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EXECUTIVE SUMMARY 

The overall goal of this project is to create a method for predicting traffic congestion on 

freeway corridors. When implemented, it will provide a traffic service like that of “pin point 

Doppler” weather radar that can predict growing or dissipating congestion. Preliminary 

versions of the model used real-time loop data to successfully reproduce traffic behavior 

under moderately congested conditions. In order to improve the model for heavily congested 

conditions, the model had to be accurately calibrated. The process of calibrating the model 

revealed that inductance loop errors were preventing accurate results. An algorithm to 

correct the data from improperly functioning loops was developed and published at the 2003 

Transportation Research Board Annual Meeting. The corrected loop data from the TDAD 

(Traffic Data Acquisition and Distribution) data mine are now being used to calibrate the 

model. The algorithm created in support of this effort can be used with malfunctioning loops 

to improve the freeway management system performance monitoring effort.  

The first part of this report details the efforts and algorithms developed to correct the 

freeway loop data so that they are a viable input to any model. This was the primary 

accomplishment of this phase of the project. 

The first section presents an off-line method for detecting and correcting errors in 

inductance loop traffic data. The method compares volume counts at a station level and 

balances the counts by creating a correction factor that represents the number of cars 

over/under counted by the station over a period of time. This correction factor is a property 

of the station itself and is detectable in a number of data sets.  

After a correction to the original data was applied, the new time series presented a more 

consistent estimate of traffic counts on the freeway. The application of this method is useful 

for situations in which a self-consistent estimate of traffic volumes is necessary, such as in 

using the volume as input for a modeling effort.  

The second part of this report details the efforts to date to build a robust model. It 

describes past work and sets a context for creating a viable model. An optimal control 

approach is described for the prediction model. This model has not yet been realized and is 

the work product for the next phase of the modeling effort. 

 ix



  

When completely implemented, the model will be able to predict recurring congestion, 

non-recurring congestion once an incident has been identified and located, and dissipation of 

congestion. It will also be able to estimate the effects of lane and road closures on freeway 

congestion.  

When completely implemented, the model will predict 20-30 minutes into the future, 

allowing for improvements in traffic control strategies such as ramp metering. It will also 

provide support for lane closure decisions, as well as predictions useful for traveler 

information akin to weather report predictions. 
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1. INTRODUCTION 

The overall goal of this project is to create a method for predicting traffic congestion on 

freeway corridors. When implemented, it will provide a traffic service like that of “pin point 

Doppler” weather radar that can predict growing or dissipating congestion. Preliminary 

versions of the model used real-time loop data to successfully reproduce traffic behavior 

under moderately congested conditions. In order to improve the model for heavily congested 

conditions, the model had to be accurately calibrated. The process of calibrating the model 

revealed that inductance loop errors were preventing accurate results. An algorithm to 

correct the data from improperly functioning loops was developed and published at the 2003 

Transportation Research Board Annual Meeting. The corrected loop data from the TDAD 

(Traffic Data Acquisition and Distribution) data mine are now being used to calibrate the 

model. The algorithm created in support of this effort can be used with malfunctioning loops 

to improve the freeway management system performance monitoring effort.  

The first part of this report details the efforts and algorithms developed to correct the 

freeway loop data so that they are a viable input to any model. This was the primary 

accomplishment of this phase of the project. 

The second part of this report details the efforts to date to build a robust model. It 

describes past work and sets a context for creating a viable model. An optimal control 

approach is described for the prediction model. This model has not yet been realized and is 

the work product for the next phase of the modeling effort. 

When completely implemented, the model will be able to predict recurring congestion, 

non-recurring congestion once an incident has been identified and located, and dissipation of 

congestion. It will also be able to estimate the effects of lane and road closures on freeway 

congestion.  

When completely implemented, the model will predict 20-30 minutes into the future, 

allowing for improvements in traffic control strategies such as ramp metering. It will also 

provide support for lane closure decisions, as well as predictions useful for traveler 

information akin to weather report predictions. 
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2. ALGORITHM FOR THE DETECTION AND CORRECTION OF ERRORS 

2.1 Introduction 

This section presents an algorithm for correcting errors in archived loop data from 

freeway traffic management system that are the result of poorly calibrated sensors. These 

errors pose a significant difficulty when trying to use archived data in off-line analysis 

because the calibration errors are difficult to detect with traditional methods. In the work 

presented here, consistency of vehicle counts is used to judge the validity of the data; if 

vehicle counts are balanced, the data are valid; if vehicle counts are not balanced, the data 

are not valid. The method also can determine a correction factor. This correction factor is 

used to create a time series that can be combined with the original data to adjust the volume 

to create a consistent data set. To illustrate the methodology, an example case is presented 

that details the process of identifying a pair of reference stations that are properly calibrated. 

After the reference stations have been identified, a poorly calibrated station is identified, and 

the data from this station are corrected. Finally, the result of the correction process is 

discussed. 

Inductance loop sensors are the primary method for freeway surveillance in use today. 

Freeway surveillance systems are used for both real-time traffic management applications 

and for off-line traffic planning applications. Traffic agencies have begun to archive the 

sensor data in an effort to better understand traffic phenomena over longer periods of time.  

A basic problem with archived data is that invalid data affect the conclusions that are 

drawn from them [1]. Off-line processing of archived data is a necessary step in any analysis 

that uses historical records of traffic data. While a number of authors have proposed 

methods for determining the validity of sensor data [1, 2, 3], these methods are only able to 

answer the Boolean question of whether the data are good or bad. A significant problem in 

the use of loop inductance sensor data is the detection and recovery of errors that are the 

result of poorly calibrated sensors. Such sensors generate data that fall within the hard limits 

used for error detection but do not accurately represent the road conditions, and as an 

important segment of the sensor population, they need to be explicitly handled. 

The problem of adjusting the output of poorly calibrated sensors has previously been 

discussed in situations involving dual loop detectors. In  [4], duel loop “on-time” is 
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compared to identify failed detectors, and in [5], an estimate of the vehicle length from 

paired detectors is used to idenify a set of detector errors.   

 However, single loop detectors provide the most coverage of the freeway network and 

are also prone to calibration errors. Recent work has also used single loops to correct errors 

in freeway data [6, 7]. However, these methods are designed to work with a single loop 

sensor, while the method presented here works with pairs of single loop sensors. Poor 

calibration can result in a loop sensor that chronically under-counts the traffic passing over it 

or that chronically over-counts by counting traffic in neighboring lanes [8]. 

2.2 Problem Statement 

During the analysis of archival loop sensor data, it is desirable to post-process the data to 

detect and recover errors that were not detected when the data were originally collected. 

Specifically, the goal of the work presented here is to recover errors that are the result of 

improperly calibrated loops that under/over-count traffic volumes. During the development 

of a simulation model using traffic data [9], the lack of consistency due to over/under-

counting at various stations posed a significant problem in the development process. This 

report presents a method to detect stations (groups of loop sensors that span all the lanes of 

the roadway) that are under/over-counting cars and then a companion method for recovering 

the data, essentially balancing the vehicle count at each station. This method is suitable for 

creating a valid dataset where vehicle counts are consistent over a series of stations. 

The algorithm consists of three basic steps. The first step is to find a reference station 

that is correctly calibrated; all loops are properly counting cars. Next, stations adjacent to the 

reference station are compared to the reference station. The comparison process determines 

the validity of the adjacent station. Either the station is operating correctly, at which point it 

can be used as a reference station for another comparison, or errors are present. If errors are 

present, the bias in the station is calculated, and a correction time series is applied to the 

station data. After correction, the station is then used as the reference station for the next 

adjacent station calibration. 
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2.3 Algorithm Description 

2.3.1 Time Series Alignment 

To compare the target station with the reference station, the time lag between the two 

stations must be determined. This time lag is required to account for the time a vehicle takes 

to travel between the two stations. Unlike the dual loop sensor configurations, where the 

loop sensors are typically less than 15 meters apart, the distance between two single loop 

sensors is much larger. In this experiment, the stations are .72km to .90km apart. Figure 1 

shows the basic configuration of the sensors used in the experiment. The data used in the 

experiment were collected from SR 167 in Washington State over a series of Wednesdays in 

2000 and 2001 when there were no incidents. The time lag (τ) is calculated by finding the 

value that results in the largest correlation coefficient when the output of the two stations is 

compared. 

Target Station

Inductance Loop Sensor Location

Station: ES338

.72km .85km

Station: ES336 Station: ES334

Traffic Flow

Reference Stations  

Figure 1. Experiment setup. 

The correlation coefficient between the two stations is calculated in three steps. The first 

step is to aggregate the loop data. To do this, the total volume at each time step across all 

lanes for both the target and reference stations is computed using 

  , (1) ( ) ( )
1

1...
N

j ij
i

v k v k k K
=

= =∑
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where K is the total number of 20-second intervals in a 24-hour period, vj is the volume at 

station j, vij is the volume for lane i at station j , and N is the total number of lanes at station 

j. 

In addition, the inductance loops measure vehicle presence every 60th of a second, and 

the traffic management system aggregates these measurements over 20 seconds to create a 

“scan count.” The mean of these scan counts is 

 ( ) ( )
1

1 1...
N

j ij
i

s k s k k K
N =

= =∑  , (2) 

where K is the total number of time steps, sj is the scan count at station j, sij is the scan count 

at lane i at station j , and N is the total number of lanes at station j. 

