analysis 34
- Programmatic Criteria 35
 - Evergreen Point Road Lid 36
 - 84th Avenue NE Lid 40
 - 92nd Avenue NE Lid 44
 - Bellevue Way NE Bridge 48
- Preliminary Design Intent 52

SECTION III: PRELIMINARY URBAN DESIGN GUIDELINES
- Introduction .. 53
- General Design Goals ... 53
- Design Features Overview 54
- 1.0 Roadway Corridor Features 55
 - Noise and Retaining Wall Texture 55
 - 1.1 Typical Corridor Concrete Wall Finish 55
 - Noise and Retaining Wall Scale 56
 - 1.2 Typical Concrete Noise and Retaining Wall Texture ... 56
 - 1.3 Typical Wall Sections 56
 - 1.4 Top of Wall Profile Detail 57
 - 1.5 Terraced Walls ... 58
 - Structural Pier and Abutment Wall Texture 59
 - 1.6 Abutment Wall .. 59
 - 1.7 Structural Pier Wall 59
 - Structural Earth Walls 60
 - 1.8 Structural Earth Wall (SEW) 60
- Lid Portals .. 61
 - 1.9 Typical Portal Entry 61
 - 1.10 Typical Transition Column Perspective 62
 - 1.11 Typical Transition Column Detail 62
 - 1.12 Typical Portal Facade Perspective 63
 - 1.13 Typical Portal Facade Section 63
 - 1.14 Cable Railing Detail 63
- Landscape Grading ... 64
 - 1.15 Roadside Section with Retaining Wall 64
 - 1.16 Typical Median Section 64
- Landscape Planting Design 65
 - 1.17 Typical Roadway Corridor Planting Perspective .. 65
 - 1.18 Typical Roadway Corridor Planting Plan 65

1.21 Roadway Corridor Evergreen Trees 67
1.22 Roadway Corridor Deciduous Trees 67
1.23 Roadway Corridor Groundcover and Vines 67
1.24 Roadway Corridor Shrubs 68
1.25 Transitional / Driver Guidance Plantings 68
Mainline Signage ... 69
 - 1.26 Typical Roadway Signing Detail 69
Mainline Illumination .. 70
 - 1.27 Typical Roadway Lighting Detail 70
 - 1.28 Lighting Alignment on Structures 70

2.0 Community Corridor Features 71
- Wall Treatment .. 71
 - 2.1 Wall Treatment Section 71
- Trails .. 72
 - 2.2 Regional Shared Use Path 72
 - 2.3 Asphalt Pavement Detail 72
 - 2.4 Points Loop Trail 73
 - 2.5 Trail Edge and Adjacent Properties 74
 - 2.6 Trail Separation .. 75
 - 2.7 View Preservation and Framing 76
 - 2.8 View Screening .. 76
- Landscape Grading ... 77
 - 2.9 Typical Trail Grading Section 77
- Landscape Planting Design 78
 - 2.10 Typical Stormwater Pond Planting Section 78
 - 2.11 Typical Stream Restoration Section 79
TABLE OF CONTENTS (CONT.)

Landscape Plant Palette ... 80
 2.12 Community Corridor Evergreen Trees 80
 2.13 Community Corridor Deciduous Trees 80
 2.14 Community Corridor Shrubs 81
 2.15 Community Corridor Groundcover
and Vines .. 81

3.0 Community Lid Features 82
 Lid Walls ... 82
 3.1 Planter Wall Detail ... 82
 3.2 Planter Wall with Cap Detail 83
 3.3 Seat Wall with Cap Detail 84
 Lid Edges ... 85
 3.4 Typical Planter Perspective 85
 3.5 Maintenance Access and Walkway 86
 Landscape Grading and Drainage 87
 3.6 Typical Lid Drainage Section 87
 Landscape Plant Palette ... 88
 3.7 Community Lids Evergreen Trees 88
 3.8 Community Lids Deciduous Trees 88
 3.9 Community Lids Shrubs 89
 3.10 Community Lids Groundcover, Grasses
and Vines ... 89
 Pedestrian and Vehicular Barriers 90
 3.11 Typical Aluminum Tube Railing 90
 3.12 Typical Cable Railing Detail 91
 3.13 Modified Steel Tube Railing for Accent 92
 3.14 Typical Wood Bollard 93
 3.15 Typical Concrete Bollard 94
 Paving ... 95
 3.16 Typical Scored Concrete Pavement Detail 95
 3.17 Typical Unit Paver Detail 96
 Site Furnishings ... 97
 3.18 Typical Bench ... 97
 3.19 Typical Trash Receptacle 97
 3.20 Typical Bicycle Locker 98
 3.21 Typical Bicycle Rack 98
 Lid Structures ... 99
 3.22 Typical Pergola Structure 99
 3.23 Typical Bus Shelter 100
 Signage and Wayfinding ... 101
 3.24 Typical City of Bellevue Trail Signage 101
 3.25 Typical Points Loop Trail Signage 101
 Illumination .. 102
 3.26 Typical Pole-mounted Pedestrian and
Street Lighting .. 102
 3.27 Typical Pedestal-mounted Accent Lighting 103
 3.28 Bollard Light ... 104
 3.29 Typical Bollard Lights 104
 3.30 Typical Recessed Lighting 105

4.0 Color ... 106
 Typical Project Colors .. 106
 4.1 I-405 Location ... 106
 4.2 I-90 Location ... 106
 Color Concept Alternatives 107
 4.3 Color Palette A ... 107
 4.4 Color Palette B ... 107
 4.5 Color Palette C ... 107

APPENDIX ... 109
 Project Participants ... 109
 ECDC Meeting Summaries 110
 Technical and Jurisdictional Meetings 113
LIST OF FIGURES

FIGURE 1 Timeline for Medina to SR 202: SR 520 Eastside Transit and HOV Project
FIGURE 2 Medina to SR 202: SR 520 Eastside Transit and HOV Project 10-percent corridor concept (July 2008)
FIGURE 3 Lid character preferences
FIGURE 4 Wall character preferences
FIGURE 5 Wall type location analysis for the Evergreen segment
FIGURE 6 Wall type location analysis for the 84th Avenue NE to 92nd Avenue NE segment
FIGURE 7 Wall type location analysis for the 92nd Avenue NE to 108th Avenue NE segment
FIGURE 8 Wall top profile
FIGURE 9 Wall face slope
FIGURE 10 Structural Earth Walls (SEWs)
FIGURE 11 Typical retaining walls with noise walls
FIGURE 12 Wall relief
FIGURE 13 Typical planting type configurations along corridor walls based upon available planter width
FIGURE 14 Preliminary transit station context analysis
FIGURE 15 Preliminary transit station conceptual design
FIGURE 16 Diagram of concept evolution
FIGURE 17 Conceptual diagram of corridor continuum and rhythm
FIGURE 18 Preliminary corridor and portal wall pattern development
FIGURE 19 Regional bicycle commuter trail examples (from upper left clockwise: I-90 Portal to the Pacific; I-90 Ivy wall Mercer Island; I-90 Through the marsh at Bellevue; West Seattle Bridge commuter trail)
FIGURE 20 Regional Bike and Pedestrian Path and Points Loop Trail at 92nd Avenue NE looking west
FIGURE 21 Regional Bike and Pedestrian Path at 92nd Avenue NE looking west
FIGURE 22 Points Loop Trail near Bellevue Way
FIGURE 23 Regional Bike and Pedestrian Path at NE Points Drive looking west
FIGURE 24 Sections of Points Loop Trail near Fairweather Bay
FIGURE 25 Evergreen Point Road lid surface looking southeast toward transit station
FIGURE 26 84th Avenue NE lid surface looking southeast toward transit station
FIGURE 27 92nd Avenue NE lid surface looking northwest toward transit station
FIGURE 28 Bellevue Way Bridge context design elements
FIGURE 29 Bellevue Way Bridge conceptual plan and section
FIGURE 30 Top of wall and wall finish precedents
FIGURE 31 Wall treatment preliminary exploration (elevation view)
FIGURE 32 Wall top configuration options stepped (top) and angled (bottom) in elevation
FIGURE 33 Wall treatment density options
FIGURE 34 Regional lid portal models (clockwise from upper left: I-90 Mt. Baker tunnel, I-90 Mercer Island lid, I-5 Freeway Park, and I-90 Luther Burbank Park)
FIGURE 35 Stacked wall study in elevation and plan
FIGURE 36 92nd Avenue NE lid portal edge study in section on west side with transit station access
FIGURE 37 Evergreen Point Road portal lid edge study in section
FIGURE 38 84th Avenue NE lid portal edge study in section
FIGURE 39 Proposed Hunts Point Town Hall access road reconfiguration study
FIGURE 40 Fairweather Park entrance final 30% design (March 2009)
FIGURE 41 Section detail of seat wall at Fairweather Park playfield
FIGURE 42 Fairweather Park entrance studies
FIGURE 43 Mechanically-stabilized earth (MSE) wall study at NE Points Drive in elevation and plan view
FIGURE 44 Detail of MSE wall study at NE Points Drive with Regional Bike and Pedestrian Path in elevation
FIGURE 45 MSE wall studies at NE Points Drive with Regional Bike and Pedestrian Path in section
FIGURE 46 Examples of large scale and stacked walls. I-405 (above), I-90 at Issaquah (below)
FIGURE 47 Wall type analysis in plan and section from Evergreen Point Road to 84th Avenue NE (October 2008)
FIGURE 48 Wall type analysis in plan and section from 84th Avenue NE to 92nd Avenue NE (October 2008)
FIGURE 49 Wall type analysis in plan and section from 92nd Avenue NE to 108th Avenue NE (above and on facing page) (October 2008)
FIGURE 50 Evergreen Point Road lid 10-percent conceptual study (July 2008)
LIST OF FIGURES (CONT.)

FIGURE 51 Evergreen Point Road Lid programmatic analysis and community feedback (September 2008)
FIGURE 52 Evergreen Point Road Lid 30-percent concept plan (April 2009)
FIGURE 53 84th Avenue NE Lid 10-percent conceptual study (July 2008)
FIGURE 54 84th Avenue NE Lid programmatic analysis and community feedback (September 2008)
FIGURE 55 84th Avenue NE Lid 30-percent concept plan (April 2009)
FIGURE 56 92nd Avenue NE Lid 10-percent conceptual study (July 2008)
FIGURE 57 92nd Avenue NE Lid programmatic analysis and community feedback (September 2008)
FIGURE 58 92nd Avenue NE Lid 30-percent concept plan (April 2009)
FIGURE 59 Bellevue Way NE Bridge 10-percent conceptual study (July 2008)
FIGURE 60 Bellevue Way NE Bridge programmatic analysis and jurisdictional feedback (February 2009)
FIGURE 61 Bellevue Way NE Bridge 30-percent concept plan (April 2009)
FIGURE 62 Random board wall treatment on I-90
FIGURE 63 Comparable concrete wall treatment with base treatment over safety barrier
FIGURE 64 Portals in sound walls allow vines to grow on corridor side
FIGURE 65 Stepped walls on I-90
FIGURE 66 Terraced walls on I-90
FIGURE 67 Abutment wall on I-90
FIGURE 68 Structural pier wall on I-90
FIGURE 69 Portal entry on I-90 in Mercer Island
FIGURE 70 Portal transition column detail
FIGURE 71 Cable railing at Coal Harbour, Vancouver BC
FIGURE 72 Roadside planting with 3:1 slope at SR 18
FIGURE 73 Roadside planting on I-90
FIGURE 74 Example of maintained sight lines from Federal Highway Administration (FHWA)
FIGURE 75 Roadway sign bridge on I-90
FIGURE 76 Roadway light standard
FIGURE 77 Modified structural earth wall (SEW) located at NE Points Drive on the community side
FIGURE 78 Vegetated mesh on West Seattle bike path
FIGURE 79 Concrete finish on West Seattle bike path
FIGURE 80 Shared-use trail with wood bollards
FIGURE 81 Existing and proposed connections to Points Loop Trail and Regional Bike and Pedestrian Path between Evergreen Point Road and 84th Avenue NE
FIGURE 82 Landscaped regional trail edge
FIGURE 83 Regional Bike and Pedestrian Path trail separation section at 92nd Avenue NE
FIGURE 84 Trail separation using landscape and paving markings from Seattle Times
FIGURE 85 Vegetation screens road and housing from Burke-Gilman Trail
FIGURE 86 Vegetation frames views of bridge and canal along Burke-Gilman Trail
FIGURE 87 Trail section from City of Seattle
FIGURE 88 Pedestrian and bike path grading and planting I-90
FIGURE 89 Stormwater pond native vegetation
FIGURE 90 Stream realignment and restoration Latimer Creek, Langley, BC
FIGURE 91 Stream restoration Miller Creek, SeaTac, WA
FIGURE 92 Concrete planter wall with bevel
FIGURE 93 Seat wall with stone face, concrete cap and skate stops
FIGURE 94 Terraced planters on I-35E Minneapolis, MN from MNDOT
FIGURE 95 Planters on edge structure Freeway Park
FIGURE 96 Pedestrian bridge safety railing
FIGURE 97 Slope rounding for gradual slope transitions
FIGURE 98 Aluminum tube railing
FIGURE 99 Cable railing at Coal Harbour, Vancouver, BC
FIGURE 100 Modified steel tube railing for variety and interest
FIGURE 101 Wood bollard
FIGURE 102 Fixed concrete bollards
FIGURE 103 Scored concrete pavement
FIGURE 104 Brick unit paving
FIGURE 105 Alternate round bicycle lockers. Dimensions and materials are preliminary design concepts.
FIGURE 106 Pergola section
FIGURE 107 Metal arbor painted white with vegetated canopy at Getty Museum, Los Angeles, CA
FIGURE 108 Bus Rapid Transit shelter Richmond, BC
FIGURE 109 Sammamish River Trail regional signage in Bothell, WA
FIGURE 110 Points Loop Trail signage
FIGURE 111 Pole-mounted pedestrian-level lighting
FIGURE 112 Local street lighting
FIGURE 113 Pole-mounted lighting detail
FIGURE 114 Bollard light
FIGURE 115 Recessed light fixture
FIGURE 116 I-405 pedestrian overpass bridge
FIGURE 117 I-90 sign gantry
FIGURE 118 I-5 sign
DEFINITIONS

CONTEXT SENSITIVE SOLUTIONS (CSS)

WSDOT defines CSS as a new approach to transportation design that “weights transportation needs, community values, and environmental goals on equal footing in determining a final project design.” CSS is both collaborative and interdisciplinary. It places greater emphasis on understanding the relationship of land use form and function and transportation design, while at the same time engaging and involving community stakeholders in the design process.

