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Abstract

This étudy addresses the need to better quantify and model load transfer across joints
in rigid {concrete) pavement systems, and presents efficient solution strategies for mak-
ing three-dimensional finite element analyses of rigid pavements and other large structural
systems practicai on desktop computers.

A modeling strategy is developed which permits the analysis of multiple slab systems
having various geometries. Several soil layers below the slabs and separation of the slab and
base layer are considered. Load effects include accurately located tire pressures and linear
temperature gradients through the thickness of the slabs.

An embedded bending element is developed and verified that permits the precise lo-
cation of dowels within the model without regard to meshing of the slab. Debonding and
nonlinearities due to looseness of the dowels may be explicitly captured. Details of the
inclusion of a general bond-slip law are also presented, extending the capabilities of the
element to the modeling of more general reinforced concrete structures.

A technique for modeling aggregate interlock shear transfer across rigid pavement joints
is developed that relies on a two-phase model for the concrete. The aggregate interlock
model captures variations in shear stifiness and strength with aggresate size, concrete
strength, and joint opening and relative tangential displacement.

An efficient iterative solution strategy for large-scale structural systems involving ma-
terial and contact nenlinearities is developed and tested. This solution strategy relies on
a multigrid-preconditioned conjugate gradient solver that permits the use of unstructured,
unnested mesh sequences, the incorporation of nodal contact conditions, spatially varying
materials, and the meshing of multiple element types within a single model.

Verification of the finite element models is accomplished through comparison with ex-
isting laboratory test data of doweled rigid pavements. A parametric study on the decrease
in dowel load transfer due to dowel looseness is presented, as is a study on the effect of joint
opening on aggregate interlock shear transfer. The potential for detrimental effects on rigid

pavements due to poor load transfer is clearly demonstrated by these studies.
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Chapter 1

Introduction

1.1 Context

Jointed plain concrete pavement (JPCP) has been in use throughout the world for many
years [39], and is common in both roadways and airport runways. In general, JPCP consists

of several components as illustrated in Fig. 1.1:

e Multiple unreinforced concrete slabs, often tied to each other by dowels (round steel

bars) that assist in transferring load between slabs.

o Base layers consisting of compacted gravel or cement-treated soils, which are often

placed below the slabs to better distribute load o the natural subgrade.
¢ The natural subgrade below the base layers.

A significant feature of JPCP are the joints, which are of two primary types: contraction
and construction (see ¥Fig. 1.2}, Contraction joints are usually spaced about every 3-5m to
permit expansion and contraction of the slabs and control crack location. They are formed
by sawcutting 1/4-1/3 the pavement thickness after curing, forcing a crack to occur at the
joint through the pavement thickness. Aggregate interlock arising from the interaction of
the two rough joint surfaces is an important load transfer mechanism at contraction joints.
Construction joints are formed at the end of a pour, and in coutrast to contraction joints,
have relatively smooth joint surfaces with no aggregate interlock load transfer.

Rigid pavements are complex structural systems. To design them efficiently, engincers
need to evaluate the effects of critical load cases and predict the corresponding failure modes,

evaluate pavement lifetimes, and develop better retrofit strategies for damaged pavements.
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Figure 1.1: System of Two Doweled Rigid Pavement Slabs

Achieving these objectives relies on accurately predicting the structural response of the

pavement system, which is affected by the following factors:
e Complex load transfer mechanisms at the joints.
o Temperature-induced stresses and loss of foundation support {see Fig. 1.1).
s Dynamic effects of wheel loading.
e Material behavior of both the slab and subgrade.

In recent years, there has been a movemeni toward mechanistic design procedures for
pavements which holds promise for rigorously incorporating these factors in design. This
movement has led researchers to use finite element techniques to analyze the response of
rigid pavement systems to applied static, dynamic, and thermal loadings [84, 54, 96, 60].

However, despite the active research into the finite element analysis of rigid pavements, the
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methods commonly used to model joint response are simplistic, and do not accurately cap-
ture the complex behavior of aggregate interlock and dowel-slab interaction. This is of great
concern, since serviceability failures of JPCP are often the result of poor joint performance.
For example, faulting, where a permanent relative vertical displacement develops between
adjacent slabs as shown in Fig. 1.1, is a common joint failure that is often attributed to
poor joint shear transfer and localized degradation of the supporting soil. In addition to
concerns about the modeling of joint shear transfer, solution of the three-dimensional (3D)
finite element models needed to capture pavement response is not feasible on the desktop

computers commonly available to designers.

1.2 Research Objectives

This study focuses on overcoming particular deficiencies in current state-of-the-art analysis

of JPCP. In particular, this study focuses on the following topics:

* Development of new techniques for modeling dowel load transfer. These techniques
permit the consideration of dowel looseness that is known to have a large effect on

joint performance {10, 81], but has not been explicitly modeled in previous studies.

o Investigation into new methods for modeling aggregate interlock shear transfer. A
modeling strdtegy is developed and implemented that rationally incorporates realistic

crack constitutive relations that reflect variations in joint load transfer with joint



opening, load magnitude, and concrete properties.

o Development of efficient solution strategies. A nonlinear multigrid-preconditioned
conjugate gradient solution method appropriate for use with unstructured finite ele-
ment models of general, 3D geometries is developed. This method permits the rapid
solution of modest finite element models of rigid pavement systems on desktop com-

puters and will permit the investigation of detailed models on high-end workstations.

To aid in the implementation of new joint modeling techniques, a general, object-
oriented finite element program suitable for 3D structﬁrai analysis is developed. This pro-
gram incorporates the proposed nonlinear solution strategies, and is designed to serve as a
valuable tool for the analysis of rigid pavement systems when integrated with an appropri-
ate user interface. To verify the accuracy of the proposed modeling techniques and solution
strategies, results from two finite element models of experimental systems are compared
with measured data. Numerical studies are performed to study the changes in response of

typical systems to model parameters, and to verify their applicability.

1.3 Organization of Study
The remainder of this study is organized as follows:

e In Chapter 2, a survey of the literature on the finite element modeling of rigid pave-
ment slabs is presented. This serves to define the current state-of-the-art, and help

identify what specific modeling strategies are needed.

¢ Chapter 3, drawing on the conclusions of the literature review of Chapter 2, presents
an overview of the modeling strategies used in this study. Included are issues such as
slab and subgrade discretization, material types, slab-subgrade loss of contact, and
methods of loading. Dowel shear transfer, aggregate interlock, and multigrid solution

strategies are individually addressed in Chapters 4-6.

o Chapter 4 covers the modeling of the dowels and dowel-slab interaction. An embedded
bending element designed specifically for modeling dowel action is developed that
explicitly incorporates contact conditions due to gaps between the dowel and slab. In
addition, performance and convergence of the dowel element, and the effects of gaps

between the dowel and the slab on joint response, are examined.



+ Chapter 5 focuses on the mechanism of aggregate interlock and its inclusion in finite
element models of rigid pavement systems. A detailed literature review is presented to
explain the mechanics of aggregate interlock and provide an overview of past attempts
to model this phenomenon. Based on this research and insight into the physical
mechanism of aggregate interlock shear transfer, a modeling technique is developed

that rigorously incorporates crack constitutive relations at joints.

» Chapter 6 addresses solution strategies, including the development and implemen-
tation of a nonlinear solution scheme appropriate for use with large-scale models
incorporating material and contact nonlinearities. A multigrid-preconditioned con-
Jugate gradient solver applicable to unstructured 3D finite element discretizations is
developed to solve the linearized systems of equations arising at each iteration in the
nonlinear solution. In addition to extensive performance studies, a model problem of
a rigid pavement system is solved to illustrate the use of the solution strategy in the

context of the present study.

o Chapter 7 examines the accuracy of the finite element models developed in this study
by comparison with laboratory test data collected by Hammons [33]. The test data
include scale models of doweled two-slab systems both with and without cement-

treated base layers.

» Chapter 8 presents parametric studies designed to indicate the usefulness of the pro-
posed joint shear transfer modeling strategies for pavement evaluation and design.
The effect of dowel looseness on joint shear transfer efficiency and pavement response,
inciuding slab and subgrade stresses, is addressed. The effect of joint opening on ag-
gregate interlock shear transfer efficiency is also examined in detail. Both wheel and

temperature loadings are considered in these studies.

» Chapter 9 presents a summary of this study, along with conclusions and recommen-

dations for future research.



Chapter 2

Literature Review

2.1  Early Finite Element Models of Rigid Pavement Systems

In an effort to overcome the limitations of early analytical methods, the finite element
method was first employed to model the response of rigid pavements in the early 1970's.
Wang, Sargious, and Cheung [80} studied the response of rigid pavements subjected to wheel
loadings using a linear finite element model. The slab was modeled with medium-thick plate
elements assuming Kirchoff plate theory. The foundation was considered to be either an
elastic half-space, for which an equivalent foundation stiffness matrix was developed by
inverting the foundation flexibility matrix determined using the Boussinesq equation, or a
dense liguid {Winkler) foundation. Shear load only was transferred at the longitudinal joints
assuming perfect load transfer efficiency. The effect of transverse joints was not considered,
since only a portion of a single roadway slab was modeled due to the need to minimize
the problem size. Slab stresses and deflections were computed using the finite element
model with both a continuous foundation and a Winkler foundation, and were compared to
stresses compuied using Westergaard's equation. In general, Westergaard's solution agreed
closely with the finite element method results assuming a Winkler foundation: however, the
finite element model results assuming a continuous foundation yielded higher stresses and

deflections.

Scon after this initial study, Huang [37] presented another finite element model for
rigid concrete paving systems. In this model, the effect of an adjacent slab, connected by
shear transfer devices at a transverse joint, was considered. Load transfer efficiency was
assumed to be perfect. In addition, stresses due to temperature curiing were considered.
The foundation was modeled as an elastic continuum, and loss of contact was considered.

The model was verified by comparison with analytical solutions and deflections and stresses
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measured during the Arlington Road Test [87, 88, 89].

Following the development of these early models, Tabatabaie and Barenberg [82, 84] de-
veloped a 'more general finite element program called ILLI-SLAB which is still in use today.
ILLI-SLAB utilizes the same medium-thick plate elements employed in earlier models, and
the effect of a bonded or unbonded base can be incorporated using a second layer of plate
elements below the slab. The subgrade is modeled as a Winkler foundation. Dowel bars at
joints are modeled as discrete bar elements, and shear transfer via aggregate interlock or
keyway is modeled with spring elements. Further, the relative displacement between dowel
bars and the concrete pavement can be considered by placing a discrete spring element at
each end of the dowe! bar. Verification of models developed with ILLI-SLAB was achieved
by comparison with theoretical solutions for stresses and displacements, as well as com-
parison with actual field test data from the AASHO Road Tests [1] and tests of concrete
pavement on cement treated subbases. Studies were performed to examine the effects of
ioad transfer efficiency on the behavior of plain jointed concrete pavement as well as the
effect of transverse crack spacing on load stresses in continuously reinforced concrete pave-
ment. Further. increased support provided by a tied concrete shoulder was examined, as
was the the effect of a stabilized base when modeled as a discrete stiff layer. One of the main
conclusions from the early studies using ILLI-SLAB was that joint load transfer efficiency
must be modeled accurately to predict the possibility of permanent subgrade deformation

and slab distress near the slab corners.

Tayabji et al. [86] developed the program JSLAB for analyzing pavements resting on a
Winkler foundation. The model incorporates features similar to ILLI-SLAB, utilizing plate
elements to model the slab and a bonded or unbonded base. Dowels were modeled with
modified beam elements that incorporated the effect of shear deformation and the elastic
support provided by the concrete. As in ILLI-SLAB, aggregate interlock and keyways were

modeled with springs.

In 1883, Huang [38] extended his earlier model to allow the consideration of multiple
slabs and various load transfer devices in a manner Simila.r to ILLI-SLAB. It should be
noted that dowels were modeled as having shear stiffness only across the joint, i.e. beading
deformations of the dowels were not considered. The deformation of the concrete under the
dowel was considered by treating the embedded portion of the dowel as an infinitely long
beam on elastic foundation. The subgrade was modeled as an elastic half-space and loss

of contact between the subgrade and the slab was considered. Comparisons between the



finite element mode!l results and data from the Arlington Road Test [37, 88, 89] were made
for various slab thicknesses. Further, the effects of mesh refinement and loss of subgrade
contact on the computed deflections and stresses were studied. Huang concluded that loss of
contact should be considered for wheel loads applied near the pavement edge where actual

loss of subgrade support often occurs.

A 1988 study by Krauthammer [52] utilized a complex shear transfer mechanism as
part of a 2D plane strain dynamic finite element model to examine the effects of shear
transfer on pavement behavior. The shear transfer mechanism that was employed consisted
of two dowel elements cantilevered from the ends of the slab which were connected by a pure
shear element. Horizontal forces were transferred via horizontal truss elements. To model
dowel iooseness and slip, a previously developed shear transfer model [51] was employed for
the pure shear element used at the joint. Model results were generated for falling weight
defiectometer loads. Various levels of joint deterioration were considered in the study, as
were simulated subgrade deterioration near the joint and the effects of asphalt concrete
overlays. Variations in shear and horizontal stresses in the concrete slab, joint efficiency,

deflections adjacent to the joing, and subgrade shear stresses were examined.

Following the initial development of these and other similar finite element models, in-
vestigators began detailed studies of load transfer, subgrade nonlinearity, and temperature-
induced curling stresses (sec [42, 44] for example). However, the models employed still re-
lied on medium-thick plate bending elements; as a result, shear stresses and normal stresses
through the thickness of the plate were not considered, limiting the effectiveness of the mod-
els for detailed stress analysis. In addition, the concrete was modeled as lineariy elastic,
and aggregate interlock shear transfer was incorporated with linear spring elements. Lastly,
with the exception of [53], dynamic load effects were not considered in these early studies.
To overcome these “mitations, new finite element models have recently been developed.
Some investigators have focused on material nonlinearities, while others have performed
both linear and nonlinear dynamic finite element analyses to better capture the applied
load effects. Most investigators have moved to 3D models, although plate models are still
in use. The remainder of this Chapter details these more recent investigations into the

structural response of rigid pavement systems.



2.2 Current FE Models of Rigid Pavement Systems
2.2.1 Toannides and Donnelly (1988)

This study {43] was an early attempt to model a single rigid concrete pavement slab and
subgrade using a 3D finite element model. The focus of the study was the effect of subgrade
nonlinearity on pavement response. The effects of mesh refinement, vertical and lateral
subgrade extent, and boundary conditions on the predicted response were also examined.

The existing 3D finite element program GEOSYS was adopted for the analysis. Linear,
8-noded brick elements were used to model the slab and subgrade, with varying degrees of
mesh refinement. The effects of lateral and vertical subgrade extent were examined, with the
investigators concluding that the subgrade depth should extend to the point where constant
strain is reached. This depth varies depending on the lateral extent of the subgrade, but
was generally about 40’ for a lateral subgrade extent of between 25 and 35'. The boundary
conditions used in the study were vertical supports on the bottom of the subgrade, and
lateral restraints on the vertical sides of the subgrade.

Vertical mesh gradation studies showed that sufficient accuracy was achieved when the
slab was divided into two layers. Horizontal mesh gradation and element aspect ratio were
also studied. resulting in the conclusion that the mesh needs to be refined in the region of
loading, and the maximum element aspect ratio should be kept below four.

Interior, edge, and corner wheel loadings were applied and the results compared with
analytical solutions and 2D analyses reported previously by loannides et al. [42]. To accen-
tuate the effects of subgrade nonlinearity, the foundation material assumed was a relatively
soft cohesive material, and the wheel loads used were fairly large. The interior loading pro-
duced little subgrade nonlinearity. Comparison with the 2D results and analytical solutions
showed some discrepancy in the deflections and stresses which the authors attributed to
mesh refinement in the region of the load. The edge loading produced more pronounced
subgrade nonlinearity, but the overall response of the slab was not significantly affected,
with the upper 2.0 m of the foundation exhibiting significant nonlinear response. Com-
parison with 2D sclutions showed relatively good agreement for slab deflections, with the
discrepancies in siab stresses being somewhat larger. The differences in subgrade stresses
were quite significant. In the case of corner loading, the effects of subgrade nonlinearity
were more significant, with about 20% of the elements experiencing reduced moduli, with
these elements concenirated in the upper 1.7 m of the subgrade. Comparison with the

ILLI-SLAB 2D solutions for stresses and displacements showed discrepancies of less than



10

10% for slab stresses and deflections: the discrepancy in the foundation stresses was much
larger.

The main conclusion of the authors [43] was that 3D analysis is a valid modeling tool
for rigid concrete pavements; however, existing 2D finite element models are reasonably
accurate. The effect of stress dependent subgrade stiffness may be significant for corner and
edge loadings, but slab deflections and bending stresses are less affected than the subgrade

stress.

2.2.2 Channakeshava, Barzegar, and Voyiadjis (1992)

This study [12] focused on the development of a nonlinear, 3D static finite element model
of plain concrete pavements with doweled joints. The goa! of the authors was to adequately
model the 3D response, overcoming the limitations of simpler 2I) models utilizing piate ele-
ments. To model cracking of the concrete pavement, a plastic constitutive model augmented
by a smeared cracking model was implemented for the slab concrete. Loss of subgrade sup-
port adjacent to transverse joints was modeled, and the progressive softening of dowel load
transfer was considered. The loadings included temperature gradients (curling) and wheel
loads. The finite element model of the slab employed 20-noded, quadratic, isoparametric
brick elements.

The subgrade was idealized as a dense liquid foundation with three discrete linear springs
at each node on the base of the slab. The vertical spring resisted only compressive forces,
allowing the slab to 1ift freely off the subgrade. The two horizontal springs were given a small
stiffness to prevent numerical difficulties, but no attempt was made to model horizontal
frictional effects. The loss of subgrade support adjacent to the joint was simulated by
reducing the stiffness of the subgrade springs.

The dowel bars were modeled with discrete bending elements. To model the interaction
between the dowels and the concrete, including looseness effects, three discrete nonlinear
springs were used to connect each end of the dowel to the slab. The stiffnesses of these
springs wefe determined i a separate local finite element model of a single dowel bar where
the dowel was embedded in the slab, and car*ilevered out from the face a distance equal to
the joint opening. Increasing point loads (shear forces) were applied at the tip of the dowel,
and the displacements at the face of the slab were determined, giving the force-deformation
relationships for the nonlinear springs at the ends of the dowel. This allowed the effects of
local stress concentrations and concrete nonlinearities to be accounted for. Varying concrete

strengths were assumed for this analysis in an attempt to quantify the loss of shear transfer



11

efficiency due to fatigue.
Various loadings were considered, including wheel loads, nighttime curling (cooling of
the top of the slab relative to its base), and daytime curling {heating of the top of the slab

relative to its base). The main conclusions of the study were as follows:

» Dowel-concrete interface stiffness is reduced due to high stress concentrations near the
dowel. This loss of stiffness increases with repeated loadings due to fatigue, reducing

shear transfer efficiency.

» The dowel-concrete interface stiffness significantly affects deflection profiles for slabs

with normal subgrade support.

* The shear transfer efficiency increases with loss of subgrade support near the joint

due to pumping action.

» Nighttime curling causes a loss of support near the joints, as well as widening of the
joint. Truck traffic is typically heaviest at night, so nighttime curling in combination

with wheel loading is a critical load case.

» During nighttime curling and the resulting loss of support at the joint, the far end of a

slab lifts off the base as heavy wheel loads pass. This may help explain joint faulting.

» Daytime curling is not a critical loading, since the siab lifts off the subgrade at its

center as opposed to the joinis.

2.2.3 Zaghloul, White, and Kuczek (1994)

This study [96] focused on the determination of load equivalence factors (LEFs) by the use
of a 3D, nonlinear dynamic finite element mode! developed using the commercially avail-
able finite element program ABAQUS. The model was designed to overcome the inherent
limitations of 2D plate finite element models and Westergaard analysis.

The slab and subgrade were modeled using 3D brick elements, and the dowels were
explicitly modeled with bar elements that were unbonded over half their length. Joints
were modeled with gap elements, and assumed to have an initial opening of 3/8 inch;
contact friction was considered if the gap closed during loading.

Concrete, granular subgrade, and clay subgrade materials were all modeled as different
nonlinear materials. The concrete was modeled as bilinearly elastic-plastic up until failure,

at which point the stress-strain curve descended bilinearly. The granular base, subbase, and
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subgrade were idealized using an elastic-plastic Drucker-Prager model. Clays were modeled
with a Cam-Clay model that accounted for deformation rates and both elastic and plastic
deformations.

The model was verified for static loading by comparing computed deflections to those
determined using Westergaard’s equations and a separate finite element program. Various
slab thicknesses and subgrades were considered; agreement was found to be good in all cases.
The dynamic modeling capabilities of the program were verified by comparing computed
slab response with measured field data.

Following model verification, the authors computed LEFs for various axle loads, axle
configurations, and slab thicknesses. These LEFs were compared to the AASHTO LEFs (2],
and a close correlation between the two was found. However, the authors felt that their LEFs
offered significant advantages over the AASHTO LEFs since reatistic material properties
and dynamic effects were considered. Further, the LEFs computed by the authors are based

on an empirical model, and thus can be extended to cover unusual loadings or other factors.

2.2.4 Chatti, Lysmer, and Monismith (1994)

In this investigation [13], the authors studied the effects of truck dynamics on the response of
rigid pavement slabs. A linear dynamic finite element model (DYNA-SLAB) was developed
to model the slab/subgrade system, and was essentially an extension of the existing static
mode} ILLI-SLAB {82, 84] which uses piate elements to model the slab.

Aggregate interlock shear transfer between slabs was modeled with springs, and dowels
were modeled with bar elements. The foundation was treated either as a Winkler founda-
tion, or a layered viscoelastic medium resting on a rigid base or a semi-infinite half-space.
Further, the authors developed an analytical method for determining the frequency depen-
dent stiffness and damping coefficients used in the Winkler model. In this method, the
analytical solutions for displacement and velocity response of a massless slab resting on a
layered soil profile when subjected to a harmonic loading were determined. These values
were then substituted into the integral equation of dynarnic equilibrium expressed in terms
of the stiffness and damping coefficients of the Winkler foundatior. and the stiffness and
damping coefficients were calculated.

When a frequency independent Winkler foundation was employed, Newmark’s constant
acceleration method was used for an explicit solution in the time domain. For the case of
the frequency dependent Winkler model or a layered viscoelastic model, the solution was

achieved in the frequency domain using a complex response method. The solutions were
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verified by comparing the results to an approximate solution for a point load on a infinite
plate by a Winkler foundation, and to the exact solution for a transient point load on a
beam of finite length supported by a viscoelastic Winkler foundation. Good agreement
was found in both cases. In addition, results from a U.S. Army Corps of Engineers study
were comparéd to those computed using DYNA-SLAB, with good agreement. Further, the
foundation models were verified by comparing computed deflection profiles due to harmonic
loadings to those determined using a separate 3D soil-structure interaction program. In
general, the layered foundation gave good results for all loading conditions, whereas the
Winkler foundation model was in good agreement for interior deflections, but overpredicted
edge deflections.

Following verification of the model, the authors investigated whether dynamic analysis
is necessary for the prediction of rigid pavement response. Parameters included vehicle
velocity and pavement roughness, and several different slab thicknesses and load transfer
efficiencies were considered. The effect of vehicle velocity on slab bending stress was found
to be negligible in all cases. To study the effect of pavement roughness, equivalent loads
were developed for various slab profiles that included the effects of curling. fauiting, and
breaks of varying severity using a separate truck simulation program.

The authors concluded that while it is important to use expected pavement roughness to
determine the peak magnitudes and locations for the truck wheel load history. the dynamic
effects on the slab response are not significant. The authors caution, however, that the
existence of a stiff layer or bedrock at a shallow depth may increase dynamic effects to the

point that they should be incorporated in the analysis.

2.2.5 Uddin, Hackett, Joseph, Pan, and Crawley (1995)

This study [90] documented the development of a 3D finite element model of a concrete
pavement and subgrade using the general-purpose finite element program ABAQUS. The
goai of the study was to examine the effect of pavement discontinuities on surface deflections
of a pavement subjected to a standard falling weight deflectometer load (FWD).

The slab. cement-treated base, and subgrade were modeled using 3D elastic brick ele-

ments. The following model parameters were investigated in a previous study and employed:

¢ The model was quarter symmetric with rollers on the lateral sides of the subgrade.

One and one-half pavement slabs were modeled.

+ The subgrade was modeled well beyond the edge of the pavement slab and shoulder.
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« Discontinuous shoulders of 10’ foot were modeled along the pavement edges, with gap

elements employed between the shoulder and the pavement slab.

Pavement crécks (discontinuities) were modeled using gap elements. Dowels at the
transverse joint were modeled with beam elements which were free to move relative to
one slab, and contact between the two faces of the transverse joint was modeled with gap
elements. A sensitivity siudy was done in which tHe effect of crack opening and friction
coefficient on surface deflection was examined.

Back-calculation of the elastic moduli of the concrete slab,' cement-treated base, and
subgrade was done based on both static load-defleciion data and FWD results for both
cracked and uncracked pavement sections. As expected, significantly lower modulus values
were obtained for cracked pavements as opposed to uncracked pavements, as well as for
dynamic loading as opposed to static loading. Using the back-calculated moduli, the model

was capabie of accurately predicting the deflection response of the slab subjected to a FWD.

2.2.6 Kuo, Hall and Darter (1995)

In this report [54], the efforts of the research team to develop a 3D elastic finite element
mode! of a rigid pavement system are documented. The purpose of the model was to analyze
various factors affecting concrete pavement support, including base thickness and stiffness,
interface bond friction, slab curling and warping due to temperature and moisture gradients,
load transfer at joints via dowels and aggregate interlock, and the improved support gained
with a widened lane, widened base, or tied concrete shoulder. The model was developed
using the widely available general-purpose finite element program ABAQUS.

Significant effort was spent determining the best element type and the required level of
mesh gradation. Both 4-noded and 8-noded slab elements were considered, as well as 8- -
noded and 20-noded brick elements. Convergence tests were performed for both interior and
exterior loading cases, with comparisons made to both Westergaard’s deflection solutions
and the program ILLI-SLAB. In general, it was found that the 2D {plate element) and
3D finite element solutions were in good agreement for the limited range of problems for
which plate elements are applicable, i.e. thin slabs with fairly large loaded areas. The
use of the ABAQUS piate element which incorporates transverse shear effects reduced the
effect of load size. It should be noted that the 8-noded brick element did not converge to
Westergaard's solutions for interior and edge loading, even with a fine mesh and multiple

layers of elements through the thickness of the slab. As a result, a single layer of quadratic
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(20-noded) brick elements was used to model the siab.

The subgrade was modeled as a dense liquid (Winkler) foundation. Interface friction
between the slab and subgrade was modeled using a membrane element coupled with a
special interface element designed to model contact and frictional movement. The membrane
element was required to provide compatibility between the interface element and a dense
liquid foundation. An additional layer of 3D elements between the slab and subgrade.was
used to model cement-treated bases.

The dowel bars were modeled as discrete beam elements that were allowed to slip relative
to the slab. No attempt was made to model the interaction between the dowel bars and
the concrete. Aggregate interlock shear transfer across transverse joints was modeled using
spring elements.

Model verification was achieved by comparison with full-scale field test data, specifically
the AASHO Road Tests {1}, PCA tests on cement-treated bases [14], and the Arlington Road
Test [87]. In general, the comparisons between the 3D model and the test results was good.
The ability of the model to predict crack initiation locations was verified by comparing the
principal stress contours generated by ABAQUS with the actual observed crack iocations
for various siab thicknesses and loading conditions consistent with the AASHO road tests.
The PCA tests on cement-treated bases provided load-deflection data for interior and free
edge loading conditions. In general, the model accurately predicted deflections, whercas
the conventional 2D plate models and Westergaard's solutions gave less accurate results.
Comparison of computed curling stresses with data obtained from the Arlington road test

showed good agreement.

2.2.7 Zaman and Alvappillai (1995)

This study [97] examined the effect of moving aircraft loads on systems of multipie, jointed
rigid pavement slabs. The pavement slabs were modeled using 4-noded, rectangular, thin
plate elements, and the underlying soil was considered a viscoelastic Winkler foundation.
The dynamic interaction of the aircraft and the slab system was incorporated in the analysis,
with each landing gear modeled as a parallel spring and dashpot with an associated mass.

‘I'he longitudinal joints were considered to be keyed or cracked, and were modeled as dis-
crete displacement springs. The transverse joints were modeled as doweled, and debonding
and gaps between the dowels and pavement were considered explicitly; this study represents
the first attempt to rigorously consider this contact nonlinearity. The constraint conditions

between the dowels and the pavement were:
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e No penetration of nodal points
+ No tensional contact forces

¢ Coulomb friction assumed between the dowel and pavement in the longitudinal direc-

tion

An initial gap was specified at the free end of the dowel, and the nodal constraints were
enforced using Lagrange multipliers. The dowels were meshed explicitly with the slabs {the
dowel and slab nodes were coincident). Model verification studies showed significant losses
in joint transfer efficiency with relatively small values for the dowel looseness (up to 0.127
mm), as well as a dowel normal force distribution closely matching analytical results for a
beam on elastic foundation.

Extensive parametric studies were completed to determine the effects of dynamic vs. static
loading, as well as the effects of dowel looseness on joint performance. Based on the model
results, it was determined that in general, static loading conditions are more critical for
determining pavement thickness. However, dynamic simulations that incorporated aircraft-
pavement interaction produced larger losses in joint efficiencies due to dowel looseness than

both static and simple moving loads.

