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1. INTRODUCTION AND RESEARCH APPROACH

1.1 Context and Problem Staternent

Bridges are important links in modern transportation and communication svstems.
Highway bridges have suffered heavy damage in recent earthquakes. Most of the dam-
age was caused by excessive forces at the supports and by weakness of the substructure.
Deficiencies in details at connections. insufficient length of bearing at supports. inappro-
priate design of hinges, embankment movement, liquefaction, and inadequate restraining
devices have been the causes of many failures {Mizuno 1987).

Most design codes express the dyvnamic effects of the ground motion as a set of equiv-
alent static forces. The equivalent lateral forces are proportional to the superstructure
weight. The proportionality constant is expressed in terms of different factors. which
include the regional seismicity. the importance and the ductility of the structure. the
soil conditions, and the vibration characteristics of the structure. This design proce-
dure has proven to be inadequate, and design codes are being constantly revised on the
basis of lessons learned from the 1964 Alaska Earthquake. the 1971 San Fernando Earth-
quake, the 1985 Mexico Earthquake, the 1989 Loma Prieta Earthquake. and the 199.4
Northridge Earthquake. Research has beeq valuable for improving the seismic perfor-
mance of bridges.

The increasing use of pile foundations, the significant damage to pile-supported struc-
tures in major earthquakes, limitations in understanding, and the uncertainty in the
prediction of soil-pile-structure interaction under dynamic loads all contribute to recent
interest in the dynamic-response analysis of soil-pile-structure systems.

The objectives of the study presented herein are to increase the safety of the piles
and the structures they support, and to better understand the interaction between the
piles and the structures under both critical and operational conditions. A rational,
dynamic, frequency independent lumped parameter soil-pile interaction model has been

developed for both lateral and axial vibration of single piles and two-pile groups. Special
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attention was paid to the nonlinearity of soil, the formation of gaps and slippage, radiation
damping, and pile-group behavior. The model allows time domain nonlinear analysis to
be conducted in a relatively simple manner. Since the model can reproduce the dynamic
effects by itself, its parameters are defined from the static behavior of a pile-soil system
by reasonable p-y curves developed under the static condition and obtained from finite

element analysis adopting the Winkler hypothesis.

1.2 Research Objectives
The specific objectives of the research reported herein are as follows:

1. To obtain equivalent stiffness properties for single piles and pile groups that can be
used to model the nonlinear behavior of pile foundations for the seismic analysis
of bridge superstructures. Specifically. an objective is to define nonlinear stiffness
characteristics for typical soils and pile configurations to be used as input to seismic

bridge analysis software.
2. To define the dynamic pile interaction effects for groups of two piles.

3. To obtain lumped mass properties for piles and pile groups.

1.3 Background
1.3.1 Dynamic Soil-Structure Interaction

The effects of an earthquake are usually classified as primary, when due directly to
the causative process, such as faulting or volcanic action, and secondary, when due to
the ground motion resulting from the passage of seismic waves. The secondary effects
include those associated with landslides, soil liquefaction, and low frequency structural
vibration in which inertial effects are predominant (Derecho 1991). The foundation effects
discussed in this thesis fall under the last category (Derecho 1991).

Ground conditions at the site affect the earthquake response of structures. Two
aspects of this influence are important: (1) site effect — the amplifying (or attenuating)
effect of local geology on the intensity as well as its filtering effect on the frequency
characteristics of the transmitted seismic waves, and (2) soil-structure-interaction —

the effect of soil properties in the immediate vicinity of a structure on the structural



response. Soil-structure interaction includes the effect of the underlying soil in modifying
the response of a structure in relation to its behavior when founded on an essentially rigid
base, as well as the effect of the presence of the structure in modifying the ground motion
at the site in relation to the free-field motion (Derecho 1991). |

From the analytical standpoint, one may view soil structure interaction as consisting
of two distinct effects: (a) inertial interaction, which arises from the motion of the
foundation relative to the surrounding soil associated with the transmission of inertial
forces from the structure to the adjoining soil; and (b) kinematic interaction. which
can occur m the absence of inertial forces, that arises when a relatively stiff structural
foundation can not conform to the distortion of the soil generated by the passage of
seismic waves {Derecho 1991).

In the standard analysis of building and bridge structures. it is assumed that the
motion experienced by the base of a structure during an earthquake is the same as the
free-field ground motion that would occur at the level of the foundation if no structure
was present. Strictly speaking. this assumption is true only for a structure supported
on essentially rigid ground. For structures supported on soft soil, the foundation motion
generally is different from the free-field motion due to kinematic interaction. In addition,
a structure with a flexible base has less effective stiffness than the idealized structure,
50 that the period of the actual structure is higher than that of the idealized structure
which affects inertial interaction. A flexibly supported structure also differs from a rigidly
supported structure in that a substantial part of its vibrational energy may be dissipated
into the supporting medium by the radiation of waves and by hysteretic action in the
soil. This affects the damping characteristics of the structure. The impoftance of the
latter factor increases with increasing intensity of ground-shaking.

In typical dynamic structural analysis, either the load or the displacement is specified
at every point of the structure. In soil-structure-interaction problems, neither the load nor
the displacement is known at the boundary or at other points of the structure. When the
wave front of the incident wave propagating in the soil encounters the structure, scattering
of the wave front occurs. This leads to a load acting on the structure which will cause
motion, accompanied by the generation of a radiation wave in the soil and a relief of the
loading on the structure. All of these mechanisms are coupled: the motion of the structure

depends on the loading acting on it, and the loading, in turn, is affected by the structural
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motion. The same applies to soil. In a dynamic analysis, it is insufficient to prescribe a
zero displacement at a large distance from the structure, as is routinely done in statics.
Rather, an energy absorbing boundary must be specified so that once the waves leave the
zone of interest, they will not return during the time of the analysis. It is thus ensured that
only outgoing waves are present in the actual interaction analysis. This avoids an infinite
energy buildup and it will result in damping, called radiation damping, occurring even
in an elastic unbounded system. Excellent summaries of currently available approaches
to the analysis of soil-structure interaction problems are given in the literature (Seed
et al. 1975, Seed et al. 1977, Seed & Lysmer 1977, Roesset & Tassoulas 1982, Wolf
1985, Derecho 1991). Brief descriptions of the two general approaches to analysis that

are currently used are given below.

1.3.1.1 Complete or Direct Methods

For methods under this category, the motion of the soil mass and the structure is
determined simultaneously. A complete soil-structure interaction problem typically con-
sist of two parts. A site response analysis involves the determination of the temporal
and spatial variation of all motions within a site from a single specified control motjon
at some control point within the site where an observed or estimated motion is avail-
able. A source problem, on the other hand. involves the determination of the response
of a structure to specified forces or displacements within a source region {Derecho 1991).
The interaction analysis then consists of the superposition of these two cases. Complete
methods (Idriss & Sadigh 1976, Lysmer et al. 1977) generally employ the finite element
method of model representation.

It is not possible to include the source in the analytical model in earthquake response
analysis, in general. In one approach, referred to as a pseudo-interaction analysis (Lysmer
1978), this difficulty is overcome by defining the seismic environment in terms of specified
loads or displacements on an external boundary. The site response problem is solved first
by deconvolution of the surface control motion to some level below the ground surface
where it can be assumed that the presence of the structure will not influence the ground
motion. This step is depicted in Figure 1.1.a. The second step, shown in Figure 1.1.b,
consists of using the base motion computed in the first step as a specified boundary

motion for a finite element analysis of the soil-structure system.
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1.3.1.2 Substructure Methods

In this approach, the complicated soil-structure interaction probilem are broken into
mofe manageable parts. These methods are simpler and cheaper to perform than direct
methods. Here, the soil mass is treated as a continuum (half-space) and the structure is
treated as a discretized model. The half-space is analyzed first, usually in the frequency
domain, and the impedance (force-displacement relationship) and scattering properties at
the soil-structure interface are established (Bielak 1974, Luco 1974, Veletsos 1977). Some
models assume linear visco-elastic properties for the soil to simulate the energy loss due
to hysteresis in the soil. The solution of this part of the problem has gained great impetus
with the development of the Fast Fourier Transform algorithm. In the second step. the
properties determined in the first step are used as boundary conditions in a dvnamic
analysis of the structure with a loading that depends on the free-field motions. In recent
years. several substructure methods have appeared. in which the half-space solution is
obtained using finite element models with transmitting boundaries (Gutierrez & Chopra
1978, Lysmer & Kuhlemeyer 1969, Kausel 1938).

The basic substructure method has provided reasonable solutions for cases involving
a single structure at the surface of a uniform half-space. However, its application to the
more practical case of a structure embedded in a layered half-space has not been fully
explored, primarily because of the extreme complexity required in its formulation. For
each dynamic degree of freedom, the standard lumped-parameter system to model the
soil consists of a mass. a spring, and a damper in parallel which is attached to a rigid
support. For time domain analysis, all coefficients should be frequency independent.

Discrepancies between reported results of analysis using the direct method on one
hand and the substructure method on the other have been ascribed to differences in the
definition of the problem (Singh et al. 1980, Chopra 1980). These differences include the
idealization of the soil region, the idealization of the structure, the idealization of the

structural foundation, and differences in the definition of the earthquake input.

1.3.1.3  The Strengths and Limitations of Different Methods

An important aspect of the seismic design of bridges is the evaluation of the dynamic
interaction between the structure and the surrounding soil. This is usually accomplished

in one of two ways, either by representing the effects of the soil on the structural response



by a series of springs and dashpots representing a theoretical half-space surrounding the
structure (substructure or load-transfer method) or by modeling the soil-structure system
by a finite element method (complete or direct method).

Thus, depending on the method of analysis used, structural response may be seriously
overestimated or underestimated, the former leading to serious over design and lack of
economy and the latter leading to potentially hazardous conditions. In a few cases, of
course, both methods may lead to the same degree of safety and economy. It is the
purpose of this section to present an evaluation, and to suggest appropriate methods of

analysis for design purposes. For a complete discussion, the reader is referred to Seed et

al. (1973).

Substructure Analyses

These analyses can be made in various wavs. but essentially thev are all based on
evaluations of structures resting on the surface of an infinite half-space. The most cot.-
mon method is to represent the effects of the soil around the structure by a series of
interaction springs and dashpots. Values of spring constants and damping values are
determined by first examining the response of the structure resting on an idealized half-
space and then determining the spring constants and damping values which. with the
half-space removed, would lead to the same response values. In practice, damping values
of 7%-10% are commonly assumed for strong earthquake shaking. Having determined
the springs and dashpots, the dvnamic analysis is carried out by specifving the motion
developed in the soil surrounding the spring-dashpot system. In another slight!y more
complicated form of this approach, the spring and dashpot values are translated into
impedance functions. This approach offers the advantage that the control method can
be specified in the free-field away from the structure and variation in ground motions in
the vicinity of the structure can be taken into account.

While half-space analyses of this type seem reasonable, they necessarily involve a
number of assumptions and limitations. For example, in soil-structure-interaction analy-
ses, energy is dissipated in the structure as structural damping and in the soil as material
damping. Energy is also lost by radiation of waves from the base of the structure into
the surrounding soil — a phenomenon called radiation or spatial or geometric damp-

ing. It is an extremely important factor in foundation vibration problems, but it is of
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relatively minor importance in studies of earthquake response. Available analytical re-
sults are based on the assumption that the soil has no material damping properties. In
fact, material damping is very high in soils and, thus, an important factor affecting the
soil-structure response is omitted from consideration. To overcome this deficiency, it
is customary to make some assumption concerning the magnitude of material damping
effects and incorporate them with other damping effects in the final analysis.

Half-space analyses can only be made at the present time for deposits with one or two
layers, and even two-layer analyses are very complicated. In general, most sites involve
several layers of different types of soil underlain by rock. The presence of the underlying
rock layer would prevent energy from dissipating continuously through the base. The
assurnption of a single soil layer radically over-simplifies the conditions for most deposits
and, again. may inadequately reflect the radiation damping in stratified deposits. Indeed.
because radiation damping effects are not evaluated accurately and material damping
effects are not evaluated at all. the combined effects of these two sources of damping
must be estimated for design purposes, rather than rationally determined. In view of the
uncertainty involved, a conservative choice of an overall damping value is usually made.

In order to determine appropriate values of spring constants, it is necessary to know
the moduli of soils adjacent to the structure. However. the deformation moduli of soil
depend very much on the strain level induced in them and depth of embedment. The
substructure analysis method provides no means for determining the strains induced in
the soils, thereby prohibiting the selection of an appropriate modulus of deformation.
Some design companies advocate the use of soil moduli compatible with the strains
induced in the soil by earthquake motions in the free-field: others use moduli determined
at extremely low strains. Furthermore, in analyzing the response of embedded structures,
some organizations use spring constants appropriate for near-surface conditions while
others use higher values which reflect the influence of the depth of embedment. The wide
difference in results inevitably leads to considerable uncertainty in the selection of design
criteria.

Since half-space solutions are only available for structures resting on the ground sur-
face, there is no simple means for determining spring constants and dashpots for erm-
bedded structures. Spring constants for embedded structures can be determined with

reasonable accuracy by static finite element analyses, but dashpot characteristics cannot
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be found from a static analysis. .Also, for embedded structures, interaction-spring anal-
yses are invariably based on the assumption that motions around the structure are the
same as those below the base; i.e. the motions are the same everywhere in the surround-
ing soil. Clearly, this could only be so if the surrounding soil were rgid or very stiff.
However, ground motions vary considerably at depths during earthquakes.

The existence of soil-structure interaction effects in a response problem necessarily
means that the presence of the soil affects the movements of the structure and, conversely,
the presence of the structure affects the movements of the soil. Thus, for a soil-structure
system, the ground motions at points below the base of the structure are different from
those in the free-field at the same level. While it is possible to determine the effect of the
structure on the motions developed below its base using the impedance function approach.
interaction-spring analyses are often based on the assumption that the motions below the
base of the interaction-springs are the same as those in the free-field. This is tantamount
to assuming that soil-structure interaction affects the motions in the structure without
simultareously affecting the motions in the soil. which is inconsistent.

Finally. the response of a structure may be influenced to a very significant extent
by the presence of adjacent structures. While it is possible to consider such effects in

half-space analyses, they are not normally considered in interaction-spring analyvses.

Finite element methods of analysis

In an effort to overcome some of the limitations of the half-space or interaction-spring
method of analysis, finite element methods of analysis have been developed and used
to solve soil-structure interaction problems. The control motion is typically specified at
some point in the free-field. As a first step, therefore, it is necessary to determine the
motions that would have to be developed in an underlying rock-like formation in order to
produce the specified motions at the control point. This can be accomplished readily by
means of a wave propagation analysis of a column in the free-field using an appropriate
computer program such as SHAKE (Schnabel et al. 1972).

[t may be seen that this method of analysis does not suffer from many of the limita-

tions of the interaction-spring approach. For example:

1. The analysis can take into account the deformability of the soil around the structure

and the variations of accelerations in the soil profile,



2. The analysis does not involve the use of the same motions below the structure as
in the free-field.

3. The analysis procedure provides a means for determining the motions in the soil

adjacent to the structure.
4. Soil properties (both damping and moduli) can be determined in a rational way.
5. Material damping can be incorporated in the analysis.
6. Radiation damping can be included appropriately.

7. The effects of adjacent structures can be considered. However. while eliminating
these limitations of the interaction-spring approach, finite element analvsis can
mntroduce other limitations that can lead to deficiencies in the computed response
values. These are often due to limitations of the computational techniques used.
and it is important to recognize them in evaluating the significance of the results

obtained.

For example, for strong shaking, the material damping of the soil will typically be
much larger than that in the structure, and it will vary to some extent with depth and
lateral distance from the structure. Furthermore. the damping may vary in different parts
of the structure itself. Clearly. it is desirable, in analyzing situations of this type. to use
a finite element analysis procedure which has the capability of considering a different and
completely specified damping value in each element of the mesh. Few analytical proce-
dures currently in use have this capability. Finite element analyses are often performed
on the basis of mode superposition procedures. In this approach, the damping ratio must
be the same for all elements. Accordingly, when this analysis procedure is used, some
compromise value between the lower values appropriate for the structure and the higher
values appropriate for the soil deposit is usually adopted. For strong shaking, this value
may be in the order of 7%-10%. Variable damping capabilities in the analysis procedure
are highly desirable when finite element with secant modulus procedures are used.