“The community unified by the tree canopy and connected by streams and wetlands.”

Eastside Community Design Theme

INTRODUCTION

Report Purpose and Objectives

The Eastside Consolidated Urban Design Report describes the urban design process for the Medina to SR 202: SR 520 Eastside and HOV Project. This document presents an overview of community involvement, the development of architectural concepts and refinement of preliminary urban design guidelines.

The input of Eastside community stakeholders is a key element of Context Sensitive Solutions (CSS) design. The principles of CSS are both implicit and explicit in the design development process and in this document.

The report captures that process and the resulting evolution and definition of design character, program, and elements. In alignment with the project scope, this document fulfills deliverable requirements and serves as the basis for the next phase of design development and construction: design/build, or a design/bid/build.

The report is organized into three sections: Design Process Overview, Draft Architectural Concepts, and Preliminary Urban Design Guidelines. The Design Process Overview establishes the history and rationale for design direction, as well as provides a project timeline for environmental review, design development and construction. It also outlines urban design process and response, and includes a description of the Eastside Community Design Collaboration (ECDC) committee process, structure and participants, and parallel jurisdictional processes with the cities of Bellevue and Kirkland.

The Draft Architectural Concepts chapter provides summaries of key criteria and materials produced for and in response to ECDC committee feedback on the character of the lids. This includes urban design contextual analysis, programmatic criteria, and preliminary design intent, which is reflected in the graphic evolution of the lid plans.

The Preliminary Urban Design Guidelines section provides details to achieve an intended form, function, and appearance of each feature in typical situations, throughout the project corridor. They provide both a theoretical framework and a tangible series of design goals and strategies, moving from the general to the specific—from an urban design contextual analysis, to site design, to design detail standards. Methods that are not applicable must be assessed separately for an alternative that will harmonize with the project as a whole. These guidelines are the preferred recommendations that integrate community values, urban design principles, and Washington State Department of Transportation (WSDOT) standards. Well planned design guidelines produce a safe, predictable, unified system that will enhance the visual composition of the natural and built environment.
DESCRIPTION

The 2006 Design Advisory Group (DAG) process established project design goals, theme, vision, and principles for the SR 520 corridor as a whole. As such, the Eastside Urban Design Report is informed by discussions on the Westside processes to provide overall corridor continuity. These components have served as building blocks that have guided design development for the Eastside 30% design phase.

DAG Design Goals

- Communities are reconnected across SR 520.
- Character-defining tree canopy is preserved or restored.
- Places are created for people to walk and meet.
- Aesthetic design expresses natural processes and community character.
- Design details create interesting patterns and textures that are inspired by the character and form of the Eastside landscape.
- Materials achieve the patina of maturity quickly so that new features don’t appear out of place.

Corridor Theme

The overall corridor theme, developed with community input during the 10% update phase, is “Naturalistic/Contemporary,” and is drawn from the geographic seeing of land, air and water. Community members also identified specific themes for Westside (“Tapestry”) and Eastside (“One Community”). Both corridor and Eastside themes provide aesthetic guidance as to the overall look of the corridor and the specific community lid sites.

Corridor Vision

The three-part vision statement gives guidance to the overall planning and design:

Context

Provide the region with a cohesive, graceful travelway that respects and enhances the surrounding natural and built environments.

Character

Create structures and landscapes with high-quality craftsmanship that reflect natural and contemporary character.

Connection

Reconnect neighborhoods and communities and restore habitat.

Visual Design Principles

In addition to determining theme and vision, design principles were established that inform the work of the ECDC.

- Design walls, lids, bridges and portals to flow seamlessly into one another in a thematic way and to blend smoothly with the surrounding terrain.
- Soften the appearance of new structures with foliage.
- New structures and features should add beauty to the surroundings in an unobtrusive way.
- Frame vistas at gateways and lids.
- Landscaping should integrate with and enhance surrounding native vegetation.
- Avoid overdone Pacific Northwest stereotypes.
- Use lighting where appropriate to add beauty and make a structure iconic.
- Use gradual transformation of corridor elements to create a feeling of dynamic change with movement through the corridor.

Corridor Vision

The three-part vision statement gives guidance to the overall planning and design:

Context

Provide the region with a cohesive, graceful travelway that respects and enhances the surrounding natural and built environments.

Character

Create structures and landscapes with high-quality craftsmanship that reflect natural and contemporary character.

Connection

Reconnect neighborhoods and communities and restore habitat.

Visual Design Principles

In addition to determining theme and vision, design principles were established that inform the work of the ECDC.

- Design walls, lids, bridges and portals to flow seamlessly into one another in a thematic way and to blend smoothly with the surrounding terrain.
- Soften the appearance of new structures with foliage.
- New structures and features should add beauty to the surroundings in an unobtrusive way.
- Frame vistas at gateways and lids.
- Landscaping should integrate with and enhance surrounding native vegetation.
- Avoid overdone Pacific Northwest stereotypes.
- Use lighting where appropriate to add beauty and make a structure iconic.
- Use gradual transformation of corridor elements to create a feeling of dynamic change with movement through the corridor.
DESIGN OVERVIEW

DESIGN TEAM PROCESS

Value Engineering

The Urban Design Team participated in the WSDOT value engineering process to assess 10-percent design assumptions for the Eastside phase. This is a necessary and typical procedure in project development and improves project design standards, efficiencies, cost/benefit, and ultimately performance. The participants developed recommendations, which affected urban design in the following choices:

- Straighten lid portal edges.
- Relocate transit stations at Evergreen Point Road and 92nd Avenue NE from under lid to lid edges.
- Reduce number of center pier walls and reassess soil loading depths.
- Reduce width of 14-foot regional bike path when in conflict with right-of-way (ROW) in shared-use areas to the shared-use minimum width of 10 feet.
- Remove pedestrian bridge at 92nd Avenue NE lid.

As a result, several key design recommendations were approved for the lids, which include:

- **Migrate 84th Avenue NE lid eastward.** Create additional and more usable passive open space with a better connection to the north side by reducing the width of the western side of the lid and augmenting the east side.

- **Design a single span for 84th Avenue NE and eliminate the center pier wall.** Create a simpler structure, reduce construction duration, enhance driver experience under the lid, and decrease construction costs. The single span will, however, entail a deeper superstructure, which will require lowering of the eastbound mainline profile.

- **Reduce lid loading.** By specifying tree locations, 6 feet of soil can be provided only where needed and reduced to a minimum in other lid locations. Structured, or a lightweight soil mix, will also contribute to decreased loading and ultimately reduce cost. It was also recommended to use tree boxes and root anchors at tree locations.

- **Design curvature of the lid edge to allow pre-stressed girders.** The small radius curves on all the lids were determined to be difficult for constructability. The use of a cast-in-place (CIP) concrete box, which employs standard pre-cast, pre-stressed concrete girders, offers cost benefits as well as enhances construction speed, staging, and phasing.

- **Reduce 92nd Avenue NE to a two-span bridge.** Eliminating one of the interior walls that conflicts with the existing roadway reduces staging and duration, simplifies construction, and lowers costs. However, it also requires a deeper superstructure and revised mainline profile.

- **Improve transit access and station design at 92nd Avenue NE.** Separate lid structure design and construction from the transit facilities. Doing so will improve daylighting and natural surveillance on transit platforms, enhance passenger drop-off on the lid, and respond to community concerns that the original configuration of the transit station was too prominent. Conversely, the changes will require greater noise protection and the construction of noise walls.
COMMUNITY PROCESS

ECDC Structure and Roles

Preliminary design development for the Eastside project phase began in 2007. The Corridor Design Concept Plan (CDCP) process and a series of meetings with Eastside jurisdictions culminated in agreement on corridor alignments, lid and transit station location, and aesthetic themes to guide them through the process. Subsequently, the *Eastside Community Design Collaboration* (ECDC) committee, comprised of Eastside community stakeholders, was convened in 2008. The ECDC participated in two open houses, a series of three workshops, and several technical and jurisdictional meetings. At the same time, a parallel outreach process was conducted with the cities of Bellevue and Kirkland to advance preliminary design at Bellevue Way and 108th Avenue NE.

The ECDC committee fulfilled the following roles to:
- Build upon vision and themes developed during the DAG process.
- Help identify preferences for the aesthetic character of key design elements, which include:
 - Roadway landscapes
 - Sound and retaining wall treatments
 - Paths and connections
 - Lid landscapes
 - Transit stop character
- Select preferred palettes for landscape character, architectural elements, and wall treatments.

The ECDC workshops served to:
- Reaffirm the conceptual framework established in previous stakeholder meetings, e.g., “Naturalistic/Contemporary,” etc.
- Further refine scale, massing, material, and experience.
- Identify preferred lid and corridor aesthetic palettes.

ECDC Project Design Goals

Through the ECDC design process, a series of general programmatic and aesthetic goals were developed that respond to and inform Design Guidelines.
- Prioritize “green over gray” — plant in all places and bring lid plantings to the edge.
- Revisit “naturalistic/contemporary” by engaging timeless, clean, and simple qualities (architectural, structural, abstraction based in local and regional qualities).
- Emphasize horizontal and sinusuous quality (rhythm) of the corridor.
- Explore potential of materials and simple surfaces.
- Bring appropriate scale and proportions to wall surfaces for both drivers and pedestrians.
- Create a lid edge that references regional qualities and examples (e.g., I-5, I-90, I-405).

Project Timeline

The project timeline provides a 2014 completion date for the construction phase. The timeline incorporates available data on funding mechanisms and distribution, design development schedule and construction staging scenarios.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Review and Design Phase</td>
<td></td>
</tr>
<tr>
<td>Eastside Transit and HOV Project</td>
<td>Draft EA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permits Received</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final EA/FDMB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Phase</td>
<td></td>
</tr>
<tr>
<td>Eastside Transit and HOV Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accelerated Design/Build</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contract Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open & Lanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Substantially Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1 Timeline for Medina to SR 202: SR 520 Eastside Transit and HOV Project
COMMUNITY MEETINGS

Open House September 2008

FOCUS To introduce the Eastside community and ECDC participants to the next design phase and outline the process and timelines for environmental review, design development, and construction.

FIGURE 2 Medina to SR 202: SR 520 Eastside Transit and HOV Project 10-percent corridor concept (July 2008)
COMMUNITY MEETINGS
Workshop 1 - 9/13/2008

FOCUS To review lid concept plans for Evergreen Point Road, 84th Avenue NE, and 92nd Avenue NE, and select preferences for lid landscape character within the naturalistic-contemporary spectrum.

Participants reviewed a palette of design precedents exemplifying the spectrum from naturalistic to contemporary. They cited as important to lid landscape character the following qualities: residential scale, rural sensibility, mix of materials, elements of surprise and interest, and more softscape than hardscape.

FIGURE 3 Lid character preferences
COMMUNITY MEETINGS
Workshop 2 - 10/4/2008

FOCUS To present a synthesis of “what we heard” from Workshop 1; to review lid character preferences; to select corridor wall characteristic preferences from the categories of linear, organic, and geometric; and to present information about wall types, top of wall profiles, wall type and planting locations, and preliminary transit facility structure design.

These images represent participant selections. Important qualities cited included an emphasis on scale, “green over gray” where possible, lowering wall height through the use of horizontal patterns, and the application of a pattern that was not distracting.

FIGURE 4 Wall character preferences
COMMUNITY MEETINGS

Workshop 2 - 10/4/2008 cont.

These studies, developed for Workshop 2, analyze in plan and section the location of noise and retention walls in order to explore opportunities for planting ("green over gray") within the corridor (see page 10).
Key criteria for walls were aesthetics, topography, and constructability. Considerations included wall height, wall type (e.g., noise, retaining, structural earthen), wall relief, wall top profile, materials, and architectural details.

FIGURE 8 Wall top profile

FIGURE 9 Wall face slope

FIGURE 10 Structural Earth Walls (SEWs)

FIGURE 11 Typical retaining walls with noise walls

FIGURE 12 Wall relief
Following the design goal of achieving “green over gray” to the greatest extent possible, the Urban Design Team analyzed the relationship of wall location, wall type, and available planting space. They established a series of planting zones with appropriate plant species, as well as a more general assessment of planting widths and appropriate plant types (see page 8).

FIGURE 13 Typical planting type configurations along corridor walls based upon available planter width
VIA Architecture developed initial studies for transit station design based upon the analysis of human proportion, structural requirements, prevailing weather, noise abatement, and Crime Prevention Through Environmental Design (CPTED) principles.

FIGURE 14 Preliminary transit station context analysis

FIGURE 15 Preliminary transit station conceptual design
COMMUNITY MEETINGS

Workshop 3 - 12/6/2008

FOCUS To present conceptual approaches to lid portal configuration and wall pattern, and to review transit station design development.

FIGURE 16 Diagram of concept evolution

FIGURE 17 Conceptual diagram of corridor continuum and rhythm
Corridor wall and portal treatments focused on developing abstract patterns—“canopy,” “meander” and “rhythm”—drawn from DAG—developed themes of air, land, and water. Feedback from these exercises demonstrated the importance of avoiding surface appliqués. The Design Team was encouraged to develop responses that more authentically addressed the integrity of the walls and portal structures themselves.

Figure 18 Preliminary corridor and portal wall pattern development
Regional examples of bicycle commuter paths were consulted as models for the SR 520 corridor. WSDOT design standards for shared-use paths were important criteria paired with considerations of user experience and safety.
Perspective and sectional studies of the Points Loop Trail and the Regional Bike and Pedestrian Path explore scale, vegetation, and location of retaining and noise walls, and thus provide an understanding of the overall trail experience.