2.2.8 Masad, Taha, and Muhunthan (1997)

Masad et al. [60] focused on the examination of temperature effects on rigid concrete pave-
ments through the used of 3D finite element models. The models had the following charac-

teristics:

» The longitudinal joints between the slabs and shoulders were modeled as keyed, and
the transverse joints as grooves. Friction and contact at the joint surfaces were con-

sidered.

« Both the slab and foundation were idealized as linearly elastic, and the foundation

~ was discretized to a fixed depth.
e Eight noded brick elements were used to model the slab and subgrade.

s Friction and ioss of contact between the slab and base layer were considered in the

analyses.
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Both linear and nonlinear {emperature gradients through the thickness of the slab and
uniform temperature changes were considered. Using a model consisting of four slabs and
two concrete shoulders with three elements through their thickness, parametric studies
were performed to examine the effects of friction, slab lengths and thickness on curling
and thermal expansion stresses. The effect of temperature variation on joint openings
was also examined. Comparisons were made between the model results and those from
similar analyses employing common 2D finite element codes, including ILLI-SLAB and
JSLAB. Nonlinear temperature gradients were modeled with a single slab model having
nine elements through its thickness. The slab stresses determined from the linear and
nonlinear temperature variations were compared.

The main conclusions of the study were as follows:

e Reasonable agreement for maximum curling stresses was found between the model

and previous analyses performed using 2D FE models.

e The maximum temperature curling stresses for the entire range of linear temperature

gradient analyses were about 28% of the modulus of rupture of concrete.

e The effect of friction on curling stresses was determined to be negligible; slab length
had a moderate effect, and increasing the slab thickness markedly increased curling

stresses.

¢ Thermal expansion stresses were found to be significantly smaller than thosc predicted

by subgrade drag theory, although they increased with friction and slab length.

e Nonlinear temperature distributions caused higher slab tensile stresses than linear

temperature distributions in general.

 The joint openings predicted by the finite element models due to uniform temperature

changes were in general less than those predicted using common design equations.

2.2.9 Kim, Hjelmstad, and Zuo (1997)

This study examined the response of a single rigid pavement slab to the heavy multiple-
wheel loading of typical aircraft landing gear [49]. Three dimensional finite element analyses
were performed using radially graded meshes and infinite elements to represent the vertical

and lateral extents of the natural soils in an attempt to minimize the number of unknowns
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(and thus computational requirements) without compromising accuracy. Vertical mesh re-
finement and load application were based on a parallel study [34] that specifically examined
these aspects of 3D finite element modeling of rigid pavement systems.

The slab, cement-ireated base, and subgrade layers were modeled with linear hexahedral
elements. Models with both bonded and unbonded base layers were considered, and the
cement treated base was treated as both linearly elastic and as a nonlinear material obeying
a Drucker-Prager elastoplastic constitutive law. All other components of the system were
treated as linearly elastic. Since only single slab systems were modeled, aggregate interlock
and dowel joint shear transfer were not considered.

Three different load cases (center, edge, and corner) were considered and separate
meshes refined appropriately for each loading were generated. Single, dual, and triple
tandem axle loadings were applied for all cases to examine the effect of wheel interaction.
In general, it was concluded that the maximum displacements were nearly proportional to
the total load regardless of gear configuration. However, the maximum slab stresses were
governed by the bending curvature of the slabs, which depends greatly on the wheel spac-
ing. i.e. more closely spaced wheels produce larger slab stresses due to higher interaction
between wheels. The critical load case was found to be edge loading with the longitudinal
axis of the gear aligned with the slab edge; this case also exhibited the largest degree of

whee! load interaction.

2.2.10 Brill, Hayhoe, and Lee (1997)

This manuscript [9] details the development of a general-purpose 3D finite element package
for the modeling of rigid pavements. The computational engine is the public domain finite
element package NIKE3D; the graphical user interface was developed independently by the
authors.

In contrast with most 3D finite element models of rigid pavements, the slabs were mod-
eled with 4-noded thin plate elements, while the subgrade layers were meshed with 8-noded
linear hexahedra. Both aggregate interlock and dowel shear transfer at the joints were mod-
eled with linearly ele-tic 8-noded hexahedra where the shear modulus was chosen to give a
specified spring stiffness. Separation between the slab and subgrade was considered through
frictionless noda} contact; frictionless sliding with no separation may also be modeled with
the program, as well as perfect bond between the slab and subgrade. Only static analyses
were considered.

Finite element analyses of typical systems with and without stabilized base layers sub-
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jected to edge loading by either a single wheel, Boeing 777 landing gear, or 727 landing
gear were performed. Fach wheel in the landing gear was modeled explicitly, with mesh
refinement done in the region of the load. The model degrees of freedom varied from about
81,000 to 92,000 depending on the load case. The stress results from the finite element
analyses were compared with theoretical solutions for a siab on elastic foundation; signif-
icant differences in the two solutions were observed for most combinations of loading and
subgrade type. To analyze the effect of the stabilized base layer on stress response, further
runs were computed for the Boeing 777 landing gear assuming that the stabilized base layer
was either continuous or cracked at the joint. It was found that a cracked base layer results
in significantly higher slab stresses than an uncracked layer; stress load transfer efficiency

is also reduced by cracking of the base layer.

2.3 Summary of Previous Work

Clearly, significant progress has been made in the finite element modeling of rigid pavement
slabs. The original, 2D plate models Ideveloped in the early 1970's {80, 37] have evolved
into 2D finite element packages designed specifically for the modeling of rigid pavement
systems {82, 8§6]. Subsequently, these tools have been extended to allow research into the
response of rigid pavements to applied static and dynamic loading (see [42, 44, 97] for
example).

At present, it is generally accepted that 3D modeling techniques are necessary to ac-
curately capture the response of rigid pavement systems. Large 3D models are commonly
used by researchers to study the dynamic response of rigid pavement systems [96, 13, 90];
the effect of material noniinearities [12}; for comparison with field test data [54]; and to
identify critical loading conditions {12, 49]. Table 2.1 summarizes the salient features of the
3D finite element studies reviewed in this Chapter.

Despite the large number of analytical studies on the structural response of jointed con-

crete pavements, some significant aspects of the problem have been neglected. Specifically:

+ As seen in Table 2.1, modeling of the dowels has been accomplished by explicitiy
meshing beam elements with the slab in previous 3D finite element investigations.
Beyond permitting dowel slip, dowel-slab interaction has not been considered except
by Channakeshava et al. [12], where a separate analysis of a single dowel and localized
slab region was performed to compute a nonlinear spring stiffness to place between

the dowe! and the slab in the larger finite element model. Similarly, most 2D models



Table 2.1: Summary of Features of 3D Finite Element Studies
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*Falling Weight Deflectometer loading.
!Noulinear temperature gradients considered.
‘Slabs modeled with plate elements.

account for both localized compression of the slab and dowel looseness by placing
displacement springs between the ends of the slab and the dowel. However, for 2D
models, the calculation of the appropriate spring stiffness has typically been accom-
plished by assuming the embedded portions of the dowel to act as a beam on a Winkler
foundation as shown in Fig. 2.1. A rational determination of an appropriate Winkler
modulus is difficult, with reported values in the literature varying by two orders of
magnitude [45]. Dowel looseness (see Fig. 2.1) was explicitly considered only by the

2D analyses of Zaman et al. [97].

Table 2.1 indicates that aggregate interlock load transfer has been modeled using lin-
ear spring elements [54], or assuming classical frictional behavior {96, 90, 60]. This
approach does not capture the actual mechanism of aggregate interlock (see Chapter
5). While an effective spring stiffness may be back-calculated from field measure-

ments of joint deflections or a target load transfer efficiency [44], it is effectively a
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secant stiffness, valid only for one geometric configuration, set of material proper-
ties, and loading. No recent study has addressed the rational determination of load
transfer across pavement joints due to aggregate interlock under a variety of loadings,

geometries, and joint openings.

¢ Previous 3D models have been used only in research applications due to computational
requirements; realistic, practical solutions of 3D models in design settings are not
feasible at present. This is due partially to the efficiency of the solution routines
in available finite element programs for the 3D finite element modeling of structural

systems.

Looseness around Dowel Winkler Foundation Between Dowel and Slab

Figure 2.1: Dowel Looseness and Winkler Foundation Around Dowel

These three specific shortcomings of previous investigations are the main research top-
ics of this study. The first two items are of particular importance in the design of rigid
pavements, since many fallures and shortened pavement lives can bhe attributed to joint
problems caused at least in part by inadequate load transfer. Indeed, many undoweled
concrete pavements are commonly retrofitted with dowels in an attempt to lengthen their
service life and improve performance (32, 81]. Further, one significant 3D finite element
study reviewed in Chapter 2 notes that poor joint load transfer has predictable detrimental
effects on pavement behavior [12].

Addressing the third issue is of broad importance, as large, 3D models of any structural
system require tremendous computer resources to achieve a reliable sclution. Several of the
models cited in this literature review employed relatively coarse meshes [12, 54] because of
computational limitations. More efficient solution strategies will ease the problem of mesh
refinement, as well as making the proposed joint modeling techniques accessible to more

pavement researchers and designers to aid in their investigations.



Chapter 3

Finite Element Model
Development

3.1 Introduction

The literature review presented in Chapter 2 indicates that three-dimensional (3D) finite
element models are required to accurately capture the structural response of rigid pavement
systems. Further, three main shortcomings of previous investigations were identified: (1)
present methods for modeling dowel load transfer are inadequate; (2) aggregate interlock
shear transfer has not been properly quantified; and (3} presently available solution strate-
gies severely limit the size of the 3D finite element models that can be solved on the desktop
computers and workstations commonly available to researchers.and designers.

These three specific shortcomings of previous models and studies are the main research
topics of this study. and are individually addressed in Chapters 4-G. However, implementa-
tion of these joint modeling techniques and solution strategies necessitates the development
of general, 3D finite element modeis of rigid pavement systems. This requires that the

following issues be resolved:
e Static vs. dynamic modeling.

o Modeling of the slab(s), including selection of element type and appropriate constitu-

tive relations.

¢ Modeling of the subgrade and appropriate boundary conditions. The variable vertical
and lateral extents of the subgrade make the cheoice of realistic boundary conditions

difficuls [43].

» Inclusion of both wheel and temperature loading in the finite element models.
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¢ Loss of contact between the slab and subgrade due to temperature and wheel loading,

This can lead to critical loadings as noted in Channakeshava et al. [12].

The remainder of this Chapter addresses these issues.

3.2 Modeling Issues
3.2.1 Dynamic vs. Static Modeling

The literature review in Chapter 2 indicates that several researchers have begun to use
dynamic models of rigid pavement systems. ‘However, only static models are employed in
the present investigation. This restriction does not represent a severe limitation, and is

justifiable for several reasons:

¢ The development and impiementation of new joint shear modeling strategies should
first be accomplished with static models that will allow detailed evaluation of their

performance and applicability.

e Rigid pavement systems are typically designed assuming static equivalent single axle
loads (ESALs) which attempt to account for damage and fatigue due to mixed traffic
over the expected lifetime of the structure. The proposed models are not limited to
any one type of axle or load magnitude, and any axle loading corresponding to an

actual truck or appropriate design axle may be applied.

+ One recent study has shown that the dynamic response of the slab may not be signifi-
cant, and as long as the dynamic interaction between the slab and truck are accounted
for in developing the effective wheel loads, static models are reasonably accurate [13].
Such wheel load histories may be generated with an independent model that incor-
porates the pavement profiles, and the stiffness and damping properties of the truck

suspension, or via actual field data.

¢ The computational requirements of large, 3D dynamic models are significant. At
present, implicit {ime stepping methods are far too computationally expensive for the
proposed models, since they require solution of the system of equations arising from
the system discretization at each time step. While less expensive explicit methods are
available, the stability limitations of these methods can make them computationally

inefficient as well.
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It should also be noted that the solution of dynamic FE simuiationé requires only the
selection and implementation of an appropriate time stepping scheme, for the which the
static solver serves as the core computational unit. If dynamic simulations are to be a topic
of future study, the nonlinear solution techniques developed in this study could serve as

building blocks for the development of a dynamic modeling package.

3.2.2 Modeling of the Slab

The slabs are modeled as linearly elastic. While several researchers have incorporated
nonlinear slab material models, this is not necessary to develop realistic rigid pavement
models for the prediction of joint shear transfer. In fact, with the exception of the material
immediately surrounding the dowels, rigid pavement slabs remain in a low stress, linearly
elastic range under most common axle loadings; slab cracking and damage are usually
the result of repeated loading and fatigue. Appropriate published values for the elastic
properties of slab concrete are available and typically known to design practitioners. while
nonlinear models usually require the specification of several parameters'which may not be
readily available.

The slab boundaries coincide with the physical slab boundaries; see Fig. 3.1 for an
example of the discretized slabs in a typical two-slab model. The generality of the finite
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Figure 3.1: Three-Dimensional Model of Two Rigid Pavement Slabs

element method allows the modeling of skewed joints and as many slabs as required to

capture loading effects.
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3.2.3 Modeling of the Base Layers and Subgrade

Finite element models of rigid pavement systems consisting of one or more slabs require a
reasonable representation of the subgrade. Several researchers have used continuum models
for the entire subgrade {43, 96, 90); however, this dictates that the subgrade be modeled to
a depth where consiant vertical strain exists, which may be quite large. This is often done
in spite of the fact that the subgrade stresses decrease quite quickly with depth [43] to a
point where a continuum model may not be reguired, unnecessarily increasing the size of
the model. Another approach to modeling the subgrade is to use a dense liquid (Winkler)
foundation directly below the slab or treated base layer to model the infinite vertical extent
of the subgrade [54, 12]. While this greatly reduces computational complexity, it may not
accurately model foundation response due to the lack of shear coupling between the discrete
foundation springs generated with the dense liquid foundation model.

In the present study, the foundation model varies depending on the system being studied.
In general, any number of linearly elastic base/soil layers can be modeled to any depth
below the slab. Below the bottom-most layer, a Winkler foundation is used recognizing
that foundation stresses at this depth are low and the use of a simplified model will have
little effect on the slab response. The base layers can be extended laterally to account for
extended shoulders if required as shown for a two-slab system in Fig. 3.1. Note that modeling
the soil as linearly elastic is not entirely realistic. However, while nonlinear response of the
subgrade is likely under heave axle loads, subgrade vielding may not greatly affect computed
slab displacements and stresses {43]. The development of 3D constitutive relations for soils
appropriate for use in the modeling of rigid pavements is an active area of research [35]. As

better, more reliable models become available, they may be included in future analyses.

3.2.4 Discretization of the Slab and Subgrade

The regular geometry of the system to be modeled lends itself to hexahedral elements.
Quadratic elements, while somewhat more difficult to implement than simpler linear ele-
ments, have excellent convergence rates and are more robust. Further, other researchers
have explicitly demonstrated the applicability of quadratic hexahedra for modeling rigid
pavement systems [54]. For these reasons, 20-noded quadratic hexahedra are used to model
both the slab and the subgrade. An isoparametric element formulation is used to permit
complex geometries such as skewed joints to be rigorously considered; the element stiffness

matrices are computed using 3 x 3 x 3 Gaussian integration. See Zienkiewicz and Taylor {9§]
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for details of the element formulation. The Winkler foundation models below the subgrade
are implemented with an 8-ncded quadratic interface element, which is compatible with the

quadratic hexahedra.

3.2.5 Wheel, Temperature and Self-Weight Loading

The three major load effects on rigid pavements are wheel, temperature and self-weight
loadings. Note that the slab self-weight is significant when applied in conjunction with
wheel and/or temperature loads due to separation of the slab and subgrade. All three load

effects are considered in this study; details of their inclusion are given in this section.

Wheel Loading

External load effecis are typically applied within a finite element model by either point
loads applied at nodes, or pressures (usually uniform) distributed over an element face.
However, point loads are unrealistic, as wheel loads are distributed over the finite area of
the tire footprint. Further, the use of a pressure load over an element face requires that an
element face coincide exactly with the tire footprint.

To overcome these difficulties, individual wheel loads are applied as uniform rectangular
pressure distributions independently of the slab mesh as shown in Fig. 3.2, which depicts

a portion of the top surface of a typical slab. Determination of the equivalent nodal load

AX il
' uniform
wheel load
Y
A
\ \
S mesh lines

Figure 3.2: Application of Wheel Loads

vector, p. reqguires summation of the integral of the product of the transpose of the element

shape function matrix, N;T by the pressure vector, f over the all loaded elements i = 1...1



27
[98]:
{
p= 2/ NTfdA, (3.1)
i=1 74

In Eq. 3.1, X represents assembly and summation.
Evaluation of Eq. 3.1 may be accomplished using a rectangular rule where the wheel
load is represented by n small point loads, each equal to the pressure acting over the area

AA = AzAy as shown in Fig. 3.2. The evaluation of Eq. 3.1 is then reduced to:

n
p~ Y NELf;AA (3.2)
j=1

where the subscript ¢ has been retained as a reminder that for each AA, the element it
lies within must be determined, and Nj; is the usual matrix of shape functions for the ith
element evaluated at the the j®* point. Again, ¥ implies both assembly and summation.

Determination of the i** element within which the j** point les is accomplished with an
efficient grid searching algorithm developed for use with the multigrid solution strategies.
The grid search relies on grouping all elements in the finite element mesh according to their
location in the model, greatly reducing the number of clements that must be searched to
determine which element any (z.y,z) point lies within. Calculation of the local element
coordinates corresponding to the j** point is done using Newton's method at the element
level. Details may be found in Chapter 6 and Appendix A.

It should be noted that another approach to the evaluation of 3.1 would be to determine
which elements are fully loaded, integrate that portion of Eq. 3.1 by conventional integra-
tions over entire element faces, and approximately evaluate the remainder of the integral
over the partially loaded elements. This approach was recently outlined by other researchers
in [34].

Temperature and Self-Weight Loading

Temperature gradients through the thickness of the slab are treated as general prestrains
on an element-by-element basis [98]. This allows an exact mathematical treatment of linear
variations in temperature through each element, as the 20-noded brick captures linear vari-
ations in strain. Note that a model with muitiple elements through the slab thickness aliows
the approximation of a nonlinear temperature gradiént as a piecewise linear function, While
nonlinear temperature gradients are not considered in this study, several researchers have
noted their occurrence [60], and the ability to model this phenomenon may prove useful in

future studies.
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Self-weight is treated in the usual fashion as a uniformly distributed body force in
the vertical direction. The equivalent nodal loads are determined element-by-element and
mapped to the global vector of external forces. Self-weight is included in all analyses, as it

induces additional stresses in the slab when the slab and base layer separate.

3.2.6 Separation of the Slab and Base, and Boundary Conditions

Modeling the loss of contact between the slab and the subgrade is critical when considering

temperature-induced curling and wheel loading at the joint (Fig. 3.3). This loss of contact

Wheel Load i

Loss of Contact

1.oss of Contact at Joint Temperature Curling

Small
L0l Opening

Siab Node (1yp.)
N |

LY

Slab-Subgrade Interface

/, Nodal Contact Along
Y

Subgrade Node (typ.)

Nodal Contact at Joint
Independent For Each Stab

Appropriate Details Of Contact Modeling

Figure 3.3: Loss of Contact between Slab and Subgrade

is modeled using a n-~dal contact approach, which requires the enforcement of inequality
constraints for pairs of adjacent nodes. Near the joint, the bottom nodes of both slabs at the
joint are independently consirained to or released from a single subgrade node depending
on relative vertical displacements and stresses as shown in Fig. 3.3. This detail is required
to allow the relative vertical displacements of the loaded and unlcaded slab to be captured.

Contact conditions may also need to be considered on the vertical joint face for small joint



cpenings.

The implementation of nodal contact modeling within a finite element model introduces
inequality constraints, requiring a complex solution strategy. The complexity is heightened
by the use of iterative solvers, as will be employed in this study. Details of the implemen-
tation are thus deferred until Chapter 6, where a comprehensive treatment of the nonlinear
solution strategies employed in this study is presented.

Ideaily the slab boundary conditions would include the effect of friction between the
slab and subgrade. However, for the purposes of joint shear transfer modeling, simple dis-
placement boundary conditions are sufficient. The appropriate boundary conditions are
the minimum required to keep the model stable, i.e. prevent transverse displacements and
rotation about the vertical axis. The models developed in this study use a single (z,y) dis-
placement restraint on one side of each slab and a single z direction displacement constraint
on the other side. The same constraints are applied to the base layers and subgrade as a

unit; friction between the slab and base is not considered in the analyses.

3.3 Summary

The need for better finite element modeling of dowel and aggregate interiock joint shear
transfer and more efficient solution strategies has been identified. Addressing these issues
requires the development of specific finite element techniques appropriate for the modeling
of rigid pavement systems. This Chapter has covered modeling of the slab and subgrade, in-
corporation of boundary conditions, slab-subgrade loss of contact, and methods for applying
both temperature and wheel loadings. The next three Chapters focus individually on dowel

jont shear transfer, aggregate interlock shear transfer, and nonlinear solution strategies.



Chapter 4

Dowel Modeling

4.1 Review of Current Dowel Modeling Techniques

Several different approaches have been used to model load transfer between rigid concrete
paving slabs via dowel action. The actual interaction of the dowel and the slab is complex,

but in general consists of two portions:
e Looseness (gaps) between the dowel and the slab
¢ Compression of the slab around the dowel

Laboratory research by several investigators has shown that dowel looseness has a sig-
nificant effect on joint performance {10, 81]. Despite this concern, only one 2D finite element
study employing plate elements has explicitly considered this phenomenon [97]. A recent
study examines this problem with contact modeling using a 2D} plane strain model [69], and
demonstrates the potential for undesirable effects on pavement response.

Most attempts to model dowel-slab interaction approximately account for compression
of the the slab around the dowe! by assuming a Winkler foundation between the dowel and
surrounding slab. Indeed, this fundamental approach was in use prior to the development
of finite element analysis, with early models based on the explicit solution for an infinitely
long beam resting on an elastic foundation [2%]. With the advent of finite element analy-
sis. investigators have typically modeled dowel bars with discrete beam elements between
adjacent slabs having springs between the dowels and the slabs to account for the effect of
dowel-slab interaction, as in ILLI-SLAB (82, 84] and JSLAB [86]. The spring stiffnesses are
derived by considering the embedded portion of the dowel as an infinitely long beam on a

Winkler foundation.
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More recent dowel models have also been proposed which more rigorously incorporate
the effect of dowel-slab interaction in addition to the beam deformation of the dowel between
adjacent slabs; a detailed description of the formulations and limitations of the more recent
models is given by Guo [31]. Guo developed a component dowel bar model that consistently
incorporates a Winkler foundation model for embedded portions of finite length and a

discrete shear beam element spanning the joint into a single element.

Of course, the Winkler foundation modulus can be reduced to account for gaps between
the dowel and the slab. While this is computationally attractive, it is not always clear
what modulus to use to model the interaction of the slab and the dowel. Similar models
that reduce the Winkler modulus nonlinearly in a more rational manner, such the approach
developed by Sittipunt [79] for the modeling of reinforcement at the base of concrete shear
walls, require the determination of several parameters in addition to the spring stiffness

which may not be readily determined.

As noted in Chapter 2, 3D finite element models generally employ beam elements meshed
explicitly with the solid elements comprising the pavement slab and do not attempt to model
dowel-slab interaction. An approach designed to remove the difficulty of meshing beam el-
ements with plate or solid elements was developed by loannides and Korovesis [45], where
a uniform joint shear stiffness is used to replace the individual dowels. This approach was
employed by Hammons [33] in the development of 3D finite element models of scale model
laboratory tests on doweled pavements. Implicit in the derivation of the joint stiffness,
however, is the common assumption that the embedded portion of the dowel may be rep-
resented as a beam with a Winkler foundation sandwiched between it and the surrounding
concrete. Again, the difficulty lies in determining an appropriate modulus of reaction for the
Winkler foundation that properly accounts for both dowel/slab interaction and any dowel
looseness that may exist. This model also assumes uniformly spaced dowels along the joint,
which is common for newly constructed pavements but rarely the case for retrofitted joints
where dowels are often located only in the wheelpaths. No 3D finite element models have

explicitly considered the effect of dowel looseness on joint performance.

In this Chapter, a new technique for modeling dowel load transfer is proposed and de-
veloped which relies on an embedded formulation of the dowel, and allows the explicit and
rigorous consideration of gaps between the dowel and the slab through nodal contact mod-
eling. The necessary details for the inclusion of a general bond-slip law are also presented,

as the dowel element has potential application in the modeling of many reinforced concrete
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structures. Although the effect of compression of the slab around the dowel is not addressed
explicitly, a linear or nonlinear bond-slip law would easily permit this effect to be considered

in future studies..

4.2 Overview of Dowel Modeling Technique

The first issue which must be addressed is the choice of an appropriate representation of the
dowels in the 3D finite element model. The finite element modeling of reinforced concrete

structures indicates two practical methods to realistically incorporate the dowels.

o Discrete representations. The straightforward way of modeling the dowels is as dis-
crete line elements in a global mesh. Unfortunately, this is at odds with the desire to
discretize the concrete slabs—due to their regular geometry—using a mesh of regular
solid brick elements. Modeling the dowel bars as discrete line elements requires that
the dowels and the solid elements share common nodes, placing undesirable geometric
constraints on the finite element mesh. This problem is exacerbated by the need to
generate several meshes of the same physical system when using muitigrid solution

strategies as detailed in Chapter 6.

o Embedded represeniations. Embedded dowel elements (see Fig. 4.1) have the advan-
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Figure 4.1: Embedded Dowel Element

tages of maintaining the exact mathematical representation of the line elements and
encapsulating them in a regular solid embedding element. This aliows exact location
of the dowels while permitting the slab to be meshed independently of the dowel lines

as shown in Fig. 4.1. Embedded formulations for both conventional and prestress-



33

ing axial-only reinforcement in finite element models of reinforced-concrete structures
have been employed by several researchers [21, 95, 78]. However, these formulations
typically require special integration techniques to compute the stiffness matrices of

elements containing embedded reinforcing members.

Clearly, it is desirable to use an embedded formulation for the dowel elements similar to
that developed for axial-only reinforcing, allowing the meshing of the slabs to be independent
of the dowel locations. One of the major goals of this study is the development of a general
formulation for an arbitrarily oriented, embedded, quadratic bending element. Provisions
are made for axial debonding of the dowel, which is typical in rigid pavement slabs. Further,
the formulation is extended to model gaps between the dowel and the surrounding slab which
occur due to damage of the slab concrete under repeated loading. To model the portion
of the dowel between the two slabs, a conventional two-noded shear beam is used that is
constrained at its ends to displace compatibly with the elements it spans between.

The remainder of this Chapter is dedicated to the presentation of the dowel modeling
techniques employed in this study. A brief description of the dowel element is presented
in Section 4.3. In Section 4.4, the stifiness matrix of the embedded dowel is developed
for three specific conditions: perfectly bonded and transversely constrained, debonded and
transversely constrained, and debonded with gaps between the embedding element and the
dowel. Section 4.5 examines how the dowel element could be extended to include a general
bond-slip law in lieu of an explicit consideration of dowel looseness. This is followed in
Section 4.6 by the development of the stiffness matrix of a shear beam element spanning
the joint and compatible with the elements on either side of the joint. Section 4.7 details
the constraint updating strategy required when dowel looseness is considered. Verification
of the element formulation is achieved with a simple model problem in Section 4.8. Section

4.9 summarizes the dowel modeling technigues developed in this Chapter.

4.3 The Quadratic Beam Element

4.3.1 Element Definition

Higher order shear and bending elements have been in use for many vears [40, 6}, with
more recent applications focusing on the modeling of curved structures [48]. Initially, the
use of these elements was limited by their tendency to “lock”, or fail to converge with
increasing levels of mesh refinement. An excellent explanation of this phenomenon and

proposed solutions are given by Prathap and Bhashyam [72]. It is demonstrated that the
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phenomenon of locking may be explained in terms of spurious constraints arising when shape
functions of the same order are used to interpolate both displacements and cross-sectional
rotations.

For the study presently being conducted, a three noded, straight beam element is used

to model dowels embedded in a mesh of quadratic solid elements {see Fig. 4.2). The shape

Y
A

Figure 4.2: Dowel Element Local Coordinates and Unit Vectors

functions used to define the element displacements, IV;, are quadratic: those used to define
the element cross-sectional and torsional rotations, ®;, are linear. As shown in [72], this
choice of shape functions prevents locking. Any scalar displacement component. d(n} or
rotation, #(n) may then be expressed as a combination of nodal values:

3

dn) = > Ni(n)d; (4.1)
i=1
3

6(n) = > ®i(ms (4.2)
=]

Quadratic mapping of the element coordinates is assumed, which is isoparametric with
respect to the displacement shape functions. Definitions for the shape functions may be

found in most standard finite element texts (see {6}, for example).