This results in four separate time series: the upstream total volume (vu), the upstream 

mean scan count (su), the downstream total volume (vd), and the downstream mean scan 

count (sd). 

The second step is to calculate the correlation coefficient used for each discrete lag value 

(e.g., 0, 1, 2, 3). In this experiment, 20-second traffic counts are used, so each lag value 

represents 20 seconds. This calculation results in a 2-by-2 matrix of correlation coefficients. 

The values of the matrix elements are shown in Table 1. The final correlation value is 

calculated by summing all elements in the matrix and normalizing by dividing by four. The 

plot in the top of Figure 2 shows the correlation at various discrete time lags for a pair of 

loop sensors that are .72km apart.  

Table 1. Correlation matrix values. 

cor( ( ), ))u dv k v k τ+  cor( ( ), ))u ds k v k τ+  

cor( ( ), ))u dv k s k τ+  cor( ( ), ))u ds k s k τ+  

 

The final step is to estimate the actual lag coefficient by fitting a second order 

polynomial near the maximum of the correlation values and using the analytical derivative 
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to estimate the time lag . A plot of this polynomial curve is shown at the bottom of Figure 2. 

In this case, the maximum corresponded to a lag value of 1.48 (or approximately 30 

seconds).  

2.4 Finding a Reference Station 

The next step in the error correction process is to find a station that is properly 

calibrated. Since the error correction algorithm assumes that one station is outputting the 

correct values, a station must be designated as the ‘reference’ station before the algorithm 

can be applied to other stations. To accomplish this, the algorithm searches for two adjacent 

stations that are calibrated correctly. 
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Figure 2. Time lag calculation. 

The basic assumption used by this search is that it is possible to reconcile the vehicle 

counts in the station data so that the volumes of vehicles entering and exiting the freeway 

are consistent with the number of vehicles remaining on the freeway. The same number of 

cars counted by the upstream sensor should be counted by the downstream sensor at some 

future point in time.  
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The first step in the process of choosing a reference station is to determine which 

stations are potential candidates. The reference station candidates are limited to pairs of 

stations that have no on- or off-ramps between the mainline sensor locations.  

Given a set of candidates, the next step is to evaluate the historical data quality of the 

sensors using the error algorithms built into the sensors. The number of samples recorded 

over a 24-hour period is divided by the total number of 20-second intervals in that period to 

verify that the loop detector is functioning continuously, and this fraction is used as a 

quantitative measure of data completeness. The ratio of the number of samples identified as 

valid, by the error algorithms built into the sensors, to the total number of observed samples 

is used as quantitative measure of the data validity. The multiple of these two measures is 

used as a likelihood measure, and sensors with less than a 95 percent likelihood are removed 

from consideration as a reference station.  

Finally, the station pairs that meet the first two criteria are evaluated to determine the 

cumulative deviation in volume count over a 24-hour period for 30 different days. Using the 

earlier calculation of the lag between the two sensors, the total volume of cars counted by 

the upstream station is compared to the total volume of cars counted by the downstream 

station. The total volume of cars at a station j (Tj) is calculated as 

  (3) ( )
1

1
k

j lj
l

T k v k K
=

= =∑ K

where vj(t) is the 20-second volume count at station j at time t and K is the total number of 

time steps in the data sample. 

To properly represent the continuous time lag using a time series with a discrete index, 

the actual data value is approximated by interpolation using the points surrounding the 

continuous lag. For example, to approximate k+1.5, the points k+1 and k+2 are used. In 

addition, these points are weighted using two parameters (α, β) that describe the contribution 

of each point to the total. β is set to the non-integer part of the time lag and α is set to 1-β. 

The time series describing the difference in total volume from time step zero to time step k, 

D(k), is computed as 

 ( ) ( ) ( ) ( ) 1u d l d uD k T k T k T k k K uα τ β τ τ= − + − + = −K  (4) 
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where Tu is the total volume upstream calculated with Equation (3), Td is the total volume 

downstream calculated with Equation (3), α, β are interpolation coefficients to smooth τ, τl 

is the largest integer less than or equal to τ , and τu is the smallest integer greater than or 

equal to τ. 

The time series of the difference between the total volume counted at each station can 

have three basic trends. The difference can increase over time – implying that vehicles are 

counted upstream but not counted downstream. The difference can decrease over time – 

implying that vehicles are not being counted upstream but are being counted downstream. 

Finally, the difference can vary around zero with a zero or near-zero mean. In this situation, 

both stations are counting cars at the same rate, and the errors can be attributed to other 

unknown sources of noise in the system. Figure 3 shows the three different types of time 

series. 
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Figure 3. Basic sensor errors due to calibration issues. 
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Next, the difference between the 20-second data for the two stations (d(k)) is calculated 

as 

 ( ) ( ) ( ) ( ) 1u d l d ud k v k v k v k k K uα τ β τ τ= − + − + = −K , (5) 

where vu is the 20-second volume upstream calculated as Equation (1), vd is the 20-second 

volume downstream calculated with Equation (1), and α, β, τl, τu are defined as before. 

When the difference in the volume counts between two stations (adjusted for the time 

lag) has a zero mean with a small variance over the course of an entire day, those stations 

can be used as reference stations for comparison with other stations immediately upstream/ 

downstream of the pair. In general, the candidate pair with the smallest mean and variance is 

selected as the reference pair. Figure 4 shows the histogram of the errors between two 

reference stations. These two stations are designated as the initial reference stations because 

the mean difference in volume counts is near zero. Having designated the reference station, 

the next step is to iteratively traverse up or down the freeway and correct poorly calibrated 

stations as they are detected. 
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Figure 4. Histogram of the error in volume counts between two reference stations. 
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2.5 Detecting Stations With a Poorly Calibrated Loop Sensor 

Using the reference station previously identified, the total volume comparison takes on a 

new meaning. If the comparison results in a difference that increases over time (target 

station is downstream) or decreases over time (target station is upstream), it follows that the 

target station is poorly calibrated. While there could be other more serious reasons why the 

station volume counts do not match, a completely broken sensor for example, this work 

focuses only on the sensors that are reporting data flagged as normal, and it is assumed that 

data are being reported by all loops that make up a station.  

Much like the process used to determine the reference station, Equation (5) is used to 

calculate the difference between the two stations adjusted for lag. Figure 5 shows the 

histogram of the difference between a reference station and a station with a poorly calibrated 

loop. Given a total volume of around 60,000 vehicles per day, the mean represents a loss of 

around 1000 vehicles per day or 1.67 percent. By comparison, the loss between two 

reference stations is less than 100 cars (.16 percent). Not only are such errors present in a 

single day of data, this bias exists in multiple days over a long time period. Figure 6 is a 

graph of the total number of uncounted cars between two adjacent stations for 30 different 

days collected over a period of two years. As shown by this figure, this particular station 

consistently does not count 1000 vehicles each day.  
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Figure 5. Histogram of the error in volume counts between a reference station and a station with a 
poorly calibrated loop. 
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Figure 6. Total number of uncounted cars over 30 different days. 

2.6 Correcting the Station Data 

Given the basic assumption that the over-counting or under-counting of cars is 

proportionate to the total number of cars that pass through the station, the first step in the 

correction process is to use Equation (3) to create a time series that describes the total 

number of cars that are counted by the station (Tv). When the total volume is calculated, on- 

and off-ramps are added in as appropriate. For example, if an off-ramp is immediately 

upstream of the downstream sensors, the volume count of the offramp is included in the 

downstream total. Conversely, if an on-ramp is immediately downstream of the upstream 

sensors, the volume count of the on-ramp is included in the upstream total. This procedure 

differs from “ramp balancing,” as described in the FHWA Traffic Monitoring Guide [10], 

where the difference is that the adjustment is made to the freeway loop volume rather than 

the ramp loop volume. 

The next step is to compute the ratio between the total number of cars miscounted in a 

day and the number of cars miscounted every 20 seconds. Since statistically only a fraction 

of a car is miscounted every 20 seconds, this step provides a correction factor that can be 

applied to the time series to determine the proper time step to add or subtract exactly one 

car. The number of cars that must be counted by the station before the algorithm adds or 

subtracts an additional car, f, is  
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 ( )vT Kf
Kµ

=  , (6) 

where µ is the expected value of E{d(k)} (shown in Figure 5). Using this factor, Tv is 

converted to the total number of cars that were miscounted (Tε) as 

 ( ) ( ) 1v
u

T k
T k fix k K

fε τ
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

K , (7) 

where fix ( is a numerical operation that rounds the number ()• )•  to the nearest integer 

towards zero. 

The process of creating Tε results in an integer valued function. Since volume data are 

quantized into integer values of whole cars, this algorithm preserves the integer values. 

Finally, the time series describing the total number of cars that were miscounted is converted 

into a time series describing the instantaneous number of cars (Iε) that are miscounted by 

taking the difference of Tε as  

 ( ) ( ) ( )1 1I k T k T k k Kε ε ε= + − = −K 1. (8) 

While Iε is a time series of length K, its internal structure is a binary sequence of 0s and 

1s. At a majority of the time steps k, Iε is zero, but in a small percentage of instances it adds 

cars to the data stream. The Iε sequence removes the bias from the poorly calibrated sensor, 

resulting in a time series that maintains consistency throughout the day. Using the time 

series Iε, the original station volume counts can be corrected by adding the Iε to the original 

time series, resulting in a new corrected time series. 