FIGURE 20 Regional Bike and Pedestrian Path and Points Loop Trail at 92nd Avenue NE looking west

FIGURE 21 Regional Bike and Pedestrian Path at 92nd Avenue NE looking west

FIGURE 22 Points Loop Trail near Bellevue Way

FIGURE 23 Regional Bike and Pedestrian Path at NE Points Drive looking west

FIGURE 24 Sections of Points Loop Trail near Fairweather Bay
COMMUNITY MEETINGS (CONT.)

Workshop 3 - 12/6/2008

Perspective study models expand our understanding of the look and feel of the three lids. At Evergreen Point Road and 92nd Avenue NE, transit facilities located at lid edges are integrated into the surrounding communities in terms of scale, form, and materials. Placement of vegetation and site furnishings aid in creating discernible spaces, providing clear sight lines, and assisting in wayfinding.

FIGURE 25 Evergreen Point Road lid surface looking southeast toward transit station

FIGURE 26 84th Avenue NE lid surface northeast across lid

FIGURE 27 92nd Avenue NE lid surface looking northwest toward transit station
COMMUNITY MEETINGS

Bellevue Coordination Meeting 1/14/09

FOCUS To update and coordinate the design process with City of Bellevue representatives about the ECDC process, and present the Bellevue Way urban design and channelization concept.

FIGURE 28 Bellevue Way Bridge context design elements
COMMUNITY MEETINGS (CONT.)

Bellevue Coordination Meeting 1/14/09

The City of Bellevue supported the idea of a shared path on the eastern edge of the bridge only. This included an asymmetrical widening to allow vegetation to flank the shared path and to prevent potential user conflicts.

FIGURE 29 Bellevue Way Bridge conceptual plan and section
COMMUNITY MEETINGS

ECDC Jurisdictional Work Session 2/3/09

FOCUS To present revised corridor wall pattern treatment and lid portal edge configuration development, and to receive feedback from a small group of representative ECDC members on these updated design concepts.

Random board (lower left), used throughout the I-90 corridor, was selected as a useful model in developing the original design.

FIGURE 30 Top of wall and wall finish precedents
COMMUNITY MEETINGS (CONT.)

ECDC Jurisdictional Work Session 2/3/09

Wall top profile options were narrowed to stepped and angled. A stepped top was deemed more appropriate and flexible because it helps with topographical transitions, complements the proposed wall treatment (pattern), and allows for greater constructability.

Use of an angled wall top presented several potential challenges including the difficulty of maintaining consistency, detracting from the proposed wall treatment, and having lower constructability.

FIGURE 31 Wall treatment preliminary exploration (elevation view)

FIGURE 32 Wall top configuration options stepped (top) and angled (bottom) in elevation

FIGURE 33 Wall treatment density options

- Close spacing
- Medium spacing (preferred)
- Wide spacing
Regional lid models provided the basis for developing lid portal edges that respond to the surrounding landscape through scale, incorporation of green and modulation to lessen the visual impacts of a large concrete structure.

FIGURE 34 Regional lid portal models (clockwise from upper left: I-90 Mt. Baker tunnel, I-90 Mercer Island lid, I-5 Freeway Park, and I-90 Luther Burbank Park)
COMMUNITY MEETINGS (CONT.)

ECDC Jurisdictional Work Session 2/3/09

Proposed wall treatments were further tested in situations where multiple walls and/or wall types converged, such as at NE Points Drive, where noise and retaining walls are stacked. Offset patterns, along with plantings are proposed to relieve the scale of potentially 60-foot-high walls.

![Stacked wall study in elevation and plan](image)

FIGURE 35 Stacked wall study in elevation and plan
COMMUNITY MEETINGS

Eastside Technical Coordination 2/13/09

FOCUS To present design development for lids and portals and discuss Hunts Point access.

Staff and council members from Eastside jurisdictions reviewed lid plans and sections for Evergreen Point Road, 84th Avenue NE, and 92nd Avenue NE; discussed the revised Hunts Point Town Hall access concept; reviewed the previous lid portal/wall work session presentation; discussed the transit station concept presentation; and introduced mainline signage preliminary concepts.

FIGURE 36 92nd Avenue NE lid portal edge study in section on west side with transit station access

FIGURE 37 Evergreen Point Road portal lid edge study in section
COMMUNITY MEETINGS (CONT.)

Eastside Technical Coordination 2/13/09

FIGURE 38 84th Avenue NE lid portal edge study in section

FIGURE 39 Proposed Hunts Point Town Hall access road reconfiguration study
COMMUNITY MEETINGS

Medina Park Board 2/24/09

FOCUS To provide information and receive input regarding the Fairweather Park and Evergreen Point Road/SR 520 lid interface.

Staff and council from Medina examined several conceptual options for the park entrance, which included:

- “Overlook” at the park/lid boundary
- Two sets of stairs and a seat wall at the park/lid boundary
- Stairs running the length of the park/lid boundary

FIGURE 40 Fairweather Park entrance final 30% design (March 2009)

FIGURE 41 Section detail of seat wall at Fairweather Park playfield

FIGURE 42 Fairweather Park entrance studies
COMMUNITY MEETINGS

Technical Meeting 5 - Kirkland Technical Review 3/12/09

FOCUS To review corridor design topics with City of Kirkland representatives and SR 520 Corridor Team including concepts for NE Points Drive, Bellevue Way/Lake Washington Boulevard, and the SR 520 interchange to coordinate with City of Bellevue at 108th Avenue NE and Bellevue Way.

FIGURE 43 Mechanically-stabilized earth (MSE) wall study at NE Points Drive in elevation and plan view
COMMUNITY MEETINGS (CONT.)

Technical Meeting 5 - Kirkland Technical Review 3/12/09

FIGURE 44 Detail of MSE wall study at NE Points Drive with Regional Bike and Pedestrian Path in elevation

FIGURE 45 MSE wall studies at NE Points Drive with Regional Bike and Pedestrian Path in section

FIGURE 46 Examples of large scale and stacked walls, I-405 (above), I-90 at Issaquah (below)
COMMUNITY MEETINGS
Open House Report Out 3/18/08

FOCUS To review final 30-percent design products and complete the ECDC process.

The Urban Design Team presented final design concepts, including an animated fly-through of the Eastside project. The Eastside project engineer described next steps and thanked committee for their contributions to the project.
ARCHITECTURAL CONCEPTS

INTRODUCTION

Purpose and Objectives

The Draft Architectural Concepts Report is intended to articulate the guiding conceptual frameworks for the Medina to SR 202: SR 520 Eastside Transit and HOV Project. These frameworks were developed in collaboration with the Eastside Community Design Collaboration (ECDC) participants to address programmatic uses, urban design contextual analysis, and preliminary design intent for corridor wall treatments, lids, and lid portals and abutments.

Broadly, urban design methods aid in creating environmentally healthy, functional, meaningful, and attractive spaces. More specifically, these strategies lend cohesion to the multiple aspects of this project including planning, engineering, architecture, and landscape design. Ultimately these pieces inform both the architectural treatments and the forthcoming technical documents for use in the design/build or design/bid/build process.

In developing the architectural concepts for the Eastside, both functional and aesthetic issues, were considered. As outlined in the WSDOT Roadside Manual (2003), the Urban Design Team weighed issues of transportation planning, such as vehicle mobility, against other considerations, including economic vitality, environmental protection, aesthetics, pedestrian and bicyclist safety, and preserving a community’s “sense of place.”

Considerations for architectural treatments along the corridor as a whole embraced key principles of effective highway design. These principles are rooted in predictability and coherence of the visual environment along the entire corridor path. At the lids, emphasis was placed on local community identity and placemaking, cultural responsiveness, and purposeful aesthetic and functional design. As the SR 520 Visual Guidelines (WSDOT 2003) state, “Fundamentally, the visual composition of the new highway needs to be unified along the corridor, as well as mesh with the variety of natural and built elements next to the highway.” Maintaining a sense of rhythm, scale, and consistency contribute to:

- Maintaining and enhancing traffic efficiencies
- Ensuring driver, pedestrian, and cyclist safety
- Controlling costs
- Protecting and restoring environmental assets
- Providing a pleasant aesthetic experience for drivers, pedestrians, and cyclists

ARCHITECTURAL CONCEPTS

WALL DESIGN

The Urban Design Team utilized preliminary engineering to analyze the location, function, and height of wall types in the corridor to determine areas for treatment along the roadway (see Figures 47 - 49). Noise and retaining walls, including MSE walls, occur throughout the corridor on the roadway, at abutments and to the lid edges. Wall heights range from approximately 8 to 18 feet. Wall treatments could be applied to both the inside of the mainline and on the community side of corridor.
WALL ANALYSIS

Types and Locations

NOTE: Wall analysis was an initial study based on the 10-percent concept documents.
VALL ANALYSIS
Types and Locations

FIGURE 48 Wall type analysis in plan and section from 84th Avenue NE to 92nd Avenue NE (October 2008)
WALL ANALYSIS

Types and Locations

NOTE: Wall analysis was an initial study based on the 10-percent concept documents

FIGURE 49 Wall type analysis in plan and section from 92nd Avenue NE to 108th Avenue NE (above and on facing page) (October 2008)

NOTE: Wall analysis was an initial study based on the 10-percent concept documents
ARCHITECTURAL CONCEPTS

WALL ANALYSIS

Types and Locations

NOTE: Stormwater pond capacity requirements and access road location maximize space use and thereby minimize available space for retaining walls, structural support and landscape treatment. Terracing breaks up wall heights and introduces plantings.
URBAN DESIGN CONTEXTUAL ANALYSIS

Description

Community input provided a touchstone for developing architectural concepts for both the corridor and lids. Feedback was also utilized as a baseline for further urban analysis and recommendations. General criteria for design opportunities and constraints were drawn from both the 2006 Design Advisory Group (DAG) and 2007 Corridor Design Concept Plan (CDCP) processes and verified by the ECDC process (see “Design Team Process” and “Community Process” pages 3-4). The Team considered an array of historic and contemporary structural forms, and character and use, along with surrounding land use and form in a rural-residential and semi-urban environment.

The location and type of wall treatments within the corridor and at the lids were determined based upon the following criteria:

- Location inside (mainline) or outside (community) corridor
- Estimated vehicular speed
- Wall type, e.g., discrete noise wall, noise wall with retaining wall, structural earth wall (SEW) or mechanically stabilized earthen (MSE) wall, cast-in-place, or precast
- Wall configuration, e.g., battered, stepped, or smooth top
- Regional and local references, e.g., to landscape or built form
- Integral design rather than applied surface treatments

Detailed conceptual development of interior wall and portal designs can be found in the Preliminary Urban Design Guidelines (see pages 53 - 107).

Lid architecture elements included:
- Transit station
- Seating
- Shelter structures
- Wayfinding and signage
- Lighting
- Trails and paths

These elements were considered when developing specific concepts that sought to address:

- Adequate pedestrian and bicycle circulation
- Understandable site orientation
- Easy transit access
- Social and site connectivity
- Community character

Feedback on initial lid plans, documented in the following diagrams, emphasized the need to:

- Create gathering nodes in logical, accessible, comfortable spaces away from busy streets.
- Soften structures such as walls and lid portal edges using planting, stepping, and non-distracting patterns.
- Create structures that are functional, e.g., waiting areas for transit or pick-up or drop-off, and aesthetically integrated into surrounding communities—clean lines, classic forms, natural materials, and human scaled.
- Minimize user conflicts on bicycle and pedestrian paths particularly on shared-use paths and at intersections using signage, paving, lighting, and other approaches.
- Accentuate or de-emphasize arrivals and departures (portals and gateways) where appropriate, depending on the aesthetic or functional requirements of specific communities.
- Frame important views and create formal or informal viewing spots using vegetation and hardscape.
- Use a consistent palette of materials and vegetation and emphasize softscape over hardscape.
- Provide adequate space for short-term waiting and drop-off at transit stations.
ARCHITECTURAL CONCEPTS

PROGRAMMATIC CRITERIA

Description

The CDCP process established a series of programmatic and functional criteria for the lids at Evergreen Point Road, 84th Avenue NE, and 92nd Avenue NE. Later discussions convened with the City of Bellevue yielded a similar palette of programmatic objectives for Bellevue Way Bridge. Criteria identified included views and sightlines, seating, pedestrian and bicyclist safety, place identity, gateways, parking and drop-off, accessibility and circulation, wayfinding and signage, open space augmentation, consistency of materials (hardscape and softscape), and use of vegetation, where possible, to soften and enhance. The initial 10-percent conceptual lid plans that emerged drew upon these criteria. The plans were presented at the first ECDC workshop in September 2008.

ECDC feedback to these initial plans was summarized and distilled in a series of programmatic analysis diagrams overlaid on the original plans. Feedback led directly to the generation of 30-percent preliminary plans. The preliminary plans also reflect accepted Value Engineering changes to the design.