4.3.2 Unembedded Dowel Element Stiffness Matrix

The derivation of the 3D element stiffness matrix may be accomplished using virtual work

principles. The strain energy contributions from axial displacements, shear displacements,
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torsional rotation, and bending rotations can be writien as:

SEg = 2] EA (du) ds (4.3)
SEs = 2/ G A, (9 j‘;)st | (4.4)
SEu4 = %fo G Ay (9U+‘i—f>2ds (4.5)
SE, = % /OIGJ(eu)?ars (4.6)
SE,, = é«/OIEIU (%)zds (4.7)
SEpe = %/OIEIM (%)st (4.8)

Evaluation of these integrals is most easily performed with respect to the dowel local co-
ordinate, n. Referring to Fig. 4.2, we may write an incremental vector along the bar, ds,
as:

@dnj + Ef-z—dnk (4.9)

. . _dz
ds = dzi + dyj + dzk = dndm, dn a

where (1.],k) refer to the usual unit vectors in the global coordinate system. The incre-

mental distance along the bar is then computed as:

de\?  sdy\?® [dz
- bt - dn = hd 4.10
@ \/(dn) +<d?7) +(dn) 7= e (4.10)

Using Egs. 4.1 to 4.2, the required derivatives of the global coordinates with respect to the

dowel local coordinate may be computed as:
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Note that for a straight bar with a centrally located third node, the value of A is constant.
and equal to half the length of the dowel.

The vector of nodal displacemenis and rotations may be writien as:
d T '
Ul=[d & d © d3 O] (4.12)

where d; and ©&; refer to generalized nodal displacement and rotation vectors; the super-
script T denotes a transpose. Using the displacement and rotation basis functions developed

in the previous section, the generalized displacement and rotation vectors at any point may
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be expressed as functions of the dowel local coordinate, n:

d(m = N(nU° (4.13)
o = @mnud (4.14)
where:
= [M 0 N 0 N 0] ‘ (4.15)
e = [0 $1 0 0y 0 B3] (4.16)

Using these relations, the individual element displacements and rotations at any point may

be expressed as:

u{n) = q-d(n) (4.17)
u(n) = s-dn) (4.18)
w(n) = t-dn) (4.19)
6u(n) = qa-©(n) (4.20)
bu(n) = s-O(n) {(4.21)
fu.(n) = t-©(n) (4.22)

Substituting Eqgs. 4.13 through 4.22 into the expressions for the strain energy given by

Eqs. 4.3 through 4.8 and changing variables from s to n yields:

mldT/'lEi{_d_l\.IE(dN> 5
§SEq = 3U [_1 Pl 7 dn(q®q)| U* {4.23)
1
SE; = %UdT U GAwh@T@dn(tm)} U? - (4.24)
Z -1
{
Ut [/ GAn®T (%—?—) dn(t@s)| U+ (4.25)
-1
i /1 GAgy {dNT (a’N) y
r)U {_1 . i dn(s@s)| U (4.26)
SEg = UdT U GAguh®T ®dn s@s}ud (4.27)
ueT U GAM.@T } (4.28)

%Ud_’r Uj} GAsu (dNT>< ) t®t} (4.29)
a®y
an

SE, = _;_UdT [/;11 G—hj" (dqﬂ‘) ( ) q®q)} e (4.30)
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1oy /1 El, (d®T (@) 4 _
SEp = 2U [—1 Pl el e dn(s®s); U (4.31)

_lour [,1 El, {d®T (@) d )
SEy, = 2U {_1 7\ )\ dn(t®t)| U {4.32)

Taking the first variation of the strain energy with respect to U? gives the total dowel
stiffness matrix, K%, as the sum of the symmetric bracketed expressions and the symmetric
part of the unsymmetric bracketed expressions. The integrals are computed numerically

using two-point Gaussian quadrature, which is exact for a straight element.

4.4 FEmbedment of the Dowel

In this section, a procedure for embedding a dowel element within a solid, quadratic, isopara-
metric element is developed. In the following discussion, bonding will refer to axiaily con-
straining the dowel to the embedding element, and constraining will refer to the constraint
of transverse dowel displacements to the embedding element. Three types of embedment
are considered: {1} the case of a bonded, constrained embedded dowel is developed first to
illustrate the embedding procedure; (2) the case of a debonded. constrained dowel, which
has great practical applicability to the doweled systems being studied is then presented; and
{3} the geometrically nonlinear case where gaps exists between the dowel and the embedding
element, is developed. Embedding the dowel requires that the locations of the dowel nodes
in terms of the embedding element local coordinates be known. Procedures for determining
the element local coordinates (£,7.¢) from the nodal {z,y.2) coordinates using Newton's
method are presented in [21] and [5]; a similar technigue is used in this study. Details of

the implementation may be found in Appendix A.

4.4.1 The Bonded, Constrained Case

** node of a bonded dowel to an embedding element requires that the

Constraining the 3
dowel nodal dispiacements be identical to the corresponding displacements of the embedding
element at the node. Using the embedding element basis functions and nodal displacements,
the i node of an unbonded dowel can be constrained to an embedding element in the
following manner:

d; = N¢U* (4.33)

where U¢ is the vector of nodal displacements of the embedding element, and N¢ is the

array of embedding element basis functions evaluated at the i** dowel node.
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If the vector of nodal displacements for the embedded dowel is expanded to include the

displacements of the embedding element:
T
U = [ d, ©, dy ©, dy ©; U® } (4.34)
U% may be transformed back to U as follows:
Ut = TU% (4.35)

The transformation mairix, T is defined as:

i ay ¢ 6 0 0 0O blNg i
0 I 6 6 0 O 0
| 0 0 a 0 0 0 bgNj
= c 0 0 I 0 O 0 (4.36)
0 0 0 0 a3 0 bzN§
0 0 0 0 0 I 0 |
where:
a; = three dimensional second order zero tensor (4.37)
b; = three dimensional second order identity tensor (4.38)
I = three dimensional second order identity tensor (4.39)

The definitions of a; and b; are trivial here, but are extended later to more complex cases.
Note that T explicitly incorporates Eq. 4.33 on a node-by-node basis for the entire dowel,
enforcing the constraint that the dowel nodal displacements be equal to the displacements
of the embedding element at the dowel nodal locations. The identity matrix, I, ensures that
the dowel retains its nodal degrees of freedom.

1t foliows immediately from the previous derivation of the element stiffness matrix that

the stiffness matrix of the embedded dowel element, K%, may be calculated as:
K = TTKIT (4.40)

The vector of embedded dowel nodal forces, F%, may be computed from the vector of

unembedded dowel nodal forces F¢ by:
Fi = 7Tpd (4.41)

Note that the transformed stiffness matrix, K%, will have rows and columns correspond-

ing to the dowel nodal displacements that are comprised entirely of zeros. These arise from
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the fact that the dowel has lost its independent nodal displacement degrees of freedom. In
the actual implementation of the element, these zero rows and columns can be retained, and
values of one placed on the diagonal to avoid singularity. The dowel nodal dispiacements are
then computed as zero during the solution of the system stiffness equations. Alternatively,
the rows and columns of K% that consist entirely of zeros can be eliminated, resulting in
a reduced number of degrees of freedom for the debonded, constrained dowel. The dowel

nodal dispiacements can of course be recovered using Eq. 4.35.

4.4.2 The Debonded, Constrained Case

The development of this case follows in the same manner as the previously presented bonded,
constrained case. The " node of an unbonded dowel can be constrained to an embedding

element in the following manner:

di-q = di'q (4.42)
d;-s = (N{U®) s (74.43)
di-t = (NSU®) -t (4.44)

Physically, at a debonded node the dowel retains its independent axial degree of freedom,
but displaces compatibly with the embedding element in any transverse direction. The

displacement vector at the :** dowel node can then be expressed as:
di=(q®q}d; + (s®s +t®t) (NFU?) (4.45)
The transformation matrix, T is still defined by Eq. 4.36, but a; and b; are now given by:
a; = q®q (4.46)
b; = s@s+t®t (4.47)

As in the bonded case, the unembedded dowel element stiffness matrix and nodal force
vector can be transformed according to Eqgs. 4.40 and 4.41. Note that the only difference
between the debonded and bonded cases lies in the definition of the submatrices a; and
b;. Also note that n: consideration has been given to friction between the dowel and the

embedding element.

4.4.3 The Debonded Case with a Gap

The inclusion of a gap, 7, between the dowel element and the surrounding slabs of particular

interest (see Fig. 4.3). Unlike the previously considered cases, this situation presents a
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Figure 4.3: Gap Between Dowel and Surrounding Siab

nonlinear nodal contact problem where the embedded dowe!l nodes may either be constrained
to the embedding element, or retain their independent displacement degrees of freedom. The
goal is to express this nonlinearity in the transformation matrix, T. Only the case for a
gap oriented in one transverse direction wili be considered here. Extension to include gaps
in both transverse directions is straightforward once the case for a single direction has
been developed, and the techniques presented here are useful for modeling dowel action of

reinforcing in many structures.

Consider the transverse displacement of a dowel node i:. For the sake of discussion,
the gap ; will be defined in the local s direction, with corresponding scalar displacement
component v as shown in Fig. 4.3. The subscrint i is a reminder that the gap is defined on
a node-by-node basis, and may vary along the leagth of the dowel. If there is no contact
between the dowel and the embedding element, v is independent of the embedding element.
If the dowel node is in contact with the embedding element, v is now a function of both the
embedding element displacement and -y;. For the case where the dowel node is in contact

with the embedding element (gap closed), the dowel nodal displacement vector, d; can be
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expressed as:

d; = a;d; + (N{U® s+ 4;)s + {t ® ¢) (NFU®) {4.48)

where a; is given by Eq. 4.46. In Eq. 4.48, the term a;d; is the axial displacement of the
dowel, the term (NfU€® s + ;) s represents the displacement in the local s direction, and
{t ® t) (NfU*)} gives the displacement in the local t direction; the sum of the three is the
dowel nodal displacement vector. Note that +; is a signed quantity: when the magnitude
of the dowel transverse displacement exceeds that of the embedding element, ~; is positive;
otherwise, «; is negative.

Assuming that N¥U® has a component in the direction of s gives:

_ N{U®(s®@s) ‘ "
= N e (449

If m; is defined according to:

m; = [[INJU* (s @ 5] {4.50)

Substitution of Egs. 4.49 and 4.50 into Eq. 4.48 gives:

d; = aid; + ((1 + ?:{") (s@s)+(t ®t)> NeUe (4.51)

H

This gives a new definition for the tensor. b;, at a constrained, debonded node with a gap

of any magnitude:
by = ((1 + L) (s®@s) + (t®t)> (4.52)

The tensor b; reverts to its previous definition for the debonded, constrained case if 4; = 0.
The transformation matrix, T, follows the same definition given by Eq. 4.36, and now

encapsulates the contact nonlinearity. Several points must be noted, however:

1. T as defined by Eq. 4.36 when using Eq. 4.52 is valid only for transforming displace-
ments. Nodal forces must be computed using b; as defined by Eq. 4.47, and then

applying Eq. 4.41.

2. The stiffness matrix of the embedded dowel is still computed according to Eq. 4.40.
However, computation of a tangent stiffness, appropriate for use in a Newton iteration,

requires that b; be defined by Bq. 4.47.

Inclusion of the embedded dowel with gaps in a general nonlinear solution strategy requires

that a constraint updating scheme be employed; this is the topic of Section 4.7.
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4.5 Inclusion of a General Bond-Slip Law

To extend the potential applicability of the embedded dowel formulation to the modeling
of general reinforced concrete, provision should be made for the incorporation of a general
bond-slip law. Consider the case where no gaps are assumed to exist between the dowel
and the slab, and a general bond-slip law relates incremental interface stress (force per
unit length) between the dowel and the surrounding slab, df’, with the incremental relative

displacement of the dowel and the embedding element, dA’ as follows:
df' = DdA' - (4.53)

The vectors df’ and dA’ are of size 3 x 1; the prime indicates that they are defined as having
components in the q,s and t directions.

For this situation, constraint of the dowel exists only through stresses at the dowel-
concrete interface, and the dowe! element itself contributes no stiffness terms to the em-
bedding element. However, is it is convenient to consider the dowel as embedded with
corresponding displacement vector U as done in the previous section, i.e. Eq. 4.35 is
still valid, with a; equal to I and b; equal to 0. Note, however; that the transformations
siven by Egs. 4.40 and 4.41 are not necessary: the only non-zero terms in K% are those
associated with the dowel's original degrees of freedom. The vector of incremental relative

displacements, dA, may then be expressed as:
dA = BdU% (4.54)

in the global Cartesian coordinates. The matrix operator B is analogous to the matrix of

linear differential operators common in continuum elements, and is defined as:

B = [Nl 0 N, 0 Ny 0 mNe] (1.55)
Ni 0 it

N: = | 0 N 0 (4.56)
o0 0 N

0 = 3 x 3 array of zeros (4.57)

N® = the usual array of embedding element shape functions (4.58)

Transforming to the dowel local coordinate system where the incremental stress-strain re-

lations given by D are assumed $o be defined may be accomplished by:

dA' = Qda _ (4.59)
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where Q is a 3 x 3 matrix whose rows are the dowel element local unit vectors g, s, and t.
The stiffness contribution due to bond-slip is formulated using virtual work principles.

Writing the incremental internal virtual work, dII°, yields:
dli® = fdf' ~dA'dl (4.60)
{

Using Eqs. 4.53, 4.54, and 4.59, and transforming the variable of integration to the local

element coordinate, 1, Eq. 4.60 can be written as:
dTI¢ = dUdeT ( /_ 11 BT (Q™DQ) thzn) dUe (4.61)
The stiffness contribution due to bond-slip, K%, is then given by:
Kb = [1 BT (QTDQ) Bhay (4.62)
which may be easily evaluated. The total dowel stiffness matrix, K% is then:
K% = K% + K% (4.63)

and is of size 78 x 78. Note again that in this case K9 has non-zero values only in the rows
and columns pertaining to the dowel element’s degrees of freedom. and only K9 need be
calculated and added to the upper 18 x 18 portion of K. The vector of nodal forces duc
to bond at the dowel-concrete interface, F?, is computed as:

1
F = / BT fhdn (4.64)

-1
4.6 Shear Beam Spanning the Joint

Modeling the portion of the dowel spanning the joint can be achieved using a conventional
shear beam [73]. To enforce displacement compatibility between the shear beam and the
embedded dowels on either side of the joint, the end nodes of the shear heamn must be
constrained o the solid elements between which it spans. This 18 easily done in the same
manner that the dowel element was constrained to an embedding element. Following the
development of the matrix T given in Eq. 4.36 for the embedded dowel, we can specify the

expanded vector of nodal displacements as:

T
U=l d © dp © US Ug] (4.65)
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where U¢$ and U refer to the displacement vectors for the elements the shear beam cornects

at nodes 1 and 2. The transformation matrix, T?, is defined as:

a3 0 0 0 byNT 0

, o100 o o -

T=10 0a 0 0 bNg (4.66)
0001 0 0

The definitions of the submatrices a;, b; and N¥ are the same as for the embedded dowel,
but the basis functions must be evaluated for the appropriate solid element at nodes 1 and
2.

4.7 Constraint Updating

Computation of the tangent system stiffness matrix at each iteration in the global solution
strategy (see Chapter 6) requires an algorithm specifying the constraint updating logic.
This section presents the development of the constraint updating algorithm employed in
this study.

With reference to Fig. 4.3, the transverse displacement of the dowel relative to the slab

at node 1, dv;, may be expressed as:
du; = s - (d; — NFUT) (4.67)

The corresponding relative displacement vector for an unconstrained node, A¥, may then

be written as:

AY = (s ®s) (d; — N2U®) (4.68)

In the case of a constrained node, the transverse displacement of the dowel relative to the

embedding element follows directly from FEq. 4.48 as

AS = s (4.69)

1

The criteria for maintaining/releasing constraints at any iteration during the solution are

then:

1. For currently unconstrained nodes, if JAY] > ||vil the dowel is transversely con-

strained to the embedding element.

2. For a currently constrained node, if F; - A{ > 0 the constraint is released; otherwise,
the transverse constraint is maintained. The vector F; represents the force applied on

the dowel by the surrounding concrete at node 1 as shown in Fig. 4.3.
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Physically, the inequality in (2} is false if ¥; has a component opposite the direction of the
transverse relative nodal displacement, i.e. the dowel is compressing the surrounding slab

in the s direction at the point of contact.

The simplest constraint updating algorithm follows directly from this criteria for main-
taining/releasing constraints. Based on the current displacements and constraints, the
transverse nodal forces, ¥, acting on the dowels are found. For currently unconstrained
nodes, if the relative displacements exceed the gap, the node is constrained. The currently

constrained i** node is released if ¥; does not oppose the relative displacement.

This simple node-by-node updating scheme can be improved upon, however. At the
end of an iteration in the global solution scheme, the displaced shape of the model has just
been incremented, and is fixed while constraints are checked. We can treat all quadratic
dowel and cubic beam elements as a single substructure within the model that has enforced

non-zero displacement constraints at all points of contact with the slabs. Defining:

U* = nodal displacement vector for dowel/beam substructure
U* = enforced displacements at contact nodes for dowel/beam substructure
U¥ = vector of unknown displacements at free dowel/beam nodes
K' = assembled stiffness matrix for dowel/beam substructure
= K'Je

= reactions at enforced displacement nodes

we can solve K'U* == —P for UY, the total displacement vector for the dowel/beam sub-
structure is Ul = U¥ + US. After computing the reactions at the constrained nodes, F,
the direction of the individual reaction at each enforced displacement node, F;, may be
dotted with the corresponding relative displacement, A;, and released if required. This
process is then applied repeatedly until no more constrained nodes are released (n; = 0) or

a maximum numbder of times, maz, whichever occurs first.

Of course, we must also update constraints based on relative displacements at the free
nodes. This is performed in an outer loop within which the previous iteration is contained.
As with the inner loop where constraints are maintained/released based on nodal forces, the
outer loop terminates when no more constraints are updated based on relative displacements

(ng = 0) or the maximum iteration limit, mazy, is reached. This leads to an updating
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scheme with two levels of iteration as given in Algorithm 4.1.

update({U)
1 © outer loop for updating free nodes
2 while (i < rnazy) and (ng > 0)
3 doj=1

4 & inner loop for updating constrained nodes
5 while (7 < mazy) and (ny > 0}
6 do U¢ = get_fixed.displ(U)
7 P = K!U*
8 & solve for unknown displacements
9 U = linear_solve(K' ~P)
10 U=U+1U"
11 > compute fized node reactions
12 F = compute.F(U,K?%)
13 ns = update.fixed nodes(F)
14 o
15 ng = update free nodes(U*)
16 i+t

17 return

Algorithm 4.1: Pseudo-code for Dowel Constraint Updating

For the analyses performed in this study, both mazy and mez were fixed at five which
generally allowed Algorithm 4.1 to converge to an unchanging set of constraints at each iter-
ation n thé slobal sclution strategy. Preliminary comparisons indicated that Algorithm 4.1
provides significantly improved performance over the simpler updating strategy presented

earlier.

4.8 Element Convergence Study

This Section presenis results of a convergence study designed to verify the element formu-
lation and the constraint updating strategy. Both the number of dowel elements and the
ability of the model to predict joint response with varying amounts of dowel looseness are

studied.

4.8.1 Finite Element Model

Fig. 4.4 illustrates the geometry and finite element discretization of the two slab system
chosen as a model problem. A single layer of elements was used to model the slab, which
previous studies have shown to be adequate to capture the displaced shape of the slab. The

modulus of elasticity of the stab was chosen as 28 kN/mm®. The dowel diameter used was
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Figure 4.4: Plan View of Two Slab Model Problem

32 mm, and its modulus of elasticity taken as 200 kN/mm?. The subgrade was modeled as
a dense liquid foundation with a modulus, &, of 0.0407 N/mm?®. The value of & is known
to vary with the magnitude and velocity of the wheel loading as well as the subgrade type
(16, 54]: the value chosen here is considered representative for an untreated gravel subgrade.
The only loading considered in this study was an equivalent single axle load {ESAL) of 80
kN applied as point loads near the joint as shown in Fig. 4.4. The slab boundary conditions
are displacement constraints sufficient to prevent rigid body displacements and rotations as

shown in Fig, 4.4,

The gap between the embedded dowels and the slab was assumed o be concentric,
varying paraboiically in magnitude along half the dowel length for both the loaded and
unloaded slabs as shown in Fig. 4.5. Bach dowel was considered to be debonded along its
length, except at a single end node as required to prevent rigid body displacement of the
dowel in its axial direction. The zero gap between the slab and the dowel near the dowe!
ends ensures that the dowel is constrained to the slab at these nodal locations, providing
sufficient transverse dowel restraint. The magnitude of the gap at the joint was varied
between 0 mm and 0.3 mm, as larger values had little effect on pavement response. Note
that laboratory studies have indicated that the magnitude of the gaps formed under cyclic
damage vary from about 0.3 mm to 0.6 mm, although no information about the variation in

magnitude along the dowel length is known [10, 81]. The parabolic variation was assumed
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based on the likely development of the gap throughout the loading history of the joint. The
first appearance of a gap can be expected at the point of the highest contact stresses near
the joint. As the gap widens near the joint, the point of highest contact stresses will move
back along the length of the dowel, resulting in the region of the gap propagating back
along the length of the dowel. Although the dowels closest to the wheel loads transfer the
most shear across the joint, and thus can be expected to develop larger gaps than the other
dowels, the gap was assumed to be identical for all dowel lines. The joint width was fixed
at 5 mm; it was not necessary to consider nodal contact between the vertical faces of the

joint due to the small magnitudes of the displacements.

4.8.2 Results of the Convergence Study

To verify the element formulation. the level of discretization of the dowels in each slab was
varied, while the gap was fixed at an intermediate value of 0.15 mm. The sensitivity of
both load transfer efficiency (LTE) and dowel shears to the number of dowel elements was
examined. Load transfer efficiency, commonly used to measure joint condition [83, 61], is

defined as:

dy
LTE = — x 100% (4.70)
: I

where d,, is the vertical (downward) deflection of the unloaded slab at the joint, and d; is the
vertical deflection of the loaded slab at the joint. The dowels closest to the applied wheel
loads are denoted as “inner” and “outer” as shown in Fig. 4.4; LTE values are reported

for both the inner and outer dowels. The results of the convergence study are shown in



49

Fig. 4.6. From these plots, it is clear that the LTE values and dowel shears converge with
increasing numbers of dowel elements. Over the number of dowel elements considered, the
LTE varies less than 3% for both the the inner and outer dowels, and the dowel shears vary
approximately 2.5% in magnitude. Based on this convergence study, six elements per dowel
line in each slab were used to discretize the dowels in the remaining runs. Note that this
corresponds to three elements over the region of the gap.

Further studies examine the effect of the magnitude of the gap on the LTE and dowel
shears. Figure 4.7 shows, for the outer dowel, the effect of the gap on LTE and dowel shears.
Note that a gap of 0.3 mm reduces the LTE by over 50%, and that the outer dowel shear
is reduced by approximately 500%. The variation in LTE is is in good agreement with
measured values reported in {10}, which showed a loss in LTE of over 50%. These results
indicate that even relatively small gaps may have a large effect on the ability of the dowels

to effectively transfer loads from the loaded slab to the unloaded slab.

4.9 Summary

An embedded formulation for a quadratic beam element incorporating both bending and
shear deformations suitable for modeling dowel action in rigid concrete pavements has been
proposed and developed. The embedded formulation has significant practical advantages
over a discrete formulation, allowing both an exact mathematical representation of the dow-
els and regular meshes for the siabs. The specific advantages of the embedded formulation

are as follows:
¢ Slab mesh divisions are not restricted to coincide with dowel lines.
» The element may be debonded at selected nodes.

* The nonlinear effect of gaps between the dowel and surrounding slab concrete may be

explicitly modeled.

e The element stinness is easily computed using a matrix iransformation. and does not
require special integration techniques. Both the effects of debonding and gaps are

incorporated in this transformation.

» The dowel element permits the incorporation of a general bond-slip law, making it

appropriate for modeling reinforcement in conventional reinforced concrete structures.
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A convergence study was performed to verify the element formulation. The study in-
dicated that the element performance is as expected, giving rapidly converging joint dis-
placements and dowel shears with increasing levels of discretization of the embedded dowel
when gaps exist. Relatively small gaps between the dowel and the slab (less than 0.3 mm)
appear to have significant effects on the joint displacements and the ability of the dowels
to transfer shear from the loaded to the unloaded slab. This is in agreement with existing

laboratory data [81, 10}, and serves to justify the need to model explicitly dowel looseness.



Chapter 5

Aggregate Interlock

5.1 Introduction

Farly experimental studies on aggregate interlock shear transfer in rigid pavements demon-
strated that joint shear transfer effectiveness and endurance depend on many factors in-
cluding joint width, slab thickness, load magnitude, foundation type, subgrade modulus,
and aggregate shape {15].

Research into the more general problem of shear transfer across discrete cracks in con-
crete has shown the mechanics of aggregate interlock shear transfer to be highly complex.
In addition to contact between asperities on joint surfaces, there may be localized crushing

of both the cement paste and the aggregate (see Fig 5.1) [7. 91]. The amount of crushing

Crushing and Bearing on
Joint Surfaces

u
Wy
¥

Figure 5.1: Aggregate Interlock Shear Transfer

and the bearing area of the surfaces depends on the joint opening, normal restraint of the
joint, the strength of the concrete (both the paste and the aggregate), and the size and
distribution of the aggregate particles {91]. A predictive mode! of aggregate interlock shear

transfer at rigid pavement joints should take all of these factors into consideration. The
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complexity is further heightened by cumulative damage to the joint due to cyclic loading,
which reduces the ability of the joint to transfer shear (85, 92]. A recent experimental
study is underway which attempts to quantify the degradation in aggregate interlock shear
transfer with high cycle, low stress conditions common to rigid pavements [3].

Despite the complexity of aggregate interlock shear transfer, current practice is to use
discrete linear spring elements spanning the joint when modeling rigid pavement systems
(see Chapter 2). While the use of linear springs may be reasonable for an examination of the
effect of aggregate interlock shear transfer effectiveness on the global slab response (see [44]
or [45], for example), it does not permit accurate modeling of local response at the joint.
Even when the use of linear springs is appropriate, the rational choice of a spring stifiness
(constitutive relation) may be difficult, if not impossible. Moreover, the appropriate spring
value is effectively a secant stiffness, valid only for one model geometry, set of material
properties, and loading.

Clearly, there is a need for more realistic finite element modeling of aggregate interlock
shear transfer; the development of such a ftechnique is the focus of this Chapter. Common
approaches to the finite element modeling of aggregate interlock shear transfer are discussed
next, with consideration given to both element type and incorporation of constitutive rela-
tions. Section 5.3 addresses the mechanics of aggregate interlock, and contains a detailed
literature review that serves to provide a basis for the choice of crack constitutive relations
appropriate for the present problem. Lastly, a technique for the finite element modeling of

aggregate interlock shear transfer in rigid pavement slabs is developed.

5.2 Review of Aggregate Interlock Modeling

The finite element modeling of discrete cracks in concrete requires that the crack constitutive
relations be chosen and an appropriate element be used. Element types commonly used in
the finite element modeling of shear transfer across discrete joints in concrete can be grouped

into three categories:
o Discrete linkage elements between nodes.
¢ Continuum finite elements with reduced shear stiffness.
o Special zero-thickness isoparametric joint elements.

Some representative 2D elements are iliustrated in Fig. 5.2
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Figure 5.2: Common Elements for Modeling Aggregate Interiock Shear Transfer

Linkage elements have the obvious advantage of simplicity and ease of implementation,
and are often used in finite element models of rigid pavement systems. However, it has been
shown (7] that linkage elements are incapable of modeling joint shear transfer because of
the indefiniteness of the constitutive relations. The error induced by this approach depends
on the magnitude of the normal forces at the joint; as long as these normal forces are
small, discrete springs may be acceptable. The use of a continuum finite element with
a reduced shear stiffness is also unable to model the normal forces occuring at the joint.
In addition. large relative tangential displacements at the joint may induce large element
strains, violating small strain theory and requiring that higher-order strain approximations
be employed. The third approach, while more complex, is desirable since any constitutive
relations based directly on {4,, ;) may be incorporated [36]. This also avoids any potential
difficulties that may arise from large strains occuring at the joint.

Attempts to rigorously incorporate complex aggregate interlock constitutive models
within finite element models are uncommon, but this issue was tackled by Feenstra et
al. {25, 26]. In these studies, various aggregate interlock constitutive models, including
those developed by Walraven (91, 74] and Bazans {7}, were implemented using isoparametric
joint elements. Several significant computational difficulties were noted: (1) the element
constitutive relations are quite complex, and (2) the incremental constitutive matrix is not
symmetric {discussed in detail in the following Section). As shown by Feenstra et al. [25, 26],

this lack of symmetry can result in unstable and/or poorly conditioned systems that require
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very small load steps to converge.

Another issue which must be addressed for the present problem is the potential for

contact between the opposing joint faces when the slabs displace as shown in Fig. 5.3. Note

Wheel Load N Potential Contact
A

Figure 5.3; Contact Between Opposing Joint Surfaces

that when discrete cracks are modeled in cracked concrete beams or slabs, this is often not
a consideration since the cracks are continually growing and opening while the load is in-
creased. This is fundamentally different from the current problem, where a full-depth crack
exists, and the crack opening varies significantly due to seasonal contraction/expansion
of the slabs. This is a similar situation to that which occurs in the modeling of jointed
rock [36].