2.7 Verifying the Station Data 

Now that a method for determining the correction factor and correcting the data for a 

one-day data set is available, the next step is to determine a suitable correction factor for a 

sequence of days. As shown before in Figure 6, the effects of the poorly calibrated sensor 

are visible over a number of days. In the same way, Figure 7 shows the time series of 

calibration factors for these days. A general correction factor can be computed by using the 

mean of the correction factor time series that applies to a number of days.  
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Figure 7. Correction factor for 30 different days. 

For a particular day, by using equations (3), (7), (8) and the general correction factor, Iε 
can be calculated. The corrected station data,  

 ( ) ( ) ( ) 1c tv k v k I k k Kε= + = K  , (9) 

can be compared to the reference station by using equations (3) and (4). The result of this 

comparison is shown in Figure 8. In addition, Figure 9 shows the comparison of the 

corrected cumulative sum of uncounted vehicles with the uncorrected cumulative sum. In 

this case, less than 0.5 percent of the total vehicle count is lost. From this, we conclude that 

the adjustment process successfully restores the consistency of vehicle counts to the station 

with a poorly calibrated loop because the time series comparison of the reference station to 

the corrected station shows the removal of the trend. After the station volumes have been 

properly adjusted, the adjusted station can be used to correct stations that are farther 

downstream. In this way, a whole freeway network can adjusted iteratively without either 

using extremely large lag factors for a single reference station or incorporating large 

numbers of loops into the calibration process.  
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Figure 8. Histogram of a reference station compared to a corrected station. 
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Figure 9. Time series comparison of a corrected station to the uncorrected time series. 
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2.8 Findings 

The algorithm consists of three basic steps. The first step is to find a reference station 

that is correctly calibrated; all loops are properly counting cars. Next, stations adjacent to the 

reference station are compared to the reference station. The comparison process determines 

the validity of the adjacent station. Either the station is operating correctly, at which point it 

can be used as a reference station for another comparison, or errors are present. If errors are 

present, the bias in the station is calculated, and a correction time series is applied to the 

station data. After correction, the station is then used as the reference station for the next 

adjacent station calibration. 

2.9 Conclusion 

This section presented an off-line method for detecting and correcting errors in 

inductance loop traffic data. The method compares volume counts at a station level and 

balances the counts by creating a correction factor that represents the number of cars 

over/under counted by the station over a period of time. This correction factor is a property 

of the station itself and is detectable in a number of data sets.  

After a correction to the original data was applied, the new time series presented a more 

consistent estimate of traffic counts on the freeway. The application of this method is useful 

for situations in which a self-consistent estimate of traffic volumes is necessary, such as in 

using the volume as input for a modeling effort.  
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3. A HIERARCHICAL RAMP ACCESS CONTROL SYSTEM 

3.1 Introduction 

This section offers a framework for controlling the ramp access system of a freeway 

corridor. The framework is original in that traffic dynamics are modeled with a microscopic 

model of traffic flow. A microscopic model is used because it models the traffic more 

realistically than standard macroscopic models and provides a significant improvement in 

the ability to represent unobservable quantities. To use the microscopic model in the 

controller, a control system is proposed that incorporates three different data sources: real-

time data, historical data, and simulated data. In addition, the proposed controller uses a 

hierarchical approach to accomplish both local and system-wide control of the freeway. 

While other ramp access controllers have employed a hierarchical or multi-layer 

approach, our controller is different in that a microscopic simulator is applied in the 

calculation of the steady-state set points used by the local controllers. The controller 

incorporates an optimization algorithm that utilizes the microscopic simulator to create a 

desired steady-state control input that accounts for variable traffic conditions across the 

entire network. In addition to the system-level controller, an H∞ controller is presented that 

carries out the high-level control strategy at the local level. The H∞ controller is an optimal 

control concept developed in the 1980’s, and the term H∞ is derived from the cost metric 

that is minimized to obtain the control input. This approach provides a guarantee that the 

control input will provide the “best” result possible for the system being controlled. While 

H∞ control structures have been previously used for traffic control, the H∞ controller is 

significantly improved by the ability to use the set points provided by the high-level 

controller. 

Throughout history urbanization has spurred development of efficient, high-volume 

transportation networks. By the 21st century, the limited ability of urban centers to increase 

the physical size of their transportation networks has necessitated research focused on 

improving the performance of existing traffic networks by creating intelligent transportation 

systems (ITS). To this end, many transportation authorities have invested large amounts of 

money to create regional centers to monitor and control the transportation network. 
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An area of particular interest involves improving the performance of the highest capacity 

links in the network—the highway corridors. Wattleworth was one of the first researchers to 

suggest that congestion on the freeway could be reduced by metering ramps to control the 

rate at which cars enter the freeway [11]. Soon after, Payne and Ikasen proposed a closed-

loop controller that dynamically adjusted local metering rates [12]. While a local control 

scheme effectively reduces recurring congestion, its ability to reduce the effects of non-

recurring congestion remains limited. 

Payne also created an early system-wide controller by aggregating a number of local 

controllers together, but later work overshadowed his methods. Papageorgiou proposed a 

model of traffic flow to create a discrete-time optimal controller [13]. Developing a method 

for achieving the discrete time optimal solution for the controller has been a popular area of 

study with many researchers [14, 15, 16, 17, 18]. More recent developments in system-wide 

control include fuzzy logic controllers [19, 20, 21, 22, 23, 24, 25] and neural network 

controllers [26, 27, 28].  

While a great deal of work has been done on models for the traffic ramp metering 

problem, continuum models that use a basic model of traffic flow derived from (or utilizing) 

the Lighthill and Whitham model [29] are still the basis for many of the most recent 

controllers [17, 18, 30]; however, this type of model is limited by the unobservability of key 

states of the roadway, as well as the presence of bad data. In this section, an original 

controller is introduced that utilizes a microscopic model to accomplish tasks that were 

previously performed with macroscopic models. In addition to providing basic functionality, 

the model provides new methods that significantly increase the ability of the model to 

estimate unobserved states and mitigate the problems caused by bad data. 

The objective of this section is to describe an original and improved solution to the ramp 

access control problem. The proposed architecture assumes the presence of an existing 

freeway surveillance system that is centrally located and accessible. The proposed controller 

itself would be integrated with other ITS initiatives as part of a complete, dynamic traffic 

management system. 

The design of the controller takes into account a number of key goals. The first 

consideration is that the controller must be able to manage congestion. Another 
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consideration is that the controller must be traffic responsive in that it detects and responds 

to changing traffic conditions. A new model of traffic flow is presented that takes advantage 

of existing data sources and is also able to estimate conditions when data are lacking for a 

simulation. This model is a significant improvement over existing models currently used for 

ramp access controllers.  

3.2 Background 

The development of the controller draws from two primary bodies of knowledge: 

general control theory literature describing large-scale complex systems and traffic control 

theory. The general control theory sets the context for evaluating and understanding how to 

best utilize the concepts from the transportation literature. The traffic control theory sets the 

baseline for understanding the properties of the system and existing solutions for this 

problem.  

3.2.1 Control Theory 

The definition of a large-scale system varies on the basis of the context in which the 

work is presented. In the realm of systems control, a system is large if it exceeds the 

capacity of a single control structure, while in the realm of model development, a system is 

large if its input-output behavior cannot be understood without partitioning the model into 

smaller modules [31]. While the control of large-scale systems dates back to the mid 1960s, 

a review of the literature reveals that large-scale system control techniques have been 

applied to a wide variety of systems: transportation, communication, power, and the 

economy [31, 32, 33].  

Transportation systems are particularly suited for analysis and control with large-scale 

methods both because of the high level of complexity inherent to them and because of the 

loosely coupled nature of transportation networks. Furthermore, large-scale control methods 

have been applied with a good deal of success to the ramp access control problem [12, 32, 

33, 34, 35, 36, 37]. Therefore, this section will utilize methods and techniques from the 

large-scale control theory to develop both the model and the controller. 

A number of different methods have been proposed for dealing with large-scale systems. 

In general, the inability to control a large-scale system with a single control structure is 

handled by most large-scale control algorithms by using methods that involve simplifying 
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the system model in some way to allow for the application of traditional control algorithms. 

Common techniques to accomplish this include model reduction through aggregation of 

states, model reduction by decomposition, or the creation of a hierarchical or multi-layer 

control structure [31]. 

Hierarchical control schemes offer a number of benefits over other approaches. A 

primary benefit of a hierarchy is the ability to separate high-level abstract control from low-

level physical control. Hierarchical control also has the ability to model complex hybrid 

systems that are composed of both discrete and continuous elements. Some current research 

in the area of large-system control focuses on controllers that use a hierarchical or multi-

level approach to reduce a complex system into a number of less-complex sub-modules 

organized in a hierarchy [33, 39]. 

In the realm of transportation control, a number of authors have proposed hierarchical 

solutions for ramp access control [32, 36, 37, 38]. In a similar manner, our proposed 

controller will be developed in a two-level hierarchy: a system-wide controller responsible 

for optimizing the traffic flow on a global level, and a local-area controller responsible for 

carrying out the physical task of regulating the flow at a particular point.  

Where other hierarchical systems have relied on macroscopic models as the basis for the 

high-level control and linearized local controllers for the low-level control, our proposed 

controller advances the concept in that it utilizes a microscopic model for traffic dynamics in 

the high-level controller and a non-linear H∞ controller for the local controller. While non-

linear H∞ controllers have been proposed for local feedback control, use of an H∞ controller 

in a hierarchical control system designed for ramp access control is a new approach. 