One of the means available for considering the variation of damping in different el-
ements in a soil-structure system is to incorporate damping using a Rayleigh damping
matrix of the form [C] = a[M] + 8[K], in which M = the mass matrix; K = the stiffness

10
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matrix; and « and J are Rayleigh damping coefficients. Thus, damping is expressed as
a linear combination of the mass and stiffness matrices of the system. It can be shown
that the use of this damping matrix is equivalent to using a modal analysis in which the
fraction of critical damping in the nth mode is

ao a1y
+ »
2 wy 2

§n = [1.1]

where w, is the circular frequency of the nth mode of vibration and ag and a; are arbitrary
constants which are obtained from two conditions. For example, if the damping ratios
{m and &, corresponding to modal frequencies w,, and w,, are given, Equation 1.1 can be

written in the form expressing the two conditions as
ém _ l l/wm Wm ao [1 ‘)]
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However, in general, £ can be defined for as many frequencies as desired as
1
Z ap wn%. [14]
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In principle. the value of b may range from —oc to +oc, but in practice it is desirable to

€& =

select values as near as possible to zeros. If damping ratios are specified for k frequencies.

only k terms are considered. In general, the relationship may be written as
€&} = (1/2) [Q] {a}. [1.3]

where @ is a square matrix involving different powers of the modal frequencies. The

above equation can be used to solve for {a} as
{e} = 2 (QI" {¢}. [1.6]

In effect, the proportion of critical damping varies with frequency and it increases as
the frequency increases. A major advantage of analysis methods using Rayleigh damping
is that they can be modified to permit the inclusion of variable damping (Idriss et al.
1974). While this method of approach is extremely useful for the analysis of certain types

of problems, the frequency-dependence of the damping can lead to very high values of
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damping at high frequencies, as shown in Figure 1.2, with the result that these frequencies
are effectively damped out completely from the structural response (Clough & Penzien
1975). This may be of little importance in analyzing the response of structures such as
earth dams, where the induced stresses are controlled mainly by the first few modes, but
it can be a serious limitation in the analysis of a structure containing critical equipment
with high-frequency characteristics, such as nuclear power plants. Thus, the formulation
of damping in the analysis of soil-structure systems requires the utmost care in cases for
which high frequency effects are important.

Another aspect of finite element analysis requiring careful control in cases where high
frequency effects are important is the choice of element size for the finite element mesh,
especially in the vertical direction. It has been found (Kuhlemeyer & Lysmer 1973) that
the dimension of the element in the direction of wave propagation has a major influence
on the frequency of motions that can be transmitted. with large elements being unable
to transmit motion with short wavelengths, leading to a marked reduction in response
for higher frequencies. In fact, Kuhlemeyer and Lysmer proposed the empirical rule that
the required mesh size for effective transmission of any motion should be not more than
one-quarter. or preferably one-eighth, of the wave length of the motion. This requires
the use of very small element sizes for transmission of frequencies of the order of 20-30
cps. as is required in nuclear power plant studies.

The extent of the finite element mesh is especially important in considering the effects
of radiation damping. If the boundaries of the mesh are placed too close to the structure,
some of the energy which should dissipate from the system will be reflected back, thereby
changing the response. This difficulty can be overcome by the use of energy absorbing
boundaries (Isenberg 1970, Lysmer & Drake 1971, Lysmer & Kuhlemever 1969, Kausel
1988) or by the use of a sufficiently extensive mesh. If the material damping in the soil
is relatively high, energv radiating outward from the vicinity of the structure js absorbed
relatively quickly and free-field conditions are developed within a distance of 120-150m
(400-300 ft). However, if the soil damping is low, the effects of wave motions generated
by the structure may be felt a considerable distance away (Seed et al. 1975).

In analyzing soil-structure response using the finite element method, it is customary
to assume that the motions in the system are generated by the upward propagation of

waves from an underlying boundary. This is particularly true in cases for which the
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control motion is specified at some point in the ground and vertical wave propagation
analyses are used to compute the corresponding motion in an underlying stiff soil or
rock formation. The same base rock motion is then used to excite the soil-structure
system. While this may not be 2 completely accurate picture of the source of earthquake
excitation in the soil mass, it is probably a reasonably good representation of the actual
condition. Thus, while it is a potential source of error, it is consistent with the normal
simplification of complex engineering systems used for engineering analysis purposes.

In addition to the limitations presented, complications in evaluating dynamic response
also arise from uncertainties in determining soil properties and the characteristics of the
ground motion. Thus, the problem of ground and structural response to earthquake exci-
tation is extremely complicated. Consequently, it is pointed out that even sophisticated
analyses do not have the capability to incorporate many important aspects of actual

conditions (Seed et al. 1975).

Conclusion The following conclusions may be drawn with regard to soil-structure inter-

action effects for embedded structures:

1. The errors and assumptions that must be made in using the half-space theory, or
interaction-spring analysis, to evaluate the response of deeply embedded structures

may make those approaches very approximate for these conditions.

2. The finite element method, properly performed with due regard to the extent and

fineness of the mesh and variations of damping characteristics, is the best analyvtical

tool currently available.

3. Although it is revealed that the FEM gives the most accurate result for $SI analyses,
it is not advisable to use FEM for routine design of bridges. Because of the heavy
involvement of computer time and data synthesis, it is likely to be too cumbersome
for a design engineer to handle this large volume of numerical results obtained from

FEM unless analysis and design are performed by integrated computer programs.

4. The results of any analysis of the seismic response of deeply embedded structures

must be interpreted with good judgment before being adopted for design.
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1.3.1.4 Dynamic Soil-Pile-Structure Interaction Parameters

The following parameters influence the response of pile supported structures subjected
to earthquake excitation (Gazetas et al. 1991, Derecho 1991, Hadjian et al. 1992).

‘s Soil Profile

1. Shear wave velocity, V,
2. Bulk density, p,

3. Poisson’s ratio, v,

4. Damping ratio, 4,

5. Material nonhomogeneity

(=]

. Markedly layered media
¢ Pile Tip Condition

L. Floating (friction) pile
2. End-bearing pile

o Physical attributes

1. Pile diameter, d
. Pile length, L

Pile spacing ratio, s/d

N

Pile slenderness ratio, L/d

(1]

Pile-soil material stiffness ratio, E,/F,
6. Pile-soil mass density ratio, Pol0s

7. Pile batter, «

8. Angle of loading for a pile-group, 8
¢ Nonlinear Effects

1. Time history of free-field motion
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Lateral resistance of soil per unit length of pile, p-y curves
Axial resistance of soil per unit length of pile, t-z curves
Quality of pile-cap contact with the soil

Pile-soil separation and gapping

Pile-soil slippage and friction

Stress induced radial nonhomogeneity of soil

Cracking of concrete pile sections

© W N e o e W

Pile installation procedure

,._.
e

Initial stresses

1.3.2 Current Practice

Typically. dynamic effects in design are circumvented due to a lack of practical analvsis
methods, or ignored due to the seldom substantiated assumption that they are negligible.
For the majority of applications, the state-of-practice is considerably less developed than
the state-of-the-art. This stems primarily from the very complex nature of the dvnamic
problem, particularly for earthquake loads. Another contributing factor is the shared.
but not well defined, responsibility between the structural and geotechnical engineers
and, in particular, the lack of adequate integration of their respective contributions. It is
generally believed that the additional cost of detailed dynamic evaluation is not justified
considering the fact that a correct analysis is not simple. The level of application of the
current state of knowledge in practice is idealized in Figure 1.3. A brief review of seismic
code requirements for pile foundations and available computer codes has been included

herein. A detailed survey is available in Hadjian et al. (1992).

1.3.2.1 Review of Seismic Code Requirements for Pile Foundations

Code provisions have addressed soil-pile-structure interaction effects during earth-
quakes for a number of years. Code provisions covering the design of pile foundations for
seismic loads have developed from two somewhat different backgrounds. One approach,
following recommendations developed by the Structural Engineers Association of Cali-
fornia (SEAOC), is contained in the current Uniform Building Code (1991) requirements
published by International Conference of Building Officials (1991). The other approach,
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State-of-the-practice -

State-of-the-art

Ideal

Nuclear facilities

Offshore structures

Waterfront structures

Highway bridges,
large rotating machinaries,
framed foundations

Lowrise bridges,
block foundation,
rotating machinary

Figure 1.3 State-of-the-practice lags state-of-the-art in considering the pile-structure
interaction. This lagging is most severe for low rise buildings and bridge foundations.

(Redrawn after Hadjian et al. 1992)
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stemming from the Applied Tecﬁnology Council {ATC) recommended provision, is con-
tained in the recent NEHRP (1991) document. A brief review of these code provisions

for piles, soil-pile-structure interaction effects during earthquakes, is provided below.

Uniform Building Code (UBC 1991)

The UBC provides specific design requirements for piles subject to seismic forces, but
gives only minimal requirements and guidance for determining design seismic forces for
pile-supported structures. The seismic design requirements are adopted primarily from
the recommended provisions of the current SEAQC “Blue Book™.

Design provisions include the following requirements:

1. Individual pile caps and caissons of all structures subjected to seismic forces are to
be interconnected by ties designed for a minimum horizontal force equal to 10% of

the larger column vertical load (2908b).

2. Special provisions for Seismic Zones 3 and 4 (2910) include allowing greater than a
one-third increase in stress allowable for soils (pile-soil friction and bearing) when
substantiated by geotechnical data. omitting the force F; concentrated at the top
of the building for overturning moment at the base when using the static force
procedure for regular buildings. and the design of piles and caissons for fexure
(e.g.. ductile detailing for 120% of the flexural length for concrete) when the tops

of the piles will be displaced by earthquake motions.

3. Consideration of the effects of soil-pile-structure interaction on building response
is required only for structures located on soft soils (profile type S4) with a pe-
riod greater than 0.7 seconds (2335b4B). For this case, the dynamic lateral force
procedure is required for both regular and irregular buildings. However, no spe-
cific requirements are imposed on the mathematical modeling of the foundation
for dynamic analysis (2335¢). Since any structure may be designed using the dy-
namic lateral force procedure (2333h) and there are no restrictions that a fixed-base
model be used, the effects of soil-pile-structure interaction may always, if desired,
be scaled up close to or equal to the base shear determined by the static force proce-
dure (2335e3). Thus, any potential reduction in design forces due to consideration

of soil-pile-structure interaction can seldom be realized in design.
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NEHRP (1991)

The interest in soil-structure interaction effects during earthquakes seems to have been
initiated in 1972 by the applied Technology Council following the 1971 San Fernando
Earthquake. A cooperative program, including participants from the public and private
sector, design professionals, researchers, federal agency representatives, staffs from model
code organizations, and representatives from state and local governments throughout the
United States, was initiated to present the current state-of-knowledge in research and
engineering practice as they pertain to the seismic design and construction of buildings.
The ATC 3-06 (1978) document was the result of this pioneering work. A review of
ATC 3-06 indicates that if adequate ductility was provided, piles designed (statically)
to vertical loads and code specified lateral loads (base shear) were expected to perform
their function during earthquakes.

The 1991 NEHRP document, Recommended Provisions for the Development of Seis-
mic Requlations for New Buildings. as well as previous editions, is primarily based on
the early work. ATC 3-06 recommended specific pile design provisions for four seismic
performance categories (A, B, C, D, the latter category comparing roughly to Califor-
nia design practice for normal buildings other than hospitals). NEHRP provisions have
added an additional category E, restricted to essential facilities in zones of relatively high
seismicity.

Specific design requirements of the NEHRP document for piles subject to seismic
forces are similar to the UBC (1991). Provisions include foundation ties for pile caps,
drilled piers, and caissons (7.4.3), and reinforcing for 120% of the flexural length (point
of fixity to pile cap) to achieve ductility for pile foundations in relatively soft soil profiles
in high seismic areas (7.5). A reduction factor of 0.75 may be used for foundation
overturning moment at the foundation soil interface for all building heights when using
the equivalent lateral force procedure (4.3). A 10% reduction is allowed when using the
modal analysis procedure (3.10).

Special provisions that may be used to incorporate the effects of soil-structure interac-
tion by modifying the dynamic properties of the structure and evaluating the response of
the modified structure to the free-field ground motion are provided (Appendix to Chapter
6: NEHRP 1991). The soil-structure interaction effects result in an increase in the nat-

ural period of the structure caused by the flexibility of the foundation soil and a change
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(usually an increase) in radiation and material damping in the soil. Two procedures
for incorporating soil-structure interaction effects are presented: (1) Equivelent Lateral
Force Procedure, and (2) Modal Analysis Procedure. Both methods lead to a decrease in
design values of base shear, lateral forces, and overturning moments, but may increase
lateral displacements and secondary forces associated with P-A effects. A reduced base
shear of no less than 70% of the base shear determined from the equivalent lateral forces
prorcedure may be used, based on an effective building period and increased damping for
the soil structure system.

The effective period is based on lateral and rocking foundation stiffness using soil
properties compatible with soil strain levels associated with the design earthquake mo-
tion (Chapter 6: NEHRP 1991). Lateral and rocking stiffness for pile foundations are
computed by evaluating the static stiffness of individual piles. These may be determined
from field tests or analytically. by treating each pile as a beam on an elastic foundation.

It is indicated in the provisions that more elaborate procedures would be justified only
for structures of major importance or if soil-structure interaction is of definite consequence
in design. In this case, techniques that might be considered include better estimates of
soil properties and foundation stiffness, and finite element modeling of the structure-
soll system taking due account of the nonlinear effects in both the structure and the
supporting medium. It is emphasized that, while more elaborate procedures may be
appropriate in special cases for design verification, they involve their own approximations
and they do not eliminate the uncertainties that are inherent in the modeling of the
structure-foundation-soil system, in the specification of the design ground motion, or in

the properties of the structure and soil.

1.3.2.2 Review of Current Software for Pile Analysis

In this section, some of the computer programs for analysis of pile foundations, as
identified by Hadjian et al. (1992). are described. It is not an exhaustive list.

COMse624

This program computes the deflection and bending moment of a pile under static
lateral loads as a function of depth. It is assumed that the pile is a linearly elastic beam
and it is supported as a beam on inelastic foundation (Reese & Sullivan 1984). The

behavior of the soil surrounding the laterally loaded pile is described in terms of Py
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curves, which relate soil resistance to pile deflection at various depths below the surface.
In general, the curves are nonlinear and depend on several parameters, including depth,
soil shear strength, and number of Joad cycles. Solution of the governing differential
equation is based on the finite difference method. This program can handle different types

of boundary condition including specified lateral load, moment, slope, and rotational
restraint.

LPILE — Analysis of Piles and Drilled Shafts Under Lateral Load

LPILE is a special purpose program based on rational procedures for analyzing a pile
under lateral loading (Ensoft Inc. 1991). The program is similar to COM624. LPILE
computes deflection, shear, bending moment, and soil response with respect to depth.
The nonlinear p-y curves may be input by the user. or the program will generate them
internally following published recommendations for various types of soils.

The following features are included in this program: multiple load cases. different

boundary conditions, resistance from pile base. and nonprismatic piles.

APILE2 — Analysis of Vertically Loaded Piles

The program uses a well-known ¢-x method for pile-soil interaction analysis with
nonlinear ¢-z curves. [t has the capability of handling negative skin friction. The principal
output is the pile-head movement as a function of applied load but, for any given load.

load transfer and movement can also be obtained as a function of the length of the pile.

GROUP — Analysis of Piles

This program computes the distribution of loads to piles in a group. Batter piles and
vertical piles can be included in the same group. Three boundary conditions are handled
for the pile-head: pinned, fixed head, and elastic restraint. Py curves can be input by
the user or they can be generated internally. If desired, the pile-soil-pile interaction can
be taken into account by introducing reduction factors for the p-y curves for single piles.
The deflection, bending moment, shear, and soil resistance are computed as a function of
depth for each pile. The solution s two-dimensional. The results satisfy the conditions
of both equilibrium and compatibility with nonlinear sojl response. Iterative techniques

are employed in solving the nonlinear difference equations.

DYNA
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This program calculates the response of rigid foundations to all types of dynamic loads
which can be produced by rotating or reciprocating machines, earthquake, or traffic
(Novak et al. 1985). The foundation stiffness and damping coefficients are returned
for the possible use in soil-structure interaction analysis. Capabilities are included for
soil layering, a weak zone around embedded foundations and piles, pile interaction in a
group, interaction between degrees of freedom, and other features. The analysis is linear.
Nonlinearity can be included approximately by modeling the weakened zones around the
footing or pile and by adjusting the values of soil shear modulus and internal damping
according to the level of the stress.