Joint contact conditions may be incorporated within the isoparametric joint element
stiffness matrix using penalty parameters [36]. The penalty parameters may be viewed
as shear and normal stress constitutive relations, and calibrated accordingly. For example,
consider a 2D case at a node where contact conditions require a constraint, but the applicable
constitutive mode! predicts a non-zero shear stiffness with no coupling between normal and

shear stresses. For this case, the element constitutive matrix at the node would be:

hnn 0
o[ 2] o

where rp, is the penalty parameter (effectively a very large elastic modulus), and Dy <€ Knn

the effective shear stress-displacement modulus.

The large difference in magnitude between Dy, and kn, highlights a problem identified
with penalty parameter approaches in general: they yield a poorly conditioned stiffness
matrix. The solution strategies used in this study rely on iterative techniques for solving the
system stiffness equations, the convergence of which is greatly slowed by poor conditioning.
To avoid this difficulty, the contact conditions at the joint are modeled independently of the
joint constitutive relations and enforced with Lagrange multipliers. Details may be found

in Chapter 6.
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5.3 Mechanics of Aggregate Interlock
5.3.1 Background

Barly research on the empirical development of shear stress-displacement relationships was
often conducted in relation to the design of nuclear containment structures. A summary of
proposed shear stress—displacement relationships may be found in {11]. These models are
largely empirical, relying on laboratory test data for determination of appropriate parame-
ters, and generally apply to reinforced concrete structures. They may be divided into two

broad categories:

* Isolated crack stiffiness models that provide an interface shear stiffness per unit area
given parameters such as concrete strength and the initial crack opening. These
models are generally derived from fitting curves to experimental data of shear stress-

displacement, and are limited to constant crack openings and/or crack restraint.

 Crack stiffness models that may be incorporated directly in element constitutive re-
lations. These models may be analytical or based on extensions of isolated crack
stiffness models. They are generally applicable for use with continuum elements, and

involve reduction of the shear modulus based ¢n crack width and stress.

More recent research on the mechanics of aggregate interlock has highlighted physical
phenomena that these early models are not capable of rationally capturing. One of the
most important and earliest studies of this type was that of Bazant [7], who examined the
mechanical aspects of shear and normal stress transfer across cracks in plain concrete as
part of a study on shear stress transfer across rough cracks in reinforced concrete. This
work 1s significant since it represents an early attempt to comprehensively and rationally
incorporate micromechanics and the effect of crack asperities in an aggregate interlock
model.

Bazant {7] noted that shear slip across a crack requires an increase of the crack opening,
which will increase the normal compressive stresses across the crack if it is restrained. Based
on this observation, the incremental stress-strain relations for rough cracks were formulated

in the context of monotonic loading using total displacements as follows:
Tn = f((sn: ét) (52)

ot = f(bn,6) (5.3)
do = Dd§ (5.4)



where: ]
do = _j‘;’:} (5.5)
o - |32 5] e
dé = i‘;’:} (5.7)

Here, (8,,d;) represent the relative normal and tangential crack displacements, respectively;
o, 15 the normal stress on the crack plane; and o, the shear stress.
Bazant made several important observations regarding the nature of stress transfer

across discrete cracks:

o Crack slip at a constant opening must induce normal stresses across the crack.

o The initial deformation at a crack must begin with a normal displacement, which is

then followed by a tangential displacement inducing shear stresses. .

e For §, = constant and > 0 and increasing é,, both o; and ¢, must decrease in

magnitude; thus Dy, < 0 and Dy, < 0.

e Similarly, for é, = constant and > 0, an increase in ¢, produces increases in o, and

¢y, meaning that Dy > 0 and Dy > 0.
gl

The last two observations lead to the immediate conclusion that the crack constitutive
matrix is never positive definite except when & = 0.

Since this initial work by Bazant {7], a large number of studies, both experimental and
theoretical, have been conducted on stress transfer across discrete cracks in concrete. The
remainder of this Section provides a detailed literature review of these studies, organized by
author. Empirical models, where crack constitutive relations are derived from or compared
to test data, are covered first. This is followed by a review of micromechanics-based models
where constitutive relations are developed from basic assumptions of crack morphology and

the physical properties of the concrete.

5.3.2 Recent Empirical and Semi-Empirical Models

Reinhardt and Walraven (1982)

In an attempt to increase the existing experimental database on aggregate interlock shear
transfer and to resolve conflicting conclusions from previous tests by other researchers, Rein-

hardt and Walraven [74] conducted a series of experimental investigations. Tests on both
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specimens with both internal restraint (conventional reinforcing bars intersecting the crack
plane) and external restraint were conducted. The effects of concrete strength and aggre-
gate gradation and maximum particle size were considered. In addition, bilinear curves
were fitted to the experimental shear stress-shear displacement curves, with the main pa-
rameters being crack opening and concrete strength. Some conclusions of the experimental

study related to plain (externally restrained) specimens are:

¢ For externally restrained cracks, crack opening path (relation between §; and &,) is

influenced by the external restraining stiffness.

» High restraining stiffness keeps the crack opening small, giving a large total contact

area and high shear resistance.

¢ The shear resistance depends on contributions from all aggrezate particles with diam-

eters larger than the crack width.

Millard and Johnson (1984)

This study [65] examined both aggregate interlock shear transfer and dowel shear trans-
fer through a series of experiments. The primary goal of the aggregate interlock tests
was comparison with previously developed theoretical models, including that developed by
Walraven {91] {reviewed later in this Chapter).

A total of 19 aggregate interlock specimens were tested, with the main parameters being
initial crack width (0.063 mm ~ 0.75 mm), concrete strength (20 N/mm? ~ 52 N/mm? cube
strength), and specimen stiffness normal to the crack plane (1.2 N/mm® -~ o0). One test
was conducted with constant crack opening (infinite restraining stiffness). Tensile loading,
inducing axial tension in the reinforcing bars, was applied through flexible straps to minimize
the stiffness of the test rig. The specimens consisted of two concrete blocks with a pre-formed
crack. Crack restraining stiffness was provided by two reinforcing bars extending through
the specimen that were sleeved to prevent any contributing stiffness due to dowel action.
All tests were monotonic, and loading was applied until failure.

The test results gave relationships between crack width, relative shear displacement,

and normal and shear sfresses on the crack. The following general trends were observed:
¢ Nominally identical specimens showed nearly identical behavior.

e Shear stiffness and ultimate shear stress decrease with increasing initial crack width.

Cracks widen {open further) with increasing shear regardless of the initial value of the
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crack opening.

e Increasing axial stiffness (restraint) increases the shear stiffness and ultimate shear

stress.

e For tests where the crack width was allowed to increase under increasing shear stress,

the concrete strength had only a small effect on the ultimate shear stress.

¢ The test with constant crack opening exhibited significantly higher ultimate shear

stress and stiffness than similar tests which permitted progressive crack opening.

Comparison of the test results with theoretical models was also done. The primary
conclusion of the author is that shear is resisted by a combination of crushing and sliding; the
comparison with Walraven’s two-phase model, which captures this behavior, was generally
quite good. The conclusion of Laible et al. {55] that bearing/crushing predominates for
small crack widths (< 0.25 mm) and sliding predominates for larger crack widths was not

supported by the test results.

Tassios and Vintezeleou (1987)

Tassios and Vintezeleou [85] performed a series of cyclic shear-displacement tests on plain
concrete specitnens. Three types of interfaces were considered: smooth (as typically found
in pre-cast connections), rough (natural cracks induced by pre-cracking the specimens),
and sand-blasted interfaces. Three concrete strengths were used (16 MPa, 30 MPa, and 40
MPa), and three different normal stress levels. All tests were displacement controlled, and
the monitored data included the crack dilatancy, shear displacement, and shear stress.

The main observations of the test data regarding the rough interfaces are as follows:

e There is an increase in maximurn shear stress transfer with increasing normal stress.

This increase is not proportional.

o For small initial crack widths {<0.10 mm} which were typical for this testing program,
there is no significant free shear slip before large shear stresses are mobilized. The
authors qualitatively state that larger initial crack widths should allow for larger initial

free shear slip.

s With regard to the hysteretic behavior, the response is markedly asymmetric during
the first reversal of loading, i.e. the maximum shear stress transferred drops signifi-

cantly after the first load reversal. This effect decreases during subsequent load cycles.
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¢ Due to the smoothing of the interfaces during cycling, there is a large drop in shear
stiffness, and the force-response degradation is large. Further, the maximum crack
dilatancy decreases with cycling, and the residual shear slip after unloading is nearly

equal to the maximum shear slip for each loading cycle.

Tassios and Vintezeleou also presented empirical expressions which were developed to
fit the shear hysteresis loops for both smooth and rough interfaces. The details of these
expressions will not be repeated here. The authors caution that scale effects may be signif-

icant.

Divakar, Fafitas, and Shah (1987)

Divakar et al. [19] performed a series of monotonic shear tests on pre-cracked plain concrete
specimens. The concrete strength of all specimens was 35 MPa, and the maximum aggregate
size was 12.7 mm. Measured data for shear stress versus slip and slip versus dilation were
taken at four different values of constant normal stress.

The test results and data previously published by other researchers were then used
to develop analytical models to predict crack stiffness using total deformation theory in
a manner similar to that of Bazant [7]. Empirically determined factors for crack shear
stiffness, coefficient of friction, dilatancy, and normal stiffness were proposed. These factors
were incorporated into expressions relating incremental displacements and stresses assuming
that shear stress, g;, and normal displacement, &,, were functions of §; and o,. Expressions
for the coefficients Dpn, Dyg, Dy, and Dy were then derived: the resultant matrix relating
imcremental displacements and stresses, DD, was not symmetric positive definite, which is
consis‘tent with previous work by others [7]. The parameters defining the coefficients of D
were optimized with respect to the author's and other published test data using nonlinear
least squares. The accuracy of these analytical expressions was tested by comparison with
published test data from several other sources that incorporated different degrees of crack
normal restraint stiffness. Agreement with the test data was generally good, with the model

somewhat overpredicting shear stress vs. slip in most cases.

5.3.3 Micromechanics-Based Models

Several models that allow prediction of crack stiffiness and response based on a theoretical
micromechanics-based approach have been developed. These models are reviewed in detail

in this section.
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Fardis and Buyukozturk (1979)

Ir: this study {23}, an examination of the micromechanical aspects of both aggregate interlock
and dowel shear transfer was undertaken. Underlying the aggregate interlock model is
the assumption that a crack surface can be decomposed into a “local” roughness and a
“general” roughness as originally proposed by Laible et al. [55], and that the concrete can
be represented as a single-phase medium. The model decomposes the local roughness into a
variable friction angle, and the general roughness is defined as a stochastic surface composed
of parabolic segments.

The crack is assumed to be able to open non-uniformly, with a linear variation in 4,
along the crack length. This, coupled with the prior assumptions as to the variations in the
crack surface and joint opening, results in a unique solution for two contact points on any
crack of finite size. The model does not allow the prediction of normal and tangential stresses
given a displaced shape; instead, the relative displacement of a finite two-dimensional crack

area gives rise to shear and normal forces and a moment.

Walraven (1981)

Walraven [91] addressed the fundamental physical relations between shear and normal -
stresses and relative tangential and normal displacements across discrete cracks in con-
crete. This study dealt largely with monotonic loading, i.e., both the shear and normal
stress are functions of the tangential and normal displacements only: the loading history is
not considered. The stresses and constitutive relations were formulated as first identified
by Bazant [7] {see Eqs. 5.2-5.4) based on a representation of concrete as constituted by two
separate materials, the cement paste and the aggregate. The weakest link in the concrete
matrix was assumed to be the bond between the cement paste and the aggregate, and thus
cracking occurs along the aggregate boundaries. The microroughness, caused by the aggre-
gate particles intersecting the crack plane, was assumed to dominate the macroroughness
of the crack, defined as the overall variation in path of the crack face. Because of the large
plastic deformations of the cement paste due to pore-volume reduction, the cement paste
was idealized as obeying a rigid-plastic stress-strain law. The aggregate was idealized as
incompressible.

The aggregate particles were modeled as spheres of varying size, distributed according to
a Fuller curve. The aggregate particles intersect the crack face at various depths depending

on their statistical distribution within the concrete matrix (see Fig. 5.4}, As a result of these
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Figure 5.4: Distribution of Aggregate Particles

assumptions, the crack may be reduced to a two-dimensional problem of finite width. The
shear and normal stresses at the crack result from the tangential and normal projections of
the stresses produced when the cement paste deforms plastically as it bears on the aggregate
particles (see Fig. 5.5). These siresses are related by assumption that the contact areas are

about to slip, and thus:
Tpu = HOpu (58)

where po is the coefficient of friction between the paste and the aggregate, and oy, is the
ultimate strength of the paste. The equilibrium of the crack plane requires that the net

forces be balanced as foliows:

On = Opu(Az — !—"Ay) {5.9)

where:

A, = x-projection of the sum of the most probable contact areas

Zy = y-projection of the sum of the most probable contact areas
The determination of A; and A, is based on the statistical distribution of the aggregate in
the concrete matrix, and the geometry of the spherical aggregate particles intersecting the

crack plane at a given tangential and normal displacement.
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In an attempt to verify the theory, a series of tests were run in which the crack width was
maintained at a constant value, and the shear stress, normal stress, and shear displacement
were measured. The values of o, and p were determined to provide the best fit to the
experimental data for a crack opening of 1.0 mm; these values were then used to calculate
the stress-displacement curves for other crack opening values. It was found that the theory
was generally in good agreement with the experimental data for all values of crack openings.
In addition, parametric studies were conducted which allowed the influence of the friction
coefficient, the size of the aggregate, and the grading curve to be studied. The contribution
of different aggregate fractions to stress transmission was examined, and the possibility of

extending the theory to cyclic loading was examined in a qualitative manner. Some of the

relevant conclusions of Walraven’s initial study were:
e The experimental resulls can be adequately described by the adopted physical model.

¢ A friction coefficient of 0.4 between the aggregate particles and the matrix results
in the best fit between experimental data and the model. This value is independent
of the concrete quality. The yield strength of the cement paste which gives the best

results is a function of the concrete strength. Both parameters are in good agreement



with experimental data described in the literature.

¢ The resistance to shear deformations is governed by the concrete strength, with the

diameter of the aggregate playing a secondary role.

e The aggregate grading curve does influence the shear transfer characteristics at larger

crack widths. The influence of the grading curve on the normal stresses is minimal.

e The behavior of the cracks subjected to cyclic loading can be qualitatively described

by the model.

Li, Maekawa, and Okamura (1989)

The work by Li et al. [56] represents a unique approach to the fundamental analysis of
aggregate interlock shear transfer. The crack is assumed to be a rough surface with a
number of areas, or contact units, having various angles of inclination, 8, that vary from
~7/2 to w/2. A probability density function §2(6) is assumed to give the probability of
occurrence of any §. The crack surface is shown schematically in Fig. 5.6. The second major
assumption of the theory is that the direction of contact is fixed, and assumed normal to

the nitial contact direction, 0.

A
A

Figure 5.6: Surface Roughness — Model of Li ef al.

A series of experiments were conducted at fixed crack widths. Based on the histogram
of the measured surface profile of the crack, the following analytical form for £2(0) was

proposed:
£(0) = 0.5cos () (5.11)
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An elastic-plastic material model was assumed to govern stress transfer at the contact points.
An experimentally verified expression for the ratio of the contact area to the total crack
area, K, was defined, permitting the calculation of the contact area as a function of J, and
the maximum aggregate diameter. Based on these assumptions and proposals, analytical
incremental constitutive relations were derived. Note that the elastic-plastic material allows
cumulative damage to be accounted for, as well as permitting cyclic loading.

Following the development of the model, comparison with the experimental results was
done. It was found that the model generally predicted cyclic and monotonic behavior well.
However, the unloading/reloading paths computed with the proposed model are identical,
whereas the experimental loading paths were significantly different. For large numbers of cy-
cles, the authors note that the effects of smoothing and fracturing of the asperities becomes
significant and that the model may not accurately capture this behavior. The sensitivity
of the model to different forms of Q(#) was checked by assuming different functions (i.e.
linear, elliptic, uniform) and comparing computed monotonic response with the test data;
the proposed form was found to give the best response, although the predicted response is

sensitive to the assumed functional form of £2(6).

Divakar and Fafitas (1992)

In {18] and [22], Divakar developed a micromechanics-based constitutive model for interface
shear. The model is similar o that developed by Walraven in that it explicitly incorporates
asperities representing the crack microroughness; however unlike Waliraven’s model it treats
the concrete as a single phase material. The basis for the model is shown in Fig. 5.7. The

model parameters are defined as follows:

o; = the interface strength

7; = the interface sihear stress

o, = the closing pressure

a. = the actual area of contact (function of displacements)
c; = the asperity angle (function of displacements)

The interface shear stress, 7; is related to o; through the coeflicient of friction y similarly to
Walraven's model. The value of o, depends on the uitimate tensile strength of the concrete,
and decreases exponentially for larger crack openings. The interface strength is related to f,

through an equation similar to that developed for the parameter o,, in Walraven's model.
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Figure 5.7: Equivalent Micromechanical Model of Crack (Divakar, 1992)

Writing the equations of equilibrium across the crack plane for a unit crack area gives

o = oiac(sina; + pcosa;) (5.

o
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where ¢, and oy represent the normal and tangential crack stresses corresponding to Fy

I

and I acting over unit crack areas in Fig. 5.7.

Following this formal statement of the model, Divakar performed several regression
analyses based on experimental data to determine expressions for o; and a,. The resulting
equations were then verified by comparing computed values with existing constant normal
stress and variable normal stress test data. In general, the mode! performed well, accurately

predicting monotonic stress-displacement response.
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‘Walraven {1994}

In a more recent study, Walraven [92] focused on the shear and normal stress transfer across
cracks in concrete subjected to cyclic loading. The same physical and mechanical concepts
developed in his initial study [91] were assumed for modeling the stress transfer; however,
the calculations for the projected contact areas were modified.

The statistical basis for the particle distribution is identical to that developed previously
by Walraven. To simplify calculations, both the distribution of particle diameters and all
possible embedment depths were discretized into a finite number, with the embedment depth
assuming to be uniformly distributed between a minimum of zero and a maximum of the
radius of a given particle. This allows the representation of an aggregate particle Dj; with
diameter D; and embedment depth d; as shown in Fig. 5.8. For each embedment/diameter
combination, D;;, the cement paste is discretized into a finite number of layers, allowing
computation of the projected contact area by summing the contact areas of the individual

paste layers. See Fig. 5.8 for a graphical representation of this discretization. For a given
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Figure 5.8: Discretization of Aggregate Particles and Cement Paste

normal and tangential displacement of the crack plane, the likely contact area for any
particle diameter is determined by summing the contact arcas for all embedments and
multiplying by n;, the likely number of occurrences of IJ;. The total contact area is then

determined by summing over ali particle diameters, and the shear and normal stresses may
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be computed using Eqs. 16 and 17.

The normal stresses generated across the crack are balanced by the springs assumed
to cross the crack plane as shown in Fig. 5.8. These springs may represent some external
restraint mechanism, or reinforcing bars intersecting the crack plane. The discretization of
the cement paste also allows the damage to the cement paste to be updated throughout
the loading history by tracking the geometry of the paste layers for each particle diame-
ter/embedment depth combination. A simple program may be written to perform simu-
lations of both monotonic and cyclic loading for different parameters such as initial crack
-opening, restraining spring stiffness, etc. Another further addition to the theory as initially
presented in the context of monotonic loading is the inclusion of the fracture index, Cy.
This is used to proportionaily reduce both the shear and normal stress transferred across
the crack, and accounts for the fracturing of aggregate particles. Walraven notes that the
value of Cy is characteristic of the specific concrete mixture, and must be determined from
monotonic testing of a specimen and curve-fitting the resulting data.

Verification of the theory was accomplished by comparing computed shear stress vs. dis-
placements with those from existing laboratory tests found in the literature [55]. In general,
agreement between the tests and the theory was very good, and the simulations accurately
capture the significant physical phenomena observed from testing. In contrast with the
model of Li et al [36], Walraven's model is capable of predicting different loading/unloading

paths for adjacent cycles.

5.4 Proposed Modeling Technique
5.4.1 Choice of Aggregate Interlock Constitutive Model

Due to the generality and extensibility of the micromechanics-based constitutive models,
they are the best choice for modeling aggregate interlock shear {ransfer. The model of
Fardis {23] is the least physically defensible of the micromechanics-based constitutive models,
and is also computationally complex. Its resolution of aggregate interlock shear transfer
into global shear and rormat forces and a moment acting on the entire crack plane is not
ideal for rigid pavement modeling.

The remaining models are all viable for the modeling of aggregate interlock shear transfer
in rigid pavements. However. the two-phase constitutive mode! developed by Walraven [91,
92] has been chosen to model aggregate interlock shear transfer. The model was selected

for several reasons:
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e Several researchers have independently shown that experimental results can be ade-
quately described using this model with relatively few rational physical parameters.
The model of Divakar relies more heavily on empirical data due to its conceptualization
of the concrete as a single-phase medium. The model of Li [56] relies on assumptions
about the statistical distribution of the crack surface asperities and contact area which

have limited experimental verification.

¢ The model will allow reasonably accurate estimates to be made of the behavior of
the joint. Although laboratory testing is required to determine optimal parameters,
this is not necessary for initial impiementation of the model and verification of its

applicability.

o Unlike the model of Divakar [18], the model has been extended to cyclic loading,
and cumulative damage at the joint is impertant due to the large number of load
cycles experienced by concrete pavements. Current experimental research into this
phenomenon has been undertaken by other researchers [3]; the development and cal-
ibration of analytical models that capture this effect would be a valuable topic for

future research.
 The model is relatively simple to implement in its discretized form as presented in [92],

The model has been implemented and verified by duplicating some of the results published

by Walraven. Details of the implementation are given in the following Section.

5.4.2 Incorporation of Constitutive Relations in Finite Element Model

Walraven's model will be incorporated in the finite element models via the generation of
curves similar to those shown in Fig. 5.9 using appropriate parameters. Note that the stress
state at any point on the joint surfaces can be determined given (d,,4;) by interpolating
on and between curves. Similarly, numerical derivatives of these curves are easily evaluated
with a finite difference equation to give required values for the constitutive matrix D.

The approach used to generate these curves i~ similar to the discrete calculation proposed
by Walraven [92]. However, Walraven assumed ten discrete particle diameters, paste layers,
and embedment depths for his example calculations with no consideration that a more
refined discretization might improve accuracy. To determine an appropriate number of
discrete particle diameters, embedment depths, and paste layers to be used in the calculation

of A; and Ay, a small convergence study has been performed.
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Consider a concrete mix with the following typical properties: oy, = 45 N/mmz,.
1 = 0.4, a fraction of aggregate particles in the concrete of 0.75, and a maximum particle
diameter of 20 mm. For simplicity, the number of diameters, embedments, and paste layers
will be assumed equal. Computing oy vs. §; and o, vs. d; for varying levels of discretization
yields the curves shown in Fig. 5.10 for a constant &, of 0.2 mm. Note that the calculation
is convergent; however, the value of 10 diameters, layers, and embedments suggested by
Walraven introduces significant error in the calculation of the shear and normal stresses.
Based on this convergence study, the number of diameters, layers, and embedments was

fixed at 30 for the remainder of this study.

5.4.3 Joint Interface Element

In the present investigation, an isoparametric interface element will be used to model aggre-
gate interiock shear transfer. The particular element implemented is a zero-thickness, 16-
noded guadratic element designed to deform compatibly with the 20-noded brick elements
used to model the slab as shown in Fig. 5.11. The element stiffness can be formulated using

a variational approach. The incremental internal virtual work, dI1%, may be written as (98):
dTie = / 45T dodA (5.14)
A

where § and o are as defined previously. Assuming an arbitrary orientation for the shear
direction, indicated by the vector v shown in Fig. 5.11, the components of dd may be written
in terms of an incremental relative displacement vector at any point in the global coordinate

system, dA:
n-da

daﬁ[v.m

] = QdA (5.15)

where Q is a 2 x 3 array with the unit vectors n and v as rows, l.e.

v

Q = { n} (5.16)

Substituting Eq. 5.15 and the incremental stress-strain relationship de = Ddéd into Eq. 5.14
gives:

dI1e = /A (Qda)T [DQdA]dA =/A[dATQT] (DQdA]dA (5.17)

Expressing the vector of incremental relative nodal displacements, dA, in terms of the

incremental element nodal displacement vector, dU¢, gives:

dA = NHdJU® = BdU*® (5.18)
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where:
1 0 0 -1 0 0 0 0 ¢
H=|0 1 0 0 -1 0 00 0 (5.19)
etc.
N 0 0 No 0 0 -~ Ng 0 0
N=|0 N 0 0 N 0 -- 0 Ng 0 (5.20)
0 9 Ny © 0 N -+ 0 0 N
d;
da
Ut = | (5.21)
dis

The matrix H is of size (24 x 43) and the product MdU® merely gives the relative
incremental displacements at each node given the nodal displacement vector. N is of size
(3 % 24}, and is a matrix of standard 2D quadratic element shape functions for an 8-noded
element [98] that interpolates the relative displacement at any point in the element from
the nodal values. The matrix B = NH is analogous to the matrix of differential operators
common to continuum elements. Each vector d; represents the 3-element displacement
vector at elemeni node i. Substituting 5.18 into 5.17 gives the element tangent stiffness
matrix, K¢ .

Kf:/ BTQTDQBIA (5.22)
A

The integral expression for K given in Eq. 5.22 is evaluated using 3 x 3 Gauss point

integration performed in terms of the element local coordinates using the usual rules for
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coordinate mapping [98]. The values of o, and o, are updated and stored at each integration

point to allow the computation of the element nodal forces, £¢ by the following integral:

£¢ = fABT Ino, + voy}d4 {5.23)

5.4.4 Symmetry and Computational Issues

"The final issue which must be addressed is the non-symmetry of the constitutive matrix
predicted by Walraven's model. As noted in [25, 26], this may pose computational difficul-
ties. Further, the efficient multigrid-preconditioned conjugate gradient solution techniques
used in this study (see Chapter 6) may only be used with symmetric positive definite sys-
tems. The details of the proposed approach to overcoming this difficulty are presented in
the remainder of this Section.

Consider the general form of the equilibrium statement for a finite element model:
P-F=0 (5.24)

where P is a constant vector of applied forces, and F is the vector of nodal forces determined

by:

o

F= > /BTadv+/ T'dd; = F, + F; (5.25)
I A;

elernents
The contribution to the nodal force vector, F, by summation/assembly over the elements
includes the slab, subgrade, and dowel elements. The contribution to F by joint shear
and normal stress transfer is accounted for in F;, computed by separately integrating the
tractions on the joint surfaces predicted by Walraven's model, I, over the area of the joint,
Aj. The evaluation of ¥; is accomplished by numerically integrating Eq. 5.23 for each joint
element and summing/assembling.
The nonlinear solution strategy developed in Chapter 6 is similar to Newton's method
m that it requires the formation of the Jacobian, J, which is simply the tangent stiffness
matrix:
dF, _(?Ei _

T30 Ty TRt R (520)

Strict evaluation of Eq. 5.26 results in an unsymmetric stiffness matrix, where K, and ¥ are

the symmetric and unsymmetric contributions, respectively. However, we need not evaluate
J exactly; in fact, approximations to J are often employed in quasi-Newton methods, and
in modified Newton approaches J is not updated at every iteration. In the present study,

a symmetric approximation to X; will be used, denoted by K;-, which is computed by



76

including only the diagonal element of the crack constitutive matrix corresponding to the
shear stress-displacement, Dg.
To illusirate further, consider Algorithm 5.1, appropriate for the case where the only

source of nonlinearity is aggregate interlock:

solve{)

1L r=||P~-F|

2 while || r||> 00

3 do K/ = update K(U)

4 U=U+ (K +Kj)'r

5 F; = get_joint forces(U)

6 F. = get_element forces{U)
7 r=F— Fj - Fe

8 end while

9 return

Algorithm 5.1: Solution of Model with Aggregate Interlock

This approach is easily included in a general nonlinear solution strategy based on New-
ton’'s method, and allows the use of efficient solution techniques that require symmetric
positive definiteness. Preliminary studies indicate that it is feasible, most likely due to the

small magnitudes of the normal stresses occuring at the joint.

5.5 Summary

In this Chapter, a comprehensive literature survey and investigation into the mechanics of
aggregate interlock shear transfer has been presented and techniques for the incorporation
of the constitutive relations predicted by these models in finite element discretizations have
been reviewed. Based on this research, the micromechanics-based aggregate interlock model
developed by Walraven {91, 92] was chosen for implementation in the present study. Crack
constitutive relations are computed using a special p.rogram that produces shear stress and
normal stress versus shear displacement curves for various joint openinings. Interpolation
within and befween curves allows the state of stress on the crack faces to be defined for any
relative crack displacement, and numerical differentiation of the computed relations permits
calculation of the required tangent crack stiffness. A 16-noded isoparametric joint element
15 used to incorporate the crack constitutive relations in the finite element models; details

of its development have also been presented.



Chapter 6

Solution Strategies

6.1 Introduction

In Chapter 3, a finite element modeling strategy for rigid pavement systems was outlined

and the following three major goals of this study were identified:
» Develop better methods for modeling dowel load transfer.
+ Improve techniques for modeling aggregate interlock shear transfer.

+ Develop computationally efficient solution strategies for solving 3D finite element mod-

els of rigid pavement systems.

Discretization of the slab and subgrade, constitutive properties, and application of loads
were also addressed in Chapter 3; Chapters 4 and 5 covered dowel and aggregate interlock
modeling, respectively. At this point, all aspects of the proposed finite element models of
rigid pavement systems have been defined. Fig. 6.1 shows a typical system of two rigid
pavement slabs with all components of the system identified; Fig. 6.2 illustrates a typical
finite element mesh of such a system.