3.2.2 Traffic Control Theory 

In this section, the traffic theory used to develop a controller for a freeway corridor ramp 

metering system is described. The model of the system in Figure 10 shows both the physical 

freeway corridor to be controlled and the proposed controller model. The definitions of 

commonly used terms can be found in Appendix A. The controller uses a hierarchical 

control structure and completely relies on the microscopic model for state information. A 

hierarchical control structure has been applied to ramp metering control problems before and 

has been shown to be very effective [32, 40]. As shown in Figure 10, the controller consists 
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of three main blocks: the microscopic model, the system controller, and the local feedback 

controller.  
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Figure 10. Freeway corridor ramp metering system. 

The dynamic traffic flow modeling for the controller is provided by the microscopic 

model. The microscopic model uses origin-destination (O-D) rate information to determine 

when to create or remove representations of each individual vehicle on the freeway. The 

model ‘moves’ the vehicles by using an algorithmic description of driver behavior.  

To completely describe the inputs to the microscopic model, three main data sources are 

needed. The first data source is the real-time data from the freeway surveillance system that 

measures the traffic rate on the on-ramps and off-ramps. The desired control input is needed 

to further describe the input information. As a supplement to the real-time surveillance and 

control data, the microscopic model also requires an estimate of the origin-destination (O-D) 

information for the cars entering the freeway. By using a prediction of the future inputs, the 

model is able to predict future states of the freeway.  

The system controller is the first tier of the controller hierarchy. The function of the 

system controller is to minimize congestion on a global scale. This is accomplished by using 
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an optimization routine that tries to minimize the congestion in the model (as measured by 

the total delay in the system). The optimization scheme is bolstered by the fact that it can 

use the predictive output of the microscopic model. The system-wide controller sets the 

desired parameters (i.e., density, control input) that are used by the local feedback 

controllers.  

The local feedback controller is a robust H∞ controller. By using the parameters passed 

to it by the system controller, the local feedback controller generates the ramp signaling time 

series with the provided state information. The local controller only utilizes the state 

information from nearby locations to determine the control input. The use of automatic 

control techniques to control flow on the freeway has been shown in the literature to be very 

effective at regulating traffic density in a local region [41, 42, 43]. While earlier works used 

the linear quadratic gaussian (LQG) formulation, recent work has also proposed using H∞
 

control for local ramp control [44]. 

Our controller improves on existing controllers in three main ways. First, by using a 

microscopic model for state estimation, bad data can be recovered in a manner that is not 

possible through normal time series methods. This is a significant improvement over use of 

a macroscopic model that must rely completely on sensor measurements. The microscopic 

model can give an estimate of sensor information even when there may be no data from the 

physical sensor. 

Second, the freeway is modeled at a finer granularity with the microscopic model . 

Previous controllers discretize space according to the placement of the on- and off-ramps 

[13, 17, 18, 21]. This is a significant advantage in that macroscopic models are unable to 

provide accurate control information when bottlenecks or other discontinuities are located 

outside of the sensor region. The microscopic model allows the controller to get an estimate 

of control volumes at any place in the network and develop control strategies that takes the 

effect of these areas into account. 

Third, the microscopic model is able to incorporate dynamic O-D information to predict 

the future state of the system. This provides a more accurate prediction than one that is 

based on historical data. O-D information a non-stationary [32]. Therefore, historical data 

cannot completely characterize its behavior.  
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3.3 Approach 

3.3.1 Overview 

While previous models used for traffic control have utilized macroscopic flow 

techniques, it is also possible to model traffic flow as a granular flow process by using 

microscopic techniques. While there have been many successful macroscopic models (e.g., 

[45, 46, 47, 48, 49]), the desire to represent the diversity of the ‘realistic’ contents of a road 

using a short time scale has spurred the development of a number of microscopic models in 

the last few years. Theoretically, every aspect of the environment, driver, and car can be 

modeled with a microscopic model, but in practice, most models are simplistic because of 

difficulties associated with having a large parameter space. 

To set the context for the development of the model, the first step is to describe the 

physical properties of the freeway network, as well as the existing surveillance and control 

systems. Next, a microscopic model is proposed to replace the macroscopic model of traffic 

dynamics commonly used in traffic control problems to describe the observed physical 

properties. The proposed microscopic model represents the entire contents and models the 

dynamics of the physical freeway system in a realistic and accurate manner. To conclude 

this section, a method for determining the information necessary to properly start and 

operate the model is proposed.  

After the functions of the microscopic traffic dynamics simulator are described, a 

method for incorporating the simulator into a ramp access control system is proposed. The 

proposed method breaks the control problem into two main parts: a high-level, system-wide 

controller and a low-level, local controller. Using the definition of the microscopic simulator 

created earlier, a logical description of the microscopic model is formulated that 

incorporates a simulator directly into the control architecture. Next, the optimization routine 

for use by the system-wide controller to coordinate the operation of the local-controllers is 

described. The proposed method is original in the fact that it uses a microscopic simulator of 

traffic flow to model the mainline traffic dynamics in the optimization routine.  

Next, the structure of a local feedback controller to control the ramps in a local region is 

developed with H∞ control techniques. While previous work has developed local ramp 

controllers by using H∞ methods, our proposed controller is original in that it is designed to 
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work in coordination with a system-wide controller. This is significant in that system-wide 

control mitigates some of the problems in the way a local controller prioritizes incoming 

traffic. In addition, the controller utilizes the simulated data for control rather than real-time 

data sampled from the freeway itself. 

3.3.2 Freeway Traffic Flow Surveillance and Control Systems 

Mainline traffic flow is a highly non-linear, stochastic process that is affected by many 

completely unobservable variables. While models of traffic flow based on concepts of fluid 

dynamics can model traffic flow on the macroscopic level, models of traffic flow that 

operate on the microscopic level with concepts of individual driver behavior give a better 

representation of the actual state of the traffic network. In addition, the current freeway 

surveillance system, while adequate for some tasks, often does not deliver a complete or 

accurate picture of freeway conditions. Current solutions to freeway observation have two 

main problems: 1) the sensors provide a very coarse discretization of the highway in space 

and 2) broken sensors can lead to unrecoverable errors. We first provide an  overview of the 

existing freeway surveillance system and its limitations and then propose a microscopic 

model for estimating the mainline traffic dynamics. 

The primary sensors used today for freeway corridor surveillance are inductive loop 

detectors. Physically, inductive loop detectors are coils of wire embedded just below the 

surface of the highway at regular intervals. The position of the sensors is predetermined by 

the regional traffic authority and are typically placed near points of interest such as ramps or 

interchanges. At each geographic location a cabinet is dedicated to collecting the sensor 

information, which is usually in the form of occupancy and volume counts per lane. Some 

freeway locations also have paired loop detectors. By grouping two loop detectors a known 

distance apart, it is possible to calculate the average speed of cars on the roadway. As part of 

this calculation, the mean length of the vehicles that passed over the detector during one 

sample period is also generated. In general, current freeway surveillance systems return 

volume and occupancy counts for sections of the freeway network and speed and length 

information for a small subset of these. 

Inductive loop detectors are often prone to erroneous or noisy data. The effect of these 

errors can range from a complete loss of information for that region to an increase in signal 
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noise. The sheer volume of sensors required to monitor the freeway would suggest that at 

any particular time, some number of sensors will be broken. This becomes an issue in the 

development of the controller because some of the errors (e.g., a sensor that is stuck in the 

“on” position) cannot be recovered in real time or by using time series methods.  

While the development of most current controllers assumes the presence of valid data, 

few controllers include a strategy to mitigate the problems caused by broken sensors. 

Although some people have proposed mitigation solutions for dealing with these situations 

[22], the presence of broken sensors generally has a negative effect on the performance of 

the controller.  

The approach to calculating mainline traffic dynamics is an original one. The proposed 

method is to use a microscopic simulation to model the mainline freeway dynamics and to 

run the controller using information generated by the model. The proposed microscopic 

model improves on existing macroscopic models both in its ability to match the empirical 

data collected from the freeway and its ability to function in situations where the real data 

are bad. 

3.3.3 Microscopic Model of Traffic Flow 

Unlike macroscopic models that are derived from a few basic principles (e.g., 

conservation of cars), microscopic models can be constructed from a number of different 

methods. On a basic level, microscopic models require three main components: a framework 

for describing the freeway network, a model of how entities behave, and a method of 

loading entities into the model. Each of these components is important to the overall success 

of the model, but the framework is unique in that it sets the constraints for the other 

components in terms of what is possible and what is not possible. 

The proposed microscopic model uses a general automaton (GA) framework. Automaton 

networks have been used in many different scientific disciplines to model continuum 

dynamics on a microscopic level. A general automaton comprises a set of states, the 

interconnections between them, and a rule set that specifies the progression of states. 

Automaton frameworks are beneficial in that they reduce model complexity while 

maintaining accuracy. The GA framework for traffic flow is a generalization of the cellular 

automaton (CA) traffic flow model first proposed by Nagel and Scheckenberg [51]. While 
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the CA framework is often used because it is suitable for a parallel processing platform, the 

symmetry restrictions of the CA framework limit its ability to precisely model traffic flow. 

The GA framework frees the model from the symmetry restrictions, allowing it to provide a 

much more precise model of traffic at the cost of the ability to use a parallel processing 

platform. 