For a group of piles, it is assumed that the piles are embedded in a layered medium.
The tip conditions may range from end bearing to floating. Pile heads may be fixed or
pinned. The piles may be of step wise variable cross-section, and they may be battered.
The piles may have a weakened cylindrical zone around them. For a group of closely
spaced piles, the effect of pile-soil-pile interaction (the group effect) on stiffness and
damping of the group is evaluated approximately. using the static interaction coefficients

defined by Poulos (1968, 1971, 1979, 1980).

PILAY2 — Stiffness and Damping of Piles in Layered Media

For a vertical pile embedded in layered soil, the program evaluates dynamic stiff-
ness and damping, internal forces. and displacements for all vibration modes (Novak &
Aboul-Ella 19784). With stiffness and damping available, the response of pile supported
footings and structures to dynamic loads can be predicted using the same techniques as
those applied with shallow foundations. Any number of soil layers having different prop-
erties can be considered and soil materjal damping is included in all vibration modes.
Displacements and internal forces in the pile are given for all modes. The pile can be
of variable cross section, or Franki type, and it can stick out of the ground. Any tip

condition can be considered and the head can be either fixed or pinned.

SPASM — Seismic Pile Analysis with Support Motion

This program was developed for the response analysis of piles due to earthquake
ground motion. Wave loadings and mud-slide effects may also be considered. The single
pile member is represented in the analysis by a discrete element mechanical model which

is restricted to linearly elastic behavior. The soil-pile coupling at each node along the
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emBedded length of the pile is ’represented by a multi-element assemblage of friction
blocks, springs, and dashpots. The program allows either degradation or hardening of
resistance as a function of deflection and of the number of reversals of deﬂection. in
the range beyond an initially elastic condition. Furthermore, the formation of gaps is
allowed in order to properly represent the expected soil-pile interplay in the upper layers
of the soil. Simplified superstructure effects can be simulated by increased stiffness along
the pile member within the structural system and by coupled rotational restraints at
appropriate joints.

It uses Crank-Nicolson type of implicit numerical solution. The computer program
is formulated to allow interfacing with either a superstructure program or a free-field

motion program.

1.3.3 Review of Previous Research

The complexity of dynamic pile behavior led Terzaghi and Peck (1967) to state that

“

. theoretical refinements in dealing with pile problems.... are completely

out of place and can be safely ignored.”

However, in spite of this pessimistic evaluation, a number of analytical and numerical ap-
proaches to the analysis of pile dvnamic behavior have been developed. These approaches
have provided a much sounder theoretical basis for pile design than the equivalent can-
tilever concept or other purely empirical methods which dominated the field for decades.
Nevertheless, some differences between the various theoretical approaches exist, and the
experiments that have been reported are sometimes inconclusive. Also, some uncertain-
ties are inevitable when applying an idealized theory to field conditions. Thus, it may be
useful to review some of the approaches in order to examine the differences among them
and summarize what can be learned from experiments and observations.

There are different dynamic loads that can act on piles including earthquake forces,
wave forces, wind forces, and machine imbalance. Here, earthquake loading is the primary
concern.

In this section, the topics that are discussed include the properties and behavior of
single piles and pile groups, interaction with the cap, pile experiments, pile-structure
interaction, and other topics. The subject of pile dynamics has received a comprehensive

treatment in the state of the art reports by many researchers (Tajimi 1977, De Beer et al.
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1977, O’Neill & Dobry 1980, N(;gami 1987, Prakash & Sharma 1990, Novak 1991). A
brief presentation follows in the following subsections which are organized in the way
that is similar to that done by Novak (1991).

1.3.3.1 Dynamic Behavior of Single Piles

The earliest systematic, theoretical studies of dynamic soil-pile interaction are due
to many researchers (Parmelee et al. 1964, Tajimi 1966, Penzien 1970, Novak 1974).
Parmelee et al. (1964) and Penzien (1970) emploved a non-linear discrete model and
a static theory to describe the dvnamic elastic stress and displacement fields. Tajimi
(1966) used a linear visco-elastic stratum of the Kelvin-Voigt type to model the soil and.
i his analysis of the horizontal response, neglected the vertical component of the soil
motion. Novak (1974) assumed linearity and an elastic soil layer composed of independent
infinitesimally thin horizontal layers extending to infinity. Nogami and Konagai (1937,
1988) developed a lumped parameter model which included linear and nonlinear springs.
along with dampers, for radiation damping. It was developed for time domain analysis
of laterally loaded single piles. A similar lumped parameter mode! for axial vibration
of single piles was developed by Nogami and Konagai (1986, 1987, 1988} and Kagawa
(1991). The different approaches adopted and the results that they yield are briefly

discussed below.

Single Piles in Homogeneous Soil

Analytical and numerical approaches have been formulated in terms of continuum
mechanics for the analysis of interaction between the pile and soil, schematically depicted
in Figure 1.4. Even for the idealistic assumptions of linear elasticity or visco-elasticity,
homogeneous soils, and the pile being welded to the soil, the problem is very difficult to
solve. Thus, approximate procedures were formulated first. Tajimi's (1966) solution of
the horizontal response of an end-bearing pile in a homogeneous layer, the first of its kind,
neglected the vertical component of the motion. Novak (1974) formulated a very simple
approach based on plane strain soil reactions, which can be interpreted as a dynamic
Winkler medium or a complex plane-strain transmitting boundary placed directly next
to the pile. Material damping was later included in closed form expressions for the soil
reactions (Novak et al. 1978). The application of the same approach to the vertical

response of floating piles (Novak 1977) indicated great sensitivity of the pile behavior to
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the tip condition and showed that floating piles generate more radiation damping, but
less stiffness. than end-bearing piles. Torsional response was also examined in this way
(Novak & Howell 1977, Novak & Howell 1978) and the importance of material damping

for this vibration mode was demonstrated.

Figure 1.4 Schematic diagram of pile-soil interaction representing impedance functions
for pile-head horizontal displacement. (After Novak 1991)

A somewhat more rigorous solution. similar to that of Tajimi (1966). was formulated
by Nogami and Novak {1976) for the vertical response and, later. for the horizontal
response (Novak & Nogami 1977). These approximate solutions offered basic insight
into the behavior of the soil-pile system. However, more accurate solutions, based on
the solution of the governing equations of a three dimensional continuum, were also

formulated (Kobori et a). 1977, Sen et al. 1985, Pak & Jennings 1987). Rajapakse and

Makris and Gazetas (1991) investigated the phase wave velocities and displacement
phase difference in a harmonically oscillating pile. For lateral inertial loading, they

found that significant vibration occurs at the top (depth of 5-10 diameters). The phase
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the periphery of an oscillating pile.

Mamoon and Banerjee (1992) adopted an efficient, but approximate, hybrid boundary
element technique to model single elastic piles in elastjc half-space. This method cag also
handle some types of nonlinearitjes. Mamoon and Banerjee ( 1990) also investigated the

Haldar and Bose (1990) found that the dynamic soil distributed stiffnesses along the
pile in lateral vibrations of a floating finite pile are higher than those for an infinite pile
obtained by Baranoy (1967). On the basis of the assumption that the vertical component

of the displacement vanishes for lateral vibration of piles in a uniform elast;c soil medium,

stiffness, maximum moment, or elastic buckling load, and finite element analysis.
Valsangkar and Pradhanang (1987) conducted an investigation of the effect of axial
force on the lateral response of end bearing piles, assuming a constant coefficient of sub-

grade reaction as is usually encountered in stiff cohesive soils under small displacements.
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Some dynamic sojl reaction V;I.IUES for plane-strain cases of rigid, massless, infinitely
long piles in elastic, homogeneous, and visco-elastic soil were given by Novak et al. (1978).
Nogami and Novak (1980) investigated the soil reaction on the basis of a continuum
model. They concluded that, at frequencies higher than the fundamental frequency of
the soil deposit (ap > (1/2)(ro/R), where ro = pile radius, A = pile length = soil deposit
depth), the soil medium cap be treated as uncoupled springs and dashpots distributed
along the length of the pile. At any particular frequency, such a treatment is more
favorable for stiffer piles and deeper soil deposits. The constants of these springs and
dashpots can be obtained from a cylindrical plane-strain conditjon and, therefore. they
are independent of the parameters of the pile.

A finite layer solution has been obtained by Lee and Small (1991a. 19915) for isotropic
and cross-anisotropic, horizontally layered elastic soil. The dynamic soil-reaction char-
acteristics of axially loaded single piles were studied by Kagawa (1991) to find simple
models for a beam-on-WinkIer-foundation-type analysis of axially loaded single piles.

Finite element modeling has been applied to piles by many researchers (Kuhlemeyer
1976, Kuhlemeyer 19795, Kuhlemever 19794 Blaney et al. 1976, Wolf & von Arx 1973.
Waas & Hartmann 193] Sanchez-Salinero 1932. Faruque & Desaj 1982, Mugtadir & Desaj
1986, Sayegh & Tso 1988, Brown & Shie 1990, Brown & Shie 1991, Trochanis et a]. 1991 b,
Trochanis et al. 199] e, Brown & Shje 1991). Boundary element approaches have also been
developed (Banerjee 1978. Banerjee & Sen 1987). Ready to use charts and formulae have
been produced for homogeneous soils (Kuhlemeyer 19794, Kuhlemeyer 19795, Roesset
1980, Dobry et al. 1982, Novak & FI Sharnouby 1983). Thus, a considerable amount
of data on piles in linear, homogeneous media is available. Although some differences
in this data exist from the practical point of view, they agree reasonably well. It has
been found from nonlinear finite element analysis that pile-sojl slippage is practically the
only source of nonlinear behavior and energy dissipation under axia] loading, as yielding

occurs within a narrow region of soil surrounding the piles (Trochanis et al. 199185).
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for the case of horizontal imped’ance. The complex stiffness can be expressed in any of

the following ways, i.e.
K =K +iK, = k + iuC [1.7]

in which K, and X, are the real and imaginary parts of the complex stiffness, respectively,
and: = /T = complex operator, £ = K, = true stiffness, C = K 2/w = coefficient
of equivalent viscous damping, and w = circular frequency. All of the parameters in
Equation 1.7 depend on frequency or the dimensionless frequency ag = r, /Vy where

To = pile radius and V, = soj shear wave velocity. An example of the horizonta} impedance

V. is the primary wave velocity in the pile, L is the pile length, v is the Poisson's ratio.
D is 23 where 3 is the soll material damping ratio, and P is the ratio of the soj] specific
mass to pile specific mass. The depressions visible in Figure 1.5a practically disappear
for higher soil materia] damping.

Interesting features of the pile impedance follow from the theoretical solution ind;-
cated in Figure 1.5. For example, pile-head dynamic stiffness varies little with frequency.

except for very heavy piles or very weak soils, in which case it diminishes with frequency

soil slippage, schematically depicted in Figures 1.6 and 1.7. Single piles under horizontal

loading, as in Figure 1.6, are particularly sensitive to these two factors. Observations of
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co-workers (Blaney et al. 1976, Roesset & Angelides 1979), who placed the consistent,
frequency dependent boundary, derived by Kausel et al. (1975), directly to the pile or
outside the cylindrical finjte element zone around the pile. This approach was then used
by Krishnan et al. (1983) and Gazetas (1984) for extensive Parametric studies.

Significant further progress was made by Kaynia (1982) and Kaynia and Kausel (1982,
1991) who based their solution of piles in generally layered media on the formulation of
displacement fields due to uniformly distributed forces on a cylindrical surface (so called
barrel load). Banerjee & Sen (1987) presented a boundary element solution for piles
embedded in 3 semi-infinite, nonhomogeneous soil in which the soil modulus, E,(z),
varies linearly with depth, z. Banerjee and Sen’s results suggest that, unlike in layered
soils, the frequency variations of the impedance functions, normalized by static stiffness.
are quite smooth and affected very little by nonhomogeneity. The actyal magnitude of
the stiffness and damping diminishes with Ey{0). however.

Other methods suitable for linear, generally layered media are based on a semi-

horizontal direction analytically and, in the vertical direction, a finite element ide-
alization including auxiliary sublayers are employed (Shimizu et al. 1977, Novak &
Nogami 1977, Takemiya & Yamada 1981, Waas & Hartmann 1981, Waas & Hartmann
1984, Mizuhata & Kusakabe 1984). The pile is modeled by beam elements.

A much simpler and more versatile solution, particularly well suited for high frequen-
cies, was formulated by Novak and Abou] Ella (1978¢) who extended the plane strain
approach to include layered media and Incorporated it in the code, PILAY. This code
was used later by Novak & F) Sharnouby (1983) to generate design charts and tables for
parabolic soj] profiles, as well as homogeneous ones. Roesset et al. (1986) also found the
plane-strain approach to work very well for high frequencies. For very low frequencies,
an adjustment to the plane-strain soil reaction was made for the vertical and horizontal
directions as discussed by Novak & EJ Sharnouby (1983) and implemented in the code,
PILAY. The plane-strajn approach works well for high frequencies becayse in a layer,

elastic waves tend to Propagate more horizontally as the frequency increases, as in a

wave guide.
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in the radial direction. A simple way of doing this is to assume a weak, cylindri‘ca.l
boundary zone around the pile, as shown in Figure 1.7. The zone is homogeneous and
features a soil shear modulus, G;, smaller than that of the outer zone, and greater materjal
damping. The purpose of such a zone is to account in a very approximate way for soil
nonlinearity in the region of the highest stresses, pile separation, slippage, and other
deficiencies of the pile-soil interface. Such a zone was proposed by Novak & Ei Sharnouby

(1983). In their plane-strain solution, the mass of the boundary zone was neglected in

researchers (Lakshmanan & Minai 1981, Dotson & Veletsos 1990, Mizuhata & Kusakabe
1984}. The latter authors found that even with the weak zone, the experimental resonance
amplitude measured on a 43.2m long pile was five times larger than the theoretical value
while the resonance frequency was predicted quite well. This is consistent with other
observations and indicative of the need to account for pile separation.

Wolf & Weber (1986) conducted a more rigorous study of the effect of soil tension

damping, C, by more than fifty per cent, a result quite similar to that of Novak & Sheta
(1980). In addition, if shear is eliminated and, hence, slipping is aliowed In the zone of
contact, stiffness is also strongly reduced. Many other authors have studied the interface

behavior (Mamoon 1990, He 1990).

This is exemplified in Figure 1.8, comparing the theoretical and experimental responses
of a concrete pile 7.5m in length and 0.32m in diameter. The soil was multi-layered

and a cylindrical weak zone was assumed when calculating the responses using the code

32



Figure 1.7 Cylindrical bounda

Iy around a single pile. Weak zoge with lower shear
modulus is next to the pile repre

senting soil nonlinearity in a approximate way. {After
Novak 1991)
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DYNA3. In this code, the weak zone is analyzed as massless, but its mass is added

to that of the pile in full or in part. Similar tests and comparisons were reported (Gle
1981, Woods 1984).

Nonlinear Response of Single piles

placements. At large displacements, piles behave in a nonlinear fashion because of soil
nonlinearity at high strain, gapping, slippage, and friction. To incorporate these fac-
tors in a continuum theory is extremely difficult and, therefore, lumped mass models
are most often used when nonlinear analysis is required. Such models, employed by
Penzien (1970), Matlock et al. (1978). Matlock & Foo (1980) and a number of authors,
feature nonlinear springs, nonlinear dampers. gaps. and coulomb friction blocks. The
combination of these elements makes it possible to generate a variety of nonlinear force
displacement relationships. An example of a lumped mass model formulated by Penzien
(1970), is shown in Figure 1.9. Models of this type are very versatile, but it js difficult
to relate the characteristics of the discrete elements to standard geotechnical parameters
of soil. To overcome this difficulty. various nonlinear soil resistance-deflection relation-
ships, known as Py curves for lateral response and t-x curves for axial response, have
been recommended in the literature. For applications in offshore structures, the Ameri-
can Petroleum Institute (1986) specifies the P-y curves for clay as well as sand. for both
static and cyclic loading. Extensive data On p-y curves and nonlinear pile response were
obtained by Yan (1990), using model piles and the hydraulic gradient similitude method
to reproduce the prototype conditions.

material degradation due to soi] plasticity and mechanica] degradation due to gapping
associated with large displacements. Many studies have been devoted to this type of
loading, but only a few may be mentioned here. Trochanis et al. (1988) found theo-
retically a dramatic decrease ip pile stiffness due to gapping. Morrison & Reese (1988)
conducted an extensive fu]] scale investigation of piles and pile groups. Summarizing
their observations, Swane & Poulos (1982) postulated that, during eyclic lateral load-
ing, the two forms of degradation lead to an increase in the pile deflection and bending

stresses. However, if this degradation stabilizes, the pile is sajd to “shakedown” to a

34



1.% 4

.31 Theory
114 Experiment .
E 1.1 o ‘ e (kgm}
':' 1o -+ 95
T "3 e 1
- gy
] x 289
s 9.0 4
~— g
L ]
-c— L | - Y
s 0.3 '.&"n“
ol B ~ o’k_
w %= 8y L
2 o E\L'A
o -1_‘ hE
. 1] 10 30
FHOUENCY (n2)

Figure 1.8 Theoretical and experimental horizontal response of concrete pile for three
levels of harmonic excitation. Close agreement was found using a weak zone. (After El
Marasafawai et al. 1990)
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Figure 1.9 Nonlinear lumped mass model of pile. (After Penzien 1970)
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state of permanent strains and residual stresses and it will react elastically to any further
cyclic loading of the same intensity. When the pile does not stabilize into an elastic or
inelastic response, the pile deflection continues to increase and incremental collapse may
result. The two situations are depicted in Figure 1.11. The shakedown phenomenon is
favorable from the point of view of the applicability of the various linear theories for
dynamic response analysis. [t explains why, with adequate adjustments, particularly for
pile separation, such theories may give reasonable results, even in cases where overall

strong nonlinearity of the response is clearly manifested.