The process of developing core architectural concepts is traced in the following graphics moving west from Evergreen Point Road Lid east to the Bellevue Way NE Bridge and 108th Avenue NE. General architectural concepts are summarized in the Preliminary Design Intent section (see page 52).
EVERGREEN POINT ROAD LID

CDCP Programmatic Criteria

• Provide an unobstructed view westward over and beyond Lake Washington.
• Provide a gathering area with some seating, perhaps as a small amphitheater.
• Prevent access to the edge of the lid for safety reasons.
• Create an entry/threshold to Fairweather Park.
• Provide clear visual sightlines for strong visual connections between the transit plaza, the overlook, and the Fairweather Park entry.
• Provide a “kiss-and-ride,” or drop off where commuters can be driven or picked up at a station to board or disembark from public transportation.
• Provide direct, clear circulation through the plaza to stairs and elevators.
• Create a landscaped gateway along Evergreen Point Road.
• Provide an opportunity space for community design.
• Imply extension of the Fairweather Park onto the northeast corner of the lid.
• Provide protective covering over stairs.
ARCHITECTURAL CONCEPTS

EVERGREEN POINT ROAD LID

Programmatic Criteria

FIGURE 50 Evergreen Point Road lid 10-percent conceptual study (July 2008)
EVERGREEN POINT ROAD LID

ECDC Community Feedback

FIGURE 51 Evergreen Point Road Lid programmatic analysis and community feedback (September 2008)
ARCHITECTURAL CONCEPTS

EVERGREEN POINT ROAD LID

Preliminary Design Intent

- MAINTENANCE FACILITY
 - Access road relocated to north side through significant remnant tree area

- TRANSITIONAL LANDING/SEAT WALL
 - Provides gateway to Fairweather Park

- SIGNAGE
 - At decision points for ease of wayfinding

- TRANSIT GREEN

- TRANSIT STATION
 - Relocated to lid portal edge

- VIEW LANDING
 - With seating walls and views west across Lake Washington

- COMMUNITY GREEN

- PARK AND RIDE

- SEATING AREAS
 - With covered trellises for transit and other users

- TERMINAL COLUMNS
 - Provide transition from walls to lid, portal edge, to frame lid and create sense of arrival from west

- LID PORTAL
 - Edges straightened, one center pier removed

FIGURE 52 Evergreen Point Road Lid 30-percent concept plan (April 2009)
84TH AVENUE NE LID

CDCP Programmatic Criteria

- Create a landscape buffer between Hunts Point Town Hall and the open space park.
- Provide a walking path with seating that connects Hunts Point Town Hall to the park.
- Develop the area where the existing on-ramp will be removed as an open space park.
- Establish a community gateway along 84th Avenue NE, such as an arbor or other vertical elements.
- Provide space for community design.
ARCHITECTURAL CONCEPTS

84TH AVENUE NE LID

Programmatic Criteria

FIGURE 53 84th Avenue NE Lid 10-percent conceptual study (July 2008)

CENTRAL PLAZA
formal geometry across street

PORTAL FAÇADE
curvilinear edges

PATHS
access through community open space

Medina to SR 202: SR 520 Eastside Transit and HOV Project Eastside Consolidated Urban Design Report

41
84TH AVENUE NE LID

ECDC Community Feedback

84th Avenue NE Lid programmatic analysis and community feedback (September 2008)

Legend:
- Buffers (Vegetation, Grading)
- Circulation, Wayfinding, Safety (Crossing)
- Gathering/Nodes
- Patterns (Trees, Hardscape, etc.)

FIGURE 54
ARCHITECTURAL CONCEPTS

84TH AVENUE NE LID

Preliminary Design Intent

- **COMMUNITY GREEN**: augmented passive space with better community connections
- **LID PORTAL**: edges straightened, center pier removed
- **LID SURFACE**: western half reduced, eastern lobe augmented for community green
- **TERMINAL COLUMNS**: provide transition from walls to lid portal edge, and frame lid
- **COMMUNITY GREEN**: augmented passive space with better community connections
- **HUNS POINT TOWN HALL**: schematic illustrating clear relationship to community green
- **SEATING AREAS**: with covered trellises
- **COMMUNITY PLAZA**: covered gathering area, relocated from street edge
- **SIGNAGE**: at decision points for ease of wayfinding

FIGURE 55 84th Avenue NE Lid 30-percent concept plan (April 2009)
92ND AVENUE NE LID

CDCP Programmatic Criteria

- Plant dense shrubs along the edge of the lid to prevent access to the edge and to provide a green backdrop for the transit plaza.
- Provide a small, paved overlook adjacent to the Points Loop Trail to allow a view of the Yarrow Bay wetlands.
- Provide a connection from the SR 520 Regional Bike and Pedestrian Path and Points Loop Trail to the new southern branch of Points Loop Trail.
- Provide a level, paved area between the drop-off and the plaza to allow easy access to elevators/stairways (without curb).
- Prevent entry of motorized vehicles onto the plaza.
- Establish a gateway along 92nd Avenue NE to the communities.
- Provide landscape areas, with paths and seat walls or benches.
- Provide transit passengers with direct, easy access through the plaza to the stairs and elevators.
- Incorporate wayfinding signage to quickly direct passengers regarding transit options.
92ND AVENUE NE LID

Programmatic Criteria

FIGURE 56 92nd Avenue NE Lid 10-percent conceptual study (July 2008)
92ND AVENUE NE LID

ECDC Community Feedback

92nd Avenue NE Lid

- **Important Portal**
- **Increase Path/Ped Circulation Widths**
- **Carry Materials and Vegetation Palette Across with Variety and Mix of Heights**
- **More Paving, Less Green**
- **Review Distance of Elevators to Street**
- **Prefer Gabled, Rain Proof Covers Transit, Covered Seating, Scaled Architecture**
- **View of Highway Traffic Monitoring**
- **Provide Short-Term Waiting**
- **Provide Transparency**
- **Clarify Circulation of Drop-Off Patterns for Vehicles**
- **Consider Impact of Cell Towers**
- **Portal for Two Communities**

Visual Materials Relationship of Community Fountain to "Portal"

Resolve Cyclist Wayfinding, User Conflict

Safety, Clarity of Crossing

Some "Peek-a-Boo" Views to Yarrow Point

More Green, Less Paving

Primarily Inward Looking

Provide Strong Form and Structure to Space

Legend
- Green: Vegetation, Buffer
- Red: Wayfinding, Safety, Circulation
- Blue: Gathering, Nodes, Structure

Figure 57 92nd Avenue NE Lid programmatic analysis and community feedback (September 2008)
92ND AVENUE NE LID

Preliminary Design Intent

- **TRANSIT GREEN**: Less paved surface, more distinct and usable spaces
- **SEATING AREAS**: For transit users with covered trellises and local transit stop
- **KISS AND RIDE**: Circulation improved, passenger drop off at curb
- **SIGNAGE**: At decision points for ease of wayfinding
- **LID PORTAL**: Edges straightened, one center pier removed
- **TRANSIT**: Relocated to lid portal edge
- **COMMUNITY OPEN SPACE**: Provide transition from walls to lid portal edge, and frame lid
- **TERMINAL COLUMNS**: Provide transition from walls to lid portal edge, and frame lid
- **TRANSIT GREEN**: Less paved surface, more distinct and usable spaces

FIGURE 58 92nd Avenue NE Lid 30-percent concept plan (April 2009)
BELLEVUE WAY NE BRIDGE

CDCP Programmatic Criteria

- Maintain and improve the Bellevue master plan for bicycle and pedestrian connections.
- Provide wayfinding for regional trail system users through appropriate signage and surfacing.
- Protect shared-use path users from vehicles with bollard placement.
- Discourage skateboard and cyclist jumping by limiting sharp grade transitions on shared-use path.
- Create and/or enhance gateways to both Bellevue and Kirkland.
- Coordinate with City master plan for trees, standards for character and lighting design, and standards for landscape maintenance.
- Design seating walls that prevent potential cyclist collisions.
- Add enhancements and landscape to stormwater ponds at NE 10th Avenue.
- Explore options for roadside barrier treatments, including the use of a simple cap to create the sense of a linear gateway.
Architectural Concepts

Bellevue Way NE Bridge

Programmatic Criteria

FIGURE 59 Bellevue Way NE Bridge 10-percent conceptual study (July 2008)
BELLEVUE WAY NE BRIDGE

ECDC Jurisdictional Feedback

FIGURE 60 Bellevue Way NE Bridge programmatic analysis and jurisdictional feedback (February 2009)
BELLEVUE WAY NE BRIDGE
Preliminary Design Intent

FIGURE 61 Bellevue Way NE Bridge 30-percent concept plan (April 2009)
PRELIMINARY DESIGN INTENT

Issues raised during community input were incorporated into the development and completion of 30-percent design phase. Design intent was based upon the following criteria:

Patterns
- Design wall treatments in the corridor and at the lid portal edges that subtly contribute to the visual environment rather than distract drivers.
- Create patterns that are consistent, scaled and scalable depending on the height, type and location of the wall or walls.
- Develop patterns that are meaningful, deriving from both the structure itself and the site context.
- Derive wall treatments from regional examples, such as in I-90’s random board.
- Reflect structural qualities of architectural elements while alluding to recognizable forms, such as geologic strata or tree forms, by abstraction, rather than realistic renderings.

Materials
- Provide materials that are durable, cost effective, attractive, and easily maintainable.
- Use a mix of hardscape and softscape materials with an emphasis on vegetation over paving.
- Select natural materials such as stone and wood.
- Add visual interest to materials through scoring, asymmetry, stacking and/or layering.

Spaces
- Scaled, Accessible, and Discernible
 - Shape spaces that are residential and human-scaled.
 - Appropriately size and delineate a series of outdoor “rooms” using suitable hardscape structures and vegetation.

Integrated
- Harmonize vegetation, paving, lighting, site furnishings for lid and transit with surrounding communities.
- Build logical, visual, and physical connections across lids and to communities using consistent materials, patterns, and forms.

Safe
- Develop good sightlines across lid and to and from transit platforms for ease of visual monitoring.
- Provide well-lighted spaces using pedestrian-level, street, and bollard fixtures.
- Enhance perception of safety using clear wayfinding and offer refuge and vantage.

Functional
- Provide a variety of spaces for groups and individuals, and for passive recreation and commuting.
- Create accessible and efficient pedestrian, bicycle, and vehicular connections.

Interesting
- Create gathering spaces and other activity nodes that are memorable, inviting, and distinctive.
- Utilize innovative materials and forms where feasible.

Forms
- Design structures such as trellises and arbors and transit platforms for functionality (shelter, shading) and aesthetics (scaled to residential).
- Soften hard edges at lid portal edges using vegetation stepping or terracing where possible.
- Ensure ease of access for maintenance to structures, transit, and planting areas.

Circulation
- Provide logical connections to and from lid and Points Loop Trail and Regional Bike and Pedestrian Path.
- Use a clear hierarchy for heavy-use areas versus lower-use areas.
- Create visual and physical connections across lids using framing through vegetation and structure that are clearly delineated with logical circulation paths.
- Provide signage at key decision points, such as paths meeting lids and intersections of Regional Bike and Pedestrian Path and Points Loop Trail, for ease of wayfinding.
Appropriately planned and applied design guidelines produce safe, predictable, coherent, and unified highway systems. They coordinate and enhance the visual composition of the natural and built environment. The design of aesthetic treatments assures uniformity by employing design elements such as color, form, line, texture, and scale, while considering site-specific visual applications as well as visual context.

Aesthetic treatments work best when complementary to the primary engineering designs, roadway, and transit system.

Roadway corridors should promote safety while enhancing the driving experience. Safety, visual quality, and aesthetics are also important functions for the community corridor and lids. The fundamental differences between roadway corridor design and community or pedestrian-level design is the speed of the observer, which affects the scale and character of design features. Pedestrian-accessible area facilities are typically smaller scale, require more maintenance, and assume greater attention to design and detailing for things such as railing, material selection, and plant sizing.

Color is an element that, when thoughtfully applied, will create a unified system and contribute to a regional identity. Color should be used to create harmony, accentuate and contrast, or blend objects in a consistent manner throughout the project corridor.

When designing the aesthetic treatments for all areas of the project, the following should be considered:

- Safety
- Visual context
- Corridor continuity with opportunities for relief
- Views from within and outside the corridor
- Consistency
- Form and proportion
- Smooth visual transitions
- Opportunities for community connection
- Opportunities to enhance or screen views from within and outside the corridor
- Ease and costs of maintenance
DESIGN FEATURES OVERVIEW

Noise and retaining walls occur throughout the entire length of the project corridor providing a significant opportunity to create corridor identity and continuity. In general, wall heights are determined by noise mitigation requirements and existing topography. Surface treatments and vertical profiles are a result of various design considerations and the communities’ input, and are independent of wall construction type.

Lid portals orient users to the adjacent communities and provide visual relief from the monotony of the highway corridor. The portal treatments should provide interesting visual contrast and definition without driver distractions.

Landscape plantings soften the visual impact of concrete and are also an important aspect of corridor continuity. The planting design within the entire right-of-way must respond to safety standards, drainage needs, travel speeds, existing vegetation, competition with invasive plant species, sustainability, long-term erosion control for steep slopes, and maintenance requirements and/or practices. The planting design within the roadway corridor must also respond to the unnatural, harsh environment of the roadway and narrow planting areas.

The plant palette within the roadway corridor includes some native plant species; however, the majority of the plants within the corridor walls tend to be non-native to provide year-round interest. The plant palette within the community corridor and pedestrian-accessed areas shall include larger-sized, native and non-native plant species to blend with the existing, adjacent plant communities. City street tree plans shall be tied-in, where appropriate, to provide smooth transitions into the communities.

In addition to the design guidelines for landscape planting, the roadside restoration shall be in accordance with WSDOT’s Roadside Classification Plan and Roadside Manual.

Landscape grading is an important aspect of visual quality, soil stability, plant health, and stormwater runoff. Steep cut/fill slopes shall be avoided; slopes of 3:1 or less will be used to promote plant health and facilitate maintenance. Landscape grading within the community corridor shall be done in a manner that integrates with the surrounding topography and preserves desirable vegetation and habitat. Landscape grading on lids shall contour slopes to facilitate interest and flexibility in spatial relationships.

Signing and illumination are designed to provide safety and efficiency. Sign character should be compatible with the other corridor features; placement and appearance should be uniform and orderly. Signage for trail users within the community corridor consists of directional bollard details adapted from local municipality standards for consistency and ease of maintenance. Pedestrian light fixtures should be selected to blend or appropriately transition with the existing community fixtures. Illumination within the community corridor and lids shall avoid lighting impacts to the roadway corridor and adjacent communities.

Pedestrian barriers within the community corridor include railings on top of walls and bollards at trail entry locations. The purpose of pedestrian barriers is to ensure public safety, and to limit foot, bicycle, or motorized vehicle access.

Community lid landscape features such as site furnishings, walls, and landscape structures, should relate to the context of the adjacent communities as well as the materials and design features of corridor transit facilities.
ROADWAY CORRIDOR FEATURES

NOISE AND RETAINING WALL TEXTURE

Design Concept:

Wall treatment plays a significant role in providing structure for corridor continuity. While considering construction and maintenance, a wall texture with a “timeless appearance” was developed for the SR 520 project corridor using the I-90 random board texture as a baseline.