The first step in the approach to developing a microscopic model is to create a set of 

cells and interconnections that model the topology of the roadway. To do this, the physical 

geography of the road is partitioned into 4-foot-long regions (with a region width equal to 

the lane width), and these regions are defined as “cells.” In addition, interconnections are 

defined such that the cells are linked together. This process is done in such a manner that the 

direction of traffic flow and the number of lanes on the freeway are represented 

appropriately. During this process, the cells are sequentially numbered from the left lane to 

right lane, from the entrance of the model down to the exit of the model. The index of a cell 

allows it to be referenced by physical locations on the freeway.  

Next, each cell in the GA structure is assigned a state that represents whether or not it is 

occupied. If the cell is unoccupied, then the state of the cell is simply zero. However, if the 

cell is occupied, then the state of the cell is the percentage of the cell that is occupied by a 

vehicle (the model allows for partial occupancies) and an index describing the specific car 

that is occupying it. The size of the cell and the rule set are such that only one car can 

occupy a cell at any particular time step, even if it only partially occupies the cell.  

Even though the cell itself should be considered a dimensionless quantity (it only has a 

‘state’ comprising whether or not it is occupied by a particular car), the index of a cell can 

be mapped to a location or distance. The process of converting the index to a physical 

location varies on the basis of the actual freeway being modeled and the parameters of the 

model itself. As a simple example of this, in a three-lane highway that is 10 miles long, cell 

number 1500 corresponds to a 4-foot patch of roadway in the left-most lane 2,000 feet from 

the start of the model. From this representation, this model has the ability to accurately 

model the position and length information of all the vehicles on the roadway. Assuming that 

this definition models the roadway and the vehicles in it, the next step is the development of 

a method to update the state of each cell. 
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A typical microscopic behavior model considers the current vehicle dynamics, driver 

behavior characteristics, road geometry, and the surrounding vehicles (those within the 

driver’s perception) while determining the next ‘state’ or course of action. Each 

driver/vehicle combination in the traffic may be described by a set of parameters such as 

position, actual speed, route choice, and driving style. While the simplest microscopic 

models can be described with analytic equations [50], as model complexity increases, it is 

difficult to precisely derive the equations necessary to describe microscopic traffic 

phenomena because of the complexity, randomness, and interdependency of the process. 

Because of this, computer simulations, rather than analytic models, are the primary means of 

implementing microscopic models (e.g., [51, 52, 53, 54, 55]). Figure 11 shows the flow 

diagram for the proposed method of updating the state of each cell. The method updates the 

model sequentially, beginning with the car closest to the exit of the model and moving 

upstream. 

The process of evaluating the traffic conditions and determining an appropriate course of 

action (lane changing, braking, acceleration) is handled entirely by the ‘car and driver 

model.’ Car and driver models are typically composed of four main sub-models: free-flow 

driving models, lane changing models, merging models, and car-following models. A robust 

model incorporates the functionality of all four sub-models to determine the behavior of the 

drivers on the road. One of the key advantages of using a microscopic model is the ability to 

use a stochastic driver model to create a heterogeneous traffic flow. In this case, a 

distribution describes the desired speed of the current driver. The ability to model 

heterogeneous traffic flow enables the microscopic model to describe traffic phenomena that 

are not easily captured by macroscopic models. 
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Figure 11. Flow diagram for the cell update process. 

In the microscopic model, driver behavior is divided into two main parts. The first part 

determines the acceleration that the driver will use during the next time step. Figure 12 

shows a flow diagram for this process. The sections of the process that are related to free-

flow driving models and car following models are marked accordingly. 

In the model, the driver evaluates the road conditions using the time headway, which is 

defined as 

 
c

Xheadway
v

∆
=  , (10) 

where ∆X is the distance between the current vehicle and the vehicle in front of it, and is 

the speed of the current vehicle. 

cv
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Figure 12. Flow chart for the acceleration model. 

If the car in front is too close to the current vehicle, or the current vehicle begins to 

accelerate, the headway will shrink and the car will be forced to act on the changing 

conditions. By adjusting the driver’s desired headway, the user is able to change the way 

that vehicles interact with each other in the model. 

The second part of the model is the lane changing model shown in Figure 13. The lane 

changing model is responsible for two important driver behaviors. The first behavior is how 

the driver responds when the driving conditions are not desired, and the second behavior is 

how the driver navigates the freeway. 
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Figure 13. Flow chart for the lane changing model. 

As shown by Figure 13, the headway is once again used to evaluate the conditions on the 

roadway. If the headway is less than desired, then the driver attempts to change lanes to 

improve the driving conditions. If the headway is okay, then the driver continues in the same 

lane until he/she has to make a navigational lane change. The navigational lane change can 

occur because of many conditions: the end of the current lane, the desire to exit the freeway, 

or an obstacle in the road to be avoided. The combination of the acceleration model and the 

lane changing model completely describe the behavior of the driver. , The acceleration and 

next lane choice for the current vehicle are calculated with these two models together, and 

then the vehicle is sent down the road. 

The destination cell is calculated by using the standard laws of physics. The change in 

speed (calculated from the desired acceleration) is added to the current speed, and the 

location of the destination cell is calculated via the following formula: 

 ( )1 k kC T v Ta Co= + +  , (11) 
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where T is the time step,  is the current speed of the current vehicle, akv k is the desired 

acceleration of the current vehicle, Co is the location (in feet) of the origin cell, and C1 is the 

location (in feet) of the destination cell. 

Once the location of the destination cell is calculated, it is converted to an index value. 

Then, the cell specified by the index and the cells immediately upstream of the destination 

cell are marked as occupied on the basis of the length of the car by using the following 

conditional logic 

 1
_
_ j j

car lengthC C C is occupied
cell length

− > → , (12) 

where Cj is the upstream cell under consideration and j is the index number of the upstream 

cells. 

Next, the cells that were previously occupied by the vehicle are emptied so that upstream 

cars have cells to move into. Finally, cells are sequentially checked by index number (in 

reverse) until the next occupied cell is found. Then the car occupying this cell is set as the 

next car, and the process repeats itself until every cell in the model has been checked. At that 

point, the model has completed one time step. 

The next step is determining how to add or remove vehicles. In general, the only way to 

get vehicles on and off the freeway is via the ramps and the entrance and exit for the model. 

For these purposes, the vehicles entering at the beginning of the model are treated the same 

way as cars entering via the on-ramps in order to simplify the operation. The rate at which 

vehicles exit the road is based on the function of the entire model dynamics. The rate of 

vehicles exiting the road at the end is not directly controlled, but the vehicles will exit the 

model at the same rate as the physical system if the rest of the model is functioning 

correctly. In order to calculate the flow of vehicles out of the model via the off-ramps, a 

destination is assigned to each vehicle as it is added to the model. This destination, either an 

off-ramp or the end of the model, is checked every time the vehicle moves. When the 

vehicle reaches its ‘destination,’ it is removed from the model. 

 The information corresponding to where each vehicle enters and leaves the freeway is 

called origin-destination (O-D) information. The proposed method of calculating the number 
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of cars entering and leaving the freeway at any specific time is to use O-D information. It is 

important to note that this method does not just calculate the O-D percentages but the O-D 

rate at each ramp. In other words, it calculates a time varying rate that represents the arrival 

rate of cars that enter at ramp i and exit at ramp j for all possible pairs of i and j at each time 

t. By using these data, the model will be able to properly add and subtract cars such that the 

number of cars in the model at any particular time matches the number of cars actually on 

the freeway.  

The proposed method of estimating the O-D information uses a combination of O-D and 

time-of-day vehicle arrival rate information. Even though traffic arrival rates on a day-to-

day basis seem to be stationary, the traffic O-D rate itself is a non-stationary process that 

cannot be measured directly by turning percentages [56]. A solution to this problem is the 

generation of dynamic O-D data. This is a difficult problem because of the inability of 

freeway surveillance systems to detect the destination of a car when it first enters the 

roadway. However, a number of authors have proposed systems for modeling this 

phenomenon [30, 32, 57]. Using the definitions proposed by Daganzo [57], O-D information 

is incorporated into the model by first simplifying the desired departure rate (demand, D) 

equation to imply that there is no pre-existing (t < 0) demand to use the freeway, 

 ( ) ( )ij ijD k A k= . (13) 

Now the arrival rate, Aij(k), is simplified into the product of the aggregate rates and time 

varying function that describes the O-D fractions for the ramp, 

 ( ) ( ) ( )ij i ijD k A k kα= . (14) 

The O-D is dynamically predicted by first estimating the arrival event of cars and then 

by assigning a destination tag to each car as it is placed in the model using O-D fractions. 

With this information, the simulation will be able to calculate the on-ramp flow rate using 

the aggregate rate function and the off-ramp flow rate from the destination tags. 

To predict the arrival event of cars, historical rate and real-time information are 

combined with the short-term prediction method of Akahane and Koshi [58] to calculate the 

Ai(k) in Equation (14). This method predicts the ramp inflow volume by using an 

appropriate historical record of volumes, an adaptive parameter model, and a measurement 
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of current ramp volumes. Next, a method is proposed to calculate αij to complete the 

equation.  

The second part of dynamically determining the O-D is to assign the destination of the 

car when it enters the road. Several techniques for estimating O-D information have been 

proposed in the literature [30, 59]. This project adopted the method by Chang and Li [30] to 

dynamically predict O-D fractions - αij. While a primary concern in the literature is 

calculating the off-ramp flow, the off-ramp flow in the model is determined during the 

execution of the model and is not required initially. Now that Dij is available, it can be used 

to calculate the inflow rate at all points. In addition, when a new vehicle is added to the 

model, the model sets the destination flag of the car such that in the future, the rate of cars 

exiting the road is correct. 