% [
oy

Erereie Conoose

Figure 1.11 Pile stabilization (shakedown) and incremental collapse under cyclic
loading with constant amplitude. (After Swane and Poulos 1932)

The nonlinear pile stiffness characteristics were investigated for both horizontal and
vertical dynamic response by Angelides & Roesset (1980) using toroidal finite elements in
the region surrounding the soil and the consistent boundary matrix. Even neglecting slip-
page and gapping, they demonstrated the dramatic reduction in pile horizontal stiffness
and equivalent damping with increasing pile force. The P-y curves, also used for compar-
ison, gave lower stiffness values because they accounted for gapping and a high number
of load cycles, NV, while only 10 load cycles were applied by Angelides and Roesset. The
effect of a stable gap on soil resistance to pile steady state vibration is schematically

depicted in Figure 1.12. The reduction of the equivalent linear stiffness and the necking
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of the loop are evident. Progressive degradation occurs under incrementally increasing
loads when the hysteresis loops exhibit different shapes for sand and clays. In clay, the
gap may expand with each cycle, giving rise to the characteristic elongated loops with

reduced radiation damping.

Time Domain Analysis

The procedures for the frequency domain dynamic analysis of pile foundations are
well developed. Transient analysis of pile foundations, however, has received very lit-
tle attention, although many real dynamic and/or seismic responses involve transient
motions. Moreover, unless a solution in the time domain is developed, the nonlineari-
ties involved can not be modeled. Analytical approaches for laterally loaded piles have
developed in two separate directions. The first of these retains the conceptual model
of treating the soil restraint as discrete springs. as shown in Figure 1.9. The model is
improved by allowing the spring stiffness to vary along the length of the pile (Reese &
Matlock 1956) and, subsequently. by replacing the linear springs by nonlinear p-y curves
(Matiock 1970, Reese et al. 1975, Reese & Sullivan 1984). The limitations of this ap-
proach are twofold. First. difficulties exist in choosing appropriate p-y curves for a given
combination of pile size and soil type. Second. the replacement of the sojl continuum
by discrete springs precludes the extension of the analysis to pile groups, since interac-
tion between neighboring piles may not be taken into account. The second approach
is to use the boundary element formulation. The first general three dimensional time
domain direct boundary element formulation for transient dynamic analvsis was given
by Banerjee & Ahmed (1983) and Banerjee et al. (1986). The use of constant tempo-
ral variation was published by Ahmad & Banerjee (1988) for general three dimensional
transient elasto-dvnamic analysis, which was transformed to the axisymmetric case by
Wang (1989) and Wang & Banerjee (1990). Mamoon & Banerjee (1992) adopted an
efficient, but approximate, hybrid boundary element technique to model single elastic
piles in elastic half-space for time domain analysis.

Few attempts have been made to develop the transient analysis of pile foundations,
principally because of the formidable computing requirements. Nogami and Konagai
(1986, 1987, 1988) and (Mitwally & Novak 1988) were the first to present approximate
procedures for axial and flexural dynamic analyses of piles. Under axial vibration, much

of the nonlinearity that is observed is due to slip and friction. It was extended to allow
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Figure 1.12 Schematic of (a) Pile under steady-state vibration in siable gap. and (b)
corresponding soil reaction, R, vs. pile displacement, u for stable cycle. (After Novak
1991)
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for nonlinear analysis (Nogami et al. 1992). Numerous assumptions and approximations were
adopted in their approach to facilitate the development of a simple practical method of
calculation. Rather significant ones involved the formulation of the soil-pile interaction force
and the solution of the governing equation of pile motion. Adopting Winkler's hypothesis, the
soil response to the pile motion was formulated through a simplified mechanical model based
on Winkler's assumption, the parameters of which were determined from the consideration of
plane-strain wave propagation. One of the advantages of these models is that their properties
are specified in terms of standard geotechnical parameters.

1.3.3 2 Pile Groups

Piles are usually used in groups. If they are not very widely spaced, they interact with
each other, generating phenomena known as pile-soil-pile interaction, or group effects. These
effects have attracted much interest in recent years (Kaynia 1982, Ostadan 1983, Mamoon
1990, Hassini 1990). The effect of a pile group on foundation stiffness and damping is
illustrated in Figure 1.13.

Linear Behavior of Pile Groups

Under static loads, pile interaction increases group settlement, redistributes the loads on
individual piles, and reduces bearing capacity unless this reduction is counteracted by
densification of the soil within the group due to pile driving. The first suggestion regarding
these effects can probably be attributed to Sooysmith (1896). The investigation of static
group effects was put on a rational basis, relying in continuum mechanics, by Poulos (1971,
1979) and Butterfield & Banerjee (1971). Extensive data on static group effects are available
in many works (Poulos & Davis 1980, Butterfield & Douglas 1981, Ei Sharnouby & Novak
1985, El Sharnouby & Novak 1986, El Sharnouby & Novak 1990). The static data are useful,
even to those interested in dynamics, because at low frequencies, and particularly below the
fundamental frequency of a stratum, the dynamic stiffness is usually quite close to the static
stiffness.

The techniques employed for dynamic pile-groups are extensions of the approaches
used for single piles and most of them are limited to linear interaction. The methods
rely on the availability of a Green's function, with which the load transfer from the
pile surface to soil can be calculated. These loading conditions include point loads, line
loads, ring loads, disk loads, and cylindrical (barrel) loads. Applying this loading to
individual segments into which the pile is discretized, the soil dynamic displacement field
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is established, yielding the soil dynamic flexibility matrix. The soil stiffness matrix 1s
then obtained by inverting the dynamic flexibility matrix. In this process, the presence
of the pile cavities outside the loaded segment is usually ignored, which implies that wave
scattering among the piles is not accounted for and the sojl displacements are calculated
either for the pile axes or as an average of the circumferential values. Then the soil
stiffiness matrix is combined with the pile structural stiffness matrix and the soil-pile
system can be analyzed for any type of excitation. Different authors have proposed
various refinements or implications to this procedure.

The first theoretical analysis of pile-soil-pile interaction was conducted by Wolf &
von Arx (1978) who employed an axisymmetric finite element formulation to establish
the dynamic displacement fields due to ring loads. Waas and Hartmann (1981, 1984)
formulated an efficient semi-analytical method which uses ring loads and is well suited
for thin layered media, properly accounting for the far field: Kaynia (1982, 1982) and
Kaynia and Kausel {1982, 1991) improved the accuracy by combining the cvlindrical loads
as a boundary element formulation with the consistent stiffness matrix of lavered media to
account for the far-field. The thin layer method was used by many researchers (Shimizu et
al. 1977). Boundary element solutions, employing Green's function for generally layered
media, were formulated (Banerjee & Sen 1937, Banerjee et al. 1987, Mamoon et al.
1983, Mamoon 1990, Mamoon & Ahmed 1990, Mamoon & Banerjee 1990). Simpler
solutions based on the dvnamic Winkler medium were developed (Nogami 1980, Nogami
1985, Sheta & Novak 1982). The advantage of the latter approach is that it makes it

possible to include the weak zone (Sheta & Novak 1982) and nonlinearity (Nogami et al.
1992).

Basic Features of Dynamic Group Effects

The main features of dynamic group effects have emerged from the theoretical solu-
tions. For example, both stiffness and damping are strongly frequency dependent, and
they can be either reduced or increased due to pile-soil-pile interaction. Their values,
as a function of frequency, may exhibit very sharp peaks and they are affected even
for very large pile spacing. Some of these features can be observed in the example of
a 4 x 4 group whose normalized dynamic stiffness is displayed for different spacings in
Figure 1.13. The normalization is done using the product (number of piles x single pile

stiffness), and it yields a ratio expressing group efficiency. As can be seen in Figure 1.13,
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the group properties and their variation in frequency depend strongly on the spacing ratio,
s/d. This is so because pile interaction depends on the ratio of the wave length to spacing. A
group solution including the weak zone around the piles dulls the peaks but does not
eliminate them. On the other hand, soil nonhomogeneity can make the peaks either more
pronounced, or duller (Gazetas & Makris 1991), depending on conditions such as frequency
and spacing.

Makris & Gazetas (1992) proposed a simplified procedure for estimating the dynamic
interaction between two vertical piles subjected to both inertia and kinematic loading. It is
shown that for a homogeneous stratum, pile-soil-pile interaction effects are far more
sign)ficant for inertial than for kinematic loading. Makris & Gazetas (1991) demonstrated that
the dynamic group efficiency with increasing soil nonhomogeneity tends to reduce the
respective resonant peaks and leads to an interaction function for axial vibration.
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Figure 1.13 Normalized dynamic stiffness and damping of 4 x 4 pile group for different ratios
of spacing to diameter, s/ (After Kaynia and Kausel 1982, Ld = 15, E/E, = 1000,
pJp,=0.7),

Fan et al. (1991) considered pile-soi! and pile-soil-pile interaction for vertically prop-
agating, harmonic S-waves. It was shown that, under kinematic interaction, the effects
of the pile group configuration, number of piles in a group, and relative spacing between
piles are usually insignificant for lateral displacement but quite important for pile cap
rotation, which determines "effective” seismic input motion. A more general formulation
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Figure 1.15 Theoretical and experimental lateral response in the Y-direction for a
group of six concrete piles. (After El Marsafawi et al. 1990; L = 7.5m, d = 0.32m)
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has been presented by Kaynia & Kausel (1991) for the dynamic response analysis of piles
and pile groups in a layered elastic half-space. In their investigation, Green’s function
for layered media was evaluated numerically by the application of an integral transform
technique. Toki et al. (1991) studied nonlinear seismic soil-pile interaction with a hybrid
procedure that used a pseudo-dynamic testing (PDT) method which was modified to
account for frequency dependence. Kaynia & Kausel (1991) investigated the effects of
pile to cap fixity and pile spacings on the kinematic interaction of pile foundations. They
concluded that, under vertically incident SH waves, pile groups closely follow the ground
motion. The increasing angle of incidence reduces the horizontal motion. but increases
torsional group response. Rayleigh waves and SV waves with angles between 30 and 60
degrees produce large rocking motions in pile groups.

Chow & Teh (1991) analvzed the behavior of vertically loaded pile groups. embedded
in a homogeneous soil with the pile cap in contact with the ground. The load carried by
the cap is significantly affected by the distribution of the soil’s Young's Modulus. Pressley
& Poulos (1986) analyzed pile groups for simplified conditions for the load and the struc-
ture. Mugqtadir & Desai (1986) analyzed piles and pile groups using three-dimensional
finite element analysis for nonlinear-elastic and elastic-plastic hardening behavior of soil.
Nogami (1985) presented a simple approach to analyze the flexural vibration of grouped
piles using 2 pile-head flexibility matrix of grouped piles in layered elastic soil. He used
Plane-strain stiffness as the Winkler spring. El Sharnouby & Novak (1983) presented
a simple method for the analysis of large pile groups for the static and low frequency
vibration cases. In their analysis, they took the static stiffness and proportional damp-
ing for stiffness and damping constants, even for interaction. They also used the static
interaction factor obtained by Selby & Arta (1991) conducted a finite element analysis of
piles and pile groups. They observed the stiffness and the redistribution of pile moments
due to nonlinear effects. Blaney & ONeill (1991) suggested a field testing procedure of
slow cyclic load tests and plucking tests of a single pile and integrated these test results
with a simplified SDOF analysis to produce response functions for the dynamic design
of pile groups.

Trbojevic et al. (1981) presented a simple procedure for conducting dynamic analyses
of dense pile groups based on the complex response method in the frequency domain. The

sotl was treated as a linear visco-elastic material with hysteretic damping. El Marsafawi
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et al. (1992a, 1992b) compared the response of two-pile groups obtained from dynamic ex-
periments and those obtained by theoretical analyses. They concluded that the vibration
of the pile groups displays moderate nonlinearity even for small displacement amplitudes
(0.01d). The linear theory, combined with soil properties derived from shear wave ve-
locity measurements, gives reasonable estimates of single-pile and pile group stiffness for
small displacement amplitudes. The damping may be grossly overestimated unless some
corrections are made for separation and other deficiencies. The prediction of group re-
sponse is better than that of the single pile since it is less dependent on the soil properties
of the topmost layer. Chow (1987) investigated axial and lateral response of pile groups
embedded in nonhomogeneous nonlinear soil using the finite element procedure. Otta-
viani (1975) used the finite element method to study the behavior of vertically loaded
single piles and pile groups in a homogeneous linear elastic medium. A few observations
on nonlinear analysis will be made later herein.

With the pile-soil-pile interaction theories being so complex, it is of importance to
examine how the theories perform when compared with experiments. Figure 1.14 shows
one such comparison based on a group of four closely spaced model piles. tested in the field
and evaluated using plane-strain theory for soil reactions with a weak zone. The response
was also evaluated both with interaction ignored and assuming static interaction. Both
of these assumptions proved to be inadequate. The dvnamic interaction theory gives far
better results. On a test group of 102 small scale model piles, encouraging results were
obtained (Novak & El Sharnouby 1984). For six full scale piles, accurate results were
also obtained, but the weak zone and separation had to be included for a satisfactory
match. Successful experiments, conducted on a group of 56 full scale piles were reported
by Masuda et al. (1986). Kobori et al. (1991} also found the theory to be of sufficient
applicability. Thus, it may be concluded that the linear theory works quite well as long
as the experiments do not deviate too much from the theoretical assumptions. Often,

however, a correction for separation, gapping, and nonlinearity is needed, at least in the
form of the weak zone and a pile free length.
Interaction Factors

For the pile group analyses discussed earlier, the computing requirements were quite
severe, particularly for larger groups. Therefore, Kaynia & Kausel (1982) formulated the

concept of the dynamic interaction factor as an extension of the static interaction factor

45



-

approach. In this approach, interaction is considered between only two piles at a time,
and the group properties are obtained by superposition. Dynamic interaction factors are
dimensionless, frequency dependent complex numbers, defined as

Dynamic displacement of pile j
Static displacement of pile i

18]

Qi; =

in which the displacement of pile j is caused by a unit harmonic load on pile i, and the
static displacement of pile i is established for an isolated pile. The displacement is ei-
ther translation or rotation. Examples of the real and imaginary parts of the interaction
factors, calculated using the Kavnia & Kausel (1982) method, are plotted for homoge-
neous soil in Figure 1.16. The interaction factors are oscillatory in character, i.e. their
magnitudes become negative as well as positive. A negative value of the imaginary part
indicates a possible increase in group damping, characterized by group efiiciency greater
than unity. For a limited selection of parameters, a complete set of interaction factors is
available for floating piles in homogeneous soil (Kaynia & Kausel 1982). and for vertical

vibration in soil with linearly increasing modulus with depth (Banerjee et al. 1987).
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Figure 1.16 Vertical dynamic interaction factor for various dimensionless spacings and
frequencies. (After Kaynia and Kausel 1982)
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The interaction factors can be expressed in terms of amplitude, «, and phase angle,

o, i.e.
a=a + oyi = |af e 11.9]

As an example, the interaction factors from Figure 1.16 are presented in this form in Fig-
ure 1.17. This latter form makes interpolation of interaction factors easy for intermediate

pile spacing.