Design Guidelines:

- Pattern repetition with varying widths and depths convey an organic, crafted quality.
- Use a simple wall treatment to avoid literal image trends and decorative appliqués.
- Design for cast-in-place (CIP) or concrete panels with the wall treatments as part of the wall.
- Treat the face of all walls exposed to traffic along the roadway corridor.

![1.1 Typical Corridor Concrete Wall Finish](image)

![FIGURE 62 Random board wall treatment on I-90](image)
NOISE AND RETAINING WALL SCALE

Design Concept:

Use a combination of wall texture and wall design techniques, such as battering, terracing, and top-of-wall stepping to reduce the sense of scale and visual impact of concrete.

Introduce random proportion and appearance by using a varying base treatment and multiple form liners.

1.2 Typical Concrete Noise and Retaining Wall Treatment

Design Guidelines:

- Keep line of sight low by avoiding the use of top treatments such as scoring details and caps.
- Incorporate a subtle horizontal element for visual interest where there are no opportunities for planting.
- Batter walls at (1:12) where possible.

1.3 Typical Wall Sections

FIGURE 63 Comparable concrete wall treatment with base treatment over safety barrier
1.4 Top of Wall Profile Detail

Design Guidelines:

- Incorporate well-planned incremental vertical stepping that follows the natural topography and provides noise reduction where necessary. Where there is no change in grade, logical variations in wall height shall still be used to relieve the monotony of walls that are long.
- Introduce vegetative “green over gray” in a variety of strategies, including the use of vine portals to allow vines to be planted on the backside of noise walls where feasible.
1.5 Terraced Walls

Design Guidelines:

- Terrace high walls where possible to break up the vertical height and visual impact of concrete and provide opportunities for “green over gray.”
- Provide safe maintenance access.
- Provide 5 years of plant establishment with monthly walkthroughs with Northwest Regional landscape architecture staff.

![Terraced Walls Image]

FIGURE 66 Terraced walls on I-90
Bridge pier and abutment walls provide an opportunity for visual relief and contrast within the corridor. When selecting finishes, lighting requirements and ease of maintenance must be considered.

Design Guidelines:

- Keep concrete finishes under lid and bridge structures light-reflective and easy to clean, including abutment walls, structural pier walls, and bridge girders.
- Use smooth finish walls under lid and bridge structures to provide visual relief and contrast from the continuous noise wall and retaining wall texture, as well as for ease of cleaning and maintenance.
- Transition the pier wall smooth finish to the corridor wall texture treatment as it emerges from under the lid.

Design Concept:

1.6 Abutment Wall

- Smooth wall finish
- Textured wall finish

1.7 Structural Pier Wall

FIGURE 67 Abutment wall on I-90

FIGURE 68 Structural pier wall on I-90
ROADWAY CORRIDOR FEATURES

STRUCTURAL EARTH WALLS

Design Concept:

Roadway corridor structural earth walls (SEW) will be consistent with random board textured tiles arranged vertically. Community corridor SEW wall faces will provide more variety in tiles, with vegetative screening set low in an irregular pattern and will be used where additional visual interest is appropriate (see page 71).

1.8 Structural Earth Wall (SEW)

Design Guidelines:

- For the roadway corridor, create a consistent field of vertical random board tiles.
- Provide vegetative cover where possible.
- For the community corridor, use fractured fin or other texture as SEW tile surface treatment type (see page 71). Noise walls should use the standard treatment.
- Locate trellis structures in irregular patterns on lower portion of wall and plant with vines where possible and outside limited access areas (see page 71).
LID PORTALS

Design Concept:

The portal will be framed by transition columns to create a unified opening. The majority of portals should support this major form. Where possible, strong vertical plantings to support the framed image will be provided.

The design of the portals will offer simple, visual interest without distraction while addressing the integration of man-made elements (lidded structures) and natural elements (topography and vegetation).

Design Guidelines:

- Minimize visual distractions by using simple concrete finishes, little to no signage, and by avoiding non-structural decorative applications on portal facades.
- Frame portals with massing and height of man-made elements of columns and terraced planters.
- Highlight lid landscape natural landforms with taller, denser landscape plantings at lid edges, and shallower soil depths with lower plantings in the center.

FIGURE 69 Portal entry on I-90 in Mercer Island
LID PORTALS (CONT.)

Design Concept:
Frame each lid portal with transition columns. The vertical columns complete the opening and allow for a variety of perimeter walls to intersect.

Design Guidelines:
- Provide detailing to maintain base and column form with varying locations and conditions.
- Match columns by having a consistent 4-foot superior height above adjoining walls and portal edge.
- Treat columns with a simple, smooth finish for contrast.

Columns provide a smooth transition between corridor walls and portal facades of varying heights
LID PORTALS (CONT.)

Design Concept:

Reduce perceived portal wall height and visual impact of concrete at lid edges with cable railing and terraced planters beyond. Corridor users will view a narrow fascia with a vegetated edge above.

Design Guidelines:

- Use cable railing to provide transparency for viewing vegetation at lid edges while maintaining minimum barrier height requirements for safety.
- Incorporate terraced planters separated by a narrow maintenance walk to allow for necessary soil depths for planting to be located over structural elements away from lid edges while also providing interesting relief and landform.

Cable Railing at Coal Harbour, Vancouver BC

FIGURE 71
LANDSCAPE GRADING

Design Concept:
Landscape grading shall promote a stable, sustainable, and maintainable roadside condition.

1.15 Roadside Section with Retaining Wall

Fill Area
3' Mulch
2' Topsoil
6' Clearance

1.16 Typical Median Section

3' Mulch
2' Topsoil
6' Clearance

Design Guidelines:
- Fill roadside planting areas with 2 feet of topsoil in center median between center barriers, or between outside barriers and walls.
- Maintain a 6-inch clearance between finished grade and top of roadside barrier walls.
- Provide 3:1 slopes for optimal conditions that drain away from noise and retaining walls.
- Slope grades above terraced walls at 4:1 maximum to facilitate maintenance.
- Amend fill areas.
- Place a minimum of 3 inches of bark or wood chip mulch on all roadside planting areas.

FIGURE 72 Roadside planting with 3:1 slope at SR 18
LANDSCAPE PLANTING DESIGN

Design Concept:

Landscape plantings play a significant role in providing structure for corridor visual continuity. While improving visual quality, landscape plantings within the right-of-way are generally determined by the functions they serve (see “Landscape Plant Palettes” on pages 67-68).

1.17 Typical Roadway Corridor Planting Perspective

Design Guidelines:

- Maintain consistency in layout and placement of plant species for corridor continuity.
- Include both native and non-native ornamental plant species in order to provide seasonal interest while maintaining a naturalistic appearance.
- Plant vines at walls within the corridor to soften the impact of concrete and increase the amount of “green over gray.”
- Protect and enhance the natural and built environment by preserving desirable views and screening those that are undesirable.
- Heighten visual interest by increasing plant density and species with ornamental value to create visual cues in transitional areas.
- Plant medians where possible to facilitate positive driver guidance and provide glare control from oncoming traffic.
- Maintain appropriate sight distances for safety.

1.18 Typical Roadway Corridor Planting Plan

FIGURE 73 Roadside planting on I-90
LANDSCAPE PLANTING DETAIL

Design Concept:

Use design and construction methods for landscape planting that respond to the long-term maintenance activities required to maintain a healthy, sustainable, and manageable roadside condition with low life-cycle costs.

1.19 Typical Planting Detail

Design Guidelines:

- Install shrubs and groundcovers that will establish full coverage over time for erosion and weed control.
- Provide species that require little maintenance and can withstand the harsh roadway environment over time.
- Maintain a minimum depth of 3 inches mulch, providing full coverage on all planting areas.
- Locate and maintain vegetation to provide clear zones and sight distances.

1.20 Site Distance Diagram

FIGURE 74 Example of maintained sight lines from Federal Highway Administration (FHWA)
ROADWAY CORRIDOR FEATURES

LANDSCAPE PLANT PALETTE

Design Concept:

Roadway corridor planting areas occur along the mainline of the roadway and consist of a mix of native and non-native species arranged in natural patterns. Transitional / driver guidance planting areas are near the lid approaches and along local streets; in addition to the species included in the roadway corridor plant palette, this group also includes street trees and accent plants.

1.21 Roadway Corridor Evergreen Trees - Partial List

A. Japanese Black Pine
B. Incense Cedar
C. Alaskan Yellow Cedar
D. Douglas Fir
E. Kousa Dogwood
F. Amur Maple
G. Vine Maple
H. Serviceberry

1.22 Roadway Corridor Deciduous Trees - Partial List

I. Creeping Raspberry
J. Willowleaf Cotoneaster
K. Salal
L. Creeping Mahonia
M. Boston Ivy

1.23 Roadway Corridor Groundcover and Vines - Partial List
LANDSCAPE PLANT PALETTE (CONT.)

1.24 Roadway Corridor Shrubs - Partial List

- A. Mock Orange Dwarf
- B. Pacific Wax Myrtle
- C. Oregon Grape
- D. Rugosa Rosa
- E. Burkwood Viburnum
- F. Low Oregon Grape
- G. Japanese Spirea
- H. Snowberry
- I. Strawberry Tree
- J. Kelsey Dogwood
- K. Western Swordfern

1.25 Transitional / Driver Guidance Plant Species - Partial List

- N. Fastigiate European Hornbeam
- O. Hogan Cedar
- P. Eastern Redbud
- Q. Staghorn Sumac
- R. Snowberry
- S. Redosier Dogwood
- T. Doublefile Viburnum
- U. Wild Strawberry
- V. Rugosa Rose
- W. Excelsa Cedar

ROADWAY CORRIDOR FEATURES

MAINLINE SIGNAGE

Design Concept:

Signage improves safety and efficiency and should appear uniform and orderly throughout the roadway corridor. Signage should avoid visual clutter while being easily seen and understandable.

1.26 Typical Roadway Signing

Design Guidelines:

- Coordinate the placement and visual characteristics of signage with other landscape elements, lighting, and roadway structures.
- Wherever possible, place signage on mounting structures instead of attaching to the sides of lid and bridge structures.
- Multiple signs placed together should all be the same size and aligned with each other.
- Where mounted on lid and bridge structures (not illustrated), the tops and bottoms of the signs should be aligned with each other and not extend above the top of the lid or bridge barriers or the bottoms of the structure.

FIGURE 75 Roadway sign bridge on I-90
MAINLINE ILLUMINATION

Design Concept:
Lighting improves safety and efficiency and should appear uniform and orderly throughout the roadway corridor. Lighting and glare impacts to adjacent communities should be avoided.

Design Guidelines:
- Coordinate the placement and visual characteristics of lighting fixtures with other landscape elements, signage, and roadway structures.
- Ensure that the size, placement and visual characteristics, such as color, of the lighting fixtures and mounting structures is uniform and orderly.
- Deliberately space and align luminaire mounting poles on structures with the overall composition and lines of the structure to maintain desirable spacing for lighting requirements.
- Avoid placing mounting conduits on the outsides of the lid structures and retaining or noise walls, or on the outside of poles, etc.

FIGURE 76 — Roadway light standard
WALL TREATMENT

Design Concept:

Wall treatment plays a significant role in providing structure for corridor continuity. Attention to detail becomes more significant in the community corridor as the experience is predominantly from a pedestrian perspective and from vehicles moving at slower speeds.

Design Guidelines:

- Make the face of walls within the community corridor vertical, not battered, to maximize space for planting.
- Incorporate the same wall texture treatment and concepts used in the roadway corridor for noise and retaining walls to maintain overall project corridor continuity (see Roadway Corridor Features page 56 for wall treatments).
- Avoid creating harmful protrusions for bike trail users; in locations where the wall abuts the edge of the trail, the following guidelines shall apply:
 - For walls that are 6 feet or less above the finished grade, walls shall have a smooth finish.
 - For walls that are 6 feet and higher, the wall texture shall only be applied 4 feet and above the finished grade with the lower section receiving a smooth finish.
- Apply the wall texture treatment to the entire height of the walls in locations where there is a landscape buffer between the wall and trail.
- Scale wall treatments on SEWs within the community corridor for slower vehicular speeds and pedestrian and cyclist perspectives (see Roadway Corridor Features page 60).
TRAILS

Design Concept:

Both the Regional Bike and Pedestrian Path (shared use) and the Points Loop Trail (for local communities) are included between the roadway corridor walls and the right-of-way. The shared-use path extends along the entire length of the project corridor. The Points Loop Trail will go from Evergreen Point Road to Bellevue Way. Where ROW is limited, the trails are adjacent. Two trails will accommodate the needs and safety of diverse users by providing separate, parallel trails.

Continuous trails with consistent surfaces provide safety by their uniform conditions. Where possible, commuter bicycle and pedestrian users should be separated.

Design Guidelines:

- Ensure that the Regional Bike and Pedestrian Path is a 14-foot-wide trail.
- Install bollards at all trail access points to limit access to non-motorized users (see Community Lid Features pages 92-94 for pedestrian barrier description). The bollards should be wood.

2.2 Regional Shared Use Trail

2.3 Asphalt Pavement Detail

FIGURE 80 Shared-use trail with wood bollards
2.4 Points Loop Trail

Design Guidelines:

- Maintain current community connections on the Points Loop Trail while allowing for new connections.
- Ensure that the Points Loop Trail is a 9-foot-wide path paved with asphalt.
- Install bollards at all trail access points to limit access to non-motorized users (see Community Lid Features pages 92-94 for pedestrian barrier description). The bollards should be wood.
TRAILS (CONT.)

Design Concept:

Planting areas along the trails within the community corridor will include predominantly native species with interspersed non-native plant species. Arranged in natural patterns, these plantings are intended to blend with and restore the surrounding existing vegetation and specific environmental conditions. These plantings will be designed where possible using self-sustaining, lower-maintenance plant communities.