The focus of this Chapter is on achieving the third major goal of this study: the devel-
opment of efficient and robust solution strategies for finite element models of rigid pavement

systems. This is a particularly challenging undertaking for several reasons:

* Material nonlinearities. The proposed aggregate interlock constitutive relations are
nonlinear. In addition, while gaps between the dowels and the slabs give rise to contact
nonlinearities, this phenomenon is actually treated as a material nonlinearity due to

the embedded formulation of the dowel element.
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Figure 6.1: System of Two Rigid Pavement Slabs

o Contact nonlinearities. Separation of the slab and subgrade under temperature and

wheel loading (see Figs. 6.1 and 6.3} must be treated as a contact nonlinearity.

e Model size. The proposed 3D finite element models are large, dictating that memory

and computational requirements of the solution strategy be minimized.

The following Section addresses the first two difficulties by the development of a global
solution strategy which allows for general material and contact nonlinearities. The pri-
mary source of computational effort in this nonlinear solution strategy is the solution of a
linearized system of equntions in the inner kernel, the optimization of which is crucial to
efficiency. This is accomplished by the use of an iterative multigrid-preconditioned conju-
gate solver, discussed in Section 6.3. Section 6.4 presents the development of the multigrid
methods used to precondition the conjugate gradient iteration. In Section 6.5, performance
studies testing important aspects of the proposed multigrid and multigrid-preconditioned

conjugate gradient solution techniques are presented. In Section 6.6 the effectiveness of the
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global solution strategy is evaluated using a model of a typical rigid pavement system incor-
porating several base layers and slab-subgrade separation. Section 6.7 presents a summary

of this Chapter.

6.2 Global Solution Strategy

The global solution strategy must account for both material and contact nonlinearities.
Here, an algorithm is developad that is analogous to a full Newton iteration: it is based
on successive linearizations of the constrained system that employ a tangent system stiff-

ness matrix and solution for a displacement increment at each iteration. Slab/subgrade
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separation is modeled assuming frictionless nodal contact.

6.2.1 Formulation of the Nonlinear Nodal Contact Problem

For frictionless nodal contact problems, inequality constraints are required. To illustrate,

consider Fig. 6.4 which depicts a portion of a larger finite element mesh. Two surfaces (the

fine mesh node §

1

'

]
Fa
)

A surface 2

J
if
v surface I—\\ ?

perturbation
at constrained nodes

fine mesh node {

O = coarse mesh node
® = fine mesh node

—— = fine mesh element division
- --- = coarse mesh element division

Figure 6.4: Nodal Contact

slab and base layer, for example) are separated by a scalar distance ¢;;; the outward normal

for surface 1 is given by n. Mathematically the constraint can be expressed as:
(di de)'ngcij (61)

where d; and d; are nodal displacement vectors. £q. 6.1 merely states that surface 1 may
not interpenetrate surface 2 at the location of nodes ¢ and j.

Inequality constraints require that appropriate criteria for maintaining/releasing con-
straints be employed. In the case of frictionless contact constraints, the criteria are straight-
forward: for a pair of currently unconstrained nodes, if Eq. 6.1 is false, the nodes are

constrained; for a pair of consirained nodes, they must be released when:
n-{e-n)>0 {6.2)

where o is the average of the stress tensors at nodes ¢ and j.
When constraints are imposed and Newton’s method is used to sclve the materially

nonlinear system, solution of the following constrained system is required at any iteration
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k:
K*U* = fF (6.3)
st. GMU = F (6.4)
where:
SUF = displacement increment to be solved for
r* = the current residual

The tangent system stiffness matrix, K*, constraint matrix, G*, and c* are superscripted
as they change at each iteration due to material nonlinearity and constraint updating.

Recognizing that the current solution vector, U, may be written as:
U* =0 46U + ...+ 4U* (6.5)

the constraints may be expressed as:

G*T (U“‘*1 +4U%) =c (6.6)
(63
GATUb = ¥ (6.7)
where:
LI e Ll § L (6.8)

The constrained system given by Egs. 6.3 and 6.4 may now be rewritten with the constraints

expressed in terms of the displacement increment as:
K*U* = b (6.9)
st. GPTIUE = o+ (6.10)
6.2.2 Solving the Constrained System

Several alternatives are available for enforcing constraints, the most common of which are
penalty parameters and Lagrange multipliers [6]. Application of penalty parameters to

Eqgs. 6.9 and 6.10 leads to the following system:

(x*+ aGFGHT) §UF = 1F + aGFe (6.11)
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where the penalty parameter, ¢, is chosen to be large enough to ensure that the constraints
are satisfied, i.e. o 3 maz(K;;). There are several problems associated with the penalty

parameter method, however:
e The appropriate magnitude of & must be determined for a particular problem.
s Due to the size of o, the perturbed system stiffness matrix becomes ili-conditioned.

In spite of these problems, the penalty parameter method may be quite attractive when
using direct methods (factorization) to solve for SU* because the bandwidth, size, and pos-
itive definiteness of the original system of equations is maintained. However, the problems
posed in this study are too large to be solved by direct methods; since iterative methods
will be used to solve the systems of linear equations, the problem of ill-conditioning makes
the penalty parameter infeasible.

In the present study, Lagrange multipliers are used to enforce the constraints in lieu
of a penalty parameter approach to avoid problems associated with poor conditioning.

Enforcement of the constraints with Lagrange multipliers leads to the expanded systenu:

K¢ Gk Ut r¥
. .= . 6.12
I: GRT 0 ji [ 6AL C:.K ( )
which is expressed in terms of both incremental displacements and Lagrange multipliers.

The solution of Eq. 6.12 for §U* and §A* (which satisfy Eqs. 6.9 and 6.10) is analogous to

the solution of a linear system within a Newton iteration.

6.2.3 Solution Strategy

Clearly, if the solution of 6.11 by direct methods is not feasible due to memory and compu-
tational requirements, the sclution of 6.12 by factorization of the coefficient matrix is not
possible. This implies that an iterative solution method must be used. However, while the
coefficient matrix in Eq. 6.12 is symmetric, it is not positive definite; this precludes the di-
rect implementation of most multigrid methods which rely on standard iterations requiring
positive definiteness {Gauss-Seidel, SSOR). This fact also prevents the direct application of
the conjugate gradient method, which is probably the most widely used iterative technique
for symmetric, positive-definite problems. While other iterative methods are available that
do not require symmetry or positive definifeness (bi-conjugate gradient, generalized mini-
mum residual, etc. [77]), their efficiency depends greatly on preconditioning the system 6.12,

which is made difficult by its lack of positive definiteness.
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"To circumvent these problems, a block iteration will be used that reduces the problem
one step further to the solution of a symmetric positive definite system at each iteration. In
particular, an adaptation of Uzawa's method will be employed as detailed in [77, 99]. Note
that K* itself is singular, since the only vertical support provided to the slab is through
contact with the upper base layer, and methods based on the Schur complement of K*,
GT(K*)"1G are not feasible. The variation of Uzawa's method employed here requires

that Eq. 6.12 be modified by the following perturbation:

(6.13)

KF+K' GF | [ 6U* | 7 rfpwGhet
GkT 0 6Ak - C*k

where K' = wG*G*T is a perturbation to the system stiffness matrix (K* + K’ is nonsin-
gular}. Note that once the constraints are satisfied, the perturbation does not modify the
original system. The scalar perturbation parameter, w, is mathematically equivalent to a
penalty parameter, and may b; interpreted as a spring stiffness. However, it is typically
chosen to be a relatively small value so as not to cause numerical difficulties. The perturbed

system 1s then solved iteratively as follows:

y = GKTEU ~ c*F (6.14)
SX =X+ wy (6.15)
§U = (K* + K)o + wGFek) - G¥5A) (6.16)

For convergence, w must be sufficiently small [99]; numerical studies indicate that if w is
the same order as avg(Kﬁ-), convergence 1s not impaired and is fairly rapid. More complex
perturbations can be employed in an attempt to speed convergence, but in general the

simple approach presented is sufficient.

Algorithm 6.1 gives the global solution strategy employed in this study. Note that it
employs three levels of iteration: (1) at the outer level, the nodal constraints and tangent
system stiffness matrix (appropriate for use in a Newton iteration) are updated; (2) the -

constrained problem is solved using Uzawa’s method; and (3) the innermost kernel requires
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an iterative solution of the resultant linear system.

solve(U%, rh)
== ]

bunchanging constrainis and small residual error
while (¢ < tol,) and {GF # G*71)
do ¢** = cf — GFTUr-!

K' = wGrGHT

pupdate oll stiffness matrices

update K(K*)

> Uzawa iteration - satisfy constraints

while (¢ < tols)
10 do y = GFTJU* — ¢*F

WO 00 =1 O U s QO b e

11 SA = 30X +wy

12 F =r* 4 wGre™ — GFSA

i3 bsolve linear system

14 linear_solve(K* + K',6U* F)
15 ¢ =]l GFT(U*1 4+ 5U0%) - c* |
16 end while

17 U* = Uk~ 4 §U*
18 AM = ARl g

19 k=

20 compute_stresses()

21 update_constraints(GF)
22 compute.residual(r®)

24 return

Algorithm 6.1: Solution of Nonlinear Constrained System

6.3 Conjugate Gradient Solver

The inner kernel of the nonlinear solution strategy reduces to the solution of Eq. 6.16.
To simplify notation, the following description will be based on the solution of the typical

symmetric positive definite system:

KU =P | (6.17)

Of course, in the nonlinear solution, K and P are augmented as in Eq. 6.16, and U is
replaced by a displacement increment, §U. As noted previously, direct methods for the
solution of Eq. 6.17, based on Gauss elimination, are not feasible due the large amount
of memory required to store the matrix factorizations. Further, as the size of the problem

increases, the number of operations required to factor the matrix increases superiinearly with
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the number of unknowns, making factorization techniques inefficient for large problems. To

circumvent these problems, iterative solution techniques must be employed.

One of the most effective iterative solution techniques for symmetric positive definite
(SPD) systems such as Bq. 6.17 is the conjugate gradient method. Details of the develop-
ment and basis of the conjugate gradient algorithm will not be presented here, but may be
found in many sources [29, 77]. The basic preconditioned conjugate gradient algorithm is

given in Algorithm 6.2.

The effectiveness of the conjugate gradient method is largely dependent on precondi-
tioning the original system of equations, which is accomplished on line 12 of Algorithm 6.2.
Note here that the matrix M is an approximation to the system stiffness matrix, K. Many
é,lternatives are available for preconditioning; the simplest rely on standard iterations, such
as Jacobi or symmetric SOR. However, these are generally not effective for large prob-
tems {77]. Another alternative is to use an incomplete factorization for the system stiffness

matrix, l.e. compute M as:

M=L'U (6.18)

where L' and U’ have been determined assuming some specified degree of fill-in relative to
K, often fixed at zero. Incomplete LU factorization {or Choleski factorization for symmetric
positive definite systems) is a viable preconditioner for large problems, although it requires
extra memory for the storage of L' and U’. The effectiveness of zero fill-in incomplete

Choleski preconditioned conjugate gradient (ILU-PCG) wili be briefly examined later in
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this Chapter to provide baseline performance data.

solve(U%, P).
1 r=P~KU°

2 2V =M10

3 bget initial search direction

4 pO = 70

5 k=0

6 while |iri{i, >0

7 do wF =Kp*

8 sf = (UK rh)/(pF, wh)

] 1kt = Uk + Skpk
10 rk+1 — I‘k _ Skwk
i1 >preconditioning step
12 Zk-i—l — M—lrk-i-l
i3 teompute new search direction
14 ﬁk — (Zk—i-i’ rk+1)/(zk,rk)
15 piHl = ghsl 4 ghpk
16 kT

17 return

Algorithm 6.2: Conjugate Gradient Iteration

Another preconditioning alternative is to approximately solve Eq. 6.17 with an itera-
tive multigrid method, leading to the multigrid-preconditioned conjugate gradient method
(MG-PCG). MG-PCG has been shown to be an effective strategy for solving various prob-
lems, including discretizations of the semiconductor equations [63] and groundwater flow
simulations with spatially varying conductivities [4]. More recently, this idea was extended
to the preconditioning of the generalized minimum residual and bi-conjugate gradient algo-
rithms {77} for the solution of singularly perturbed unsymmetric problems [63]. The solution
of nonlinear heat conduction problems with large discontinuities in material properties using

a multigrid preconditioned Newton-Krylov method was investigated in [75].

Multigrid methods are themselves iterative solution techniques which rely on a hierarchy
of discretizations of the domain coupled with standard iterations — typically Jacobi, Gauss-
Seidel, or successive over-relaxation (SOR) ~ to achieve a solution. The effectiveness of
MG-PCG for solving finite element discretizations in structural mechanics {such as the rigid
pavement systems presently of interest) hinges on the development of a general multigrid

solver, which 1s addressed in the following Section.
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6.4 Multigrid Methods

6.4.1 Review of Multigrid Methods

To solve a SPD system of equations such as that of Eq. 6.17 {or equivalently, precondi-
tion a linear systemn within a MG-PCG iteration), the multigrid (MG) method relies on a
few applications of a standard iterative technique, called smoothing, which is intended to
reduce the high frequency components of the solution error, e, coupled with coarse grid
approximations to the smoothed error [8].

The error in the solution, e = U* — U, is related to the residual, r, by r = Ke. Here

U* denotes the exact (unknown) solution and r is computed as:
r=P-KU (6.19)

Using these these definitions, the general, recursive multigrid algorithm is as shown in Al-
gorithm 6.3 [47):

malti_grid{level,r,e}
1 if level =1

2 then bdirect solution at coarsest level

3 e=KIr

4 else fori=1,...,7

] do

6 e = smooth(e,r) b pre-smoothing

7 r=r—Kjpe

8 Tievel-1 = Ryeyerr

9 brecursive call to next coarsest level
10 e =multi grid{level — 1,Tjeper—1, €leper—1) -
11 e = Tieper€leper-1
12 e = smooth(e,r) b post-smoothing
13 end for
4 end if

15 return

Algorithm 6.3: General Recursive Multigrid Algorithm

In the above algorithm, the operator R restricts from the fine mesh to the coarse mesh,
and T interpolates the coarse mesh error to the fine mesh. This subroutine is placed in an
outer loop, and called repeatedly until an appropriate convergence criteria is met. If the
inner loop limit, 3, is greater than one, the algorithm corresponds to a "W-cycle’, where

multiple processes of smoothing/restricting and interpolating/smoothing at coarser levels
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are implemented. A *V-cycle’ is implied by 8 = 1, where smoothing and restricting are
applied sequentially from the finest to the coarsest grid followed by sequential interpolation

and smoothing back to the finest grid.

Early research on multigrid methods focused on two-dimensional (2D) finite difference
approximations to general elliptic boundary value problems using regular grids {8]. When
used to solve such regular finite difference discretizations, multigrid methods require an
amount of work proportional to the number of unknowns, making them very attractive for
large problems [8]. Also note that the definitions for R and T are simplified by a regular

grid structure.

Recently, multigrid techniques have begun to find widespread application in finite ele-
ment modeling of structures and solid mechanics problems. Much of the groundwork for
the application of multigrid techniques in solid mechanics was performed by Parsons and
Hall [70, 71]. In these studies, the convergence properties of the multigrid method were
investigated for structured 2D and 3D meshes. Important parameters were identified, for
which optimal values were determined; in addition, both Gauss-Seidel and conjugate gra-
dient methods were investigated as possible iterative smoothers. Another application of
multigrid techniques to the 3D finite element modeling of structures may be found in {67],
where a two grid solver using a conjugate gradient smoother was developed. The smoother
was implemented on an element-by-element basis, eliminating the need to assemble the
system stiffness matrices, and making the multigrid method more amenable to parallel pro-
cessing. More recently, the use of unstructured meshes with poorly conditioned problems
arising from the discretization of shell structures was addressed in [27}. To overcome the
inherent poor conditioning of shell discretizations, a modified Incomplete Choleski Fac-
torization smoother was employed, along with weighted acceleration schemes based on a
line-search minimization of potential energy. In [38], unstructured multigrid methods were
developed for 2D discretizations of the Poisson problem with a variable time-stepping Jacobi

smoother intended to alleviate poor conditioning.

QOther, more indirect applications of the multigrid method may also be found in the
literature. For example, in [24} a conjugate gradient preconditioner based on a nested
coarse mesh approximation was developed that can be interpreted as a multigrid method
employing a conjugate gradient smoother. Multigrid methods in solid mechanics have also
been integrated with adaptive solution techniques, where a series of meshes of increasing

refinement are generated automatically based on error estimates [50].
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Despite the progress in developing multigrid methods for 3D finite element modeling of
structures and solid mechanics problems, there are still many issues which must be addressed
before they can be used routinely and reliably for the solution of complex structures such

as the rigid pavement systems of interest in this study.

¢ Multigrid methods should be generalized to allow multiple element types and varying
numbers of nodal degrees of freedom within the same model. This is clearly of interest

in the present study which requires that dowel elements be meshed with solid elements,

¢ The use of unstructured sequences of meshes should be allowed. It is often impractical
in 3D to generate nested sequences of meshes due to constraints on element aspect
ratios and limits on the problem size. When local mesh refinement is required or com-
Plex geometries are considered, this problem becomes even more difficult as automatic

mesh generation codes do not readily generate nested sequences of meshes.

* Multigrid methods need to be generalized to handle nonlinear problems with contact
constraints. Contact constraints cause difficulties because of the need for defining

appropriate intergrid restriction and interpolation operators for them.

» There is a need for multigrid methods that can be conveniently integrated with con-
ventional, displacement-based finite element methods to avoid expensive replication

of existing FE codes.

This section presents the development of multigrid methods that fulfill these needs. Only
V-cycle multigrid will be used (4 =1 in Alg. 6.3); as shown by Parsons and Hall (70, there
is not a signiﬁcant-difference in computational effort between the V-cycle and the W-cycle
for well-conditioned problems without singularities. Point-wise symmetric Gauss-Seidel
smoothing will be employed in all analyses — note that a symmetric smoother is required
when using multigrid as a preconditioner within a conjugate gradient iteration. Coarse grid
solutions are achieved using SuperLU (17, 57, a state-of-the-art sparse direct solver. General
methods for the intergrid transfer of information are developed, including restriction and
interpolation operators and techniques for handling spatially varying materials. Details of
the searching algorithms required to allow the efficient implementation of these techniques
are also discussed. Finally, the incorporation of contact nonlinearities required for the

present problem is presented.
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6.4.2 Intergrid Transfer of Information

When developing any multigrid method, methods for the intergrid transfer of information,
including consistent and computationally efficient definitions of R and T, are of primary
importance. In particular, it is desirable that the intergrid operations uniformly handle
different element types (volume, surface, and line elements) and different element topolo-
gies (tetrahedral, hexahedral, etc.) without any alignment constraints between successive

meshes, The definitions presented in this section possess the following:
» R and T meet the virtual work requirement that R = TT.

¢ Both R and T are defined and applied in the same manner for any sequence of meshes,

including unstructured and unnested meshes.

e R and T permit the use of multiple isoparametric element types within the same

model, including the meshing of beam or plate elements with solids.

e R and T may be easily computed using subroutines available in existing finite element

codes.

Work and Energy Considerations

The reguirement that R = TT is easily derived from the consideration that the work done
by the external forces be equal on each mesh [70]; details will not be repeated here. Similarly,
by requiring that the fine and coarse mesh strain energies be equal and using R = T7, it

follows that:

U/TK/U/ = Ut (TTK/T) U (6.20)

which defines the coarse mesh stiffness, K¢, as:
K¢ = TTK/T = RK/RT (6.21)

where the superscripts f and ¢ denote fine and coarse, respectively. The computation of
K¢ is expensive for sequences of unstructured meshes, since it involves two (albeit sparse)
matrix products. Alternatively, K may be assembled from the coarse mesh element stiffness
matrices in the usual manner and used in lieu of K¢ . This is the approach used exclusively
in this study to simplify incorporation of the proposed mulitigrid methods in existing finite

element code; details are presented later in this section.
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The Interpolation Operator

A natural way of determining T when using the finite element method is to use the element
shape functions to interpolate the displacements from the coarse to the fine mesh. This
also guarantees that the interpolation has the same degree of accuracy as the solution.
Considering the general case, defining T for two unstructured meshes then involves the

following as illustrated in Fig. 6.5:

¢ For every fine mesh node, the coarse mesh element it is located within is determined.

* The natural (local) coarse mesh element coordinates corresponding to the physical

fine mesh nodal coordinates are computed for each node/element pair.

* The element shape functions evaluated at these local coordinates allow interpolation

from the coarse mesh nodal values to the value at the fine mesh node.

Coarse Mesh continuum
: element j Coarse Mesh

------ bending element ;
{embedded within
continuum eiement)

Fine Mesh
node ¢

Fine Mesh
beam node {

Fine Mesh

Figure 6.5: Interpolation and Restriction
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Interpolation for each fine mesh node may be written as:
e5 (6.22)

where ej is the nodal error vector for coarse mesh element j, N7 is the usual array of shape
functions for element j evaluated at fine mesh node 4, and ef represents the error vector at

fine mesh node 7. This process may also be written in matrix form for the entire mesh as:
ef = Te° (6.23)

where the element shape function matrices, Nf%, have been appropriately mapped to T
which is of size nf by n¢, where n denotes the number of nodal unknowns. In this study,
the matrix representation of T is never formed explicitly, and the process of interpolation is
carried out node-by-node as shown in Eq. 6.22 with e assembled from each e{ . Note that
this definition of T is quite general, allowing solid {(or planar) elements of different type to
be meshed together, as well as permitting the meshing of beam or plate elements with solid

elements as shown in Fig. 6.5.

The Restriction Operator

Since the residual is actually a vector of unbalanced forces, R must be chosen so that it
converts a fine mesh force vector to a statically equivalent force vector on the coarse mesh.
This simple requirement is complicated by the use of general, unstructured meshes. Energy
principles require that a residual force vector at a fine mesh node ¢, rf , applied at any point

within a coarse mesh element 7 be converted to element nodal forces as:
— NeFf
i = N5'r] (6.24)

where rf represents the portion of r® corresponding to the contribution from fine mesh node
i, and NgT is the transpose of the matrix of coarse mesh element shape functions evaluated
at the location of r;f [98]. 1t is apparent that the information required to form R is identical
to that required for T. Further. restriction may be represented by tl.2 following matrix

multiplication:
r = Rr/f (6.25)

In contrast to T, the size of R is n® by n/. Clearly, this definition of R is consistent with

the energy requirement that R = TT,



93

Searching Algorithm

A difficulty with the proposed definitions of R and ‘T' is the determination of the node/element
pairs for general unstructured meshes. A naive search would require O(n’ n®) operations
and be prohibitively expensive. To maintain the linear proportionality between nf and
solution time, this information must be determined with computational effort proportional
to nf. To achieve this goal, a searching algorithm based on a grid projection technique
similar to that described in [58] is employed, which also proves useful for the intergrid
transfer of material properties as shown later in this Section. Only elements with straight
edges/surfaces are considered.

To illustrate the method with a 2D example, consider Fig. 6.6 which shows fine and
coarse meshes, M/ and M, discretizing the same physical domain. Superimposed over
M’ and M is a rectangular grid, G, defined by the maximum dimensions of the domain.

For any element of AM° with straight edges, it is simple matter to determine what cellsof G

Grid

Fine Mesh

Figure 6.6: Grid Search

it overlaps by checking its maximum and minimum coordinates against the bounds of the
cells. Given a list of elements of MC for each cell in G, the coarse mesh element containing
any (z,y) point may be found by searching only the list of coarse mesh elements associated
with the cell that the point lies within. The determination of whether or not a point lies

within an element involves simple vector operations for an element with straight edges/faces;
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the inclusion of general curved domains would require extension of the algorithm to handle
the more complex geometry.

This searching procedure first requires a single loop over all elements in M, foliowed
by a single loop over all nodes nf within which a small list of coarse mesh elements must
be checked to determine which element n/ lies within. Thus, as long as the refinement of G
follows the refinement of M¢, the amount of work required is proportional to nf +n°. Further
details on this grid searching strategy and its implementation may be found in Appendix
A. Other geometric search techniques may also be used for building the correspondence
between successive meshes [30].

The final issue which must be tackled is the determination of the coarse mesh element
local coordinates corresponding to the fine mesh nodal locations. For a distorted isopara-
metric element, the determination of the local element coordinates requires the solution
of a system of nonlinear equations, whose size is the number of spatial dimensions of the
element [20]. Note that this problem has already arisen with the embedded dowel element
presented in Chapter 4. Again, Newton's method is used to solve for the local element
coordinates given the (z,y, z) nodal location; the Jacobian matrix needed for the iteration
is simply the transpose of the Jacobian used in coordinate transformations during the in-
tegration of the element stiffness matrix. Given the element local coordinates, the element
shape functions can then be evaluated when required for each instance of restriction and
interpolation with minimal computational overhead. Details of the implementation may be

found in Appendix A.

Determination of the Coarse Mesh Stiffness

As stated earlier, the coarse mesh stiffness matrices are determined by the usual assembly of
the coarse mesh element stiffnesses. To maintain generality, it is assumed that the material
properties can vary over the domain being modeled; this may be due to nonlinearities or
simply differing linear materials used in a single model (i.e. multiple base layers below
the slab). This variation in material properties is assumed to be defined in the usual
fashion, element-by-element, but only on the fine mesh. This information must then be
transferred to the coarse mesh elements to allow the assembly of K¢. Computation of any
coarse mesh element stiffness, k7, requires that constitutive properties be determined at the
element integration points, which depend on the strain increment and the current stress
state known only for the fine mesh. Using the searching algorithm detailed previously,

the coarse mesh element integration points are located within the fine mesh elements, for
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which the constitutive relations are defined. The computation of the strain increments
and subsequent updating of the stress states at the coarse element integration points is
then performed by the appropriate fine mesh elements. One potential problem with this
technique must be noted: if the coarse mesh is not defined appropriately in regions where
large changes in material properties occur, K¢ may not provide a sufficiently accurate coarse
grid approximation. This issue will be explored numerically with a model problem in the

next Section.

Incorporation of Contact Conditions

In this study, MG-PCG methods are used in the solution of the linear system in Algorithm
6.1. However, since constraint imposition and updating are done only for the fine mesh
where a solution is achieved, the perturbation, X', must be restricted from the fine mesh
to all coarser meshes. This poses a difficulty: since the constrained fine mesh nodes do
not necessarily coincide with the coarse mesh nodes, a fine mesh nodal contribution to the
perturbation cannot be merely added to the coarse mesh stiffness. This may be overcome

by forming the coarse mesh perturbations as:
K¥* = K®+RK'RT (6.26)

where K* refers to the total coarse mesh stiffness and K¢ is assembled from the coarse
mesh stiffness matrices as detailed previously. The term RK'RT represents the coarse
mesh perturbation that is consistent with the virtual work requirement that the fine and
coarse mesh strain energies be equal; this term will be denoted as K’ for the remainder of
this discussion.

To simplify the calculation of K'¢, it is computed separately for each pair of constrained
nodes. Refer to Fig. 6.4, which shows the fine mesh nodes i and 7 as being constrained; the

nodal contribution to the fine mesh perturbation is represented by a spring, whose stiffness

may be expressed as:

w(n @n) (6.27)

Using the searching algorithm detailed previously, the coarse mesh elements within which
these fine nodes lie may easily be determined. Defining N; and N; as the usual arrays
of shape functions of the coarse mesh elements that the fine mesh nodes ¢ and j lie in,

the coarse mesh perturbation corresponding to the constraint at nodes i and J is easily
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determined using the principle of virtual work as:
T
K¢ = w [ Ni } (n ® n) [ N; —N; ] (6.28)

—N;,

Adding/assembling the contribution of each k' gives K'c.

6.5 Performance Studies

In this section, the effectiveness of the proposed MG and MG-PCG solution methods is
verified via several model problems that test various aspects of the intergrid transfer of
information. V-cycle multigrid is used exclusively with four pre- and post-relaxation point-
wise Gauss-Seidel smoothing steps; a single V-cycle is used to precondition the conjugate
gradient solver. Again, it is important to note that a symmetric preconditioner is necessary
for the conjugate gradient method. Symmetry of the multigrid preconditioner can be ac-
complished by choosing the post-smoother to be the transpose of the pre-smoother {line 5 of
Algorithm 6.3). A Jacobi iteration has this property if used for pre- and post-smoothing; use
of forward Gauss-Seidel for pre-smoothing and backward Gauss-Seidel for post-smoothing
as done in this study also provides symmetry [77].

The first model problem is designed to provide performance baselines for well-conditioned,
linearly elastic problems and allows comparison with efficient sparse matrix factorization
techniques and ILU-PCG. Although the model geometry at the finest level is regular,
unnested mesh sequences are used at the coarser levels to illustrate the applicability of
the proposed definitions of R and T'. Following this, the effect of localized mesh refinement
is examined through two different models, one discretized with quadratic hexahedra and
the other with quadratic tetrahedra. These models demonstrate the generality-of the pro-
posed definitions of R and T, and show that MG and MG-PCG suffer no performance losses
when mesh sequences consisting of a locally refined fine mesh and uniform coarse meshes are
employed. The final model problem studies spatially varying material properties and the
resulting effects on convergence. It is demonstrated that MG-PCG performs quite well even

when sharp material boundaries not captured explicitly by the coarse mesh are present.