(74 ]

AMPLITUDE

Figure 1.17 Vertical dynamic interaction factors in terms of amplitude and phase.
(After Novak 1991)

Correcting the available interaction factors for pile length, endbearing, and other
effects, a very efficient but approximate procedure for group analysis is obtained. For
example, the vertical or horizontal dynamic stiffness of a group with a rigid cap becomes

K° = K EZ €j (1.10]

E,'J'

[a]? (1.11]

in which K is the static stiffness of a single pile and ¢;; are the elements of the inverted

matrix [a]. For all the vibration modes, the corresponding formulas are given by Novak
& Mitwally (1990).
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The interaction factor approé.ch would be mathematically accurate if the interaction
factors as well as the single pile properties were calculated with all piles present in
the system, which is not normally done. However, the results may be adequate for
most applications. Kaynia & Kausel (1982) found that the accuracy of the interaction
factor approach is quite sufficient for a homogeneous medium. For a nonhomogeneous
medium, they observed that the approach is less accurate. The interaction effects may
be overestimated in the static vertical response of endbearing pile-groups (El Sharnouby
& Novak 1985).

A remarkably simple approximate method for dynarmic interaction factor evaluation
was proposed by Dobry & Gazetas (1988), and extended for non-homogeneous soils
(Gazetas et al. 1991). For homogeneous soils, these authors assumed that the displace-
ment field around the vibrating pile and, thus also, the displacement of the neighboring
pile (the interaction factor). were governed by the law of cylindrical wave propagation.
Then, the vertical interaction factor is simply

o = (2)7 (%) i) [1.12

3

where 3 is the soil hysteretic damping ratio. In their comparisons with the more rigorous
solutions for floating piles, the authors obtained a very reasonable, although not quite

perfect, agreement.

Nonlinear Analysis of Pile Groups

Nonlinear dynamic analysis of pile groups has received much less attention than linear
analysis. Nogami & Konagai (1987) developed a group analysis method assuming that,
in the vertical vibration response, nonlinearity stems mainly from slippage at the soil pile
interface. They represented the soil using a dynamic Winkler model. They found that
this nonlinearity reduces the wave interference effects, making the stiffness less frequency
dependent, and produces residual skin friction and residual axial force in the pile under
transient loading. Then, Nogami and Konagai (1988, 1992) extended the concept of the
dynamic Winkler medium further to include horizontal response, slippage, gapping, and
inelastic soil behavior to be able to generate a variety of degrading hysteresis loops.

In most analyses, it is observed that under large displacements, most of the action
occurs right around the pile and, consequently, pile-soil-pile interaction is not very sig-

nificant. Some insight into this observation can be obtained from statjc experiments.
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Figure 1.18 show the results of field tests conducted on free-headed test steel pipe piles
of 0.1016m in outer diameter and 3.05m in length. The soil was mainly stratified silty
sand to silty gravel. Figure 1.18 shows that the interaction factor diminishes with i increas-
ing deflection, dropping to about one half of the original value at a deflection of about 3.3
percent of the diameter. This reduction varies with spacing and the angle of incidence.
If the pile is unloaded and reloaded, the interaction factors for small displacements be-
come much smaller than the original ones, due to gaps generated by the preceding large
displacements, and then its values asymptotically approach those from the first loading.
It can be concluded that under large displacements, pile-soil-pile interaction is reduced

but not eliminated.
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Figure 1.18 Horizontal static interaction factors for first loading and reloading (After
Janes and Novak 1989)

1.3.3.3 Other Factors Affecting Pile Behavior

Among other factors that affect pile response, the important ones are pile batter, soil-
pile-cap interaction, and soil liquefaction. Those are briefly discussed in the following

sub-sections.

Pile Batter
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Pile batter is often used to increase the horizontal stiffness of the group. For machine
foundations and other structures, this is sometimes useful. However, under earthquake
loading, pile batter may not always be beneficial, because it restricts the pile’s ability
to sway and yield, resulting in greater seismic forces and possible damage to the piles
and the cap. Little information is available on the dynamic effects of the batter. As a
very approximate practical approach, the pile can be analyzed first as if it were vertical,
and the stiffness matrix obtained in this way can be taken as valid for the inclined
element coordinates. Then, this matrix can be transformed into global coordinates, being
horizontal and vertical, to give the battered pile stiffness matrix in these coordinates.
More details on this are given by Novak (1980). For static conditions, Poulos (1980)
employed a similar technique. He recommended the evaluation of interaction between
two vertical piles whose distance is equal to the separation measured on the inclined piles
at L/3 from the top.

One of the few dynamic solutions of pile groups with batter was produced by Mamoon
{1990} using an approximate analvtical formulation, denoted as method I where the soi]
domain is modeled as an elastic half-space. An example of Mamoon's result is shown in
Figure 1.19, comparing the normalized vertical stiffness (real part) of a 3 x 3 group of
vertical piles with that of a similar group featuring piles with a 13 degree batter in one
plane. (Notice that the vertical scale is not the same for both cases.) Kaynia’'s solution
of the vertical group is displayed for comparison. The comparison of cases (a) and (b)
suggests that for the separation s/d = 5 and higher frequencies, the inclination of the
piles causes a significant reduction in the real part of the impedance. For the peak, this
reduction is about 43 percent. Also a slight shift in the peak can be noticed. The batter

effect results in an increase in the imaginary parts of the impedances.

Soil-Pile-Cap Interaction

In most situations, piles have caps, and soil-pile-cap interaction may occur. The cap
influence depends not only on the size and embedment of the cap, but also on the quality
of its contact with the soil. Considering the behavior of actual soils under static and
dynamic loading, it may be speculated that this contact will be well maintained in stiff
clays and dense sands; but in loose to moderately dense sands, the cap base may separate
from the soil, and, in soft clays, the contact in the cap base as well as the cap sides can

be lost. Finally, the separation of the base is more likely for endbearing piles.
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The few dynamic analyses that have been reported invariably presume full contact
and perfect elasticity and, thus, their results should be applied with some allowance for
the actual soil behavior. Banerjee & Sen (1987) observed a rather small effect of the
cap on the vertical impedances of single piles and groups of two and four floating-piles,
respectively. This is a valid conclusion for the stiff piles that they analyzed (E,/E, =
10,000). For more flexible piles, the Cap may cause a more significant increase in pile
impedances, as can be deduced from static analysis (Figure 1.20).

An extensive theoretical study of dynamic cap effects was conducted by Mamoon
(1990). He included cap inertia in his analysis, but ignored the shear stresses in the
mat base. even for the horizontal response. The principal observation is that. for some
conditions. cap inertia can reduce or eliminate the sharp peaks in the impedances, typical

for pile groups without caps.

Effects of Soil Liquefaction on Pile Behavior

Piles are often used in loose saturated sands and silts. If such deposits liquefy due to
increased pore water pressure during an earthquake, the piles lose much of their lateral
and vertical support which can result in a substantial increase in bending moments,
loss of stability, and failure. Damage of this type occurred in the Niigata and Alaska
earthquakes of 1964 and elsewhere.

Only a relatively few studies have been devoted to this important subject (Seed &
Idriss 19694, Zienkiewicz et al. 1978. Finn et al. 1970, Finn et al. 1971, Zienkiewicz et al.
1991, Nomura et al. 1991, Kagawa 1992).

Kagawa (1992) presented a theoretical study of pile behavior during liquefaction.
The potential significance of the impact of liquefaction on the dynamic response of pile
foundations has been studied by Kagawa (1992) through a numerical study. Results
of this study demonstrated that, due to liquefaction, the pile-head acceleration may
be amplified or it may be attenuated, pile-head displacement and pile moment wil] be

greatly amplified in most cases, and the depth at which the maximum pile moment occurs
increases significantly.

1.3.3.4  Soil-Pile-Structure Interaction

Once the properties of the pile foundations are established, they can be incorporated

into the examination of pile structure interaction just as with other types of foundations.
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Figure 1.20 A cap increases the static stiffness for short piles. (K} K, = stiffness with
and without cap; d) dy = dia. of pile and cap, v = 0.5, E,/E, = 1000) (After Liu and
Novak 1990}
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A number of studies have been devoted to this subject. As there is a difference between
direct excitation of the structure by external loads and excitation by seismic motions of

the ground, these two cases are discussed separately in this thesis.

Pile-Structure Interaction Under External Loads

Typical examples of direct external loads are Figure 2.3. The near-field element in
the unbalanced forces acting on machine foundations, wind forces on buildings, wave
forces on offshore towers, and inertial loading from support movement due to earthquake
excitation. In such cases the pile foundation impedance can be superimposed on the
structural system matrices to give the governing equations of the pile-structure system

in the standard form, i.e.
[M]{a} + [CH{i} + [K]{u} = {P(t)} 1.13]

in which [M], [C], and {K] are the mass. damping, and stiffness matrices incorporat-
ing the structure and foundation properties. and. in some cases. other factors such as
hydrodynamic effects, aerodynamic damping properties etc.; {u} and {P(t)} are the dis-
placement and loading vectors, respectively. Dynamic pile-soil-pile interaction reduces
the resonance frequencies only slightly. However, it provides damping which attenuates

the peak response (Novak 1991).

Pile-Soil-Pile Interaction Under Seismic Loading

The evaluation of soil-pile-structure imteraction is needed to establish the forces ex-
pected to act on the structure and the piles in a seismic event. Such studies can be dope
experimentally or theoretically. Experimental investigations are most often conducted on
models using shaking table tests, less often in a centrifuge. The tests require careful scal-
ing and a special design of the test bin boundaries which are to prevent wave reflections
(the box effect). Shaking table tests of pile supported structures have been reported,
e.g., Mizuno et al. (1984) and Nomura et al. (1991), pile scaling has been examined by
Kana et al. (1986); and the modeling of the free-field conditions in centrifuge tests has
been investigated by Cheney et al. (1990).

For design purposes, the theoretical analysis of pile structure interaction is more
practical and it is conducted much more often. Adequate for routine designs, a simple
procedure is based on substructuring and the following assumptions: the input ground

motion is given for the pile heads and it is not affected by the presence of the piles and
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their cap; soil-pile interaction anajysis is conducted separately to yield the pile foundation
impedances; and the seismic response is obtained from Equation 1.13 using standard
analysis, even response spectra. For shear buildings, all the matrices in Equation 1.13
may be rearranged to take the form that is common to shallow foundations. This typé of
analysis, known as inertial interaction analysis, usually indicates that the pile foundation
flexibility and dissipative properties result in the reduction of the seismic forces as well
as the base shear and an increase in the building response, just as in the case of shallow
foundations (Novak & El Hifnawy 1984).

The assumption of the input ground motion not being affected by the presence of
the piles is based on the idea that the dominant seismic wave lengths are much larger
than the pile diameter and, given the bending flexibility of slender piles, the piles will
follow the horizontal motion of the ground. A more comprehensive examination of these
assumptions involves consideration of the wave scattering effect, known as kinematic in-
teraction. A few researchers have examined this phenomenon. Gazetas (1984) conducted
an extensive parametric study of the response of single endbearing piles exposed to har-
monic shear waves propagating upward from the bedrock. He defined the kinematic

interaction factors as

Iu = up/u(] [114]
I, = &, ro/ug [1.15]

in which u, and u, are the absolute values of the horizontal displacements, relative to
the bedrock, of the embedded pile head and the ground surface motion in the absence of
piles, respectively, and 5 is the absolute value of pile head rotation. The magnitude of
I, depends on the soil profile, the stiffness ratio, Ey/E,, the slenderness ratio, L/d, and
the frequency ratio, f/f;: where [ = wave frequency and f, = fundamenta] horizontal
frequency of the soil layer. For a parabolic soil profile, f; equals 0.56(V,/L). When
there is no kinematic interaction, I, = 1. Synthesizing his numerical results, Gazetas
found it possible to express the kinematic interaction factors for each soil profile in terms

of a dimensionless frequency parameter. For the parabolic soil profile, this parameter

becomes

Fo = (f/£1) (E,/E,)**® (d/L)*%, [1.16]
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In terms of this parameter, the kinematic interaction factor for translation assumes the
form plotted in Figure 1.21. As can be seen, for small flfi, E,JE,. and d/L, the
kinematic interaction factor is close to unity; for large values of these ratios, it drops to
about 0.5. This suggests that the kinematic interaction is either negligible or is on the
conservative side. Only for the homogeneous soil profile, a slight amplification of I, may
occur at low frequencies. The effect of the angle of incidence was examined by Mamoon
and his group (Mamoon & Ahmed 1990, Mamoon 1990).
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Figure 1.21 Kinematic interaction factor for parabolic soil profile as a function of
dimensionless frequency parameter, Fj. [(E, = E,(z = d)) (After Gazetas 1984)]

For pile groups, kinematic interaction may be more significant. Waas & Hartmann
(1984) examined a single pile and a large group of 336 piles and concluded that, while a
single pile follows the earthquake motion of soil with little deviation, a large group of stiff
piles in soft soil shows a response s;igm'ﬁca.ubly different from the free-field motion. Signif-
icant kinematic interaction effects were also observed for a similar pile group by Wolf &
von Arx (1982) who considered borizontally traveling waves. Thus, for important projects
such as nuclear power plants, a complete analysis including kinematic interaction may be
desirable. Such a complete response analysis of a pile-supported structure, in which the
kinematic interaction is evaluated beforehand to give the ground motion for the inertial

interaction calculation is schematically indicated in Figure 1.22 with M representing the
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mass of the structure and a, r;preseuting raput bedrock acceleration. Analysis of this
type has been conducted Waas & Hartmann (1984), Hadjian et al. (1990) and Kobori et
al. (1991).
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Figure 1.22 Schematic of seismic response analysis including kinematic interaction
(After Novak 1991)

The two step response analysis shown in Figure 1.22 indicates that pile stress comes
from two sources, i.e. pile deflection due to ground motion and inertial interaction. One
limitation of the accuracy of most kinematic interaction studies is that they assume soil
linearity. It is well known that for strong earthquakes, linear site response analysis can
yield unrealistic displacements and stresses.

One more complication may occur if the piles are not adequately connected to the
cap or if this connection fails in a severe earthquake. Then the cap may uplift, modifying
the seismic forces on the structure, substantially increasing the forces on the peripheral
piles that maintain the connections. These piles can become overloaded and may fail.
Uplift of the tip of an endbearing pile, which was not socketed, from the bearing stratum
may have similar but less severe results. More data on the uplift effects are reported by

El Hifnawy & Novak (1986).
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1.3.3.5 Mechanical Behavior of lSoil

Accurate modeling of boundary value problems of soil-structure interaction using
numerical (finite element) procedures requires a detailed knowledge of the constitutive
behavior of the soil. A comprehensive general stress-strain relation for soils would be
very complex simply because of the large number of parameters that affect the behavior
of soil.

The whole problem of the behavior of soil structures is dependent on the soil skeleton-
pore water pressure interaction. In the classical work of Biot (1941), the governing equa-
tions for such phenomena were first formulated, but further development was needed
to provide full forms suitable for non-linear finite element analysis (Zienkiewicz & Sh-
iomi 1984, Zienkiewicz 1985a, Zienkiewicz 19856). But the soil-skeleton and pore-water
Interaction is too complicated to consider in the current work. and this interaction is

neglected.

Constitutive Models

A number of constitutive models for soils have been published and evaluated. and
they are well established in the geotechnical engineering community {Chen & Saleeb
1982, Chen & Baladi 19385, Chen & Han 1988, Lubliner 1990). Classical plasticity models
(Drucker et al. 1957, Schofield & Wroth 1968, Roscoe & Burland 1968) can reproduce
basic trends of soil under monotonic loading, but they fail when applied to more complex
situations. Modified plasticity theories are able to eliminate most of these difficulties
(Dafalias & Herrmann 1982, Hirai 1987, Zienkiewicz et al. 1991). Among the models.
the cap plasticity model has been used widely in recent vears in finite element analysis
programs for a number of geotechnical engineering applications {DiMaggic & Sandlar
1971, Sandler et al. 1976, Sandler & Rubin 1979, Chen & McCarron 1983, Daddazio
et al. 1987, McCarron & Chen 1987, Simo et al. 1988, Hofstetter et al. 1993). From
a theoretical point of view, the cap model is particularly appropriate to soil behavior,
because it is capable of treating the conditions of stress history, stress path dependency,
dilatancy, and the effect of the intermediate principal stress.