Design Guidelines:

- Restore disturbed areas with existing or compatible plant species.
- Enhance planting areas within the right-of-way where vegetation is currently sparse or overtaken by undesirable vegetation.
- Provide varying levels of screening or softening of hard surfaces ("green over gray").
- Establish a buffer between trails and adjacent roadways to reduce perception of noise levels.
- Include a variety of plant species to restore habitat for insect, bird, fish, and small mammal populations.
- Provide full coverage of landscape plant species to minimize erosion and achieve slope stability.

FIGURE 82 Landscaped regional trail edge
Separation between trails and roadways is desirable when there is sufficient right-of-way. Trail separation with a dual trail system either occurs naturally due to topography or because of the need for safety. The trails will be combined in certain segments where right-of-way is limited.

Design Concept:

Design Guidelines:

- Install dense plantings between trails and roadways for safety and to reduce pollution levels and the perception of noise. The type and sizes of plant species will be determined by the amount of available planting area.
- Where trails are separated by retaining walls, install vines or small plant species, if possible, to soften the visual impact of the concrete walls.

FIGURE 83 Regional Bike and Pedestrian Path trail separation section at 92nd Avenue NE

FIGURE 84 Trail separation using landscape and paving markings from Seattle Times
Design Concept:

Most opportunities for view enhancement and screening in the community corridor occur along the trails. Views to preserve include those that improve the visual experience for the user as well as those for safety (sight distance).

2.7 View Preservation and Framing

Design Guidelines:

- Enhance desirable views by framing them with taller vegetation.
- Plant lower growing vegetation in the viewing corridor and avoid any plants that would require long-term pruning.
- Consider sight distance along the trails; avoid plants that would become overgrown and thus require long-term pruning.
- Screen undesirable views with evergreen trees and shrubs that are appropriate in scale. Consider the impact on the adjacent community from all sides to avoid blocking views or creating shade.
- Provide varying levels of screening or softening of hard surfaces (“green over gray”).

2.8 View Screening

FIGURE 85 Vegetation screens road and housing from Burke-Gilman Trail

FIGURE 86 Vegetation frames views of bridge and canal along Burke-Gilman Trail
COMMUNITY CORRIDOR FEATURES

LANDSCAPE GRADING

Design Concept:

Promote a safe, sustainable, and maintainable community side condition for planting. Trails should be designed with a cross-slope for drainage.

Design Guidelines:

- Apply 2 feet of topsoil where possible in fill locations and amend existing soil with compost in all cut conditions within the community corridor planting areas.
- Provide smooth, finished contours where matching existing grades.
- Provide 3:1 maximum slopes for optimal conditions that drain away from noise and retaining walls.
- Place a minimum of 3 inches of bark or wood chip mulch on all roadside planting areas.

FIGURE 87 Trail section from City of Seattle

FIGURE 88 Pedestrian and bike path grading and planting I-90
LANDSCAPE PLANTING DESIGN

Design Concept:

Provide a naturalistic planting scheme for the project stormwater facilities, which mimic the look and function of plantings associated with natural wetlands.

2.10 Typical Stormwater Pond Planting Section

Design Guidelines:

- Install native wetland and semi-aquatic plants to aid in pollutant removal.
- Install plants on the perimeters to visually integrate the facility into its surroundings and to provide shade and cooling of the pond in summer.

Design Concept:

Provide a naturalistic planting scheme for the project stormwater facilities, which mimic the look and function of plantings associated with natural wetlands.

FIGURE 89 Stormwater pond native planting
LANDSCAPE PLANTING DESIGN (CONT.)

Design Concept:

Restore shoreline and stream bank buffer functions by planting native trees and shrubs.

2.11 Typical Stream Restoration Section

Design Guidelines:

- Install live cuttings of appropriate bank stabilization species to stabilize shoreline edges.
- Install native trees and shrubs on shorelines and riparian upland areas to create or enhance landscape buffer.

![Stream realignment and restoration Latimer Creek, Langley, BC](FIGURE 90)

![Stream restoration Miller Creek, SeaTac, WA](FIGURE 91)
LANDSCAPE PLANT PALETTE

Design Concept:

Community corridor planting areas occur along the trails between the corridor walls and the right-of-way. These plantings consist of predominantly native species interspersed with non-native species arranged in natural patterns. The plant palette is broad in order to accommodate a wide range of specific environmental conditions and to blend with existing vegetation.

2.12 Community Corridor Evergreen Trees - Partial List

A. Alaskan Yellow Cedar
B. Incense Cedar
C. Douglas Fir
D. Sitka Spruce
E. Western Hemlock
F. Serviceberry
G. Beaked Hazelnut
H. Big Leaf Maple
I. Kousa Dogwood
J. Red Oak
K. Red Maple
L. Little Leaf Linden
M. Vine Maple

2.13 Community Corridor Deciduous Trees - Partial List

F
G
H
I
J
K
L
M
2.14 Community Corridor Shrubs - Partial List
A. Fragrant Sumac
B. Salmonberry
C. Indian Plum
D. Rugosa Rose
E. Dwarf Mugo Pine
F. Burkwood Viburnum
G. Yellowtwig Dogwood
H. Redosier Dogwood
I. Evergreen Huckleberry
J. Rhododendron sp.
K. Doublefile Viburnum
L. Swordfern
M. Zabel Laurel
N. Strawberry Tree
O. Low Oregon Grape

2.15 Community Corridor Groundcover and Vines - Partial List
R. Creeping Mahonia
S. Willowleaf Cotoneaster
T. Creeping Raspberry
U. Salal
V. Coral Beauty Cotoneaster
W. Boston Ivy
LID WALLS

Design Concept:

Planter walls on the community lids serve dual purposes; to provide additional soil depths for planting and to provide an architectural element to help define spaces and functions on the lid. The walls are designed to reflect the “naturalistic/contemporary” theme.

3.1 Planter Wall Detail

Design Guidelines:

- Include walls that are for retaining soil.
- Ensure that higher planter walls have a smooth concrete finish for variety and cost savings. A bevel 6 inches from the top will provide a simple, interesting detail.
- Support any wall greater in height than the allowed maximum loading depths (including the portion below the finished grade) with polystyrene fill.
- Make finished grades behind all walls 6 inches below the top of the wall.
- Include features to discourage use as a skateboard slide rail, including skate stoppers, to prevent damage.

FIGURE 92 Concrete planter wall with bevel
COMMUNITY LID FEATURES

LID WALLS (CONT.)

3.2 Planter Wall with Cap Detail

Design Guidelines:

- Include walls that retain soil.
- Support any wall greater in height than the allowed maximum loading depths (including the portion below the finished grade) with polystyrene fill.
- Make finished grades behind all walls 6 inches below the top of the wall.
- Apply stone to the face of the planting wall and a capstone to the top. The stone should be local or regional in hues that are compatible with the project corridor color scheme.
- Include features to discourage use as a skateboard slide rail, including skate stoppers, to prevent damage.
LID WALLS (CONT.)

3.3 Seat Wall with Cap Detail

Design Guidelines:

- Include walls that both retain soil and provide seating.
- Ensure that the maximum height for seat walls is 18 inches.
- Support any wall greater in height than the allowed maximum loading depths (including the portion below the finished grade) with polystyrene fill.
- Make finished grades behind all walls 6 inches below the top of the wall.
- Apply stone to the face of the seat walls and a capstone to the top. The stone should be local or regional in hues that are compatible with the project corridor color scheme.
- Include features to discourage use as a skateboard slide rail, including skate stoppers, to prevent damage.

FIGURE 93 Seat wall with stone face, concrete cap and skate stoppers
COMMUNITY LID FEATURES

LID EDGES

Design Concept:

Lid boundaries with terraced planters serve multiple purposes: to keep users from approaching the edges of the structures; to build up soil depths for planting; and to strengthen the sense of enclosure while preserving views.

Design Guidelines:

- Align lid planter wall layout with other compositional elements on the lids, where possible.
- Determine lid planter wall heights by maximum loading zones on the structures with the taller walls on the outsides, and lower walls in the centers.
- Integrate low visibility security walls into edge planters where required for safety.

FIGURE 94 Terraced planters on I-35E Minneapolis, MN from MNDOT

FIGURE 95 Planters on edge structure Freeway Park
LID EDGES (CONT.)

3.5 Maintenance Access and Walkway Perspective

Design Guidelines:

- Locate walkways with restricted access on lid structure edges for maintenance.
- Design edge feature for worker safety and to prevent public access.

FIGURE 96 Pedestrian bridge safety railing
LANDSCAPE GRADING AND DRAINAGE

Design Concept:

Properly installed landscape grading and drainage is critical to avoid exceeding the loading limits on structures, and will promote a healthy, sustainable condition.

3.6 Typical Lid Drainage Section

Design Guidelines:

- Ensure that landscaped areas on the lids and bridge structures have a minimum soil depth of 2 feet and as much as 6 feet for trees in designated loading areas; polystyrene fill may be installed in locations exceeding these depth limitations.
- Install a special drainage system comprised of 6 inches of drainage material, drain pipe, filter fabric, and special soil mix on all landscaped structures for quick drainage.
- Vary contour widths where possible for interesting landforms.
- Place a minimum of 3 inches of bark or wood chip mulch on all planting areas.
LANDSCAPE PLANT PALETTE

Design Concept:

Community lid planting will provide a park-like, residential character. This planting group consists of turf grass as well as various combinations of predominantly non-native plant species intended to fill in and grow in their natural forms and character, limbing only when necessary for safety.

3.7 Community Lids Evergreen Trees - Partial List

A. Alaskan Yellow Cedar
B. Incense Cedar
C. Douglas Fir
D. Japanese Red Pine
E. Japanese Black Pine

A. F. Flowering Pear
G. Japanese Maple
H. Kousa Dogwood
I. Red Oak

J. Red Maple
K. Japanese Snowbell
L. Little Leaf Linden
M. Katsura Tree

N. Vine Maple
O. Flowering Cherry
P. Star Magnolia

3.8 Community Lids Deciduous Trees - Partial List
COMMUNITY LID FEATURES

LANDSCAPE PLANT PALETTE (CONT.)

3.9 Community Lids Shrubs - Partial List

A. Oregon Grape
B. Dwarf Witch Alder
C. Hazelnut
D. White Rockrose
E. Low Oregon Grape
F. Pacific Wax Myrtle
G. Rhododendron sp.

H. Mountain Laurel
I. Dwarf Mugo Pine
J. Mexican Orange
K. David Viburnum
L. Evergreen Azalea
M. Doublefile Viburnum
N. Willowleaf Cotoneaster

3.10 Community Lids Groundcover, Grasses and Vines - Partial List

P. Creeping Raspberry
Q. Maiden Grass
R. Sweetbox
PEDESTRIAN AND VEHICULAR BARRIERS

Design Concept: Pedestrian barriers are required for safety in public-accessible locations. Barriers such as railing and bollards must meet height and spacing standards.

3.11 Typical Aluminum Tube Railing Detail

Design Guidelines:

- Use standard aluminum tube railing along bike trails to reduce the height of walls and thereby preserve desirable views. The total barrier height from the finished grade must be 54 inches for bicycle safety.

![Aluminum tube railing](image-url)
3.12 Typical Cable Railing Detail

Design Guidelines:

- Use cable railing to reduce the height on the portal lid walls and provide transparency for viewing the vegetation near the lid edges. The total barrier height from the finished grade shall be 42 inches.

FIGURE 99 Cable railing at Coal Harbour, Vancouver, BC
Design Guidelines:

- Use a modified steel tube railing in specified locations in community spaces to provide an opportunity for variety and interest. Details shall meet all design requirements for railings such as minimum and maximum bar spacing.
- Meet required safety standards for fencing, such as required 4-inch maximum spacing between rail members.

FIGURE 100 Modified steel tube railing for variety and interest
Design Guidelines:

- Use standard wood bollards to provide a physical barrier for limiting vehicular access onto the trails. Use both fixed and removable bollards at a minimum of 5-foot spacing to allow access for maintenance. Paths less than 10-foot width will require one bollard along with barriers at path edges; paths between 10 and 15 feet require three bollards.
PEDESTRIAN AND VEHICULAR BARRIERS (CONT.)

3.15 Typical Concrete Bollard Detail

Design Guidelines:

• Use concrete bollards to provide both a physical and visual barrier for keeping vehicles from entering limited-access areas.

FIGURE 102 Fixed concrete bollards
PAVING

Design Concept:

Various paving treatments are applied depending on the purpose they serve. Repetition of the different paving types on each of the community lids provides harmony and continuity.

3.16 Typical Scored Concrete Pavement Detail

Design Guidelines:

- Use simple, scored concrete pavement to distinguish and identify larger, open public plazas.
- Pedestrian paths on the lid structures will vary but should have a consistent appearance, and be concrete pavement. The Regional Bike and Pedestrian Path should be 14-foot-wide asphalt pavement.
- Ensure that potential color admixtures are harmonious with the Community Lid color scheme.

FIGURE 103 Scored concrete pavement
3.17 Typical Unit Paver Detail

Design Guidelines:

- Identify the smaller, intimate residential and community-scaled spaces with unit pavers in warm tones.
- Ensure that paver patterns, textures, and color are consistent with the plan designs and color scheme.

FIGURE 104 Brick unit paving
SITE FURNISHINGS

Design Concept:
Architectural site amenities should provide consistency among the community lids and bridge structures and reflect the community “naturalistic-contemporary” theme. The features on the lids have a residential semi-urban scale. They should use materials that are appropriate for the harsh Pacific Northwest climate and are practical and easy to repair. While some elements may blend in with the natural environment (benches with a natural wood appearance,) others may have a contemporary look that provides interest with contrast (bike rack or trash receptacle with a platinum finish).

Design Guidelines:
- Offer benches with backrests for the most comfort and to provide an alternative to seat walls.
- Provide accessible park tables with seats fixed in place and able to accommodate a variety of uses.
- Consider recycled composite materials for benches and trash receptacles of a high visual quality and proven durability.

3.18 Typical Bench

3.19 Typical Trash Receptacle
SITE FURNISHINGS (CONT.)

3.20 Typical Bicycle Locker

3.21 Typical Bicycle Rack

Design Guidelines:

- Use elements such as bike lockers and racks, and trim on benches and trash receptacles to provide an opportunity for incorporating a contrasting material (metal) for visual interest.
- Affix all bike furnishings securely to ground on inside of bike locker.