To incorporate this functionality into the model, a small group of cells corresponding to 

the physical location of the on-ramps (corresponding to the index value i) is designated as 

entry cells, and another small group of cells corresponding to the physical location of the 

off-ramps (corresponding to the index value j) is designated as exit cells. The state of these 

cells is updated externally to represent the effect of vehicles entering the freeway using on-

ramps. Since the microscopic model is developed for control purposes, a control input, ui, is 

defined as the number of cars added to the road at point i in one time step. In general, the 

function Dij adds cars into a ramp queue, qi. At every update step, the state of the cell is 

checked to see if the control input specifies the addition of a car to the model. If the 

controller specifies adding a car and the freeway has room, then the car is removed from the 

queue and added to the roadway. Otherwise, it remains in the queue of cars waiting to enter 

the roadway. If a vehicle flagged with destination j is moved beyond point j, it is removed 

from the model. In this way, the effect of the functions Dij and the control input ui in the 

model is recreated. 

At this point, the necessary components for the microscopic simulation model have been 

completely defined: the framework, the method of propagating vehicles inside the model, 

and the method of adding and subtracting cars from the model. However, as the information 

in this model is intended to be used directly for control, it is also important that the model is 

not too far removed from the real-time sensor data. Real-time data are incorporated into the 
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operation of the model in two ways. As stated before, the real-time data are used during the 

process of calculating dynamic O-D rate information. Therefore, the aggregate rate at the 

current time depends on the real-time sensor information. 

Second, the accuracy of the model is verified by comparing it to the real-time mainline 

data. In order to do this, the time series output of a selected set of loop detectors is compared 

with the state of the model at the same location. The set of detectors will be chosen such that 

all of them are known to be operating properly, and the entire freeway system being 

modeled is covered. If the correlation between the model and the sensors drops below a 

certain point, then the model will conclude that it is no longer accurate in the particular 

region (where the correlation drop occurred). 

Now that all of the pieces necessary to describe the microscopic model are assembled, 

the next step is to fully create it in a realizable form. To this end, a computer simulation that 

is able to update each state using the prescribed driver model is created. This simulator 

displays an accurate picture of the freeway corridor that can be analyzed and used in any 

number of applications; however, in this case, the first step is to verify that the model 

accurately represents the traffic dynamics. 

In the development of macroscopic models, the basic equations used are statements of 

conservation, speed, and flow. The verification process for the microscopic model will rely 

on the same variables used to verify the macroscopic model. Therefore, even though the 

design of the model is specified in terms of how drivers behave, how detailed the 

topological description of the road is, and how cars enter the roadway, the performance of 

the model is evaluated by how well it matches the speed, flow, and conservation properties 

of the data. In general, if the microscopic model is able to reproduce the same speed, flow, 

and conservation information as the real data under the same conditions, then the model is 

assumed to be valid for those conditions. The model will be complete once it is validated for 

all normal operating conditions. 

Of the many driver model parameters available, three parameters were chosen as 

primary: the desired headway, asymmetrical lane changing probabilities, and min/max 

breaking probabilities. The headway model is used in the first step of the driver behavior 

tree. A driver’s desired headway is the basic measure of the way that person drives; a large 
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headway means that the person is a cautious driver, whereas a small headway means that the 

person is more aggressive. Depending on the difference between the desired headway and 

actual headway, the driver will perform different actions (change lane, change speed, etc.). 

These parameters directly affect the limits of the flow of vehicles through the model. The 

asymmetrical lane changing probabilities govern the tendency of a driver to change lanes in 

order to increase speed. The min/max breaking probabilities govern the tendency of a driver 

to brake when the headway is smaller than a desired value. In these situations, the driver will 

brake according to these probabilities. 

To test the suitability of the microscopic model in predicting the volume, speed, and 

density of the freeway using a set of known inputs, a test was run to check the output during 

times when the freeway is not congested. Using the simulator, a line-search algorithm was 

used to optimize the error between the model output and the historical data as a function of a 

number of model parameters. Parameters that did not have a large effect on model 

performance or that were known constants (legal speed limit) were not optimized in order to 

reduce the time of the computation. Figures 14 and 15 show the output of the simulation 

after optimization.  

 

Figure 14. Comparison of average speed of cars exiting the model with observed data. 

 35



  

 

Figure 15. Flow-density comparison between the model and observed data. 

These graphs demonstrate the ability of the simulator to model traffic with the 

microscopic model when it is not congested up to the point at which traffic becomes 

congested. While the simulator is currently not able to detect the incidents that cause non-

recurring congestion, with additional effort it should be possible to create a microscopic 

model that is able to represent the effects of non-recurring congestion. The ability of the 

microscopic traffic model to represent the effects of non-recurring congestion is a significant 

improvement over the existing macroscopic models. Moreover, these graphs demonstrate 

the ability of the microscopic model to return data that closely match the data returned by 

the surveillance system 

3.3.4 Ramp Access Control  

3.3.4.1 Problem Description 

With the microscopic simulator able to calculate the progression of the traffic flows and 

densities, the next step is to formulate a method to improve the operation of the freeway. 

Traffic theory suggests that if the traffic density on the freeway increases beyond a certain 
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point, the traffic flow out of that area decreases. When the flow of traffic is reduced, the 

resulting delay in travel time is defined as congestion. Congestion causes two primary 

negative effects: the travel time of vehicles on the roadway increased and the number of 

vehicles able to use the freeway decreases. These primary problems also cause a number of 

secondary problems, such as increased road wear, increased pollution, and overcrowding of 

alternative routes. Accordingly, there is a great benefit to reducing congestion. 

Having proposed a microscopic model of traffic flow and chosen the goal of eliminating 

or preventing congestion, the next task is to develop a method of doing this. An effective 

method of reducing congestion is to limit the flow of vehicles that are allowed to enter the 

freeway. In the simplest case, if all additional vehicles were prevented from entering the 

freeway for a sufficiently long period, the freeway would completely empty and the 

congestion would be gone. Clearly, some cars must be let on the freeway, but by spreading 

out the vehicles wanting to use the freeway over time, it is possible to decrease congestion 

(or prevent the onset of congestion). Currently, the most prevalent method of limiting the 

volume of cars entering the roadway is ramp metering. Ramp metering with traffic signals 

allows an outside entity such as the police or a traffic authority to restrict access to the 

freeway. 

There are two main categories of ramp metering policies: global and local. In a local 

metering system, the method used to limit the flow is solely a function of the local state (i.e., 

local density, flow, queue length), while in a global metering control system, the method 

considers the states of other sections of the freeway as well as local variables (i.e., 

downstream density, upstream speed). In general, global methods are superior to local 

methods because they are able to account for a larger variety of traffic conditions. In this 

work, the implementation of a hierarchical controller to globally control the ramp metering 

system to reduce or prevent congestion is proposed. 

3.3.4.2 Control Objective 

In order to specify an objective for control, a number of statistics describing the vehicles 

on the roadway must first be defined. These statistics are sufficient to get a measure of the 

total delay on the roadway at any time. 

( )ivw k is the number of vehicles in queue at on ramp i at time k. 
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N is the total number of ramps on the road. 

NV is the total number of vehicles on the road. 

( )mvv k  is the current speed of vehicle m at time k. 

( )mvd k  is the desired speed of vehicle m at time k. 

( )mvx k  is the distance vehicle m has until it reaches its destination at time k. 

The total delay, Z, experienced by drivers during the discrete time period [0,T] is  

 ( ) ( )
( ) ( ) ( ) ( )

T NV N
m mT

m iT
k o m im m

vd k vv k
Z vx k T vw k

vv k vd k
∆

=

⎛ ⎞⎛ ⎞−
= +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑∆  , (15) 

where ∆T is the time step. 

The ability of the proposed controller to use this metric to minimize the total delay in the 

system is a significant improvement over existing models. To calculate the total delay in the 

system using macroscopic models, a number of approximations must be made.  

3.3.5 Ramp Controller  

A hierarchical control system is proposed that utilizes the microscopic model of traffic 

dynamics from before, with the goal of minimizing the total delay experienced by drivers in 

the system. Since the microscopic model of traffic dynamics is contained in simulation form, 

the first step is to develop a framework for connecting a simulation into a controller. There 

have been a few recent examples of controllers that directly use a simulated model of a 

complex system in the feedback loop. One such controller uses a simulation of a glass tank 

to provide input to an adaptive neuro fuzzy controller [60]. Another controller uses a hybrid 

simulation model to control a complex environmental system based on a knowledge-

based/expert system [61]. In the glass furnace application, the fuzzy controller sets the 

parameters of a reduced-order, model-based controller that is directly connected to the glass 

furnace. In tests, the controller was able to reduce the time to reach the desired effect by a 

factor of 2.5, demonstrating the viability of using the result of a simulation to drive a 

controller. The incorporation of a microscopic simulator into the feedback loop of a ramp 
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access controller should be a significant improvement over existing methods because of the 

superiority of microscopic models in representing accurate traffic dynamics. 

The first step in the process of linking the simulator to a controller is to extract 

information from the simulator that can be used in the control algorithm. As stated before, 

the state of the microscopic model comprises 4-foot sections of the freeway and the 

percentage of that section that is occupied by a particular car. In addition, the model contains 

statistics about each car in terms of its destination, desired speed, current speed, and length. 

For the controller, the most important quantities are the average speed and density at 

different locations on the freeway. To get this information, a function ( )*x M x=  is defined 

that calculates a number of statistics on the internal state and returns them in the vector x*.  