In this research, a simple, isotropic, generalized cap model with an elliptic cap and
without strain softening has been used. Considering the importance of this model, it,

along with the determination of its parameters, is described in Appendix D.
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Shear Modulus and Damping of soil

The shear modulus and damping in soils are important to the analysis of all soil
vibration problems. In particular, the modulus and damping for small strain amplitude
are necessary for the analysis of foundation vibrations. For the analysis of earthquake
effects, the modulus and damping for a range of strain amplitudes are needed.

Current methods of determining the dynamic response of a horizontal saturated sand
layer are based on total stress procedures. The significant ground motions are assumed
to be shear waves propagating vertically and the appropriate shear modulus, G, for use

in the analysis, may be determined from an equation of the form (Seed & Idriss 1973).
G = 1000 K, (0,,)!? [1.17]

in which A, is a parameter that varies with shear strain and o, is the mean normal
effective stress. The value of A’ is depicted in Figure 1.23. The initial effective stresses
are used in the computation of the initial value of G and. thereafter, G is modified to
take into account its dependence on shear strains. Although the pore water pressure
increase during shaking decreases the effective stresses in a layer, the effect of decreasing
mean normal effective stress on the shear modulus. G, is not taken into account in the
total stress methods of analysis.

In fundamental studies of effectjve stress-strain relations for sands, Seed & Idriss
(1975) and Hardin & Drnevich (1972) showed the shear modulus, G, to be a function of
the mean normal effective stress and the shear-strain. On the basis of extensive resonant

column tests performed on a range of soil, Hardin & Drnevich (1972) concluded the

following:

1. The shear medulus decreases and damping ratio increases very rapidly with in-
creasing strain amplitude as shown in Figure 1.23. However, the rate of decrease or
increase depends on many parameters, and a single relationship between modulus
or damping and strain amplitude is not sufficient. The initial rates of decrease in
modulus or increase in damping are higher for: (1) lower effective mean principal
stress; (2) higher void ratio: and (3) lower number of cycles of loading. The initial

rates are also higher for cohesive than for cohesionless soils.

2. The shear modulus increases and the damping ratio decreases with increasing ef-

fective mean principal stress. For very small strain amplitudes, the modulus varies
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Figure 1.23 Moduli and damping ratio for sand (After Seed and Idriss 1970)
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with the 0.5 power of effe;tive mean principal stress. But, at large strain ampli-
tudes, the modulus depends primarily on the strength of the soil and the variation
is more nearly with the 1.0 power. The damping decreases approximately with the
0.5 power of effective mean principal stress independent of strain amplitude. The
deviatoric component of the ambient state of stress in the soil has a much smaller

effect than the effective mean principal stress.

The modulus decreases and the damping ratio decreases with increasing void ratio
in undisturbed cohesive soils. The effect is accounted for by a factor, F(e), which

is a function of the void ratio, e.

The shear modulus decreases for cohesive soils and increases slightly for cohesionless
sotls with the number of cycles of loading. The damping ratio decreases approxi-
mately with the logarithm of the number of cycles of loading in both cohesive and
cohesionless soils, up to about 50,000 cycles. Beyond this, there appears to be a
fatigue mechanism involved that causes the damping to increase with the number

of cycles.

- The effect of degree of saturation on the modulus and damping in cohesionless

soils is small, but the modulus of cohesive soils increases rapidly with a decreasing

degree of saturation.

Thixotropic effects cause the modulus to increase and the damping ratio to decrease
with time, particularly in cohesive soil. The recovery of the modulus and damping

with time after high amplitude cyclic loading is also significant.

For undisturbed cohesive soil, damping is increased only slightly with frequency
within the range considered. Hardin and Black (1966, 1963) have shown that dry
cohesionless soils are almost unaffected by frequency from essentially zero to a few
hundred cycles per second. Although frequencies above 0.1 Hz have a relatively
minor effect on the modulus and damping in cohesive soils, the behavior should be

expected to change drastically for much lower frequencies where creep phenomena
are involved.

The effect of preconsolidation pressure is to increase G,,,, over the normally con-

solidated value, depending on the plasticity index, PI, of the soil, with almost no
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effect of overconsolidation for P = 0. An equation for Gpm,; including this effect
is given by Hardin & Black (1969). The effect of overconsolidation on the behavior
at larger strain amplitudes was shown by Hardin & Drrevich (1972).

In saturated sands, the progressive development of pore water pressure during cyclic
loading continuously diminishes the level of effective stress and, hence, the shear modulus
and the resistance to deformation is also diminished.

During cyclic loading, the slips at grain contacts result in volumetric compaction and
increased values of K, the coefficient of effective lateral stress. Both effects stiffen the
sand against further deformation. It is also probable that the slips at grain contacts
result in a more stable sand structure under the existing effective stress regime. The
processes, leading to increased resistance, are referred to collectively as hardening. The
effect has been noted in dry sands and in saturated undrained sand at the strain levels
typical of ground shaking.

In summary, the important factors which must be considered when computing the
response of saturated sand lavers to a given earthquake are (a) the initial shear modu-
lus in-situ: (b) the variation of shear modulus with shear strain; (c) contemporaneous
generation and dissipation of pore water pressures; (d) changes in effective mean normal
stress; (e) damping; and (f) hardening. All of these factors except damping are taken

into account in this thesis using the geologic cap model.

1.4 Research Approach
1.4.1 Finite Element Analysis of Pile Cross Sections

The objective of the work of this thesis was to develop the nonlinear spring properties
that can be applied for Winkler analyses of arbitrary single piles and pile groups. Several
Finite Element analyses were performed for circular piles of 0.457m (18”) and 0.610m
(24;’) diameters.

DYNA3D, a finite deformation, large strain Finite Flement code for dynamic analysis
in three dimensions was used for these analyses. [soparametric solid elements with single
point integration controlling “zero energy” modes were used to mode! both the soil and
the pile cross-sections. The piles were modeled as rigid disks for 2D models and assumed

to be linearly elastic for 3D models, while soil was assumed to be elasto-plastic. The
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Plastic behavior was represented using the Geologic Cap Model (DiMaggio & Sandlar
1971, Sandler et al. 1976, Sandler & Rubin 1979, Simo et al. 1988, Hofstetter et al.
1993). The pile-soil interfaces were modeled by using sliding interface elements which

permit sliding with separation, closure, and friction.

Plane-stress/plane-strain models Two dimensional models, that included cross-sections
of single piles, sets of two piles at various spacings, and typical pile cap models, were
analyzed with pseudo-static harmonic loads. Maximum values of the loads were
were such that reasonable force-displacement curves could be obtained. Plane-stress
and plane-strain models were considered in order to provide bounds for soil layers
near the surface and for those at greater depths. The reason for using the plane-
strain condition is that previous research has shown that the force-displacement
behavior of a thin layer based on plane-strain conditions provides a reasonable re-
sponse for piles with moderate to high frequency vibration. The pile cap model
was analyzed with plane-stress assumptions only, because at this depth no restraint
would be available to attain plane-strain conditions in practice. From the results,
equivalent spring/damper models were developed to simulate the effect on the piles
and pile caps of the surrounding soil and pile-soil-pile interaction for lateral loading.
A typical finite element model is shown in Figure 2.2 for computation of lateral re-
sistance provided by the soil to a single pile. Similarly, finite element models, shown
in Figures 2.17 and 2.15, were used for a square pile cap and two-pile groups. re-

spectively, to compute lateral resistance.

Axisymmetric models Axisymmetric models are appropriate to obtain stiffness and
damping properties in the axial direction of a single pile. In order to separate
the effects of soil deformation and pile-soil slippage from the axial deformation of
the pile and the stiffness of the soil beneath the tip, thin cylindrical layers of the
pile were modeled with a layer of soil of same thickness. The model was loaded
harmonically with pseudo-static axial force while pressure was applied to the soil
to simulate overburden for various depths. Only shear deformation was allowed in
the soil. From these analyses, spring/damper models for axial loading on a single
pile were developed as a function of depth. A typical finite element model is shown

in Figure 2.10, which is used to find soil resistance to vertical displacement of a

single pile.
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Three-dimensional models The axial pile-soil-pile interaction effects can not be mod-
eled with axisymmetric assumptions. Therefore, three dimensional models were
utilized to consider the axial behavior of sets of two piles within a finite layer of
soil. As with the axisymmetric models, pseudo-static axial force was applied har-
monically to one of the piles to obtain stiffness/damping properties that can be

assumed to exist between adjacent piles.

1.4.2° Development and Verification of the Winkler Model

Several equivalent Winkler pile models were developed using the nonlinear spring
elements obtained in this work for the near field and the spring/damper elements of
Nogami et al. (1992) for lateral vibration. The main objective was to investigate the
ability of this simplified approach to accurately model the nonlinear, dynamic response
of single piles. The lumped parameter mode] of the pile was excited at the top with an
impulsive lateral load and the free vibration response was noted. The computer runs
were performed by the bridge analysis software, NEABS, described in an earlier report
(McGuire. Cofer. Marsh. and McLean 1994).

An equivalent three dimensional finite element model of a single pile and surrounding
soil was developed and loaded at the top with the same impulsive lateral load. As with
the two dimensional models. nonlinear soil material properties, sliding interfaces at soil-
pile interfaces, and non-reflecting boundaries were used. The response of the pile was

noted and used for comparison with the load transfer models.
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2. MODEL BASICS AND FINDINGS

2.1 General

A rational, dynamic, nonlinear soil-pile interaction model has been developed for a
single pile and a two-pile group for lateral and axjal vibration. Nonlinearities arising from
the nonlinear stress-strain relationship of soil and from the pile-soil interface, which is
susceptible to separation and friction. were considered. These were formulated as strnple
combinations of frequency independent masses, springs, and dashpots. Therefore, time
domain nonlinear analysis may be conducted in a relatively simple manner. The model
has been developed by adopting Winkler’s hypothesis, i.e., the soil response at a given
depth depends only on the reaction of the pile to soil at that specific depth. Figures 2.1
and 1.9 show typical Winkler pile models.

Figure 2.1 A typical discrete soil-pile model based on Winkler’s hypothesis. (After
Makris and Gazetas 1991)
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For the development of the t:na.ss, spring, and dashpot models, pile segment(s) in a
soil layer of finite thickness have been considered. A finite element discretization of the
soil-pile combination was made using 8-node, quadrilateral, isoparametric elements. Due
consideration was given for the near-field region of soil in which large strains may occur.
In the far-field region, the soil was assumed to remain essentially elastic because of small
strain development. Elastic behavior is, therefore, appropriate for the far-field. Pile seg-
ments have no (or little) deformation in comparison with the soil, and they are considered
to be rigid where appropriate. A sliding interface was assumed to exist between the pile
and soil during analyses for lateral vibration. However, to avoid instability, this interface
was not included in the models for determining axial vibration response.

Due consideration was given for the initialization of geo-static stresses within the
model. The properties of soil were obtained from conventional laboratory tests. The test
results are summarized in Appendix C. Pseudo-static perturbations in the form of forces
on single pile segments and pile segments within the two-pile groups were simulated
using the finite element program, DYNA3D. The response was measured in the form
of displacement and reactjve forces in single pile models. and in the form of reactive
forces in pile group models. The force and displacement histories were obtained from the
post-processor, TAUGRUS. analyzed, plotted, and presented in this thesis in Appendix E.
The force-displacement curves were simplified using simple parameters such as elastjc
or unloading stiffness, elasto-plastic stiffness, vield force, hardening coefficient. and a
gap parameter. These simple patameters, called bilinear parameters afterwards. are also

presented in Appendix E.
2.2 Modeling of a Single Pile

For modeling a single pile, the model proposed by Nogami et al. (1992) for lateral
vibration and that proposed by Nogami and Konagai (1986, 1987, 1988) for axial vibra-
tion were applied with some modifications. Those models are described in Appendices A
and B, respectively.

The lateral and axia] vibrations were modeled on the basis of finite element analysis
of a circular thin soil layer of unit thickness and diameter 40d (where d is the diameter
of the pile). Within the range of stress developed, it was assumed that the pile segment

is relatively rigid. Therefore, the pile was modeled as a rigid disk, surrounded by a mesh
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representing the soil, as shown in F igures 2.2 and 2.11. Soil within a radius of 4d from the
pile center was modeled with a nonlinear geologic cap material model. The remainder of
the soil was modeled with consistent elastic properties because soil strains are assumed
to be small away from the pile. All parameters for modeling of the soil properties were
appropriate for the depth considered and for the existing K,-stress condition. There
was a sliding interface between the pile and soil. The sliding interface was modeled
to mimic gap formation, impact within a gap. and sliding with friction. The interface
was not modeled by using any element; rather it is resolved in the solution algorithmic
phase in the explicit finite element program. DYNA3D. The Ky-stress state was taken
as the initial condition. The maijp analyses were performed using DYNA3D because its
material library includes the geologic cap model. The stress initialization was done by
incorporating the initjal stress output file from the implicit finite element companion

program, NIKE3D.

Figure 2.2 Finite element mesh used for the analysis of 2D soil-pile layer for lateral
vibration of single pile. Symmetry has been used.

2.2.1 Lateral Vibration of a Single Pile

The model is based on the model proposed by Nogami et al. (1992) in which the pileis

modeled as beam on inelastic Winkler-type foundation modified for dynamic analysis. It
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is based on a thin layer solution. In this model, there are two nodes at each layer: a pile
node and an auziliary node. The model consists of a nonlinear near-field spring, a linear
near-field viscous damper, lumped masses at the pile and auxiliary nodes, three linear
far-field springs and three linear far-field dampers. The model is shown in Figure 2.3.
The detail of the near- and far-field elements are shown in Figure 2.4. The model is
described in Appendix A in details, Nogami et al. (1992) provided explicit expressions
for the far-field element Parameters in terms of elastic soj] properties. In this thesis
the major emphasis goes to the formulation of the nonlinear near-field springs and the
lumped masses. The spring characteristics were obtained using a finite-element approach.
The lumped masses were obtained by using a consistent formulatjon with assumed shape

functions and a lumping procedure.

2.2.1.1 Characteristics of the Near-Field Spring

For very large depths, the plane-strain condition is appropriate while. for very small
depths, the plane-stress condition may be used. It has been shown that for moderate
to high frequency vibration, plane-strain soil impedance is appropriate for the linear
elastic case (Novak 1974, Novak & Nogami 1977, Novak et al. 1978, Novak & Aboul-Ella
19784, Novak & Aboul-Flla 19786). Plane-strain analyses for several depths, represented
by vertical effectjve stresses of 6.9, 17.3, 34.5. 68.9, 137.8, 275.6, 531.2, and 1102.4 kPa
(1, 2.5, 5, 10, 20, 40. 80, and 160 psi) were performed. But for very small depths, the
plane-strain case can not be realized. So, the plane-stress condition is assumed to be
Iore appropriate where vertjcal pressure will not change with lateral pile movement,
Plane-stress analyses were used for 4 vertical stresses: 6.9, 17.3, 34.5, and 68.9 kPa (1,
2.5, 5, and 10 pst). The basic soil parameters were needed exactly for these specific
vertical confining pressures. These are interpolated from Tables C.4 through C.7. The
resulting soil properties are tabulated in Tables D.1 through D.2. The resulting cap
parameters for those soils at different layers are presented in Table D.3. In Table D.1,
Some averaging was used to obtain a set of uniform values throughout the depths. The
averaging procedure is described in Appendix D. In the following sections. the derivation
of the coefficients for the near-field and the far-field elements is described.