6.5.1 Thick Plate Model Problem — Baseline Performance Studies

Prior studies by Parsons and Hall [70, 71] have shown that achieving a linear relationship
between the number of floating point operations (N,;) and the number of unknowns (n)

requires that: (1) the work required to solve at the coarsest level must be negligible; (2)
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{3 (defined previously) must be less than &, a parameter denoting a uniform level of mesh
refinement (typically x = 2% in 3D); and (3) the total number of meshes, 7. is a function of
g. Implicit in item (3) is that the level of discretization of the finest mesh must be chosen
so that m is large enough.

The requirements for linearity between Nops and n when using sequences of unstruc-
tured, unnested meshes are not so easily defined. For example, when automatic mesh
generation is used to generate a sequence of meshes, refinement is often done only in se-
lected regions of the mesh where solution errors are high. Further, complex geometry often
requires the use of distorted elements or different element types, making it impossible to
define a general level of refinement. For these reasons, the relationship between Nops and n
is studied numerically using different discretizations of the domain shown in Fig. 6.7.

all displ Point Load
prevented l

500 mm ‘

/ &L&éé},e&am& o

3000 mm

.oniy z displ. prevented

x,z displ. prevented except as noted.

coarse mesh medium mesh fine mesh

Figure 6.7: Thick Plate Model and Typical Mesh Sequence

‘Table 6.1 defines the sequences of meshes used to study convergence, along with the
number of degrees of freedom, n, for each mesh. Uniform meshes with reasonable ele-
ment aspect ratios are used to minimize numerical effects on convergence, The modulus of

elasticity, E, was fixed at 100, and v = 0.20 for all cases.



Table 6.1: Sequences of Meshes Used to Study Convergence

Number of
Sequence Mesh Elements n
Ny Ny N

coarse | 3 3 1 288

Sequence 1 | medium | 4 4 2 735
fine 6 6 3 | 2037

coarse 3 3 1 238

Sequence 2 | medium | 5§ 5 2 | 1080
fine 8 8 3| 3429

coarse 3 3 1 288

Sequence 3 | medium | 6 6 2 | 1491
fine 10 10 3 | 5181

coarse 3 3 1 288

Sequence 4 | medium | 8 8 2 | 2511
fine, 13 13 3 | 8484

coarse 3 3 1 288

Sequence 5 | medium | 10 10 2 | 3795
fine 16 16 3 | 12597

coarse 3 3 1 288

Sequence 6 | medium | 11 11 2 | 4536
fine 18 18 3 | 15789

coarse 3 3 I3 288

Sequence 7 ; medium § 13 13 2 | 6216
fine 22 22 3 | 23253

coarse 3 3 1 288

Sequence 8 | medium | 15 15 2 | 8160
fine 25 25 3 129796

coarse 3 3 1 238
Sequence ¢ | medium | 17 17 2 | 10368
fine 30 30 3 42501

coarse 3 3 1 288
Sequence 10 | medium | 19 19 2 | 12840
fine 35 35 3 | 57456

o coarse 3 3 1 288
Sequence 11 | medium | 19 19 2 | 18576
fine 42 42 3 | 82173
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The chosen mesh sequences have the following characteristics:

1. The number of meshes, m, is fixed at three for each sequence.

o

. The coarsest mesh is identical for each sequence of meshes.

3. The level of discretization of the intermediate mesh is approximately midway between

the finest and coarsest meshes.

4. Although the discretizations at the finest mesh level are regular, the mesh sequences
are unnested, and general definitions of the interpolation and restriction operators are

required.
5. No attempt was made to optimize the mesh sequences.

Fig. 6.8 shows the real time required for each aspect of the MG and MG-PCG solutions.
All runs were done on a Sun UltraSparc 1/200 with 256 MB of RAM, using only core
memory. The number of MG or MG-PCG iterations required to achieve convergence is

taken as the first iteration where

| r |2 05
€= ——— <10 6.29
BAL (6:29)

P is defined as the vector of applied nodal forces and r is the vector of fine mesh residual

forces. The following observations can be made from Fig. 6.8:

o MG-PCG clearly outperforms MG for all levels of discretization, and exhibits a nearly

linear increase in solution time as the mesh is refined.

¢ MG suffers fairly severe performance losses as the mesh is refined, with a superlinear

relationship between solution time and n.

e The amount of computational effort required to build the auxiliary data structures,
which include R, T, and the coarse mesh stiffness matrices, is about half that required

to assemble K.

Fig. 6.9 compares the total solution times for MG-PCG, ILU-PCG, and sparse direct
factorization. For the direct sparse solution [17], minimum-degree reordering was employed,
but no pivoting was used as it is not required for well-conditioned symmetric positive definite
systems. The largest problem which could be factored in-core corresponded to a mesh with
15 x 15 x 3 elements and 11136 nodal DOF.
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Figure 6.8: Breakdown of MG and MG-PCG Solution Components

The comparison of total solution times shown in Fig. 6.9 indicates that for n >= 3000,
MG-PCG outperforms direct factorization. Note that the performance of the direct solver is
affected by node ordering. For example, the worst-case scenario for a direct solver would be
a cube meshed with equal numbers of elements in all directions, while the meshes used here
have significantly fewer elements through the thickness of the plate and optimally numbered
nodes. The pérformance of ILU-PCG is also shown for comparison purposes; although
symmetry was not accounted for in storing the partial factors L' and U’, it has been
considered in determining computational time. For n >= 40000, MG-PCG outperforms
ILU-PCG, and there is a superlinear increase in solution time for ILU-PCG. For these
reasons, MG-PCG will be used used exclusively for the remainder of this study; for smaller

problems, however, ILU-PCG may well be the most efficient solution method.

6.5.2 Performance on Locally Refined Unstructured Meshes

In order to verify that the proposed intergrid transfer strategies are effective on general

unstructured meshes, two model problems will be examined. The first is the previously
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Figure 6.9: Relative performance of MG, MG-PCG, ILU-PCG, and Sparse Direct Solver

analyzed thick plate, but the fine mesh is refined over the center 750 mm by 750 mm region
as shown in Fig. 6.10. The total number of elements is 960, and n = 14949, which nearly
equal the values for the fine mesh in sequence (6). The coarse and medium meshes used in

the refined mesh solution are the same as those in sequence (6), and are shown in Fig. 6.10.

The amount of time required to achieve a solution using MG-PCG was 185 seconds.
Comparing this value with the total solution times in Fig. 6.9 indicates that there is effec-
tively no loss in efficiency for MG-PCG when compared to regular mesh solutions with the
same number of unknowns. We note here that regular coarse meshes were used to achieve

a solution on an irregularly refined mesh with no difficulty.

The second model problem is an equilateral triangular plate discretized as shown in
Fig. 6.11. All the meshes in the multigrid hierarchy are irregular (generated using the
automatic mesh generator QMG [66]). The boundary conditions consist of vertical supports
on one edge and at the opposite vertex, and horizontal supports sufficient to prevent rigid
body motion. A peint load is applied near the center of the plate ‘where the mesh is refined.

The total time required to solve this probiem using the MG-PCG method was approximately
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Figure 6.11: Mesh Sequence - Triangular Plate

202 seconds; a comparison with Fig. 6.9 indicates that this is approximately three-quarters

the time required for a thick rectangular plate model with the same number of degrees of

freedom. No generalizations can be made, however, due to the differences in element type,

problem, and mesh sequence between the rectangular and triangular plate models.

6.5.3 Performance on Meshes with Spatially Varying Mat.rial Properties

The proposed method of dealing with spatially varying material properties will be illustrated

with a model problem. Recall that material properties are defined element-by-element on

the fine mesh, and this information is transferred to coarser meshes only at the the coarse

mesh element integration points. This presents a possible source of error when evaluating
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the coarse mesh element stiffness matrices. k. by the usual Gaussian integration of:
K = f BTDBAV (6.30)
v

where B is a matrix of linear operators and D is the constitutive matrix. Gaussian integra-
tion is exact for polynomials, the order of which depends on the number of integration points
used. In this study, 3 x 3 x 3 Gaussian integration is used to evaluate Eq. 6.30, which is
exact for a quadratic, hexahedral element with uniform, linearly elastic material properties.
If a coarse mesh element covers a region with more than one applicable constitutive law, a
sharp “jump” in D may occur, possibly introducing significant error in the evaluation of k.
This is studied with the following model problem, which has been purposely constructed to
introduce significant errors due to sharp material boundaries.

Consider the mesh shown in Fig. 6.12, which follows the same pattern as the refined
mesh presented in the previous section, but with fewer elements. The center 4 x 4 x 2
block of rectangular elements is assumed to have a modulus of elasticity, E,, differing from
the remainder of the domain, where E = 100 N/mm?. To solve the problem using MG
or MG-PCG, a single coarse mesh consisting of 9 elements is used. Fig. 6.12 shows that
if the regular, 9 element coarse mesh presented previously (denoted by M.) is used, only
three of the 27 center element integration points lie within the center 750 mmx 750 mm
refined region of the fine mesh, which can be expected to introduce significant error in the
evaluation of k. However, if the coarse mesh element boundaries coincide with the material
property boundary, the evaluation of k is exact (see Fig. 6.12); this mesh is denoted by M..

Fig. 6.13 shows the effect of using M, as opposed to M,.. Note that no results are
presented for MG with M, and E,/E > 20, as it diverges (convergence can be achieved
for E./E > 20, but only by increasing the number of Gauss-Seidel smoothing operations

within each MG cycle). The following observations are based on the results presented in
Fig. 6.13:

¢ When using M., the solution times for both MG and MG-PCG are essentially con-

stant, verifying that the only source of error is the variation in the coarse mesh element

boundaries.

¢ MG-PCG appears to be stable even if significant errors are introduced by the use of

M, and the increase in solution time is only doubled for E./E = 100.

* The performance of both MG and MG-PCG is improved by the use of M, as op-

posed to M., indicating that errors in integrating the coarse mesh stiffness can have
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Figure 6.12: Meshes Used to Study Spatially Varying Material Properties

significant detrimental effects.

The approach for handling spatially varying materials presented here appears to be vi-
able when MG-PCG solution methods are used and MG, even when non-convergent itself,
is still a very effective preconditioner. A similar conclusion was drawn in [4] for finite differ-
ence simulations of groundwater flow, where increasing degrees of subsurface heterogeneity
resulted in non-convergence of MG, but MG-PCG remained stable and efficient. However,
care should be taken when developing coarse meshes where sharp discontinuities in material
properties exist. Alternatively, more accurate integration techniques could be employed in

the evaluation of Eq. 6.30 in these regions.
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Figure 6.13: Spatially Varying Material Properties and Element Integration Error

6.6 Rigid Pavement Model Problem

In this Section, a typical model of a rigid pavement system will be solved to illustrate
the applicability of the global nonlinear solution strategy to problems involving multiple

element types and nodal contact.

6.6.1 Model Description

The system to be modeled is typical, consisting of two doweled, 254 mm thick rigid pavement
slabs resting on two 300 mm thick base layers above the natural subgrade — similar to the
system illustrated in Fig. 6.1. The slabs are 3350 mm long by 3660 mm wide and are
separated by a transverse construction joint skewed at an angle of 10°. Three 485 mm
long, 32 mm diameter dowels spaced at 300 mm are located in each wheelpath at the
mid-thickness of the slabs. The slabs and base layers are meshed with 20-noded quadratic
brick elements. The dowels are modeled using the embedded dowel element developed in
Chapter 4. The natural soil below the solid elements is treated as a dense liquid foundation,

and meshed with 8-noded quadratic interface elements that share nodes with the elements
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of the lower base layer. The boundary conditions are the minimum necessary to prevent
rigid body motion. Surface plots of the meshes used in the multigrid solution are shown in
Fig 6.14; note the dowel elements shown as thick lines at the skewed joint. The number of
solid elements in the coarse, medium, and fine models are 36, 216, and 1152 respectively;

the corresponding numbers of degrees of freedom are 1314, 4929, and 21285. The slab and

Ay,
Ve,
T
A Qs_.
-0 <2

Figure 6.14: Mesh Sequence Used for Rigid Pavement Model Problem

base layers were modeled as linearly elastic with material properties as given in Table 6.2,
where o is the coefficient of thermal expansion and p is the mass density. The values of
E for the upper and lower base layers ref)resent typical values for a cement treated soil
and a strong gravel, respectively [64]. The dense liquid was assumed to have a modulus of
0.06MPa/mm. Note the extreme material boundary between the two base layers which is

not captured by the coarsest mesh.

Table 6.2: Material Properties of Slab and Subgrade

Portion of E v Q p
System MPa - °C~! kg/m?
Slabs 28000 0.25 1.1x107% 2400

Upper Base Layer | 3500 0.20 - -

Lower Base Layer 1 150  0.20 - -
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The left-most slab was subjected to a single axle load of 80 kN near the joint. The axle
was centered transversely on the slab with a wheel spacing of 1830 mm, and each wheel load
was distributed over a 500mm x 250mm area. In addition. the slabs were subjected to a linear
temperature gradient through their thickness corresponding to a -5°C temperature change
at the top of the slab and a +5°C temperature change at the bottom. This temperature
differential required that the loss of contact between the unbonded upper base layer and
the slab be modeled using the nodal contact approach presented in the previous Section.
This dictated that the slab and upper base layers be meshed independently; details near
the transverse joint are depicted in Fig. 6.3. The value of the parameter w required for the
Uzawa iteration was computed at run-time as the average value for all constrained nodes
of K;; corresponding to the constraint difection, n. To illustrate the analysis results, a 3D
perspective of the displaced shape is shown in Fig. 6.15 (displacements are scaled by factor

of 500); note the slab lifting off the base layer due to the temperature gradient.

Figure 6.15: Displaced Shape of Rigid Pavement System

6.6.2 Performance of Solver

The iterative nonlinear solution strategy presented in Section 2 was used to solve the model
problem. Both the global convergence tolerance, €, and the constraint tolerance, ¢ were
fixed at 107%. The solution required 12 global iterations and 2731 seconds of CPU time to
solve on a Sun UltraSparc 1/200 workstation, and was achieved using only core memory.
The following table gives a breakdown of the solution components. Note that the total

number of Uzawa iterations required to achieve convergence for the constrained system
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Table 6.3: Breakdown of Rigid Pavement Model Solution Results

Newton | Total Uzawa Total MG-PCG Number of

Iteration | Iferations Iterations Constr. Updated Residual
1 4 12 264 8.22 x 10793
2 3 30 155 7.32 x 10703
3 3 30 70 6.71 x 10703
4 3 29 89 6.50 x 1003
5 3 32 61 5.13 x 1079
6 3 30 40 4.44 x 10793
7 3 27 29 3.15 x 10703
8 3 29 23 2.41 x 1079
9 2 22 19 1.58 x 10798
10 2 22 15 7.80 x 1079
11 2 22 3 2.35 x 10~04
12 2 14 0 1.11 x 10797

never exceeds four, and averages about three. While at each Uzawa, iteration the MG-PCG
method is used to solve the resulting linear system, the number of MG-PCG iterations per
linear solve varies significantly.

To put these results in perspective, comparisons must be made with the solution when
a sparse direct solver is used in lieu of MG-PCG. This was only done for the medium mesh
(4923 DOF), as a fine mesh solution would require too much memory with a direct solver.
Note that when using a direct solver, K may be factored outside the Uzawa iteration, and
each linear solve then becomes a back substitution. This advantage for the direct solver is
offset by the fact that the auxiliary data structures required for the MG-PCG method need
only be constructed once. In fact, even on the medium mesh using a two mesh sequence,
the total solution time for MG-PCG is 407 seconds, less than the 503 seconds required when
a sparse solver is used. Further, the MG-PCG solver required 21 MB of RAM, while the

sparse direct solver required about 85 MB (with a minimum degree reordering).

6.7 Summary

In this Chapter, a nonlinear solution strategy was developed that is capable of solving mate-
rially nonlinear problems with inequality constraints arising from nodal contact. It employs

three levels of iteration, where the outer level is analogous to a Newton iteration, the second -
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level is an iterative solution of the constrained system for increments of displacement and
Lagrange multipliers, and the the inner kernel requires the iterative solution of a linearized,
symmetric positive definite system.

'To minimize the computational effort required in the inner kernel of the global solution
algorithm, appropriate multigrid (MG} and multigrid-preconditioned conjugate gradient
(MG-PCG) methods have been developed. These methods are quite general, relying on
definitions for the interpolation and restriction operators that allow multiple element types
and the meshing of bending members with solid elements within a single model. Spatially
varying material properties are handled in a manner that relies on similar principles used
to develop the restriction and interpolation operators. The MG and MG-PCG methods
have also been extended to handle difficulties in forming the coarse mesh perturbations
to the system stiffness matrices required by the nonlinear solver when modeling problems
involving contact nonlinearities.

Baseline performance studies were conducted, providing comparisons between MG and
MG-PCG methods vs. a state-of-the-art sparse direct solver and ILU-PCG. The MG-PCG
method was shown, as expected, to be significantly more efficient than direct solution meth-
ods for large problems and exhibits a nearly linear increase in solution time with the num-
ber of unknowns. When compared with ILU-PCG, MG-PCG is more efficient for well-
conditioned linear problems with more than approximately 40000 unknowns, and ILU-PCG
exhibits a superlinear increase in solution time with the number of unknowns. Memory
requirements beyond the storage of the stiffness matrix (or the element stiffness matrices)
are small. The effectiveness of the proposed intergrid transfer techniques was demonstrated
in the presence of mesh irregularities, local refinement, spatially varying material proper-
ties, and sharp material boundaries that may not be captured by all grids in the multigrid
hierarchy. Further, the ability to precondition problems involving inequality constraints via
restriction of the required fine mesh perturbation to unnested coarse meshes was shown to
be effective in the general nonlinear solution strategy.

Lastly, a model problem of a rigid pavement system was solved that incorporated mul-
tiple element types, spatially varying materials, and nodal contact conditions to illustrate

the application of the nonlinear solution strategy employing MG-PCG.



Chapter 7

Model Verification

This Chapter details the verification the finite element models developed in this study by
comparison with laboratory data from scale-model tests of doweled rigid pavement systems.
In particular, finite element models of two systems tested by Hammons [33] are solved, and

displacement profiles and selected strains in the vicinity of the load are compared with

measured values.

7.1 Laboratory and Analytical Study by Hammons

The basic system tested by Hammons is illustrated in Figs. 7.1 and 7.2 [33]. It consisted
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— 51 mm
¥ u
R - '
i 75 7
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Cement-treated Base
Rubber Pad (LSM-5 only)

Figure 7.1: Experimontal Model [33]

of two concrete pavement slabs separated by a 1.6 mm smooth joint constructed to prevent
aggregate interlock. The 12 dowels were purposely debonded in one slab to simulate typical
installed conditions. The model was cast in a steel reaction box, and the ends of the

slabs were clamped between two angles to prevent displacement and increase their effective
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length. Of the six tests completed, the first two (LSM-1A and LSM-1B) had an undoweled
Joint and were essentially tests of a single slab. Test LSM-2 consisted of two doweled slabs
resting directly on the rubber pad; tests LSM-3 through LSM-5 employed a cement-treated

base. For further details on all tests, see the report by Hammons {33].
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Figure 7.2: Dowel Locations, Loading, and Instrumentation [33]

Hammons also conducted finite element analyses for comparison with his experimental
data using the commercially available program ABAQUS. Material properties of the slab
and treated base were determined by testing specimens taken when the models were con-
structed in accordance with ASTM specifications. For analytical purposes, the rubber pad
was idealized as a dense liquid. Its modulus, &, was based on the value back-calculated
by Hammons using the laboratory data from the first two tests, LSM-1A and LSM-1B.
Test LSM-1A consisted of a single slab resting directly on the rubber pad and subjected
to an edge load; back-calculation using a finite element model yvielded a value of k = 0.070
MPa/mm for best-fit displacements. It must be noted that the value of k is a secant stiffness
that is dependent upon the configuration and loading of the system. This was experimen-
tally observed by back calculating & = 0.09 MPa/mm for the same single slab resting on
the rubber block when subjected to a corner load (test LSM-1B). The higher value of & for
LSM-1B may be attributed to the higher and more localized stresses appiied to the rubber
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pad under corner loading, as it is a strain-hardening material.

The finite element models of Hammons employed 27-noded hexahedral elements to
discretize the slab and base layer; separation of the slab and base was modeled assuming
frictional contact conditions. The dowels were not explicitly discretized, but replaced by
linear displacement springs spanning and evenly distributed across the joint. The stiffness
of these springs was determined using the methods outlined in [45], which rest on the
conventional assumption that the embedded portion of the dowel may be considered as a
beam on elastic foundation with a specified modulus of reaction. Further details of these
finite element studies may be found in [33]; pertinent differences between the finite element
models developed in this study and the analyses by Hammons will be discussed later in this

Chapter.

7.2 Finite Element Model Development
7.2.1 Discretization of the System

Tests LSM-2 and LSM-5 have been selected for comparison with the finite element models
developed in this study. These tests were selected as bounding realistic conditions: LSM-
2 had no treated base, with the slabs founded directly on the rubber pad; LSM-5 had a
debonded, monolithic cement-treated base, requiring that separation of the slabs and base
be modeled as detailed in Chapter 6. The finite element model developed for comparison
with the test data of Hammons matches the experimental conditions as closely as possible.
The rubber reaction block is treated as a dense liquid, while the slab and treated base are
modeled as elastic continua. Figure 7.2.1 shows the mesh sequence for the finite element
model of test LSM-5; an identical model without the base layer was used for LSM-2.

The material properties used in the finite element model are given in Table 7.1. The

Table 7.1: Model Material Properties

Portion of E v
System MPa -
Slabs 27600 0.18

Treated Base 1410 0.20
Dowels 200000 0.30

rubber pad has a modulus of 0.090 MPa/mm. As noted earlier, this value was back-
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Figure 7.3: Mesh Sequence for Test LSM-5

calculated by Hammons using a 3D finite element model developed using ABAQUS to give
good deflection profile comparisons with tests of a single undoweled slab founded directly
on the rubber pad and subjected to corner loading. The moduli of the slab and subgrade
are representative of the mean values determined from cylinder tests of specimens taken
when the slabs and base layer were cast. All material properties are identical to those used

by Hammons in his finite element verification studies (33].

7.2.2 Model Boundary Conditions

The model boundary conditions were chosen to reflect those of the laboratory tests. The
reaction box in which the slabs were cast and tested was designed to prevent displacement of
the ends of the slabs, increasing their effective length. On the sides of the slabs perpendicular
to the joint, the reaction box was coated with a form release agent, and the slabs were
poured against the box. Displacement transducers D7 through D10 near the slab corners

(see Fig. 7.2} were monitored throughout the tests to check displacements near the slab ends.
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Hammons reported that for test LSM-2. the displacements were indeed negligibly small, and
the appropriate boundary conditions in the finite element model are fixed zero displacements
at the slab ends. However, for test LSM-5, the ends of the slab underwent significant vertical
‘displacements [33]. Therefore, for the finite element model of test LSM-5, the boundaries of
the tops of the ends of the slabs were subjected to fixed vertical displacements that varied
linearly across their width in accordance with measured displacements at transducers D7‘
through D10. The two horizontal (x and y direction) displacements were not fixed on the
assumption that if vertical displacements were not adequately restrained by the clamping
angles, neither were the horizontal displacements. |

The sides of the slabs and base layers (+/ — y faces) were unrestrained even though the
slabs were cast against the reaction box walls. The reasons for this were threefold: (1) the
slabs were only restrained when displacing in the +y direction on the +y face and in the
—y direction on the —y face; (2) even when this contact between the slabs and box walls
occured, the restraint provided by the box walls was not that of a rigid support; and (3)
shrinkage of the slab may be expected to have resulted in a gap between the slabs and box
walls prior to loading which had to be overcome before any contact could occur.

It should be noted that these boundary conditions are significantly different than those
assumed by Hammons in his ABAQUS models, who fixed all displacements at the slab ends
for each model regardless of the measured displacements at transducers D7-D10. Further,
Hammons fixed the y-direction {lateral) displacements on the sides of the slabs (and base

layer for LSM-5) on the premise that the reaction box restrained lateral movement of the
slabs.

7.2.3 Dowel Modeling

Modeling of the dowels is an issue that requires special treatment. As will be seen, the
tests showed significant variations in vertical displacement across the joint near the load. If
the dowels are assumed to have no looseness, the finite element model will predict nearly
perfect joint efficiency, i.e. very little relative vertical displacement between the two slabs
at the joint. However, it is probable that there is some looseness between the dowels and
the slabs due to construction techniques. The dowels were held in place with a wooden
template while the first slab was poured; prior to placing the second slab, the dowels were
greased and plastic drinking straws slipped over them to prevent bonding. In the present
finite element models, a constant gap, v, was assumed between the dowels and the unloaded

slab along their embedded length, while perfect contact was maintained between the dowels
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and the loaded slab as shown in Fig. 7.4. Note that four dowel elements were located near
the joint to better capture potential contact, with two more dowels used to discretize the
remaining embedded portions of the dowel. This gives a total of 13 potential contact points
for each dowel. The odd dimension of 114.25 mm is necessary since each dowel element
must be completely embedded within a single solid element, and the hexahedra used to

discretize the slabs have a dimension of 114.25 mm in the z-direction.
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Figure 7.4: Assumed Profile of Gap around Dowels

7.3 Model Results

7.3.1 Results for LSM-2

Two different finite element analyses were run for LSM-2: the first assumed no dowel loose-
ness; the second run assumed that a uniform gap, v, of 0.08 mm existed between the dowel
and the unloaded slab. This value of ¥ was chosen to give a relative vertical displacement
between the two loaded and unloaded siabs that closely matches the experimentally mea-

sured values. Note that the measured wall thickness of a typical drinking straw is about
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0.13 mm ~ 59% greater than the assumed gap. Figure 7.5 shows the displaced shape of the
top surface of the slabs predicted by both finite element models.

The surfaces defined by these plots were interpolated along the line y == 432 mm to give
the analytical deflection profile corresponding to that measured experimentally as shown
in Fig. 7.6. Note that if v = 0, there is nearly perfect load transfer efficiency at the joint;
this result is consistent with the convergence study results in Chapter 4. Assuming that
v = 0.08 mm gives an accurate relative vertical displacement at the joint as well as a better
overall prediction of the displacement basin. In general, the agreement between the finite
element model and the experimental data is good, with a maximum discrepancy of about
13% observed at z = 600 mm.

Figure 7.7 compares the strain (e,,) measured at gages S3 and 54 (see Fig. 7.2) with
the values computed by the finite element model assuming v = 0.08 mm. While the agree-
ment is reasonably good, the discrepancies between measured and computed strains are
significantly larger than those between measured and computed displacements, with rela-
tive differences at gage S3 varying from 16% to 24% and from 19% to 35% at gage S4.
Note that the maximum relative discrepancies occur at small loads, with the absolute dif-
ference between the measured and computed strains remaining relatively constant after
the initial divergence. The relatively large error in strains may be attributed to several
factors, including: (1) the relatively low level of mesh refinement used in the models; (2)
the fact that computed strains are not as accurate as computed displacements when using
displacement-based finite element models; (3) differences in actual material properties and

those determined by testing; (4) possible inaccuracies in the strain measurements.
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7.3.2 Results for LSM-5

As for LSM-2, two different finite element analyses were run for LSM-5. However, in both
analyses, the value of v was fixed at 0.08 mm based on the results of LSM-2. The first
analysis was conducted with an assumed modulus of subgrade reaction for the rubber pad,
k. of 0.09 MPa/mm. The second analysis assumed k = 0.070 MPa/mm. This reduction
is plausible: the value % - 0.09 MPa was determined from comparison with a test of a
single corner loaded slab resting directly on a dense liquid. Lack of a treated base layer will
increase the stresses applied to the rubber pad; since it is a strain-hardening material, the
stiffness back-calculated from this test will be too high for case LSM-5, where the stresses
are smaller and more uniformly distributed to the rubber pad by the cement-treated base.
Figure 7.8 shows the displaced shape of the top surface of the slabs predicted by both finite

element models.

Figure 7.9 compares the predicted and experimental deflection basins. Note that for
both finite element models, the predicted relative displacement at the joint is quite accu-
rate, validating the 0.08 mm gap determined from the analysis of LSM-2. Fig. 7.9 shows
significantly better prediction of displacements when k = 0.070 MPa/mm is assumed, in
particular near the joint region. However, the maximum error observed is about 17%,
larger than that for LSM-2. Also note that the predicted slope of the deflection basin is
significantly steeper than that observed experimentally. Possible factors for this include
inaccurate modeling of boundary conditions as well as nonlinear and creep response of the
rubber block not accounted for in the finite element model. In particular, since the rubber
is a strain-hardening material, it will be softer further away from the load and stiffer nearer

the load, tending to decrease the predicted slope of the deflection basin.