The operation of M is to divide the freeway into N 300-foot segments and then calculate 

the density and average speed in each segment. In addition to this, the vehicle-specific 

statistics used to calculate the overall delay in the system are also calculated. The statistical 

state x* is then defined as  

 0 1 2 0 1 2 0 1 2 1

2 0 1 2 0 1 2

* [ , , , ,..., , , , , ,..., , , , , ,..., , , ,

, ,..., , , , , ,..., , , , , ,..., ]
i N i N j M o

j M j M i N

x v v v v v vv vv vv vv vv vd vd

vd vd vd vx vx vx vx vx vw vw vw vw vw

ρ ρ ρ ρ ρ=
 (16) 

where ρi is the density in segment i,  is the average speed in segment i, and iv jvv , , , 
and  are defined as before.  

jvd jvx

ivw

Treating the model for traffic dynamics as a ‘black box,’ a function G that describes the 

input-output relationship of the model can be defined. For simplicity, the operation of the 

microscopic model and M is combined into G. The inputs of G are the inputs to the 

microscopic model, and the output of G is the output of M. Figure 16 is the block diagram 

describing G. The inputs and outputs of G are defined as follows: 

u – Steady state ramp metering rate (in vehicles per time step) – [u0, u1, ui, …, uN] 

x* – Time-varying statistical state of the freeway.  

The functional representation of G is 

 * ( )x G u= . (17) 
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Figure 16. Mainline traffic function block diagram. 

With this model, it is possible to construct a controller. Following previous work [36, 

38], the ramp access controller is broken into two main parts: a single, high-level, system-

wide controller and a group of low-level local controllers. The system-wide controller 

synchronizes the operation of the local controllers by setting the target density and control 

input, while the local controllers use standard automatic control principles to regulate the 

traffic using the set points. 

3.3.5.1 System-Wide Controller 

The system-wide controller is responsible for dynamically setting the target control and 

density values required by the local controllers. Since the goal of the control is to minimize 

the congestion on the freeway, it is necessary to define a scalar valued function of the total 

delay in the system that is a function of the control input. To do this, it is important to note 

that the contents of x* are sufficient to calculate the total delay as calculated by Equation 

(6); therefore, the proposed method to calculate the total delay in the system is to use 

Equation (7) to calculate x* with a control input u and then use that as the input to Equation 

(6). In addition, T is set to 15 minutes. As a result, the controller will be trying to find a u 

that best controls the traffic over a 15-minute period by solving the nonlinear programming 

problem 

 ( )( )min (f G u , (18) 

where f(x*) is the equation to calculate total delay from Equation (7) 
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In this formulation, u is a matrix describing the control input at every ramp location i at 

every time step during the 5-minute period. This method should be a significant 

improvement over existing methods because of the greater granularity that the microscopic 

model provides. 

3.3.5.2 Solution Algorithm 

Because the controller is a non-linear programming problem that does not have a 

standard analytical form, the Hooke and Jeeves direct search algorithm is used to search for 

a solution [62]. This algorithm has the advantage of not requiring a derivative for success. 

Another advantage is that at every step an approximation of the final solution is given, so it 

is possible to limit the number of iterations of the search to meet time constraints (at the cost 

of accuracy). The disadvantage of a direct search method is that there is no optimality 

guarantee unless one searches all possible functional values. Applying the general algorithm 

from Haberman [63] directly to the problem, the following states are obtained: 

• Step 1: Set the initial condition of the vector of control inputs u. Use the previous 
optimization result if it exists; otherwise set the control inputs to allow the maximum 
flow. 

• Step 2: Set the outside loop to count through the index of ramps by iterating down 
the control vector corresponding to the time step from top to bottom.  

• Step 3: For the desired input, make an exploratory move by varying input ui. If the 
function value decreases, set the new value to the desired input and repeat step 3. If 
the function value does not decrease, go to step 4. 

• Step 4: Check the step size. If the step size is not at the minimum, decrease the step 
size and go to step 3. If the step size is at the minimum, move to the next ramp and 
go to Step 3. If this is the last ramp, then stop. 

The result of this algorithm is the control input u that is necessary for the local controller 

to operate. In addition, G(u) can be evaluated to get the steady state value of ρ relating to 

this control input.  

3.3.5.3 Local Controller 

The function of the local controller is to regulate the density of traffic in the region 

corresponding to each on-ramp (indexed by i). To accomplish this, a discrete-time non-

linear H-infinity controller is implemented by expanding upon methods used by Kachroo 

and Rakha [44]. The local controller regulates traffic by adjusting the rate (flow) of cars 
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entering the roadway via the ramp metering system. The need to use a local controller arises 

from the fact that the system controller only updates the control parameters every 15 

minutes. To be responsive to local variations in the traffic flow during the 15 minutes 

between updates, local control regulates the ramp metering.  

The output of the local controller is a time series signal that can be converted by the 

ramp metering system into a series of green light pulses. Figure 17 shows a basic diagram 

describing the parameters of the local area control problem. See Appendix A for a definition 

of terms. 

 

Figure 17. Local controller structure. 

The basic formula for modeling the local system is derived from the macroscopic flow 

model and uses the principle of conservation. In general, cars are conserved, which requires 

that the flow of cars into the region either has a corresponding flow of cars out of the region 

or a corresponding increase in density. The discrete time formula for this (from 

Papageorgiou [13]) is shown below, 

 ( ) ( )1( 1) ( ) ( )T
i i i i oXP k P k w k u k q k∆

∆+ = + + −⎡ ⎤⎣ ⎦
(  . (19) 

To correctly model the regulator function, an equation to model the growth of the 

number of vehicles waiting to use the on-ramp is added [44], 
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 ( ) ( )21 ( ) ( )i i i iVW k VW k T w k u k+ = + ∆ −⎡ ⎤⎣ ⎦
(  . (20) 

Because one control objective is to have the on-ramp flow match the output of the 

system-wide controller, the controlled on-ramp flow is defined as a state, and the desired 

deviation from the on-ramp flow (as defined by the system-wide controller) is defined as the 

control output with the following formula, 

 ( 1) ( ) (i iu k u k u k)i+ = +( (
%  , (21) 

where  is the control output of the local controller. iu%

A linear function is now used to approximate the speed-density relationship (from 

Haberman [63]),  

 ( ) ( )1 i
f

m

P k
v k v

ρ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 , (22) 

where  is the maximum speed in segment i (determined by the speed limit of the road) 

and ρ

fv

m is the maximum density in segment i (determined by the Highway Capacity Manual). 

Next, Equation (12) is substituted into the formula for qo(k), 

 ( ) ( ) ( )1 i
o f i

m

P k
q k v P k

ρ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 , (23) 

Then qo(k) in Equation (9) is replaced with Equation (13), resulting in (from Haberman 

[44])  

 ( ) ( ) ( ) ( )
11 ( ) ( ) 1 iT

i i i f iX
m

P k
P k P k w k u k v P k

ρ
∆
∆

⎡ ⎤⎛ ⎞
+ = + + − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
%  . (24) 

Using equations (20), (21), and (24), the state vector x(  is defined as [ ],i iP VW u(i . Now, 

the state equations can be defined by 
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,

 (25) 

where 1x(  is the first element of the state vector x( . 

Next an H-infinity controller for the above state space is constructed. To do this, the 

objective for control is first specified,  

 [ ]1 2 3 4
1 3

( ) 1 1 ( ) ( )i i
i

uz k w w w x k w u k
x x
ρ⎡ ⎤⎛ ⎞⎛ ⎞

= − − +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

(
%( (  , (26) 

where w1,w2,w3, w4 are weighting coefficients, 1x(  is the first element of the state vector x( , 

and 3x(  is the third element of the state vector x( . 

The set points ρi and ui are both set by the system-wide controller (ui is the result of the 

optimization routine and ρi is available from x* = G(u)). The weighting points are chosen 

such that the controller balances between the goal of matching the target density and the 

constraint of keeping queue length to a minimum. 

The block diagram for the H-infinity controller is shown in Figure 18. In the figure, w(k) 

is the external input, y(k) is the output, z(k) is the controlled output, and ŭ(k) is the controlled 

input.  
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Figure 18. Local controller block diagram. 

In order to calculate the control law K, a solution that can account for the nonlinear term 

in the state equation must be used. While it is possible to create a linear disturbance model, 

in this case, the solution is found directly by using state-dependent Riccati equation (SDRE) 

techniques [64]. To do this, the system must be put into a form in which the non-linear 

dynamics are represented by direct parameterization such that kx( is the state at which the 

dynamics are evaluated. 

Thus, using the state equations of (25), define 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 21 k k kx k A x x k B x w k B x u k+ = + +( ( ( ( (
% , (27) 

and from Equation (26) define 

 ( ) ( ) ( )1 12( ) ( )k kz k C x x k D x u k= +( ( (
% . (28) 

In addition, it is assumed that the measurements differ from the actual values by N(0,σ), so 

the observer equation becomes 

 ( ) ( ) ( ) ( )2 21( )ky k C x x k D x w k= +( ( (  , (29) 

with C2 = I and D21 = diag(w5,w6,w7), where w5,w6, and w7 are weighting coefficients. It is 

important to note that the measurements of the state come directly from the microscopic 
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simulation. In this way, the problems caused by missing data and by the conversion between 

occupancy and density are avoided. Accordingly, the elements of D21 represent the 

uncertainty in the simulated data. 