To develop the nonlinear near-field spring, the pile segment was forced to move later-

ally either in the Plane-stress or plane-strain condition during the computer simulation
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Soil: an inelastic half-space

Near field element Far field element
~ Kn : K1 K2 K3
gl A el s
Cn ™ C1 ' C2 C3
. Mass from near-field soil Mass contribution from both near- and far-field soil

Pile

Figure 2.3 A model for lateral vibration of single pile. The model consists of springs.
dashpots, and masses to represent.

m C C1
P a

7

C3
Figure 2.4 A combination of springs, dashpots, and masses to represent the near-field

and far-field element for modeling lateral vibration of a single pile. (After Nogami and
Konagai 1992)
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of a lateral load test using the f;nite element mesh, shown in F igure 2.2, and the dis-
Placement of the segment was observed using TAURUS. The lateral force-displacement
behavior for a single pile or pile-groups is represented by p-y curves, where p is lateral
force per unit length of pile and y is lateral displacement. Moreover, a similar relation-
ship is represented by the ¢-z relation for vertical response of a single pile or pile-groups,
where t is axial force per unit length of pile and z is axial displacement. A typical Py
curve is shown in Figure 2.5 for two cycles of the load, and it includes nonlinearities from

hysteretic and gap behavior.
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Figure 2.5 A typical P-y curve for the near-field spring, shown as latera] force per
length of pile (pounds/inch) versus displacement (inches)

Initially, when a pile segment moves laterally in a thin layer of soil, the force-
displacement relationship remains linear elastic. When the force level exceeds the elastic
range, it leaves a gap behind it and plastic deformation continues. It is shown in Fig-
ure 2.6. The slope of the Py curve changes to represent plastic behavior. Upon unload-
ing, the pile segment moves back elastically until the “zero” force state is almost reached.
Then, with reverse loading, the pile moves back, through the gap created before, with
very small resistance. Here, the slope of the Py curve is called the first gap stiffness.
With increasing reverse load, the pile segment reaches the rear end of the gap, after

which the loading behavior js elastic until reverse plastic loading occurs. The slope of
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reverse plastic loading is similar to that of the loading elasto-plastic slope. At the same
time, the rear end of the gap moves more. Reverse loading becomes elastic again until -

the “zero” force state is again reached. Then it moves back through the gap.

Figure 2.6 A pile leaves a gap behind it when plastic deformation continues during
lateral-motion.

A comprehensive determination of near-field spring constants has been made for piles
with diameters of 0.457m (18") and 0.610m (24”). respectively, using soil parameters
determined from laboratory tests performed on soil samples taken from a Snchomish
river site in Washington State. Most of the soi] samples were silty (MH, ML, SM). The
soil was uniform from depths of 3m (10') to 9m (30). Constant soil parameters for this
range of depths were used, with modification for confining pressures. These thin-layer
P-y curves were produced for 6.9, 17.3, 3+.5, 68.9, 137.8, 275.6, 551.2, and 1102.4 kPa (1,
2.5, 5, 10, 20, 40, 80, and 160 psi) of vertical effective stress, assuming drained conditions.
In all cases, the coefficient of earth pressure at rest, Ko, was assumed to be 0.3, and the
coefficient of friction in the interface was assumed to be 0.4, The p-y curves for very
small vertical stresses, 6.9, 17.3, 34.5, and 63.9 kPa (1, 2.5, 5, and 10 psi) were developed
for the plane-stress condition, All p-y curves are presented in Figures E.1 through E.4.

For the analysis of pile vibration using NEABS as modified by McGuire (1993), the

P-y curve is simplified as a combination of several linear segments with (see Figure 2.7):
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1. initial stiffness, K,

2. yield force, F,,

3. hardening stiffness without gap, K,
4. unloading stiffness without gap, K;,
5. hardening stiffness with gap, K,

6. unloading stiffness with gap, A, and
7. hardening parameter, 3, and

8. agap parameter representing the capability on the trailing edge to follow the leading

edge of the gap, ~.

This simplified representation of P-y curves, shown in Figure 2.7. will be called as
bilinear p-y curves. The parameters A and A3 are found to be more or less the same for
all the p-y curves. Also, K can not be determined from a load controlled test. Its valuye
has a minor significance in practice, and should be in between Ly and K. K can be
taken to be equal to A,. The hardening parameter, 3, represents the way in which the
p-y curve hardens for reverse loading with elasto-plastic load increments. For isotropic
hardening, 3 equals one, and for kinematic hardening, 3 equals zero. Intermediate values
of 3 represent mixed hardening. The gap parameter, v, represents the behavior of the

movement of the leading and the trailing edge of the gap. Effectively, it relates the plastic

movement of soil, Uplaatic and the generated gap, Ugqp.

)= e 2.]

Uplastic

Figure 2.5 shows the matching between the p-y and its linearized version. The matching
is excellent and it validates the use of bilinear parameters to represent any p-y curve with
gap formation.

The simplified parameters which can reproduce the p-y curves for lateral vibration
of single piles are presented in Tables 2.1 and 2.2. The tables show that the stiffness
increases with confining pressure almost linearly in both plane-stress and plane-strain

conditions. The stiffness valyes are almost independent of the pile diameter. This is
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Figure 2.7 A linearized idealization of p-y curves
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because the region of soil considered in the near-field zone is 40 times the diameter of
the pile. For larger diameters, larger models were used. Injtjal stiffiness is usually less in
the plane-stress case than in plane-strain case. The yield force increases with confining
pressure. The yield forces are proportional to the diameters in both the plane-stress and
plane-strain cases. Hardening occurs for all the p-y curves. The effect of the gap is more
significant in the plane-strain case than in the plane-stress case.
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Table 2.1 NEABS parameters for
different confining pressures. [d

drained condition]

p-y curves for a single pile vibrating laterally for
= 0.45Tm, K) = 0.50, f = 0.40, isotropic hardening,

Vertical | Imitial Post-yield Initial First Gap Hardening Gap
pressure, | stiffness, | stiffness, | yield force stiffness, | parameter, | parameter.
psi tbs/in® Ibs/in? {bs/in Ibs/in? 3 v
Plane-strain condition
1 174. 46, 135. 2. 0.42 1.06
2.5 423. 7l. 213. 7. 0.33 1.02
5 832. 117. 315. 11. 0.43 1.01
10 1692. 183. 529. 48. 0.62 1.19
20 2160. 291. 1034, 69. 0.60 1.13
40 2594, 617. 2062, 131. 0.49 1.03
80 3704. 1112. 4337. 314, 0.10 1.09
160 5474, 1865. 8711. 695. 0.41 1.02
Plane-stress condition
1 157. 49. 143, 14. 6.33 0.54
2.5 389. 78. 218, 13. 0.38 0.71
) 868. 140. 354, 52. 0.15 0.73
10 1479. 195. 259. 100. 0.54 0.63
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Table 2.2 NEABS parameters for p-y curves for single pile vibrating
different confining pressures. [d = 0.610m,

drained condition]

laterally for
Ky = 0.50, f = 0.40, isotropic hardening,

Vertical { Initial | Post-yield Initial First Gap | Hardening Gap
pressure, | stiffness, | stiffness, | yield force stiffness, | parameter, | parameter.
- psi bs/in? lbs/in? lbs/in Ibs/in? 3 'y

Plane-strain condition

1 179. 44, 175. 7. 0.55 1.07

2.5 429. 73. 278. T. 0.35 1.03

5 837. 116. 419. 10. 0.43 1.03

10 1653. 192. 668. 19. 0.50 0.99

20 1921. 241, 1321. 76. 0.49 1.30

40 2762. 600. 2735, 159. 0.34 1.11

80 3931. 1384, 4484, 337. 0.43 1.05

160 5397 1988. 12250. 702. 0.16 1.05
Plane-stress condition

1 159, 53. 189. 24. 0.30 0.64

25 431. 70. 276. 28. 0.74 0.80

5 776. 100. 494, 37. 0.64 0.85

10 1913. 302. 581. 287. 0.38 0.40
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2.2.1.2 Characteristics of Near-field Dampers

A damper represents one means of dissipating energy. It is very difficult to estimate
damping constants from the finite element analysis of any structure for which viscosity
of the material is actually unknown. For most cases, it is obtained from a field test.
Moreover, a field test for a thin layer of soil and pile segment combination for ejther
plane-stress or plane-strain conditions with initial Ky-stress would be extremely difficult.
It is easy to specify the damping coefficient as a fraction of critical damping, i.e. as a

proportional damping. Then the damping constant is

C = 26K [ wape. (2.2)
where, K; = initial or unloading-reloading stiffness.
“Wave = average loading frequency. and
£ = material damping ratio.

The stiffness value. A'. mav be represented by the elastic stiffness or an unloading-
reloading stiffness. The circular frequency for the actual earthquake loading mayv be
estimated from the earthquake acceleration history of the free-field motion by counting
the number of peaks, either maxima or minima. by counting the number of crossings
of the zero acceleration level, by Fourier analysis of the acceleration time history for
kinematic interaction analysis, or by considering the modal frequency of the structure
involving predominantly foundation moverment for inertial loading. Engineering judgment
Is needed to compute the w,,,. The damping coefficient, £ is merely estimated as 0.01
to 0.10, still based on engineering judgment and the magnitude of displacement at that
particular level. The value of § can be obtained from the curves prepared by Hardin
& Drnevich (1972) and Seed & Idriss (19696). However, before using these curves, the
average strain within the radius rq to 1 should be known. The average value of strain
should be taken as a function of the maximum displacement. Since the value of the
displacement is unknown, the selection of the value of 3 becomes iterative. One may
observe that the value of (' is frequency dependent and, therefore. ¢ must be defined
for an estimated frequency. For higher frequencies of loading, the specified value of C
represents higher values of £. Also, higher frequencies of loading are damped out due to
the discretization of the structure by finite elements. However, high frequency loads have
relatively less importance for bridge design. For a high amplitude of loading, excessive

cyclic deformation will induce a hysteretic dissipation of energy due to the nonlinear
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effect of the spring which will be taken care of by the nonlinear springs. This dissipation
of energy will be much more important than that dissipated in the damper. So, it is

reasonable to estimate the damping constant by the use of Equation 2.2.

2.2.1.3 Characteristics of Nodal Masses

Near-field masses are obtained from a lumped mass procedure. The model has two
nodes: a pile node and an auziliary node. The mass of the pile node consists of the mass
of the pile itself along with the contribution of the mass from the near-field soil. The
contribution of the mass from soil is computed from the consistent mass matrix developed
for the annular segment of soil with inner and outer radius ro and ry. respectively, where
ro is the radius of the pile and r, is the inner radius of the near-field zone. r, can be
chosen arbitrarily such that all of the nonlinearity is contained within the near-field zone
and the p-y curves should be consistent with this zone. In all cases. r; was taken as 40d.
where d is the pile diameter. The nodes are assumed to exist at the pile center and at the
outer boundary. All points of the outer boundary of radius r; are assumed to have equal
displacement and share the same degrees of freedom. The shape function in cylindrical
coordinates is assumed to vary as a function of the nth power of r and it is not a function

of the 8 coordinate at all. The consistent mass matrix for two nodes is

(M) = { (mpri)(m — 1) } [ Fr+1im+1  2-{(2n+1)m + 3} 23]
(n+1)(2n+1) H{2n+1)m + 3) m+ (2n + 1) e
where, m = r/ro,
r1 = radius of near field zone,
ro = radius of rigid pile,
n = power in the shape function (Nogami assumed n = 1).

In his analysis, Nogami assumed n = 1 arbitrarily. Using the HRZ lumping scheme,
described in Appendix F, the contribution of the soil to the nodes as lumped mass is
represented by the mass matrix,

2
M) = {‘(Wpro)(m —1) } {(2n+1)m +1} 0 (2.4
2(n+1)}m+1) 0 {m+(2n + 1)}
The values of mn e are plotted in Figure 2.8 as a function of n and m. Having the

mass contributions from soil, the nodal mass at the pile node can be obtained by adding
the nodal contribution from soil to the mass of the pile itself, as

(m~1){m+(2n +1)} &} .
2n+1)(m+1) Ps

my = 1purg? { [2.5]
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where 5 = spacing of the nodes in the vertical direction.
The mass at the auxiliary ﬁode, m,, can be obtained by adding two contributions,
one from near-field soil and the other from far-field soil.

m, = m,+ Mf [26]
where, m; = first diagonal element of [M], and
my = mass contribution from far-field soil.

The mass contribution, mf, can be obtained from the equation

mf=rpr*é&, (v [2.7]

where &,, (V) is a function of Poisson’s ratio, and it can be obtained from Figure 2.9 and
Table 2.3

2.2.1.4 Characteristics of the Far-Field Elements

The far-field element consists of the far-field mass contribution, my springs, K;, K,
and K;, and dampers, C,, C:, and C;. Those are shown in Figure 2.4, The far-field
element has been adopted from Nogami et al. (1992), as discussed in Appendix A. The
mass contribution from the far-field, my, can be obtained from the Equation 2.7. The
spring and damping constants are defined as:

K| 3518
K; 5519
C G 113.0973
c, ! = S ] oo (2.9]
C; s 9362
where, G = Shear modulus of soil of the pertinent layer, and

& (v)and &, (v) Function of Poisson’s ratio v. It js obtained from Figure
2.9 or from Table 2.3 as a function of Poisson’s ratio, and
Vs = Shear wave velocity in soil.

The spring constants and damping constants are basically frequency dependent. How-
ever, the aforementioned values work well for the range of frequency, 0.02 < g, < 2.0,
where a, is the nondimensional frequency and it is defined as a, = r,w /¥, the com-
monly encountered frequency range for earthquake loading. The details are described by

Nogami et al. (1992). 7
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Relative mass contribution to the pile node
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Figure 2.8 Contribution of near-field mass of soil to the ends of near-field spring

element

Table 2.3 Functions & (v) and §m(v). (After Nogami 1992)

ﬂjoisson’s ratio, v [F\mction €e(v) ] Function £, (v) —ﬂ

0.50 2.000 1.0000
0.49 1.940 0.7828
0.48 1.883 0.6420
0.47 1.831 0.3336
0.46 1.784 0.14464
0.45 1.741 0.3740
0.43 1.667 0.2628
0.40 1.580 0.1428
0.35 1.476 0.0352
0.25 1.351 000000
0.20 1.311 000000
0.10 1.252 000000
0000 1.213 000000
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Figure 2.9 Mass and Stiffness factors for a single pile vibrating in the lateral mode
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2.2.2  Axial Vibration of Single Pile

This model is basically an extension of that proposed by Nogami and Konagai (Nogami
& Konagai 1986, Nogami & Konagai 1988, Mitwally & Novak 1988}, which has been de-
scribed in Appendix B. The model was originally developed for elastic soil and pile
conditions, and extended to include nonlinear behavior. Analogous to the model for
lateral vibration, the model consists of two nodal masses at the pile node and an auxil-
lary node, a nonlinear near-field spring, a linear near-field damper, three linear far-field
springs, and three far-field dampers, as shown in Figure 2.10.

The thin layer solution and Winkler hypothesis is once again the basis of the devel-
opment of the model for axial vibration response. Moreover, it is assurned that during
axial vibration of a single pile in semi-infinite soil, all points move only in the vertical
direction. This simplifies the problem of 3D vibration to 2D vibration. and allows the
thin layer solution to be considered as an approximate solution of more complicated 3D
vibration. This assumption is a reasonable one if the pile is long. When the pile is long
enough. the thin javer moves vertically. and subsequent layers move in the same way.
maintaining compatibility in an approximate manner, since each layer does not move
equally. Resistances of different magnitudes develop at different depths depending on
the shear modulus and pile displacernent magnitudes.

For the assumption of no lateral displacement, only the shear deformation is included.
rather than bending deformation of thin soil layers. This makes the stiffness of the soil
spring proportional to the thickness, rather than the third power of thickness. This as-
sumption applies to the skin resistance only. For the determination of the tip resistance,
the pile tip is assumed to be on a nonlinear half-space with appropriate effective overbur-
den pressure. The latter topic will be discussed in Section 2.5. The following subsections

describe the model for skin resistance behavior for axial vibration.

2.2.2.1 Characteristics of the Nonlinear Spring

To develop the nonlinear spring characteristics, a finjte element mode] was developed
for a thin layer elasto-plastic soil and a rigid pile segment. Figure 2.11 shows a typical
finite element model used to generate the nonlinear spring characteristics for axial vibra.
tion. Since the 3D computer program, DYNA3D, was used, it was necessary to take a

sector of a thin circular segment. Soil within 8d of the pile was modeled with the geologic
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Figure 2.10 A model for axial vibration of single pile.

83



cap model. It was observed that’soil displacement at a large distance (20 diameters) from
the pile center was negligibly small and, therefore, an artificial, no displacement bound-
ary was placed there. A pseudo-static load was applied along the pile axis to observe
the resulting displacement. No sliding interface was assumed to exist between the pile
and soil because inijtial observations showed that it induces instability. The initjal K-
state of stress was assumed as the injtial condition. The overburden pressure was always

maintained to ensure the confining effect.

SR 4 1.1

Figure 2.11 Finite element mesh used for the analysis of 2D soil-pile layer for axial
vibration of single pile.