Figure 7.10 compares the strain {€yy) measured at gages S3 and S4 with the values
computed by the finite element model. These results assume a & of 0.070 MPa/mm for the
rubber pad. The experimental strain traces are plotted as reported by Hammons, and show
compressive strain. This is inconsistent with the observed failure mode, however, which was
the development of several corner cracks near the gage locations that would clearly result
in tensile strain at gages S3 and S4. This is also inconsistent with the results of LSM-2
which showed measured tensile strains at gages S3 and S4. It is not known if the measured
compressive values were actually tensile and were incorrectly reported due to experimental
error, or if another explanation exists for this anomaly. If the measured strains are actually

tensile, the computed strains are reasonably accurate at the maximum load of 10.2 kN,
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Figure 7.8: Displaced Shape of Top of Slab for LSM-5
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with an error of 2% at gage S3 and 9% at gage S4. However, the significant nonlinearity in
the measured strain response is not captured by the finite element model, leading to large
errors at lower loads. In any case, no conclusions can be drawn due to the discrepancy in

sign between the measured and computed strains.

7.4 Summary

In this Chapter, the proposed finite element modeling techniques have been verified by
comparison with experimental data from scale-model tests of doweled rigid pavement sys-
tems [33]. It has been shown that displacement response of typical systems with and without
base layers can be predicted with reasonable accuracy. In addition, it was postulated that
dowel looseness arising from construction tolerances is a probable explanation for observed
variations in relative joint displacements. The dowel modeling techniques developed in
Chapter 4 have proved to be capable of capturing this effect, and a small uniform gap of
0.08 mm around the dowel was shown to produce relative joint displacements very close
to those observed in both experiments. Comparisons between measured and computed
strains were less accurate than displacements. Further, for the second model the computed
strains were tensile and the measured strains reported as compressive, with no apparent

explanation.



Chapter 8

Parametric Studies

8.1 Introduction

‘This Chapter presents two parametric studies on joint shear transfer effectiveness. The first
study examines the effect of dowel looseness on pavement response; the second focuses on
the changes in aggregate interlock shear transfer efficiency and pavement response due to
variations in contraction joint opening. The intent of these studies is three-fold: (1) they
illustrate the effectiveness of the proposed techniques for modeling dowel and aggregate
mterlock shear transfer; (2) they provide valuable information on the response of rigid
pavements under applied wheel and thermal loadings due to realistic variations in joint
shear transfer efficiency; (3) they indicate what future research needs are required to more

completely model rigid pavement systems.

8.2 Description of Parametric Studies

8.2.1 Idealized System and Loads

Both the dowel and aggregate interlock parametric studies employ the same basic system
shown in Fig. 8.1. For simplicity, the joint is not skewed, and the boundaries of the subgrade
have not been extended beyond the edges of the slabs. The 150 mm thick base laver is
assumed to be a compacted gravel, below which 300 mm of natural soil are modeled as a
linearly elastic continuum. A dense liquid is used to represent the remaining natural soil
with a modulus of 0.054 MPa/mm. The elastic material properties of the slab and soil are
given in Table 8.1, where « is the coefficient of thermal expansion and p is the mass density.
‘These values are typical of many designs [64].

Fig. 8.2 shows the layout of the dowels, which is consistent with a typical retrofit design

by the Washington State Department of Transportation (WSDOT) and similar to those
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Figure 8.1: Model of Two Rigid Pavement Slabs

Table 8.1: Material Properties of Slab and Subgrade

Portion of E v o 0
System MPa - °G-1 kg/m?
Slabs 28000 0.25 1.1x10"% 2400

Gravel Base Layer | 150 0.20 - -

Natural Soil 75 0.20 - -

used by other agencies [32]. The dowels are assumed to be debonded along their entire
length, except at a single node as required to prevent rigid-body motion. The horizontal
boundary conditions used to prevent rigid-body motion of the slabs are also indicated in
Fig. 8.2. The finite element meshes used in the analyses are shown in Fig. 8.3. Note that
the dowels are not included in the aggregate interlock study and that the coarser meshes
are required by the multigrid solver.

For each study, a single 80 kN axle load - the usual equivalent single axle load assumed
in pavement design — will be applied near the joint as shown in Fig. 8.2. The axle has dual
wheels, and each wheel is idealized as a uniform pressure acting over a 180 mm long by
180 mm wide rectangular area. The wheel spacing of the axle is typical [59], and the tire
contact region was selected to give a realistic uniform pressure of approximately 90 psi. The
transverse axle position was chosen based on a typical design case used by WSDOT [94].
Since separation of the slab and base will oceur, the siab self-weight must also be included

in the analyses.

The doweled model will be subjected to a second load case consisting of the same axle
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load acting in conjunction with a linear temperature gradient through the slab thickness

varying from —4°C at the top surface to 4°C on the bottom.

8.2.2 Model Details: Dowel Looseness

The model used to study the effects of dowel looseness on pavement response is typical of
a retrofitted system as shown in Fig. 8.2. No aggregate interlock shear transfer is assumed
across the joint, which is reasonable for pavement slabs which have been in service for a
number of years and require joint retrofit. The single parameter considered in the study
on dowel looseness is the value of the gap between the dowel and surrounding slab at the
joint face. As discussed in Chapter 4, dowel looseness can arise from poor construction
techniques [81] as well as damage to the surrounding concrete under cyclic loading {10}, and
magnitudes of the gap have been measured at up to 0.6 mm. Fig. 8.4 details the assumed
gap, v, which tapers parabolically from a maximum value to zero over one-half the embedded
length of the dowel. The 12.7 mm joint opening is artificial, and is used only to ensure that

the dowel element spanning the joint is not so stiff that it causes conditioning problems. The
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magnitude of the gap at the joint face varies from 0 mm up to the value beyond which there
18 110 significant effect on the pavement response. The number of elements in the region of
the gap is fixed at three, giving six potential points of contact — note the nodal locations
shown in 8.4. Recall that the convergence studies presented in Chapter 4 indicated that a
total of six dowel elements in each slab, corresponding to three elements in the region of

the gap, was sufficient to ensure convergence of displacements and dowel shears.

8.2.3 Model Details: Aggregate Interlock

This study examines the effect of initial joint opening, w, on aggregate interlock shear
transfer. This is a very practical concern, as seasonal temperature changes can cause sig-
nificant variations in w. The constitutive relations used to model aggregate interlock shear
transfer across the joint are developed using a discretized version of Walraven's model as
detailed in Chapter 5. The value of o, was set at 45 N/mm?, and p = 0.4. The fraction
of aggregate particles in the concrete was fixed at 0.75, and a maximum particle diameter
of 20 mm was assumed. The number of different embedments and diameters assumed in
the analysis was 30. A total of 50 curves, each defined by 31 discrete points, was generated
for constant crack openings of between 0.05 mm and 3.2 mm, with each curve capturing
relative shear displacements between 0 mm and 1.0 mm. Plots of the shear and normal
stresses corresponding to five selected values of crack opening are given in Fig. 8.5.

One modeling detail which must be addressed is the effect of the sawcut used to form
rigid pavement contraction joints. As shown in Fig. 8.6, the upper quarter to third of the
slab thickness is sawcut and filled with a joint sealant: as a result, there is no interlock shear
transfer between slabs in this region. To properly model this phenomenon, the 16-noded
interface element spanning the joint between the upper slab elements (covering the upper
third of the slab thickness) is assigned a large initial joint opening and zero strength. Note
that the 12.7 mm joint opening is artificial, and is only used to provide separation of the

mesh between the slab faces.
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8.3 Results: Doweled Joint, Axle l.oading
8.3.1 Displacement Response

As expected, the relative vertical displacements of the two slabs near the joint grow with an
increase in v. Figure 8.7 shows the variation in displacement load transfer efficiency (LTE)
as defined in Chapter 4 with the magnitude of the gap. The LTE has been computed
after subtracting the vertical displacement of the slabs due to their self-weight of 0.10 mm.
Note that since the axle and dowel locations are unsyminetric, the slab displacements vary
significantly across the joint; for this reason, the LTE has been measured at (z,y,z) =
(3660, —1266.9, —230) and (3660, 563.1, —230}, which cofrespond to the nodes closest to the

center of each dual wheel load at the joint face.
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Figure 8.7: Load Transfer Efficiency vs. Gap — Doweled Joint, Axle Loading

The largest gap considered in the analyses is only 0.12 mm - beyond this value, there
is no significant change in the model response. This contrasts with the maximum gap of
0.30 mm determined in the preliminary studies of Chapter 4 for a similar system with the
same gap profile. This discrepancy is due largely to the subgrade models: the subgrade of

the system presently under consideration is stiffer than the dense liquid foundation used
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previously, so a smaller gap is required to produce the maximum decrease in LTE. Also
note that the maximum reduction in LTE is about 37%, as opposed to 52% determined in
Chapter 4. This difference can also be attributed to the different subgrade models. In the
present model. as the loaded slab contacts the subgrade and displaces it downward, there
is a loss of support under the unloaded slab. With a dense liquid directly below the slab as
used in Chapter 4, the subgrade under the unloaded slab provides continuous support that
is independent of the displacement of the loaded slab, tending to increase relative vertical
displacements between the two slabs.

Figure 8.8 shows the displaced shape of the top surface of the slabs for selected values of
the gap; the vertical displacement component has been scaled by a factor of 1000. Note the
larger vertical displacements of the slab on the side where the wheel loads are closer to the
edge. The vertical displacement of the loaded slab at (z,y, 2} = (3660, ~1266.9, —230) varies
from 0.56 mm for a gap of 0.00 mm to 0.64 mm for a gap of 0.12 mm; the corresponding

vertical displacements at {3660, 563.1, ~230) vary from 0.48 mm to 0.55 mm.

8.3.2 Dowel Shears and Contact Forces

The loss in load transfer efficiency with gap is naturally paralleled by decreasing shear
transfer due to dowel action. Fig. 8.9 details the change in shear transmitted across the
joint for each dowel. Note the ineffectiveness of the dowel at ¥ = 1220 mm, which is 610
mm from the nearest wheel load. For smaller gaps, the largest shears are transmitted by the
dowel at y = 610 mm, which is centered between two wheels. This illustrates the localized
nature of dowel shear transfer also noted by other researchers [41]. At larger values of v, the
dowel shears converge to nearly constant values with magnitudes ranging between about
0.7 kN and 2 kN. _

It is also worthwhile to examine the nodal forces applied to the dowels by the surrounding
slab for various values of y. Figs. 8.10 through 8.13 provide this information for each dowel
at selected values of «y; refer to Fig. 8.4 for the nodal locations corresponding to the z axis
coordinates in Figs 8.10 through 8.13.

For v = 0.00 mm, the largest contact forces occur at the joint face, and decrease rapidly
in an oscillatory manner similar to a beam on elastic foundation. When « == 0.04 mm, the
point of contact is at the joint face for the loaded slab, but it has decreased significantly
in magnitude; the portion of the dowel in the loaded slab sees more uniformly distributed
contact along its length with smaller nodal forces. At v = 0.08 mm, the contact forces are

distributed over the dowel within both the unloaded and loaded slabs. As the gap increases
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Gap = 0.12 mm

Figure 8.8: Displaced Shape of Top of Slab — Doweled Joint, Axle Loading
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Figure 8.9: Dowel Shear vs. Gap — Axle Loading

to 0.12 mm, the points of contact are fewer and further back from the joint face, but the
contact forces increase in magnitude vs. v = 0.08 mm.

It must be noted that different shapes for the gap profile {i.e. linear, cubic, etc.) could
be expected to produce significantly different contact patterns and forces. Howevér, assum-
ing that the formation of the gaps is due to degradation of the concrete surroun&ing the
dowels under cyclic loading, and that the degradation is a function of the magnitude of the
compressive stresses between the dowel and the slab, the assumption of a parabolic gap is

not unreasonable given the oscillatory decrease in contact forces predicted when v =0 mm.

8.3.3 Slab and Subgrade Stresses

Given that increasing -y significantly decreases the dowel shears, we would expect an increase
in subgrade stresses under the loaded slab adjacent to the joint with a concomitant decrease
in subgrade stresses under the unloaded slab. Fig. 8.14 shows the magnitude of the vertical
stress between the slab and subgrade for selected values of . Note the localized high stresses
under the edge of the loaded slab for all values of the gap. As +y increases, the unloaded

slab transfers less load to the subgrade, and the region of separation between the unloaded
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slab and subgrade increases as evidenced by larger regions of zero or near-zero stresses.
The maximum stress applied to the subgrade by the loaded slab varies from 107 kPa to 180
kPa as the gap varies from .00 nou to 0.12 mm ~ an increase of 68%. It must be noted
that these stress values are somewhat unrealistic due to the likelihood of subgrade vielding
which Is not captured by the linearly elastic model. However. the fact that they increase
dramatically with the presence of small values of v is significant: as detailed in Chapter 1.
loss of subgrade support and strength due to pumping action and subgrade deterioration
under high stresses is suspected of being a significant component of many joint failures [46].

It 15 also illuminating to examine the principal tensile stresses in the bottom of the
slab. as they increase significantly with increasing gaps. Figure 8.15 shows the maximum
principal stresses on the bottom of the siab. with the maximum values occuring under each
dual wheel at the joint face. The maximum values vary from 667 kPa to 1037 kPa with gaps
of between 0.00 mm and 0.12 mum. an increase of 55%. The orientation of the maxinmum
principal stress is in the y divection (transverse): effectively. as v grows and the unloaded
slab provides less support to the loaded slab, the stresses in the loaded slab approach those

due to an unprotected edge loading condition.

8.4 Results: Aggregate Interlock, Axle Loading
8.4.1 Displacement Response

A similar relationship between LTE and joint opening. w. for an undoweled joint with
aggregate interlock exists as between LTT and v for a doweled joint. As w increases. the
effectiveness of aggregate interlock as a shear transfer mechanism is reduced. leading to
smaller LTEs as shown in Fig. 8.16. The values of w observed in practice do not typically
reach 3.20 mm (the maximum value assumed in this study). The following equation is often

used to predict joint opening. AL [60, 93}:

AL = DL(cAT + €) (8.1)

i i

where I = adjustment factor for slab-subgrade friction (0.8 for gravel base layers). L =
the transverse joint spacing (3660 mm), AT = the uniform change in temperature. and e
= gtrain due to drying shrinkage {typically 1.5 % 107%%). For the present study. assuming
a reasonable value for AT of 35°C. Eq. 8.1 gives AL = 1.6 mm. Fig. 8.16 indicates that a
maximum seasonal change in LTE would be approximately 50%.

The global displacement response of the undoweled system is illustrated in Fig. 8.17,
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which depicts the displaced shape of the top surface of the slabs for selected values of w.
Note the growing discrepancy between the vertical displacements of the loaded and unloaded

slabs at the joint with increasing w.

8.4.2 Aggregate Interlock Stresses on Joint Faces

It is particularly interesting to examine the distribution of shear stresses on the joint faces
arising from aggregate interlock as shown in Fig. 8.18 for different values of w. The shear
stresses are negative, as they are shown acting on the vertical joint face of the loaded
slab; of course, identical stresses in the opposite direction exist on the face of the unloaded
slab.  Note the region of zero and near-zero stresses in the upper third as required by
the sawcut detailed in Fig. 8.6; the small non-zero stresses are artifacts of the smoothing
and nodal averaging of stresses and subsequent quadratic interpolation within elements.
As with dowel joint shear transfer, aggregate interlock shear transfer is a highly localized
phenomenon, with only the portions of the joint faces nearest the wheels seeing significant
stress. At large joint openings, the shear stresses acting on the joint face are effectively zero,

and the unloaded slab provides no support for the loaded slab as shown in Fig. 8.17. The
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slight curvature of the unloaded slab is due only to self-weight and the separation between
the unloaded slab and the base layer near the joint.

The normal stresses occuring on the joint faces have not been shown, as their magni-
tudes are negligibly small. This is due to the fact that the relative vertical displacements
between the loaded and unloaded slabs are quite small, ranging from a few thousandths
of a millimeter for a joint opening of 0.05 mm to 0.4 mm for a joint opening of 3.20 mm.
Examination of Fig. 8.5 indicates that the normal stresses at the joint would indeed be
zero (or negligibly small) for these values of displacement. If the sawcut were not explicitly
modeled (see Fig. 8.6), contact between the two joint faces would likely occur at the top of

the slab for smaller values of w, which would significantly affect shear and normal stresses.

8.4.3 Slab and Subgrade Stresses

As w increases, the vertical stresses applied to the subgrade by the loaded slab increase
dramatically as shown in Fig. 8.19. For w = 0.05 mm, the vertical subgrade stress under
the loaded slab is only 95 kPa; however, for w = 1.60 mm, this stress reaches a value
of 200 kPa, an increase of 111%. This is a larger range of values than predicted for the
doweled joint, since the dowels still transfer shear even for large gaps as no looseness has
been assumed over half the dowel length.

The maximum tensile stresses on the bottom of the slab are shown in Fig. 8.20. They
range from 674 kPa to 1107 Kpa in the loaded slab and from 507 kPa to 32 kPa in the
unloaded slab. As with the subgrade stresses, this range of stresses is greater than that

observed for the doweled joint.
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Joint Opening = 3.20 mm

Figure 8.17: Displaced Shape of Top of Slab - Undoweled Joint. Axie Loading
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8.5 Results: Doweled Joint, Axle and Temperature Loading

8.5.1 Displacement Response

Similar to the case of axle loading only, the relative vertical displacements of the two slabs
near the joint grow with increasing . The maximum value assumed for v was 0.24, beyond
which there is not a significant change in the model response. When computing the LTE, the
displacements due to temperature and self-weight alone were determined from separate anal-
yses and subtracted from the displacements due to self-weight, temperature, and axle load-
ing. As for axle loa&ing alone, the LTE has been plotted at (z,y, z) = (3660, —1266.9, -230)
and (3660, 563.1, —230), which correspond to the nodes closest to the center of each dual
wheel load (see Fig. 8.21). Figure 8:22 shows the displaced shape of the top surface of the

slabs for selected values of the gap; the vertical displacement component has been scaled
by a factor of 1000.
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Figure 8.21: Load Transfer Efficiency vs. Gap - Axle and Temperature Loading
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Figure 8.22: Displaced Shape of Top of Slab - Doweled Joint, Axle and Temperature
Loading
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8.5.2 Dowel Shears and Contact Forces

The dowel shears follow much the same pattern with respect to dowel location observed for
axle loading only, but with increased magnitudes as shown in Fig. 8.23. This increase in
dowel shears is due to the fact that under temperature loading, the slab and base separate
and less of the axle load is transferred to the subgrade in the immediate vicinity of the

wheels. These larger dowel shears translate into generally larger contact forces between the

12
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Figure 8.23: Dowel Shear vs. Gap - Axle and Temperature Loading

dowel and the surrounding slab as illustrated in Figs. 8.24 through 8.27.

8.5.3 Slab and Subgrade Stresses

1

Fig. 8.21 shows increasing LTE with increasing -y, and Fig. 8.22 illustrates the tendency of
the loaded slab to “tip” in the direction of the Jjoint for larger values of «v. This results in
different contact regions between the slab and subgrade and increasing contact stresses as
illustrated in Fig. 8.28. In fact, the maximum stress applied to the base layer varies from
34 kPa to 104 kPa as « increases from 0.00 mm to 0.24 mim, an increase of 206%. These

stresses are still significantly lower than those observed for axle loading only, however.
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Nighttime temperature curling generally constitutes a critical load case for tensile stresses
on top of the slab. Fig. 8.29 shows maximum principal stress on top of the slab for this con-
dition. Note that the maximum principal stress in each slab is nearly equal when v = 0.00
mm. As the gap increases, the maximum principal tensile stress in the loaded slab increases
from 890 kPa to 943 kPa with a concomitant decrease in tensile stress in the unloaded slab
from 924 kPa to 763 kPa. Note, however, that these stresses are less than the maximuim
principal tensile stresses observed in the bottom of the loaded slab for axle loading only and

the largest value of .
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8.6 Summary

This Chapter presented two parametric studies on joint shear transfer effectiveness. The
first study examined the effect of dowel looseness on pavement response; the second study
focused on the effect of the variation in initial joint opening on aggregate interlock shear
transfer effectiveness. Axle loading was considered in both studies, while axle loading
combined with a negative temperature gradient was also considered for the doweled model.

It was shown that small values of dowel looseness (gaps between the dowel and the slab
of less than (.12 mm) and typical seasonal variations in initial undoweled joint opening (less
than 1.60 mm) can have large effects on pavement response to axle loads near the joint,
with losses in joint shear transfer efficiency of up to 50% and significant increases in the slab
tensile stresses. Perhaps more important, however, is the large increase in vertical stress
applied to the subgrade by the loaded slab near the joint as joint shear transfer effectiveness
decreases. This indicates significant potential for subgrade yielding and degradation under
repeated loading, which could hasten the development of joint damage and faulting.

Under the action of combined temperature and wheel loading, gaps between the dow-
els and the slabs resulted in relatively modest increases in tensile stresses on top of the
slabs. However, the displacement response of the system varied significantly with differing
amounts of joint shear transfer. The models captured these effects quite well, illustrating
the variations in slab/subgrade separation and differential joint displacements with dowel
looseness.

Based on these studies, it appears that both dowel looseness and aggregate interlock
nonlinearities due to commonly experienced joint openings can have large effects on the
response of rigid pavement systems. The finite element models used in this study are capable
of capturing these variations in response, making them valuable tools for the evaluation of
existing and proposed design configurations under a variety of loadings. Several areas of
future research can also be identified based on these studies, including the formation of
dowe] looseness and reduction of aggregate interlock load transfer due to cyclic loading,

and the development of better base/subgrade models that capture soil yielding and damage

under high locatized stresses.



Chapter 9

Conclusions

9.1 Summary

This study was undertaken with the objectives of (1) developing a method for modeling
dowel joint load transfer in rigid pavement systems that rigorously incorporates dowel loose-
ness; (2) investigating new methods for the rational modeling of aggregate interlock load
transfer; and (3) developing efficient solution strategies for making three dimensional (3D)
finite element analysis of rigid pavements practical. A better understanding of joint shear
transfer mechanisms was identified as a critical research need due to the high frequency of
joint failures and their detrimental effects on pavement serviceability. Achieving the second
objective is crucial to making realistic 3D finite element analysis of rigid pavement systems

a viable tool for routine mechanistic design.

A comprehensive literature review of past research on the finite element modeling of
rigid pavement systems was conducted, including detailed summaries of recent 2D and 3D
models. This literature review served to verify that 3D analysis is preferable to 2D analysis
using plate elements due to the inherent limitations of 2D analysis. The modeling techniques
employed by various researchers were summarized, including slab/subgrade discretization,
material models, and methods of modeling dowel and aggregate interlock shear transfer.
This summary indicated that previous efforts to model dowel transfer have been somewhat
unrealistic; in particular, the presence of dowel looseness has not been accounted for ex-
plicitly in prior 3D models, even though it has been demonstrated as having significant
detrimental effects on rigid pavement performance [10}. A similar conclusion was drawn
regarding aggregate interlock shear transfer, which has typically been modeled using linear
springs or frictional contact at contraction joints. Further, there is no evidence of the use

of 3D finite element modeling techniques in design settings due in part to computational
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requirements.
These specific shortcomings were addressed in the development of modeling techniques

and the simulations of this study.

* Multiple-slab systems of various geometries were considered. The slabs were consid-

ered as linearly elastic.
* The inclusion of multiple and debonded linearly elastic base layers was addressed.

* The models included accurately located rectangular and circular tire contact areas as

well as linear temperature gradients through the slab thickness.

* Dowels were located precisely, and debonding and dowel looseness were considered

explicitly. -

¢ A two-phase model for aggregate interlock was implemented, permitting the effects of

joint opening and concrete properties to be captured.

+ Efficient. iterative solution strategies for large-scale systems involving material and

contact nonlinearities were developed and thoroughly tested.

To test the accuracy and applicability of the proposed finite element models developed
in this study, a comparison of deflection and strain data with measured values from a re-
cent laboratory study was done [33]. In particular, doweled two-slab systems subjected to
corner loading were analyzed: the first model rested directly on a rubber pad {idealized as
a dense liquid), the second on an unbonded cement treated base above the rubber pad. To
capture the relative vertical displacements at the joint observed for both systems, a small
gap was assumed to exist around the embedded portion of the dowels in the unloaded slab;
this assumption was deemed reasonable based on the methods of construction. Displace-
ment basin comparisons were reasonably accurate with excellent agreement near the joint,
verifying dowel looseness as a potential cause of the observed relative joint displacements.
Strain comparisons were less accurate, but reasonable agreement between measured and
computed values was observed for the first teét. Strain comparisons for the second test
were inconclusive, with no obvious explanation.

To illustrate the applicability of the aggregate interlock and dowel modeling techniques,
a series of parametric studies of a typical rigid pavement system was conducted. The system
studied consisted of two rigid pavement slabs on a gravel base layer; dowel locations were

based on a typical retrofit design configuration used by the Washington State Department
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of Transportation. For tﬁe doweled model, the parameter considered was dowel looseness,
while for the undoweled joints where aggregate interlock provides the only means of shear
transfer, joint opening was the single parameter. Both axle and combined axle and temper-
ature loadings were considered in these studies. In addition to load transfer efficiency, slab
stresses and displacements were examined, as well as vertical stresses applied to the base
Jayer. Variations in dowel shears and dowel contact forces as a function of dowel looseness
were illustrated for the doweled joint; for the undoweled model, the variation in aggregate

interlock stresses on the joint faces was examined.

9.2 Contributions

The major contributions of this study have been {1) the development of rational finite ele-
ment methods for the modeling of joint load transfer in rigid pavements due to dowel action
and aggregate interlock, and (2) the development of a multigrid preconditioner applicable
for unstructured 3D finite element models incorporating contact nonlinearities. The features

of these contributions are summarized as follows:

o Dowel load transfer. A quadratic embedded bending element was developed that can
be meshed independently of the solid elements it is embedded within. This formula-
tion permits the dowels to be located precisely within the finite element model without
distorting the mesh of solid elements comprising the slab. In addition to easing the
task of mesh generation and minimizing errors due to mesh distortion, this is a sig-
nificant advantage when using multigrid solution techniques which require meshes of
the same domain having varying levels of refinement. The formulation also permits
debonding of the dowel on a node-by-node basis, as well as the modeling of gaps
between the dowel and surrounding slab. Contact nonlinearities arising from dowel
looseness are captured in the transformation of the element stiffness matrix, making
the element amenable to direct inclusion in a nonlinear solution scheme without the
use of geometric constraints. The embedded bending member should prove useful for
modeling reinforcing in many concrete structures; towards this end, the inclusion of

a general bond-slip law was discussed.

o Aggregate interlock shear transfer. A rational method for the modeling of aggre-
gate interlock shear transfer was developed. It relies on a two-phase model for the
concrete at the joint as initially developed by Walraven [91, 92]. The constitutive re-

lations predicted by this model capture the nonlinear variation in shear stress transfer
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with normal and tangential joint displacements. Particularly significant is thé large
variation in shear transfer with joint opening, which may undergo significant sea-
sonal changes. The aggregate interlock model was implemented using a sixteen-noded
quadratic interface element that displaces compatibly with the solid elements it is

meshed between.

e Solution strategies. A solution strategy appropriate for the analysis of large-scale
structural systems incorporating spatially varying or nonlinear materials and contact
nonlinearities was developed. A significant feature of this solution strategy is a multi-
grid preconditioner that permits the use of unstructured/unnested mesh sequences.
General restriction and interpolation operators that rely on the evaluation of element
shape functions were developed that permit multiple isoparametric element types and
varying nodal degrees of freedom. These multigrid methods permit the coarse mesh
stiffness matrices to be assembled in the usual fashion even in the presence of spatially

varying materials with sharp boundaries, greatly simplifying implementation.

9.3 Future Work

While this study has made significant contributions to the finite element modeling of rigid

pavement systems, there are several areas that would benefit from further research.

9.3.1 Formation of Dowel Looseness

The ability to predict the formation of gaps between the dowels and surrounding slab would
be a particularly important topic of future research. One prior experimental study has
shown this to occur under repeated load cycles {10], but at present a predictive analytical
model does not exist. Prediction of long-term joint response and a better understanding of
the associated mechanics of dowel-slab interaction would aid new design efforts as well as
assist in the development of retrofit strategies and associated life-cycle cost analyses. This
would require the development of constitutive relations that relate cumulative damage to
repeated application of bearing stresses between the dowel and concrete and local finite
elernent models incorporating these constitutive models in the regions around the dowels.
Once a viable and realistic dowel looseness prediction model has been developed, back-
calculation of in-situ looseness of doweled Joints might be possible. Ideally, such an evalu-
ation would rely on standard non-destructive tests. Once the in-situ properties have been

determined, the damage model could be used to predict remaining joint life.
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9.3.2 Aggregate Interlock Shear Transfer — Cumulative Damage

The method for predicting aggregate interlock shear transfer developed in this study is
strictly applicable only to newly constructed joints. In reality, repeated axle loading results
in damage to the joint, and the effectiveness of aggregate interlock shear transfer degrades
significantly; this is the subject of at least one recent and ongoing study [3]. The two-phase
model of Walraven can predict cumulative damage under high stresses and low load cycles.
Refinement of this model to allow the accurate prediction of low-stress, high cycle damage
would be a first step in the development of an aggregate interlock cumulative damage model.
Such a research effort would likely rely on relevant experimental data.

Although few pavement joints are presently constructed without additional load transfer
devices {such as dowels), many existing pavements rely entirely on aggregate interlock for
joint load transfer. As with the dowel looseness model, an aggregate interlock cumulative
damage model would be particularly useful in conjunction with back-calculation of in-situ
joint properties. Development of cost-effective long-term retrofit strategies for these pave-
ments would benefit greatly from the ability to estimate current performance and predict

the remaining life of the joint.