FIGURE 105 Alternate round bicycle lockers. Dimensions and materials are preliminary design concepts.
LID STRUCTURES

Design Concept:
Lid structures provide a sense of place and bring human-scale to otherwise large, open spaces. They also provide an opportunity to tie together the architectural styles of the lid landscapes and the transit facilities.

Design Guidelines:
- Use color, lines, and materials for the bus shelter and lid structures that are architecturally compatible with the transit facility architecture.
- Provide both covered and open canopy options on lid structures.

3.22 Typical Pergola Structure

Design Guidelines:
- Use color, lines, and materials for the bus shelter and lid structures that are architecturally compatible with the transit facility architecture.
- Provide both covered and open canopy options on lid structures.

Pergola section

Metal arbor painted white with vegetated canopy at Getty Museum, Los Angeles, CA
LID STRUCTURES (CONT.)

3.23 Typical Bus Shelter

Design Guidelines:

- Use color, lines, and materials for the bus shelter and lid structures that are architecturally compatible with the transit facility architecture.

FIGURE 108 Bus Rapid Transit shelter Richmond, BC
SIGNAGE AND WAYFINDING

Design Concept:

Signage provides direction and helps separate users for safety purposes where there are multiple types of trails. Signage should be located strategically and must be clearly visible while also clear of trail traffic.

Design Guidelines:

- Provide consistency by incorporating existing standard plan details for both the Regional Bike and Pedestrian Path signage and the Points Loop Trail signage.
- Locate signage at all junctions and entry points.
- Consider sight distance on curves and avoid locating signage in planting areas that could become overgrown in time.

FIGURE 109 Sammamish River Trail regional signage in Bothell, WA

FIGURE 110 Points Loop Trail signage
ILLUMINATION

Design Concept:

A variety of adequate lighting levels in community spaces, including both pedestrian and street lighting, is necessary for safety. Glare and overlighting impacts on the surrounding communities must be minimized.

The character of the lighting fixtures should be consistent on all the lids and trails, and harmonious with the lid architectural features.

3.26 Typical Pole-Mounted Pedestrian and Street Lighting

![Diagram of pole-mounted pedestrian and street lighting]

Design Guidelines:

- Blend pedestrian and local street lighting with the existing fixtures in adjacent neighborhoods. Transitions between styles should occur at logical points that are the least visually distracting.
- Local street lighting should be 20 feet tall and pedestrian-level lighting should be 12 feet tall.

![Figure 111: Pole-mounted pedestrian-level lighting]
![Figure 112: Local street lighting]
COMMUNITY LID FEATURES

ILLUMINATION (CONT.)

3.27 Typical Pedestal-Mounted Accent Lighting

![Diagram of a typical pedestal-mounted accent lighting](image)

Design Guidelines:

- Provide pedestal-mounted accent lighting for strong visual links where lid spaces are intersected by streets.
- Use the location of the lighted paths and features to highlight lid design qualities.

FIGURE 113 Pole-mounted lighting detail
ILLUMINATION (CONT.)

3.28 Bollard Light Perspective

Design Guidelines:

- Use light bollards in locations where there is either a need for safety or directional guidance.
- Place bollards in additional locations to highlight lid architectural qualities.
- Select lighted bollards to be consistent with other light fixtures.

3.29 Typical Bollard Lights

FIGURE 114 Bollard light
COMMUNITY LID FEATURES

ILLUMINATION (CONT.)

3.30 Typical Recessed Lighting

Design Guidelines:

- Provide recessed lighting in select locations where there is a safety need (such as stairs) and where lighting levels need to be kept at a minimum (fronts of seat walls.)

![Recessed light fixture](image)

FIGURE 115 Recessed light fixture
TYPICAL PROJECT COLORS

Design Concept:

WSDOT typically uses four custom colors as well as Federal Standard Colors 595B. Colors are used to obscure visual differences between concrete mixes, aid in maintenance control of graffiti and to provide a more ‘finished look.’ The warm taupe browns are often used as neutral hues that blend with the pre-existing built infrastructure.

Design Guidelines:

WSDOT’s four standard custom colors are:
- Washington Gray: used in the majority of applications
- St. Helens Gray: used for noise walls off the roadway and in landscaped or forested areas
- Mt. Baker Gray: I-405 CSS color used for dark gray accents
- Cascade Green: I-405 CSS color for superstructures, railing and miscellaneous steel structures

WSDOT uses three typical colors for sign bridges:
- Federal Standard Color 595B 35237: Blue gray for standard installations
- Cascade Green: Evergreen custom color used on K-405 CSS designs

WSDOT uses one color for ROW fences, and accents requiring a brown hue:
- Federal Standard Color 595B 20045
- In rare exceptions, such as dense urban areas tying into existing fences, WSDOT may use Federal Standard Color 595B 27038 black.

4.1 I-405 Baseline Example (between Tukwila and north of Kirkland)

Wall Base
- St. Helens Gray

Wall Accent
- Mt. Baker Gray

Railings, Light Poles, Signs
- Cascade Green

4.2 I-90 Baseline Example (between Seattle and Bellevue)

Wall Base/Accent
- Washington Gray

Railings, Light Poles, Signs
- Dark Brown
COLOR CONCEPT ALTERNATIVES

Design Concept:

Color shall be applied in a consistent manner to provide unity and harmony throughout the project corridor. The color scheme for the project should establish and maintain a sense of overall state-wide unity by resembling some aspect of other state corridors while creating a distinct identity.

Please note that these palettes are preliminary and approximate, as colors may vary based upon printer and screen settings. These palettes are intended to suggest a conceptual direction, rather than prescribe specific hues. Ultimate design review decisions should be based on field testing under varying weather and light conditions. Use of any of these schemes requires WSDOT approval.

Color Palette A:
This palette provides a slightly modified theme based upon existing palettes. The palette draws upon wall base and accent colors from the I-405 and I-90 corridors, while adding a variation on the I-405 color for railings, signage and light poles.
- Washington Gray is applied throughout the corridor as a base color to all concrete structures such as noise and retaining walls, roadside barrier walls, and portal walls.
- Mt. Baker Gray is applied as an accent color to portal columns and bridge superstructures, including all sides of girders, as well as planter and retaining walls.
- Federal Standard Color 595B 14081 green is applied to all steel structures including railings, lighting and signing pole mounts. The hue underscores established corridor themes of “green over gray.”

4.3 Color Palette A

<table>
<thead>
<tr>
<th>WALL BASE</th>
<th>WALL ACCENT</th>
<th>RAILINGS, LIGHT POLES, SIGNS</th>
</tr>
</thead>
</table>

Color Palette B:
This palette implements a slightly modified I-405 wall and accent color scheme with the addition of a third and distinctive hue for steel fixtures.
- St. Helens Gray is applied throughout the corridor as a base color to the majority of all concrete structures including sound and retaining walls, roadside barrier walls, and portal walls.
- Mt. Baker Gray is applied as an accent color to portal columns and bridge superstructures, including all sides of girders.
- Federal Standard Color 595B 15177 medium blue is applied to all steel structures including railings, lighting, and signing pole mounts. The blue hue underscores established corridor themes of sky and water.

4.4 Color Palette B

<table>
<thead>
<tr>
<th>WALL BASE</th>
<th>WALL ACCENT</th>
<th>RAILINGS, LIGHT POLES, SIGNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Helens Gray</td>
<td>Mt. Baker Gray</td>
<td>Federal Standard 15177</td>
</tr>
</tbody>
</table>

Color Palette C:
This palette implements a color scheme that establishes a unique local identity for the project corridor.
- Washington Gray is applied throughout the corridor as a base color to the majority of all concrete structures including sound and retaining walls, roadside barrier walls, portal walls, columns, and bridge superstructures, including all sides of girders.
- Federal Standard Color 595B 14151 interior green is applied to all steel structures including railings, lighting, and signing pole mounts. The hue underscores established corridor themes of “green over gray.”

4.5 Color Palette C

<table>
<thead>
<tr>
<th>WALL BASE</th>
<th>RAILINGS, LIGHT POLES, SIGNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington Gray</td>
<td>Federal Standard 14151</td>
</tr>
</tbody>
</table>
ECDC PROCESS PARTICIPANTS

Community Stakeholders

Gordon Black, Bicycle Alliance
Jules Cohen
David Cooper, Mayor, Yarrow Point
Bruce Dodds, Councilmember, Clyde Hill
Debi Golden, Resident, Kirkland
Mona Green, Planner, Yarrow Point
Rich Huxley, Bassetti Architects
Matt Kochel, Vice Chair, Medina Parks Board
Rick Logwood, City of Bellevue
George Martin, Mayor, Clyde Hill
Fred McComiskey, Mayor, Hunts Point
Constance McGinnis, Resident, Kirkland
Mark Nelson, Mayor, Medina
Dennis Neuzil, Resident, Clyde Hill
Perry Satterlee, Resident, Medina
Mike Upston
Sarah Vega, Resident, Bellevue
Juliet Vong, Resident, Hunts Point
Mitch Wasserman, City Administrator, Clyde Hill
Joe Willis, Public Works Director, Medina and Hunts Point

WSDOT Staff and Consultants

Daniel Babuca, Project Engineer (WSDOT)
George Fies, Eastside Project Engineer (Parametrix)
Julie Ganung, Project Engineer (WSDOT)
Matt Gurrad, Landscape Architect (HDR)
David Kasperzyk, Urban Design Manager (Parametrix)
Nadine Laszlo, Landscape Architect (HNTB)
Doug Lundman, Architect (VIA)
Jens Swenson, Landscape Architect (Parametrix)
Elizabeth Umbanhowar, Urban Design Team (Parametrix)
Susan Wessman, Senior Landscape Architect (Parametrix)
Clarence Wong, Urban Designer (HDR)
Amanda Cox, Communications (EnviroIssues)
Andrew Richardson, Communications (EnviroIssues)
Rebecca Sandinsky, Communications (EnviroIssues)
SUMMARY MEETING MINUTES
ECDC Community Workshops

Workshop 1 – 9/13/08
Workshop Goals
- Define “naturalistic/contemporary.”
 □ Natural and varied materials
 □ Simple, clean, lines
 □ Integrated and timeless
 □ Low maintenance
 □ Less paving
 □ Flexible and functional spaces
 □ Park-like/garden-esque

- Identify relevant examples as touchstones for further design development.
- Make a critique of lid concept plans.
 □ Each lid should have a defined character and use.
 □ Use contemporary materials but “timeless” forms.

Evergreen Point Road Lid
- Consider opportunities to soften and/or reduce scale of leading edge (west) of lid.
- Direct drive attention through corridor, rather than creating distraction at lid.
- Maintain views to west/Lake Washington and across lid.
- Maintain community vegetation palette, such as tree allees, across lid.
- Create gateway/amphitheater from lid and roadway into existing park.
- Avoid planting design that requires high maintenance, is overplanted, and/or creates unsafe and unattractive environment.
- Ensure connectivity (to transit, to community), alignment, scale, safety, and wayfinding of Points Loop Trail, Regional Bike and Pedestrian Path and paths/sidewalks across lid to improve access and circulation, prevent user conflicts.

- Avoid industrial, “Seattle,” or amusement-park look on transit facilities. Create arbor-like structure that has traditional look with contemporary materials and residential scale.
- Retain circular forms, but avoid hard, or formal, edges, such as at amphitheater.
- Maintain continuity of materials and style across lid.
- Consider lighting and cameras for safety, particularly on transit stops below lid.
- Create opportunities for placement of art by communities in plaza, or elsewhere on lid.
- Provide sufficient amenities—racks and lockers—for bike commuters.
- Scale transit/canopy appropriately to neighborhood.
- Provide sufficient amenities for commuters—canopy, bike lockers, appropriately-sized elevators, schedule information, wayfinding.
- Screen and/or otherwise separate park-and-ride from school.

84th Avenue NE Lid
- Define open space.
- Improve trail alignment, wayfinding, safety and relationship to open space.
- Use vegetative screening to buffer views to highway and cell phone towers.
- Carry planting pattern of 84th Avenue NE across lid.
- Consider access to Hunts Point Town Hall.
- Improve crossing safety.
- Re-assess location of plaza/focal point.
- Create gateways.
- Provide water access (shoreline and/or stormwater).
- Shorten west side of lid, extend east side of lid.

92nd Avenue NE Lid
- Ensure connectivity, continuity, and definition of forms and materials across lid, while differentiating between functions of transit side (more hardscape) and “park” side (more natural elements).
- Create functional transit drop-off lane that is sufficiently wide for parked and moving vehicles.
- Soften design – avoid overly urban qualities (too “Seattle”) in scale and form to conform to residential quality of surrounding communities.
- Use a mix of materials and grade changes as well as raised seating options for interest.
- Bring more green into plaza areas.
- Provide covered platforms and waiting areas for transit riders.
- Emphasize safety and wayfinding across lid and to transit through use of lighting, signage, and maintenance of sight lines (“eyes on the street”); avoid dense plantings.
- Ensure that alignment and sizing of Regional Bike and Pedestrian Path allows for safe crossings at roundabout, obvious connections across lid.
- Screen cell towers where possible.
- Design roundabout for efficient vehicular movement, maintain sight lines, provide accent lighting.
- Avoid cluttering with planters, or too many architectural elements.
SUMMARY MEETING MINUTES
ECDC Community Workshops

WORKSHOP 2 - 10/4/08
Present preferred landscape character palette lid synthesis and new information.

Evergreen Point Road
- Verify the concept of softness and use of vegetative edge on western portal.
- Define function of western half as intimate and passive.
- Discuss WSDOT Maintenance Facility.
- Link Regional Bike and Pedestrian Path to local trails, e.g., Points Loop Trail and "multi-use."

84th Avenue NE
- Improve traffic circulation by moving cars efficiently from town to SR 520.
- Ensure pedestrian safety through crosswalks and connectivity to transit (necessitating crossings both north and south).
- Address possibility of parking facilities on south side of lid. Consider issues of safety, monitoring, and increased traffic.
- Assess concern about "migration" of west side of lid east and noise impacts on adjacent neighbors.