An important assumption at this point is that the parameterizations of (A,B1), (A,B2), and 

(C1,A) are stabilizable for , where Ω is the region of interest [64]. Now, the augmented 

state matrix is created for this system by evaluating the matrices at the control point 

x ∈Ω

kx( , 

 ( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
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( ( (
, (30) 

and taking the z-transform of Equation (30), 

 ( ) 1( ) :H z C zI A B D−= − + . (31) 

Now, the bilinear transformation,  

 1
1

s
c
s
c

z +
=

−
 , (32) 

where c is a positive constant, is used to transform H(z) from the discrete domain to the 

continuous domain, with an augmented state matrix of 
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A γ is selected such that the solutions to the Riccati equation, ( ) 0kP x ≥ , , exist 

with 

( ) 0kQ x ≥

( ) ( ) 2
max k kP x Q xλ γ<⎡⎣ ⎤⎦

T
u

T
⎥

 [50]. Now the continuous time H∞ solution from Gawron et 

al. [50] is used 
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−

⎡ ⎤− −
⎢
⎢ ⎥− − −⎣ ⎦
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  , (35) 
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                    ( ) ( )xDxDR T
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w 2121=  

Next the observer equation is constructed, 

 ˆ ˆo ox A x B y= +&
, (36) 

and the related control law, 

 ˆu Fx=  , (37) 

where   ( )1122
1 CDPBRF TT

u +−= −                       ( ) 1
2112

−+−= w
TT RDBQCL  

                                                        ZLBo −= ( ) 12 −−−= QPIZ γ  

          ( )PBDCZLPBBFBAA TT
o 121

2
211

2
2

−− ++++= γγ  , 

again using the solution from Gawron et al. [50]. 

Next the inverse bilinear transform of equations (36) and (37) is taken, resulting in 

 ( )ˆ ˆ( 1) (ok ok )x k A x k B y+ = + k  (38) 

 ( )ˆ( ) ku k F x k=% . (39) 

Using the result of this controller, the next control input describing the number of cars 

allowed to enter the freeway in the next time step in the local region i at time k is 

 ( ) ( )iu k u k+(
%  . (40) 

For this controller to be successful, a few key implementation issues need consideration. 

First, the controller must be driven at a relatively high frequency to account for the time 

varying Hamiltonian. Fortunately, the period of the system itself is at minimum 20 seconds, 

so solving the SDRE every 10 seconds should be appropriate to ensure that the controller 

has the right dynamics for the current state. Second, while SDRE controllers are not optimal, 
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they have been shown to be the local optimal solution for the control problem [65]. Recent 

work also demonstrates that the SDRE solution is an effective control design technique [66] 

that can outperform local linearized models of control [67]. 
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4. CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

In this report, a controller for regulating access to the freeway using ramp metering is 

proposed. The proposed controller is original in that it utilizes a microscopic simulation of 

the freeway as a dynamic model by which control strategies can be determined. The 

microscopic simulator provides a significant advantage over existing models of traffic flow 

because it provides increased flexibility in the way that traffic flow dynamics are modeled 

and evaluated. To this end, the model extends existing dynamic O-D prediction routines in a 

new way that allows for efficient calculation of predicted exit flows by using the prediction 

of entrance flows. The microscopic simulator also has the ability to model the freeway and 

its bottlenecks with a significantly finer granularity than has possible with macroscopic 

models.  

Beyond the advances possible from the microscopic model, the controller also 

incorporates H∞ control techniques in an original way to solve the ramp access control 

problem. The hierarchical controller breaks the control problem into two sub-problems: the 

calculation of a system-wide control scheme and the implementation of the control scheme 

at the local level. The H∞ controller takes set points provided to it by the system-wide 

controller and regulates the traffic density accordingly. This is a significant improvement 

over other H∞ controllers that only work by using pre-calculated values in a local region. In 

addition, the H∞ controller utilizes measurements from the microscopic model that were 

previously unavailable through established means. 

In general, the controller presented here represents an improvement over existing 

controllers. It utilizes real-time, simulated, and historical data concurrently to achieve a 

detailed estimation of the state of the freeway. Using the estimation of freeway conditions, 

the controller dynamically sets operating points that consider the entire state of the freeway 

network and then executes control to reach target objectives at the local level. 

4.2 Future Work 

The process of building a completed controller that can be implemented in a real-world 

environment involves many steps. The following issues need to be addressed to finalize the 
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implementation. After the resolution of key issues, the controller can be tested and its 

operation validated. 

4.2.1 Microscopic Simulator Models Congestion States 

In order for the microscopic simulator to provide the information necessary to control 

the freeway at all times, the simulator must be able to determine when an incident occurs. 

While the existing framework for the simulator is general enough to be able to show the 

effects of congestion, the driver model must be updated and calibrated to increase the 

verisimilitude of the simulator.  

The existing performance measures are robust enough to determine whether the 

simulator is properly functioning, but a wide range of data must be used to ensure that the 

simulator is performing correctly. Once the simulator can model both the recurring and non-

recurring congested states of the freeway given a variety of data sets, the rest of the 

controller can be built around it. 

4.2.2 Incident Handling 

Currently, when the model detects an incident (or becomes uncorrelated from the real 

data), the controller scheme is unable to provide a valid control input. Instead, the controller 

must wait until the model and real data become correlated again. It should be possible to 

retroactively adjust the model to correct for the discrepancies. Methods for doing this could 

include dynamically altering the driver model to take into account a change in the traffic 

flow, adding obstacles into the model (to simulate incidents or closed lanes) and then letting 

the normal driver model respond accordingly, or arbitrarily adding or subtracting cars to 

adjust the volumes in the model to match the real-time data. 

Once a scheme for retroactive adjustment is in place, it will be possible to control ramp 

access during times immediately after an incident. The ability to reduce congestion 

associated with a non-recurring event (such as a stall or accident) will greatly improve the 

overall performance of the controller and increase the number of situations in which using 

the controller is advantageous. 
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4.2.3 Real World Implementation 

Currently, the ramp access controller, as it is proposed here, has not been customized to 

work with an actual freeway system. To further analyze the significance of the controller, it 

would be beneficial to customize it to work with an actual section of the freeway and 

evaluate how well the controller operates in a real-world environment. By implementing the 

controller and testing it against real-world conditions, the ability of the controller to handle 

the intricacies of actual conditions could be evaluated. 
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APPENDIX A: NOTATION 

Indices 

i – On ramp 

j – Off ramp 

k – Time step 

K – total number of time steps in the data sample 

m – Car  

General Notation 

D(t) – Actual trip demand rate  

Q(t) – Actual uncontrolled flow of vehicles into the freeway 

U(t) – Actual controlled flow of vehicles into the freeway 

VW(t) – Total number of vehicles waiting to use the freeway 

Z(k) – Sensor information collected from the freeway 

x(k) – Microscopic state information (general automata cells) 

x*(k) – Statistical state information extracted from the microscopic model  

Dij(k) – Estimated O-D demand rate 

ui – Steady state ramp metering rate at ramp i 

u – [u1, u1, u2, u3, u4, u5,… ,uN] 

ρi – Steady state local density at ramp i 

ρ – [ρ1, ρ2, ρ3, ρ4, ρ5, ρ6,… ,ρN] 

ŭi(k) – Actual ramp metering rate at ramp i 

ŭ(k) – [ŭ1(k), ŭ2(k), ŭ3(k), ŭ4(k), ŭ5(k), ŭ6(k),… ,ŭN(k)] 

Aij(k) – Arrival rate of vehicles to the entrance of the freeway indexed by trip 

Ai(k) – Arrival rate of vehicles to the entrance of the freeway indexed by on-ramp 
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αij(k)- Percentage of vehicles entering at location i that exit at location j 

Sj(k)- Off-ramp flow at location j  

Θij(k-l,k) – The fraction of vehicles that exit via ramp j during time k that departed from 

ramp i at time k-l. 

Global Controller Notation 

G(u) – A function that calculates statistics on the freeway using the steady state control 

vector u. 

M(x(k)) – A function that calculates statistics on the freeway over the last time step 

N - The total number of ramps on the road 

NV - The total number of vehicles on the road 

( )kvvm  - The current speed of vehicle m at time k 

( )kvdm  - The desired speed of vehicle m at time k 

( )kvxm  - The distance vehicle m has until it reaches its destination at time k 

( )kvwi  - The number of vehicles in queue at ramp i 

∆T – The time in-between calculations of the state of the microscopic model 

T – The length of the optimization horizon 

Z – Total delay experienced by drivers during time T 

f(x*) – Objective function for the system-wide controller 

Local Controller Notation 

w(k) – external input to the controller 

z(k) – objective function 

y(k) – measured output 

ũ(k) – control input equal to the change in controlled flow 

H – Plant model 
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K – Controller model 

w1i(k) – uncontrolled flow into the control region from upstream 

w2i(k) – uncontrolled flow into the on-ramp queue 

VWi(k) – number of vehicles in the on-ramp queue 

Pi(k) – Density in the local region 

qo- flow out of the control region, later approximated using other terms 

∆X – length of the control region 

∆T – time step 

ρm- maximum density in the control region 

νf – free flow speed 

)(kx(  - Internal state of the plant equal to [Pi,VWi, ŭi] 

)(ˆ kx - Internal state of the controller 

Aok, Bok, Fk - The solution to the H∞ control problem 

w1, w2, w3, w4, w5, w6, w7 – Weighting coefficients 
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