9.3.3 Nonlinear Base/Subgrade Response and Damage

Closely related tb the first two areas of future research discussed here are nonlinear sub-
grade response and damage. The parametric studies of Chapter 8 highlighted the increased
vertical stresses applied to the base layer due to dowel looseness and poor aggregate inter-
lock shear transfer arising from large joint openings. These stress increases might lead to
Jocalized yielding and plastic flow of the base/subgrade material, and increase the poten-
tial for mechanical fatigue and pumping-related deterioration. Curmnulative damage and the
formation of dowel looseness and wear on the joint surfaces will likely be exacerbated by
soil yielding and softening, making its modeling critical to any finite element-based damage

predictions.
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Appendix A

Object-Oriented Implementation

A.1 Introduction

The immediate use of the finite element program developed for this study is the modeling
of rigid pavement systems; however, the program has been written to allow for general 3D
displacement-based finite element analysis. The impetus for developing general code is to
provide for future extensions, namely the inclusion of different material models, additions to
the element library, and the use of other solution routines. With the ability to solve general
problems and easy extensibility, the program may be.expected to be a valuable research
tool for future studies.

To achieve this goal of easy extensibility, the finite element package was developed using
the object-oriented C** programming language. The following Section presents a general
overview of the program architecture, including descriptions of major classes and their
interdependence. Section A.3 is dedicated to the implementation of the embedded dowel
element developed in Chapter 4. Details of the classes developed for implementation of the
multigrid methods of Chapter 6 are covered in Section A.4, and modeling of the geometric

constraints required to capture frictionless nodal contact are detailed in Section A.5.

A.2 TFundamental Classes and Architecture

A.2.1 Overview

The goals of object-oriented program design are to mirror the natural data required to
represent a model and implement necessary algorithms through the use of classes that min-
imize repeated code, facilitate object interaction, and allow for easy future extensibility.
Research into the development of object-oriented finite element analysis programs has cen-

tered around these objectives; recent reviews of such research may be found in [62] and [76].
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McKenna lists four broad categories of classes that have been used in most object-oriented

finite element programs [62]:
1. Modeling classes for generation of the finite element model.

2. Finite element model classes used to describe the model and store analysis results.

Classes in this category include representations for nodes, elements, boundary condi-

tions, and loads.

3. Numerical classes that handle computational operations, generally basic matrix, vec-

tor and tensor operations.

4. Analysis classes, used to form and solve the governing equations. Generally, analysis
classes interact with the finite element model classes to assemble the system stiffness

matrix and load vectors, compute the residual force vector, etc.

Model generation has not been considered in this study, and model geometry and properties
are defined in separately developed input files. Categories (2) - (4) are detailed in the re-
mainder of this Section. With this framework in hand, the object-oriented implementations
of the more complex computational aspects of the present study (i.e. the embedded dowel

element, multigrid solution strategies, etc.) will be discussed in later sections.
A.2.2 Finite Element Model Classes
The finite element model classes may be grouped into three major categories:

1. Model geometry, including nodal locations, element connectivities, and zero-displacement

boundary conditions.

2. Element definitions, which include both material properties and computational aspects

of the element discretization.
3. Loads.
The objects representing these three categories are depicted in Fig. A.1.
Model Geometry

Model geometry is represented by the Mesh class, which primarily provides storage for and
access to lower level objects. Inciuded in the Mesh class are dynamically-sized arrays of

Node objects used to represent nodes in the finite element model. Each Node stores an
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(z,y,2) location, the elements of which may be modified and retrieved via public member
functions. The Mesh class also contains a dynamically-sized array of El_conn objects used to
store element connectivities; each El_conn contains as member data an integer array of node
numbers which may be individually accessed and modified much as elements of a vector.
Nodal boundary conditions {free/fixed displacement specifications) are stored by Nodal_bc
objects, one of which exists for every Node. Aside from storing and providing access to the
model geometry and boundary conditions, the Mesh class also stores the .current system
displacement vector. The main computational public member function contained in the

Mesh class is that used to form the graph of the system stiffness matrix prior to its assembly.

Element Representation

‘Three natural divisions were made with regard to element type, and corresponding virtual

base classes were developed from which specific elements can be derived:

» The Element base class was designed to represent displacement-based solid and planar
{in 2D) continuum elements. Both the 20-noded brick element (Brick_20) and 10-
noded tetrahedral element (Quad_tetra - limited implementation) are derived from

this class.

® The Beam class represents line elements; the 3-noded Dowel element and 2-noded

Beamn_2 element are derived from this class.

* The Foundation class was developed to implement the Winkler foundation model; at

present, only the quadratic Lig_found8 element has been implemented.

This element hierarchy is illustrated in Fig. A.1. In general, each element contains
public member functions for the formation and retrieval of element stiffness matrices and
computation of nodal stresses and/or member forces which are required by the solution
routines. Fach element is also responsible for storing its nodal degrees of freedom, used
in mesh traversal and mapping element vectors/matrices to system vectors/matrices. In
addition, the Element, Beam, and Foundation classes have special functions specifically
required for the analysis methods and solution strategies developed in this study which are
detailed later in this Appendix. Each element contains a pointer to a material property
object created independently at the time of model generation which defines appropriate

constitutive relations. A single material property object may be shared by elements of the

same material.
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The El_array, Beam_array, and Found.array objects shown in Fig. A.1 are storage classes
for each of the three basic element types. They permit dynamically-sized arrays of each
base class to be used for element storage and integer-indexed element access. These three
objects are created by and contained within a single Members object which provides a

top-level interface through which other objects may interact with individual elements.

Loading Methods

Figure A.1 depicts the major class objects used to represent various loadings. Note that
the Load_Manager class is largely a storage class through which the analysis classes retrieve
specified load vectors, which may be any combination of equivalent nodal and temperature
loads.

The Load_RHS class is responsible for handling externally applied tractions, which may

be of several types:

» Patch loads applied over érbitrarily located rectangular or circular areas as specified
in Chapter 3. These loads are assumed normal to the planar area over which they are

applied.
¢ Point loads in any direction located anywhere within the model.

¢ Nodal loads.

Recall from Chapter 3 that the integration of the surface load over a specified area is per-
formed using the rectangular rule, which reduces to the summation of a series of point loads
applied within elements. As a result, the main computational routine for load application
is that for applying an arbitrarily located point load within a model. This does require
that the element within which the load is applied be determined, and the element shape
functions be computed. This is accomplished through element member functions originally
developed to aid in the implementation of the embedded dowel and the multigrid solution
strategies which are detailed later in this Appendix. The Load_RHS class also implements
self-weight loading; the integration necessary to determine equivalent nodal loads due to
self weight is performed by individual Element objects.

The Load_Temp class was developed to generate equivalent nodal loads due to temper-
ature. Temperatures are specified on a nodal basis and stored in the Load_-Temp class; ap-

propriate private member functions are provided for generating Element nodal temperature
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vectors. As with self-weight, the individual Element objects are responsible for integrating

temperature-induced stresses over their volume to determine equivalent nodal loads.

A.2.3 Numerical Classes

Dense Array and Vector Classes

To facilitate element-level operations such as forming element stiffness matrices and com-
puting element residual force vectors and loads, a set of class objects was coded specifically
for linear algebra using dense matrices. These objects support zero-based parenthetical
indexing through overloading of the “(}” operator. Storage is allocated upon construction,
and the objects may be dynamically resized at any time. To maximize performance, no
checking for out-of-bound indices is supported; the programmer is responsible for sizing
all arrays/vectors prior to element assignment /retrieval and matrix operations. All of the
computations performed in this study were done in double precision. However, the class
objects reference the global type definition typedef double Number, which would permit
recompilation of a single precision version if desired. Throughout this Appendix, Number
and double are used interchangeably.

These classes support symbolic linear algebra operations (matrix-vector multiplication,
vector dot products, etc.) through public member functions employing overloaded oper-
ators. For example, the product of matrix A with vector x giving the vector result b is
coded as b = A * x. Results of computations are returned by reference to object member
data to increase efficiency, i.e. the vector result b is returned by reference from A in the
previous example.

A brief description of the individual objects is given below:

¢ dubVector is a simple vector class containing an array of Numbers. Vectors may he
created using an empty constructor, as having a specified number of elements, or
as defined by two Nodes. Public member functions support vector dot and cross
products, vector-matrix multiplication, vector tensor products, assignment of a scalar
or another vector (with dynamic reallocation), retrieval of maximum or minimum

values, aud sorting of values.

e dubZDarray is a dense matrix class. Arrays may be sized upon construction or dy-
namically resized after instantiation. Overloaded operators permit matrix-matrix and
matrix-vector operation, etc. Individual columns or rows may be assigned or ex-

tracted, as may block matrices.
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e dub_symm_array provides for storage and operation on dense symmetric matrices.
Storage is allocated using individually sized dubVectors to represent each row. In
addition to supporting matrix operations with overloaded operators, Choleski factor-
ization and substitution are supported via public member functions. This class was

created primarily for optimal storage and manipulation of element stiffness matrices.

Sparse Representation of the System Stiffness Matrix

For the 3D models solved in this study, the system stiffness matrix, K, is large. This
requires that it be stored in a sparse format to minimize memory usage; the Sparse_Col_ K
class was developed for this purpose. To permit the use of existing numerical libraries for
the solution of the linear system of equations arising from the finite element discretization,
K is stored in a Harwell-Boeing column-major format. The storage required is member

data consisting of:

int nnz;
double* nzval;
int* rowind;

int* colptr;

The value of nnz is the number of non-zero values, the array nzval stores the non-zero
coefficients of K ordered by column, rowind the corresponding row indices, and colptr the
starting and ending indices of each column within nzval.

In addition to storing K, the Sparse_Col_K object is responsible for allocating storage
space for and assembling K. The graph of K is computed prior to assembly by a Mesh
public member function, ensuring that nzval and rowind are sized exactly and the values
of colptr are known. This eliminates the need for expensive memory reallocations and
shifting of the columns of K during assembly.

The major public member functions of Sparse_Col K permit assembly of K, the re-

moval of equations corresponding to zero displacements, and adding or removing individual

element stiffness matrices:

int formX{()
vaid applybc()
void remove_element(int elnum)

void add_element(int elnum)
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Member functions are also provided for access to nzval, rowind, and colptr as required
by the LU.Solver object (described later). Other Sparse_Col K public member functions

are required for the multigrid solution strategies and are detailed in later sections.

A.2.4 Analysis Classes

The Solver object is the top level analysis object, and implements the solution strategy
outlined in Algorithm 6.1. As shown in Fig. A.2, Solver relies on a Constraint class for
enforcing fixed non-zero displacement and frictionless contact constraints {detailed in a

later section of this Appendix). Description of the Multi_grid and Conj_grad classes used in

Solver ————m  Stress calc

—

LU_Solver Multi_grid Conj_grad Constraint

Figure A.2: Analysis Classes

the solution of the linearized system stiffness equations are also deferred until Iater in this
Appendix.

The LU.Solver object is merely a wrapper providing an interface to the SuperLU sparse
direct solver library routines [17, 57). The Multi_grid class relies on LU_Solver for achieving
the coarse grid solution; LU_Solver may also be used to directly solve the system stiffness
equations for smaller problems that do not require the use of iterative solution methods.
Public member functions are provided for factoring K, and substitution for the solution.
Multiple substitutions may be performed after a single factorization to increase efficiency.

Smoothed nodal stresses, along with nodal displacements, are the primary output from
the finite element analysis. In addition, they are required for updating nodal contact con-
straints as detailed in Chapter 6. The Stress_calc object averages and stores the smoothed
nodal stresses over the entire mesh. Each Element object is responsible for computing its

contribution to the smoothed nodal stresses based on extrapolating the integration point

stresses,
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A.3 Implementation of Embedded Dowel

The object-oriented implementation of the embedded dowel element detailed in this Section
mirrors the element development as closely as possible. Following a description of the Dowel
object, details of the Dowel_gap object, responsible for storing bond and gap/constraint
information as well as implementing the constraint updating strategy, are presented. Note
that specifics of the embedded formulation of the Dowel object are also applicable to the

2-noded Beam_2 element used to span the joint between the two slabs.

A.3.1 DModifications to the Dowel Class

With the usual {unembedded) formulation of the 3-noded quadratic Dowel element in hand,
only the transformation matrix, T {see Chapter 4) need be computed to embed the dowel

in a solid element. The information required to form T is as follows:
¢ The solid element which the dowel is embedded in must be specified.

o The matrix of shape functions of the embedding element, N¥, must be evaluated for

each dowel node i =1...3.
¢ The dowel must be specified as bonded or debonded at each node.

o At each dowel node, 1, the gap, v; and current constraint information must be known.

Given the small amount of information required to embed the dowel and to avoid code
replication, the member data and functions necessary to embed the dowel were merely

added to the existing unembedded Dowel class. The additional member data required for

the embedded dowel are:

Element* embedder;
Dowel.gap* gap.bond;
dubVectors* embed_coords;

Embedment is specified by the assignment of embedder and gap_bond objects through the

following public member function:
void assign_embed(Element* embed, Dowel_gap* gapper)

Element public member functions permit the computation of the local embedding element
coordinates (detailed later) and evaluation of N%. Only a few additional private member

functions were necessary to permit the generation of T once access to the embedder public

member functions was provided.
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One other issue which must be addressed upon embedment of the dowel is its additional
nodal connectivity and number of degrees of freedom. As mentioned earlier, each Element,
Beam, and Foundation object stores its nodal degrees of freedom for purposes of mesh
traversal, sizing of data structures, and mapping element matrices/vectors to the global
matrices/vectors. Therefore, upon embedment the Dowel simply appends the nodal degree
of freedom information as retrieved from embedder to its original unembedded nodal degree
of freedom data. This implies that the dowel has siz degrees of freedom at its three original
nodes and three degrees of freedom at the nodes corresponding to embedder - see Chapter
4 for details. The nodal connectivity of the embedded dowel is then modified by a call to
a Mesh public member function. These two steps, accornplished with a few lines of code in
the Dowel assign embed member function, ensure that interaction with other objects such

as Mesh and Sparse_Col K through existing Dowel public member functions is unaffected.

A.3.2 The Dowel_gap Class

The Dowel_gap object was created to facilitate the storage and updating of nodal constraint
and bond information for all embedded Beam elements in a model. Member data for the

Dowel_gap object include the following:

Member* ptr.to_members:;
Mesh* ptr_to.mesh;
Sparse.Col K* X;
El_conn bond.info:
El_conn constraint_info;

dubVector nodal_gaps;

Access to the Beams is provided through ptr_tomembers, and bond, constraint on/off, and
gap magnitudes are stored in bond_info, constraint_inf 0, and nodal_gaps, respectively.
The following public member functions provide the Beam ob jects with information required

to form T

int get bond_info(int node_num)

Returns a 1 if node is bonded, 0 if not.

int get.constr.info(int node.num)

Returns a 1 if node is constrained, 0 otherwise.
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void get.gap ratio(Number& gap.ratio, dubVectork dowel.displ,
dub2Darray& N)
(Given the dowel nodal displacement vector and the matrix of shape functions of the

embedding element, N, this function returns by reference the gap ratio, ¥/m.

A review of Chapter 4 will verify that this is the only information required to form T.
Constraint updating and modification of the tangent system stiffness stiffness matrix
are also the responsibility of the Dowel_gap object. See Algorithm 4.1 for details of the
constraint updating algorithm. The Dowel_gap object stores as member data a pointer
to the Sparse.Col_K object permitting it to add/remove Beam element stiffness matrices.

Additional Dowel.gap public member functions used to accomplish these tasks are:

int update(dubVector& nodal_displ)
int remove K()
int add KO

A.4 Multigrid Implementation

As noted earlier, the Solver object implements the nonlinear solution algorithm detailed in
Chapter 6. The inner kernel of this algorithm requires the solution of a system of linear equa-
tions, which is usually accomplished with the multigrid (MG) or multigrid-preconditioned
conjugate gradient (MG-PCG) method. Presentation of the MG implementation is the
primary focus of this section; with this in hand, the implementation of MG-PCG is briefly

discussed.

A.4.1 TImplementation of the Multigrid Algorithm

The top level object in the multigrid implementation is the Multi_grid class, which simply
implements the recursive multigrid algorithm given in Alg. 6.3. Its main public member
function takes a force vector and returns a displacement vector after a specified solution
tolerance or maximum number of iterations has been reached. Member data for this object
include pointers to the Mesh, Members, and Sparse.Col.K objects corresponding to each
mesh in the grid hierarchy as well as a pointer to the LU_Solver for determination the coarse
grid error correction. See Fig. A.3 for an illustration.

A review of Alg. 6.3 indicates that the multigrid method relies on smoothing and meth-

ods for the intergrid transfer of information, including the restriction and interpolation
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Figure A.3: Multigrid Class Structure and Implementation

operators developed in Chapter 6. Smoothing is the simplest fundamental component of
the multigrid implementation. Recall that point-wise Gauss-Seidel smoothing is used, which
requires only the system stiffness matrix and the current residual and displacement vectors.
As such, additional functions were simply added to the Sparse.Col_K object to perform
forward and backward Gauss-Seidel smoothing operations. Implementation of the intergrid

transfer of information concepts presented in Chapter 6 is more detailed, and is the focus

of the following discussion.

A.4.2 Intergrid Transfer of Information

At the heart of the intergrid transfer of information concepts developed in Chapter 6 lies
the need to efficiently determine for any Node: (1) the element it is contained within, and
(2} the local (natural) coordinates of the containing element. This information is required
for restriction/interpolation as well as the intergrid transfer of material properties, where
all coarse mesh elements must access the finest mesh at their integration points. As detailed
in Chapter 6, a grid searching procedure is needed to reduce the number of elements which

must be checked for each Node. This grid search has been implemented using the Grid_sort
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class, detailed next. Following this, the modifications to the Members class and various
element classes that permit the determination of (1) and (2} will be discussed. Finally, the
specifics of the restriction/interpolation and intergrid transfer of material properties will be

covered.

Grid Searching Procedure

The Grid.sort class implements the grid searching algorithm outlined in Chapter 6. In

addition to constructors and a destructor, it contains only two public member functions:

void build sort()

El conn& get list(Node& node)

The build_sort function is responsible for constructing a 3D grid over the domain of
the Mesh, and assigning to each cell in the grid a list of all elements which lie partially
or completely within it. Assuming straight element edges, the only information required
to generate this data are the maximum and minimum extents of the Mesh in the (z,y, z)
Cartesian coordinates, and the maximum and minimum (z,y, z) extents of each element.
This information is computed and stored by the Mesh during the assignment of elements
and nodes, and accessed by the Grid_sort object via Mesh public member functions. The
algorithm implemented by build_sort is given in Alg. A.1 with reference to Fig. A.4 and
the following definitions. Only the 2D case is outlined for brevity.

Xmin, Xmaz = minimum and maximum z coordinates of mesh
Yoin, Ymez = minimum and maximum y coordinates of mesh
zt o Tho. = minimum and maximum z bounds of %" element
Y ins Uinge = minimum and maximum y bounds of i** element

Ndz,Ndy = number of divisions of grid in (x,y) directions
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10
11
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13
14
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16
17
18
19
20
21

[Xomins Xmaz, Ymin, Ymaez] = Mesh — get.mesh limits()

0z = (Xpaz — Xmin) /N do

6y = (Yimaz — Ymin)/ndy

& loop over all elements

for i =1 to number of elements

dO [Thims Thrar: Vinin, Vines] = Mesh — get_el limits (i)
& starting and ending cell indices
lowy = (int) (2}, — Xmen) [0z

highy = {int) (27,0, — Xmin) [0z
lowy = (int) (Y1, — Yonin) /8y
highy = (in%) (¥es — Yimin) /0y
> loop over each row in grid
for j = low, to high,
do ky = j * ngy + low,
ke = j x ngy + highy
> loop over each column in grid
for k =k, to k,
do el numslk].add_val(i)
end
end
end

Algorithm A.1: Pseudo-code for the build_sort Function

(X

element i

bounds of
element i

X dx

Figure A.4: Definitions for Grid Searching Algorithm
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Note that this algorithm allows for an element to span multiple cells in the grid in both
the z and y directions. The computational time required by this algorithm is negligibly
small, although it does grow nonlinearly with increasing ng, and ng, The integer list
of elements lying at least partially in the kth each grid cell are stored in el.nums[k], a
dynamically sized El.conn object. The Grid.sort member function get.list (Node& node)
merely computes the k%" cell that node lies within and returns el_nums{4].

Although the Grid_sort class was originally constructed to aid in the multigrid imple-
mentation, it is used in other parts of the program for operations that would otherwise
require linear searches over all elements. For example, the application of arbitrarily located
point and patch loads described in Chapter 3 requires that the element within which a load
is applied be known. The formation of the graph of the system stiffness matrix, K, prior to
assembly requires that all elements connected to each node be determined. Given that there
are several uses for the Grid.sort object and that it interacts primarily with the elements,

it is constructed by and stored as member data for each instance of Members.

Calculation of Element Local Coordinates

Two public member functions were added to the Members class which provide the primary

interface for the intergrid transfer of information:

int in element(int nodal.dof, Node& node, El_connk el.groups)
int getlocal(int i, Node& node, dubVector& loc.coords)

The first member function triggers a call to Grid_sort, which returns the list of elements
to search. The input nodal dof and el groups are necessary to ensure that the proper
element type is searched, i.e. FElement, Foundation, or Beam. The returned integer is the
global index of the element. The second function takes this global index, i, along with
node, and returns by reference the element local coordinates.

To avoid code replication, all calculations required to determine the element local co-
ordinates are performed by the elements themselves, which already contain most of the
required data and member functions. The determination of whether or not a node lies in an
element reduces to simple vector dot products. The calculation of element local coordinates
given a nodal location, while more complicated, requires only a straightforward application
of Newton’s method. For an isoparametric, 3D continuum element with b nodes, we know

that:
G=N{T)x*-x=0
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where:

x = 3-element vector containing the given (z,y, z) location

x* = vector of element nodé.l locations, 21,91, 21, - .. Zb, Up, zb}T
N = the matrix of element shape functions

T = vector of element local coordinates, (£, 7, ¢)

Applying Newton’s method for the solution of this equation requires the Jacobian, J, given
by:

aN; aN; 8Ny
'a_flmi “(-9—??15.,"1' —SEL.’L‘i
aN; 3N ON;
T=1 T Flu Gy
aN; vy an;

BE L oy B P

where sumrmation over ¢ is implied. A review of isoparametric element definitions reveals
that J is the transpose of the Jacobian used in coordinate mapping operations [98, 20|, and
no extra element functionality is required for its computation. Solution for the unknown

element local coordinate vector, Y, using Newton’s method then follows as:

int get_local(x,T)

1 © start at center of element
T =(0,0,0)

while |[G{YT)|| >0

do J = form. Jacobian()

)

3

4

5 & solve for increment
6 Y =J"1@

7 T+ =67

& end

Algorithm A.2: Solve for Element Local Coordinates

Restriction and Interpolation

Since restriction and interpolation as defined in Chapter 6 employ the same informa-
tion about adjacent meshes in the hierarchy, it was logical to develop a single class, Re-
strict_interp, to perform these operations between adjacent Mesh/Members pairs as shown
Fig. A.5. This implies that the number of Restrict_interp objects is always one less than
the number of rmeshes in the hierarchy. In addition to constructors and a destructor, the

Restrict_interp class provides only three public member functions:
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Restrict_interp

coarser
' Mesh

coarser
Members

Figure A.5: Restrict.interp Class

build.data()

This function is called only at the start of the simulation. It is responsible for deter-
mining the integer list of coarse mesh elements within which each fine mesh node lies,
and the corresponding list of coarse mesh element local coordinates. This information

is stored as member data by the Restrict_interp object.

restrict(dubVectork fine.res, dubVectord coarse res)
Restricts the fine mesh residual vector to the coarse mesh. Requires a loop over all fine

mesh nodes, and assembly /summation of the equivalent coarse mesh contributions to

get coarse._res.

interp(dubVector& coarse_displ, dubVector& fine displ)
Performs interpolation using the node-by-node procedure detailed in Chapter 6. Re-

quires a loop over all fine mesh nodes, and mapping of interpolated fine mesh nodal

displacements to fine displ.

The public member functions for restriction and interpolation are called by the Multi.grid
object during the solution. Restriction and interpolation are actually performed on a node-
by-node basis by the individual Element, Beamn, and Foundation objects where the required
definitions of thé element shape functions are already provided. In addition to minimizing
code replication, this definition has the significant advantage that explicit representations

of the operators R and T need not be formed. The additional computational overhead
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incurred by the evaluation of the element shape functions for each restriction/interpolation

operation is minimal.
Intergrid Transfer of Material Properties

The intergrid transfer of material properties is accomplished at the element level with the

following additional required element member functions:

void assign.members(Members* fine members)
void get D(Nodek gauss nodes[i], dub2Darrayk D)

After the elements of all coarser meshes in the multigrid hierarchy have been constructed,
they are assigned pointers to the fine Members object. The fine mesh element numbers and
local coordinates corresponding to the coarse mesh element integration points are computed
and stored as coarse element member data. This permits the constitutive matrix, D, relat-
ing stress and strain to be retrieved from the fine mesh elements during the calculation of
the element stiffness matrix. Currently, these member functions have been added to each
class in the Element and Foundation class hierarchies; the Beam elements do not account
for spatially varying material properties when a multigrid solution is employed. Note that
at present, this implementation is limited to total displacement nonlinearities (such as the
aggregate interlock constitutive relations developed in Chapter 5). More complex consti-
tutive models would require the tracking of more loading history parameters. In principle,
however, a class could be developed to compute and update required parameters at each
integration point, allowing the mechanisms for the intergrid transfer of material properties

to remain largely unchanged.

A.4.3 Multigrid-Preconditioned Conjugate Gradient Implementation

Implementing the multigrid-preconditioned conjugate gradient solver {MG-PCG) is simple
once the multigrid solver is in place. A Conj_grad class was coded specifically to implement
the preconditioned conjugate gradient algorithm. Once the algorithm was coded, all that
was required to implement MG-PCG was to give the Conj_grad object pointer access to
Multi_grid.

At present, three other options are also available for preconditioning: diagonal, sym-
metric Gauss-Seidel, and incomplete LU factorization (ILU). The diagonal preconditioner
retrieves the vector of diagonal elements from the Sparse_Col_K object, and the symmetric

Gauss-Seidel preconditioner relies on the forward and backward smoothing routines coded
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for the Multigrid class and implemented by the Sparse_Col K object. The ILU factorization
is computed and stored by the Sparse_Col_K object, and substitution performed via an

additional public member function.

A.5 Enforcing Geometric Constraints

The nonlinear solution strategy developed in Chapter 6 employs an Uzawa iteration to
enforce the geometric constraints required to model loss of contact between the slab and
base layer. The Constraint class, described in this Section, was developed specifically to aid

in implementing these nodal contact constraints.

A.5.1 The Constraint Class

The Constraint class is an analysis object that interacts directly with the Solver class; and
in addition to nodal contact, permits the specification of non-zero displacement constraints
(not used in this study). The Constraint class contains the following public member func-

tions that apply directly to the Uzawa iteration; refer to Chapter 6 for notation.

void get.perturb(dubVector& perturb_force)
Responsible for returning the current perturbation to the right hand side of the con-
%k

strained system, wG¥c**, This function is called once at the start of each global

iteration.

double get_constr_err(dubVectork G_transpU)
Returns by reference the current value of the residual in the constraints, y = G*T§U—

*k

c¢*®, as well as the magnitude of y, which is used as the convergence criteria in the

Uzawa iteration.

void get_G_lambda(dubVectork G_lambda, dubVector& del lambda)

Takes the current estimate for A and returns the matrix-vector product G* 5 by
reference.

int update._constraints()

Updates constraints based on the current displaced shape and smoothed nodal stresses.
At present, updating is based on a straightforward application of the criteria presented
in Chapter 6 for frictionless nodal contact conditions.

void add.constraints{(int add)

This function computes and adds/removes the perturbation to the system stiffness
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matrix, K' = wG*G*T, based on the currently active constraints. The perturbation
K’ is added if add = 1, and removed if add = -1.

The implementation of the above member functions is straightforward when a direct
solver is used in the inner kernel of the solution algorithm. An additional level of complexity

is added when solving constrained models using multigrid methods; this is discussed next.

A.5.2 Multigrid Methods for Constrained Problems

The only difficulty in solving tﬁe constrained system with a multigrid method (or multigrid-
preconditioned conjugate gradient) lies in restricting K’ to the coarser meshes in accordance
with Chapter 6. Recall that this process of restriction is performed node-by-node, requiring
that the coarse mesh element within which each fine mesh nodal stiffness perturbation,
w(n®n), be known. However, with the element search capabilities previously added to the
Members class for the multigrid implementation, determination of this information becomes
a trivial task. Similarly, the functions required for the evaluation of the coarse mesh element
shape functions are already in place, permitting the calculation of Eq. 6.30 with little work.
The only additional modifications involve notifying the coarse Mesh that there is additional
coupling between nodes not defined by element connectivities to ensure that storage for the
system stiffness matrix is properly allocated.

Given this simplicity, the required functionality for perturbing the coarse mesh stiffness
matrices was added to the Constraint class. During model generation, a single Constraint
object is constructed for each mesh in the hierarchy; however, the coarse mesh Constraint
objects are each assigned a pointer to the finest mesh Constraint object. This permits each
coarse mesh Constraint to compute its equivalent perturbation, K’, based on the current

constraint information known and updated only on the fine mesh.