92nd Avenue NE
- Ensure "look and feel" of transit at 92nd and Evergreen will be similar.
- Balance hardscape and softscape on lid and at transit plaza.
- Use vegetative/screening for cell towers, bike lockers, and other potentially "unsightly" site furnishings.
- Maintain roundabout for traffic calming.
- Assess bike tunnel safety. Grading requirements prevent trail from being on top of lid.

Transit architecture
Consider the following qualities when determining transit design and function:
- Form—use simple, clean lines and avoid anything too boxy or fussy.
- Function—provide canopy for shelter from elements and a possible gathering spot.
- Materials—use contemporary materials with classic design, transparency—not necessarily glass—steel and wood.
- Scale—scale elements to residential neighborhood and use vegetation and architectural detail to reduce scale 14-foot-high elevator shaft.

Corridor Experience
- Stress parkway-like experience and remain sensitive to urban/rural interface.
- Create a calm, simple composition that underscores an integrated experience through the corridor, rather than "seeing" a discernible pattern or elements.
- Maintain linear consistency and continuity on the outside and inside of the corridor to create a sense of movement with enough variation and/or randomness to avoid rigidity or sameness.

Wall Character
- Use local examples like I-90 at Mercer Island and I-5 Freeway Park (staggered, layered, chunky), rather than Sacramento and Boise, which use appliqués that are distracting and cheap in appearance.
- Match design with Eastside character and make applicable to portals as well. Design with quality for durability materially and aesthetically.
- Use varied texture, and possibly tinting to avoid graysness, incorporate "green over gray" where possible, like Oregon’s Route 26, to screen/disguise wall. Also consider wall appearance/treatment if "green" does not flourish—fill in immediately, or where there simply is not space for plantings. Bring green into/out from lid edge.

Consider flexibility of wall heights, proportion, and scale of vertical elements without awkward transitions in wall stepping and/or possible wall rounding. Wall tops should be context-sensitive by following the topography, or where possible, raise profile of the path adjacent to walls to reduce scale.

Create a "classic" look with a combination of natural and hardscape materials that embody the "naturalistic/contemporary" framework.

Consider working with an artist for lid and transit environments. While WSDOT has limited transportation dollars for art, it can help facilitate a conversation with communities.

Consider approaches to noise reduction, particularly through tunnels.
SUMMARY MEETING MINUTES

ECDC Community Workshops

Workshop 3 - 12/6/08

General Concerns

- Consider cost effectiveness of stepped and angled wall top.
- Explain that wall finish is usually concrete, with a stain or seal, but not paint.
- Establish a process for establishing wall treatment (surfacing and input) on community side (outside).
- Assess benefits and disadvantages of removing transit stations out from under lids.

Wall and Lid Edge Treatments

- Avoid appliqué design that is busy, contrived, decorative, clichéd.
- Develop a response that is structural, contemporary, clean, and simple, which allows the architecture and landscape forms and materials to be revealed.
- Take advantage of play of shadow and light.
- Respect the objectives of the original curvilinear façade with the proposed straight façade by using varied depths, asymmetry, modulation.
- Respect differences of each lid while maintaining corridor continuity.
- Develop walls with experience of moving through corridor according to speed of driver and pedestrian in mind—less detail in corridor, more along *Points Loop Trail* and *Regional Bike and Pedestrian Path*. Green should take precedence above over-design of wall panels.
- Resolve issues of wall top treatment—stepped versus angled wall top.
- Reduce the impact of scale of the lid edge using terracing and railing, or a chamfered edge like that of plane wing, as well as plantings.

Lid Design

Evergreen Point

- Provide covering for transit users.
- Maintain elegance of design in the transit plaza.
- Emphasize passive use on lids for pedestrian and driver safety.
- Locate trails based upon grades, functionality, and program.

84th Avenue NE

- Maintain clear sight lines from City Hall and police station into open space.
- Consider that the migration of the lid eastward is a sensitive issue for neighbors who anticipated benefits of traffic noise reduction, open space access, and concomitant real estate values.
- Create and define usable spaces and provide an amenity for cyclists and walkers through the careful location of the *Regional Bike and Pedestrian Path*, which still has the potential to be realigned to meet grade requirements.

92nd Avenue NE

- Maintain clarity and circulation with space available, avoid cramping through adjusted design.
- Point out that extending the lid westward is not feasible due to topography.
- Observe that the flow of the design is strong, but emphasizes the architecture of transit station rather than de-emphasizing the scale of the structure.

Transit Architecture

- Configure transit stations to allow passengers to visually locate incoming buses. Determine the platform length using the space requirements for two articulated buses.
- Install electronic signage for schedules and passenger alerts. Sound (public announcement) systems will be more difficult given traffic noise levels.
- Use Bus Rapid Transit (BRT) guidelines to determine bus schedules and whether buses stop at each station.
- Use forms and materials that are strong, classic, functional, and durable.
- Provide transparent glazing, tile paving, and wood details for both safety and aesthetic qualities.
- Provide elevators and bicycle channels on stairways for bike commuters.
- Maintain natural light and lighting systems during evening hours for safety.

Site Furnishings

- Use a palette of warm and natural materials, like brick, stone, and wood.
- Avoid monochromatic and/or cold materials.
- Engage simple, clean, lines.
- Emphasize a timeless (classic) appearance.
- Keep structures to a residential scale.
- Utilize low-level lighting such as bollards.
- Provide for easy maintenance of landscape and architectural details.
SUMMARY MEETING MINUTES

Technical and Jurisdictional Meeting Summaries

Lid Technical Meeting 1 - 1/14/09 Bellevue Coordination
• Coordinate with the City of Bellevue to develop an urban design and gateway plan for Bellevue Way NE Bridge.
• Use a simple cap or other treatment for the 3-foot barrier walls separating the planting strip from roadway instead of jersey barriers. Increase the landscape space to the east by 2 feet.
• Work with WSDOT and the City of Bellevue to determine lighting standards and illumination details for pedestrian walkways; coordinate street lighting with existing lighting on Bellevue Way.
• Develop appropriate wayfinding signage for Regional Bike and Pedestrian Path particularly at NE quadrant crossing and use surface treatments to distinguish path/trail.
• Consider options for street use by cyclists as well.
• Design seat walls to prevent cyclist collisions and avoid abrupt grade transitions to discourage skateboard activity.
• Use bollards to prevent vehicle incursion on shared-use Regional Bike and Pedestrian Path.
• Explore opportunities for added enhancements and landscaping at stormwater treatment plans (see e.g., NE 10th Street detention pond).
• Provide for maintenance access on east side of the bridge.
• Work with WSDOT and the City of Bellevue to determine responsibility for maintenance and operation costs, including coordinating irrigation and water meters.

Lid Technical Meeting 2 - 2/3/09
• Utilize traffic barriers at the base of the wall per WSDOT standards for safety and ease of constructability.
• Use a subtle, soft wall treatment, particularly at the bottom of walls. The current rendering is too harsh.
• Incorporate gestures that allude to lid structure.
• Use a mix of evergreen and deciduous plants to hide walls and add visual/seasonal interest.
• Incorporate terminal columns in lid portals to transition from walls to lid edge.
• Simplify lid edge treatment even more. Use sandblast or proposed lines and bring wall pattern under lid rather than across lid edge.
• Resolve conflict of stepped pier wall conflicts with established pattern.
• Ensure that locations for signs and gantries do not interfere with lid edge design. Utilize animation to better understand location and visual impacts of these elements.
SUMMARY MEETING MINUTES

Technical and Jurisdictional Meeting Summaries

Lid Technical Meeting 3 - 2/13/09 Technical Coordination

Evergreen Point

- Park-and-Ride
 - Provide park-and-ride consisting of 66 spaces, retaining the option to modify that number even though spacing is maximized—concern regarding parking and access equity.
 - Negotiate landscaping and proposed wall between park-and-ride and Three Points Elementary with school.
 - Use “green ever gray” as an appropriate wall treatment in that location, being mindful of children’s safety (i.e., not creating hiding places).
 - Discuss video monitoring of park-and-ride by Medina Police. This has been planned and budgeted by the City of Medina, but the discussion of surveillance cameras needs to be part of a formal agreement with WSDOT, as the Washington State Patrol has jurisdiction for patrolling.

Fairweather Park Interface

- Reconfigure the gateway/buffer to reduce impact on the park field by creating a more natural, green edge with a seamless transition to and from the drop-off area.
- Maintain sight lines for pedestrian and bike safety.
- Construction staging will temporarily impinge on this area of the park but will be restored.

Landscaping and Plantings

- Work with Yarrow Point Park Board and other municipalities in conjunction with ECDC to develop planting plans in keeping with WSDOT standards, municipal ordinances (e.g., City of Medina tree ordinance preferred species) and community requirements.
- Ensure that landscape elements will contribute to the unity of the lids.

Maintenance Facility Access Road

- Consider a proposal currently outside of the project scope by the City of Medina for a waterfront trail from Fairweather Park to the Lake Washington. This requires environmental, agency, and/or Tribal input and possible partnering with local jurisdictions to fund and maintain additional right-of-way. This may occur at a later date following the completion of the SR 520 project.

Transit Plaza Concept

- Maximize green spaces while preserving connections from the park-and-ride to the park.
- Reduce paving where possible while maintaining access.
- Maintain canopies from park-and-ride to transit station access points
- Utilize transparent materials, e.g., glass, for elevators to facilitate surveillance and ensure safety.
- Designate space for community-owned and maintained sculpture with the understanding that local jurisdictions will work with structural engineers to evaluate loading requirements.

84th Avenue NE

- Hunts Point Town Hall Access
 - Reconfigure access to Hunts Point Town Hall with the addition of a driveway from the traffic circle while preserving open space. The parking lot is beyond WSDOT right-of-way and thus sizing is under the purview of local jurisdictions.
 - Increase the sizing of traffic circle on the eastside to slow vehicles on Hunts Point Drive while working with traffic engineers to ensure turning radius is sufficient.
 - Maintain space for a police vehicle to monitor the High Occupancy Vehicle (HOV) lanes; ramp realignment will contribute to the reduction of illegal HOV usage.
 - Develop agreements with local jurisdictions to designate fiscal and maintenance responsibilities.

Hunts Point Park Interface

- Utilize Points Loop Trail for maintenance access.
- Avoid encroachment on Wetherill Park by Points Loop Trail.
- Move a portion of the Points Loop Trail north between 92nd Avenue NE and 94th Avenue NE and replace the berm with a wall between the trail and the highway.
- Replace existing vegetation between private yards and trails in conjunction with Hunts Point.

Utilities and Signage

- Pursue discussion of wayfinding and signage and the desire to provide highway signage designating “Points Communities,” to prevent confusion by Kirkland and Bellevue users. This requires coordination with Federal Highway Administration (FHWA) and state standards.
- Ownership and location of utility poles and utility cabinets, and the responsibility for signalization and signage on streets and ramps will be determined in agreement with local jurisdictions and WSDOT, and through separate leases with private communications firms.
- Requirement for WSDOT maintenance vehicle parking space could be fulfilled by agreement with Hunts Point.

92nd Avenue NE

- Transit station shift
 - Improve kiss-and-ride function.
 - Expand green areas.
 - Consider noise issues.
 - Acceleration of buses presents possible noise issues for adjacent neighbors along corridor. These concerns are being addressed in noise mitigation.
 - Description of design concept and function. Buffer space; transition between local trail and regional path.
Lid Technical Meeting 3 - 2/13/09 Technical Coordination cont.

Local/Regional Trail Transition
- Configure path on the east side of the lid to provide a buffer space and transition between Points Loop Trail and Regional Bike Path.
- Reassess alignment of the path between 92nd Avenue NE and Bellevue Way NE, which is currently away from the road east of 96th Avenue NE and outside of WSDOT right-of-way. This may not be possible and needs to be negotiated with local jurisdictions.
- Resolve conflicts with the Regional Bike and Pedestrian Path between 108th Avenue NE and 124th Avenue NE.

NE Points Drive Bollards
- Discuss removal of bollards on NE Points Drive, which requires discussions with the jurisdictions of Yarrow, Bellevue, Kirkland and WSDOT. System improvements following SR 520 construction may reduce the need to prevent traffic cut-throughs.

Wayfinding and Signage
- Provide signage for paths and trails, lid wayfinding, surface streets and SR 520. Local street signage plan has yet to be developed.
- Avoid obtrusiveness and oversigning and conform signage to existing templates for local trails, such as the Points Loop Trail marker bollards. These may offer a useful model for Wetherill Trail and maintain stylistic consistency for the Regional Bike and Pedestrian Trail.
- Distinguish Regional Bike and Pedestrian Path and Points Loop Trail using paving and striping.

Technical Meeting 4 - 2/24/09 Medina Parks Board
- Maximize seating adjacent to the Fairweather Park gateway ("outlook") with two sets of stairs and seat wall at park/lid boundary and/or with stairs running the length of the park/lid boundary.
- Maintain a 5-foot offset from the path to the park.
- Ensure cyclist and pedestrian safety by using striping and signage.

Technical Meeting 5 - 3/12/09 Kirkland Technical Review
- Reiterate focus of ECDC from 92nd Avenue NE west on the inside of the corridor.
- Acknowledge Cities of Kirkland and Bellevue shared interest in the 108th Avenue NE/SR 520 interchange and the Bellevue Way/SR 520 interchange and coordinate meetings to include both.
- Clarify involvement of Kirkland Cultural Council in review process but not design creation.
- Coordinate design efforts with City of Kirkland urban design standards.
- Rethink the phrase “green over gray” because the term “green” no longer represents the color or vegetation but is more frequently used to mean “environmentally correct.”
- Avoid “busy” tops on the walls.
- Maintain lines of communication regarding tree removal to avoid public surprise.
- Prioritize wayfinding in design conversation and honor requests for consistent signage through corridor.
- Review channelization plan and locations of stormwater discharge, as well siting of right-of-way and temporary construction easements.
- Coordinate stormwater mitigation with placement of ramps at Bellevue Way.