All nodes along the boundary were assumed to be fixed, and the rest of the nodes were
allowed to move only vertically. The resulting force (per unit thickness)~displacement
behavior, represented by t-z curves, were produced with 8 different confining pressures
for soil of the Suohomish river site. These curves are presented in F igures E.5 and E.6
for piles of 18" (0.457m) and 24" (0.610m) diamneters. Most of the curves were obtained
for a linear range of forces, because within the nonlinear range, the ¢- > response is non-
hardening. So, it becomes unstable when it reaches or exceeds tke yield force in a load
controlled simulation. Moreover, it was almost impossible to precisely estimate the yield
force.
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The bilinear parameters for the ¢-z curves are presented in Tables 2.4 and 2.5. The
tables show that the initial stiffness increases with increasing confining pressure. However,
they are not proportional. Also, comparing the tables, it can be observed that the stiffness
of the near-field spring is almost independent of pile-diameters, although higher stiffness
could be expected for larger pile diameters. The reason is that a larger soil region was
included in the model for the larger pile diameter, as explained in the previous section.
However, the yield force s almost proportional to the pile diameters. Since almost al
the piles are analyzed in the linear range, it is necessary to estimate the strength of the

near-field springs. The strength of the springs may be obtained from the equation
tmar = (277rt)Tmay. [2.10]

The value of Tmar May be obtained from recommended values presented in Table 2.6.
Finally, this spring behavior should be elastic perfectly plastic, without hardening. The

gap parameters are not needed for this case.

Table 2.4 NEABS parameters for t-z curves for single pile vibrating axially for different
confining pressures. [d = 0.457m, Ky = 0.50, isotropic hardening, drained condition]

Vertical | Initial | Post. yield | Initial Hardening
pressure, | stiffness, stiffness, | yield force parameter,
psi lbs/in? tbs/in? tbs/in 3
1 155.
2.5 285. 3. 279. 0.000
5 810. 21. 352. 0.000
10 1020. 0. 532. 0.000
20 1246. 0. 955. 0.000
40 2093.
80 2621.
160 3774,
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Table 2.5 NEABS parameters for t-z curves for single pile vibrating axially for different
confining pressures. [d= 0.610m, K} = 0.50, isotropic hardening, drained condition)]

Vertical | Initial Post-yield | Initial Hardening
pressure, | stiffness, stiffness, | yield force parameter,
psi lbs/in? lbs/in? bs/in Fé]
1 153.
2.5 398. 45. 357. 0.000
o 807.
10 1618.
20 1934.
40 2092,
80 2625.
160 3768.
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Table 2.6 Shaft resistance fs

for bored pile, determination from laboratory strength

data (After Poulos 1989)

[,Eoil type | Equation

[ Remarks

| References

Clay f.s = ac,

fs = Ktan oo,

@ = 0.45 (London Clay)
a = 0.70 times value for
driven displacement pile

K is lesser of A or

0.5 (1 + &%)

K/Ky =2/3 to 1: Ky depends
on OCR; é depends on

interface material

Skempton (1959)
Fleming et al. (1985)
Fleming et al. (1985)

Stas and Kulhawy
(1984)

Silica Sand | f, = B! B = 0.10 for ¢’ = 33° Mayerhof (1976)
B = 0.20 for ¢’ = 35°
B =0.35 for ¢’ = 37°
B = Ftan(¢’' - 3°) Kraft & Lyons
where F = 0.7 (Compression) (1974)
F = 0.5 (Tension)
Uncemented | f, = Bal B =10.30to 0.3 Polous (1988)
Calcareous fs < fatim fstim = 60 to 100 kN/m?
Sand
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2.2.2.2 Characteristics of the D/arnper

Proportional damping can be used in the same way as for lateral vibration. The

damping ratio is for the material damping alone. The explicit value of C can be computed

as
where, K; = initial or unloading-reloading stiffness,
W = average loading frequency obtained from counts of peaks
or 0 crossing, fourier analysis of acceleration time history
for kinematic interaction, or the modal frequency which dominates
foundation movement of the bridge foundation system, and
§ = effective material damping ratio.
2.2.2.3 Nodal Lumped Masses

of the pile, the whole layer of soil vibrates along with the pile. Therefore, some inertial
resistance comes from the soil, and for the sake of modeling, a certain part of the sojl
layer should be assumed to contribute to the inertial resistance of the pile. For a point in
2 soil layer at a large distance away from the pile, the amplitude decays and becomes less
important. A shape function may, therefore, be applied to compute the soil contribution.
The shape function assumed here is the approximate displacement shape of the same

layer of elastic soil with a rigid pile segment. The resulting consistent mass matrix is

[M] = {——-———27"’"‘2 Hf“(m) f”("’)J [2.12]

[lﬂ (ﬁ/”'e)]z le(m) f22(m)
where
fulm) = 174 - {1 4 2(lnm) + 2(In m)?/m?}, (2.13]
falm) = (3/4)(m® ~ 1)(In m)(1/m?) — iy (m). 2.14]
falm) = fii(m) + (1/2)(1 ~ 1/m*){1 - 3/(In m)}, [2.13]

m o= r/r. [2.16]

38



After HRZ lumping, the follawing consistent mass matrix, was obtained (see Ap-

pendix F):
M = {x(r? ~re?) p, 1} [ fulm) ﬁ??m)J [2.17)
where
s _ fu(m)
fli(m) = Folm) + fn(m),and (2.18]
falm) = —fulm) 2.19]
2 B fu(m) + Sfa2(m)’
[2.20]

and the contribution of mass from near-field soil to the pile, ™y, and to the auxiliary

node, m,, are
My = wrip, t(m? — 1) f{,(m), and [2.21]
Mma = 7wrip, t(m? — 1) fi,(m), respectively. (2.22]

The value of f1(m) is plotted in Figure 2.12 as a function of m. However, the above

expressions will only work well for low frequency vibration. The shape function that

2.3 Modeling of Pie Groups

For the vibration of two-pile groups, in addition to the near-field and far-field elements
considered for a single pile, it is necessary to consider interface springs between the piles.

Also, the number of auxiliary nodes at which the near-field and far-field elements are

may be expected that each external pile should be connected to the far-field elements
through auxiliary nodes. Also, near-field sojl mass would be distributed between the pile
nodes and the auxiliary nodes. The emphasis of this thesis is given to the determinatjoq

of the near-field and interaction—springs for the pile groups. In general, there are 3
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near-field nonlinear springs required for each pile node, 3 nonlinear interaction-springs
required for each pile-soil-pile connection, and three sets of far-field elements required for
each external pile for modeling of 3D vibration of a general pile group. _
For the sake of modeling, it is expected that three interaction-springs (i.e., direct-
lateral, shear-lateral, and axial springs) between two isolated piles for general vibration
will be required to represent the interaction between neighboring piles. So, in a large
group, each pile will be connected with neighboring piles by direct-lateral, shear-lateral,
and axial interaction-springs. For even closely spaced pile groups, say with 2d clear
spacing (i.e., 3d center spacing), the far neighbors will have a 5d clear spacing (i.e.. 6d
center spacing). For this spacing, interaction can be neglected. For this interaction
model, it is assumed that the consideration of interaction between neighboring piles
only is sufficient for engineering accuracy. For the interaction of more than two-pile
groups, the interaction-spring behavior may be obtained from that of two piles. The
Winkler hypothesis was once again the basis of this approximate model for the pile-soil-

pile interaction for axial and lateral vibration for earthquake loading.

2.3.1 Characteristics of Springs in Two-Pile Groups

There are three basic types of springs in pile group models. These include nonlinear
near-field springs, nonlinear interacting springs. and lLinear far-field springs. Nonlinear
near-field springs are required for those connecting piles with surrounding soil. and non-
linear interacting-springs are required for those connecting the piles themselves.

The non-linear spring elements for the modeling of a two-pile group with near-field
and interaction-springs are shown in Figure 2.13 for uniaxial lateral vibration and in
Figure 2.14 for biaxial latera! vibration. From Figure 2.13, it is observed that one load
case is necessary to determine the force displacement behavior for the three near-field
springs required for direct-lateral vibration. The load case, in which one segment is
moved and the other is kept fixed, is required to get the interaction-spring, K2, and the
near-field spring, K1, characteristics. Then, it may be considered that the behavior of K3
and K1 are same both in compression and tension.

For the two-pile groups with vibration in both direct-lateral and shear-lateral direc-
tions, two types of additional springs are required. One is an interaction shear-spring and

the other is a near-field spring for connecting pile-segments with the surrounding soil.
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Figure 2.13 Model for direct-lateral vibration of a two-pile group moving laterally
along the line which passes through the piles

Moreover, one additional load case is required to establish the behavior of the springs K4
and K6, as shown in Figure 2.14.

As expected. the behavior of spring K1 in tension is the same as that of K3 in compres-
sion. However, they should have djfferent vield forces in tension and compression. On
the other hand, springs K2, K4, K5, and K6 are expected to behave in the same manner in
both tension and compression. Also, spring K6 should behave similarly in positive and
negative shear. Moreover, as the spacing between two piles, s, increases. the stiffness
of the interaction-springs, K2 and K6, are expected to diminish, and K1. K3. K4. and K5
should tend to those for a single pile. Then, K1, K3 and K4 should have the same vield
strengths.

2.3.1.1 Direct-Lateral Vibration

The characteristics of the interaction-springs for different confining pressures and for
drained conditions are determined for soil taken from the Snohomish river site. For the
determination of the direct in*eraction-spring constants for lateral vibration, plane-strain
conditions were assumed for all depths represented by 6.9, 17.3, 3.4.3, 63.9, 137.8, 275.6,
551.2, and 1102.4 kPa (1, 2.5, 5, 10, 20, 40, 80, and 160 psi) vertical stresses. Plane-stress
was assumed for confining pressures 6.9 and 34.5 kPa (1 and 5 psi). Due attention was
given to the initial Ky-stress condition and constitutive modeling of elastic and elasto-
plastic soil. The displacement at a distance of 20d from the pile was assumed to be zero,
and a zone of radius 4d was assumed to be the zone of nonlinearity. Within the nonlinear

zone, soil was modeled using the geologic cap model, while, beyond the nonlinear zone,
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Figure 2.14 A more general model for vibration of a two-pile group for direct-lateral
and shear-lateral vibration.
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it was modeled using the elastic model. At the boundary of these zones, the observed
strains were small, implying that the elastic constitutive model of soil is applicable in the
far field. Moreover, the pile-soil interface was modeled with sliding interface elements
with a coefficient of friction, f = 0.4. The finite element model is shown in Figure 2.15.

The condition of symmetry was used to save computer time.

Figure 2.15 Finite element mesh used for the analysis of 2D pile-soil-pile layer.

A pseudo-static load was applied on one rigid segment of the pile either toward the
other pile or in the reverse direction, varying sinusoidally with a very low frequency and
low rate of loading, keeping the other pile fixed. The resulting displacement in the first
pile, and active or reactive force on both piles, were observed and analyzed to establish
the p-y behavior of the two-pile group. The resulting p-y behavior of the interaction-
springs and the near-field springs are presented in Figures E.7 through E.22 for soil from
the Snohomish river site. The NEABS parameters for those spring were computed, and
they are presented in Tables 2.7 through 2.9. The values of K, K, K, Fy, 7, and
B given in these tables refer to Figure 2.7. The value of o, refers to initial effective
confining pressure in the layer. The spacing, s, is expressed in terms diameters, d.

From the tables, one may observe that the stiffness of the interaction and near-
field springs increases with confining pressure. The stiffness of the interaction-springs

decreases with increasing spacing. The stiffness of the near-field springs increases with
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increasing spacing. The stiffness of the near-field springs is almost of the same magnitude as that
for isolated solitary piles. Although the stiffness does not depend on the pile diameter, the yield
force does. The yield force of the near-field springs is less than, but of similar magnitude to, that
of asingle pile. The reason is that a single pile gets better inelastic redistribution. The yield force
of the nearfield springs is higher than that of the interaction-springs.  All of the springs
displayed hardening, and the gap effect was shown to be very significant.

Logically, one would assume that, when the stiffness value of the interaction spring becomes
small in comparison with that of the near-field spring, group effects diminish, which occurred at a
spacing of between 2d and 4d.
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Table 2.7 NEABS parameters for P-y curves for near-field springs for two-pile groups
vibrating laterally for different confining pressures. [d = 0.457m, K = 0.50, f =10.40,
isotropic hardening, drained condition]

5 O’:,O Kl Kz Fy K4 ﬂ i
psi | bs/in® | ths/in? | ibs/in lbsfin?®
Plane-strain condition

2d | 2.3 267, 72 116. 19. 0.26 | 1.21
2d | 3 532. 101. 147. 25. 0.68 | 1.31
2d | 10 1344.

2d | 20 | 1609. 781. 64. 141. | 0.74 | 1.04
2d | 40 | 1924.

2d | 80 | 2647.

2d | 160 | 3733.

4d 1 115. 42, 69. 5. 0.63 | 1.19
4 | 2.5 288. 47. 1186. 12. 0.40 | 1.03
4d | 5 a70. 36. 200. 33. 0.88 | 1.39

4d | 10 [120. 162. 214. 24. 0.74 | 1.09
4d | 20 | 1357. 271. 406. 46. 0.57 | 1.01
4d | 40 | 1732. 418. 936. 77. 0.70 | 1.04
4d | 80 | 2468. 675. 2053. 200. 0.71 ) 1.00
4d | 160 | 3505. 1363. | 3830. 389. | 0.79 | 0.837

8d | 1 165.
8d | 2.5 304. 39. 154. 6. 0.15 | 1.05
8d | 5 609. 88. 220. 9. 0.36 | 1.04

8d | 10 1451. 184. 285. 66. 0.533 | 1.12
& | 20 1709. 264, 423. 53. 0.77 1 1.15
8d | 40 1835. 518. 1102. 103. [ 0.61]0.95
8d | 80 | 2727. 814, 2785. 254. [ 0.14 | 1.01
8d { 160 | 3864. 1434. | 5073. J486. 0.67 | 0.83
Plane-stress condition

d | 1 126.
d | 5 660.
8 | 1 143.
8d | 5 725.
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Table 2.8 NEABS parameters for
vibrating laterally for different con

isotropic hardening, drained condition]

P-y curves for near-field springs for two-pile groups
fining pressures. [d = 0.610m, Ky = 0.50, f = 0.40

s | ol K, K, Fy K, fel ¥
psi | Ibs/in? | lbs/in? bs/in | lbs/in?
Plane-strain condition

2d| 1 lis. 76. 66. 9. 0.39 | 1.16
2d{ 2.5 305. 29. 159. 22. 0.49: 1.20
2d | 5 646. 143. 124, 37, 0.38 | 1.67
2d | 10 1218. 122. 262. 64. 0.74 | 1.23
2d | 20 1751. 271. 562. 62. 049 | 1.14
2d | 40 | 2179. 578. T74. 106. |1 0.66 | 1.11
2d | 80 | 2634, 873. 1279. 212, 1095 1.08
2d | 160 | 3839. 1479. | 2889. 501. 1.02 | 1.04
4d | 1 127.

4d | 2.5 281. 52. 157. 6. 0.22 1 1.05
4d | 5 561. 78. 221. 8. 0.48 | 1.04
44 | 10 1179. 39. 330. 76. 1.18 | 1.13
44| 20 1633. 238. 623. 33. 0.44 1 1.07
4d | 40 1944, 442 1016. 103. | 0.82 | 1.09
4d | 80 | 2608. 943. 2219. 219. | 0.42 | 0.97
4d [ 160 | 3886. 1299. | 53521. 421. | 0.36 { 0.93
8d | 1 125. 57. 182. 4, 0.12]1.15
8d 1 2.5 304. 63. 197. T 0.12 | 1.07
8d | 5 607. 92. 351, 34. 0.15 | 1.09
8d | 10 1361. 23. 426. 107. 1 0.16 | 1.06
8d | 20 1684, 249, 812. 64. 0.19 | 0.98
8d | 40 | 2021. 507. 1188. 121. |1 0.90 | 1.09
8d | 80 | 2789. 1213. | 2216. 319. {0.430.95
8d | 160 | 3899. 1532. 7669. 610. 0.50 | 0.96

Plane-stress condition

2d | 1 110. 79. 26. 18. 0.87 | 1.08
4d | 1 124. . 9. 10. 0.27 1 1.15
4d | 5 579. 157. 197. 24, 0.24 ] 1.06
8d | 1 142.

8d | 5 627. 1539. 277. 34. 0.39 ] 1.06
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Table 2.9 NEABS parameters for P-y curves for interaction-spring between two-pile
groups vibrating laterally for different confining pressures. [d = 0.457m, K = 0.50, f
= 0.40, isotropic hardening, drained condition]

§ U:,o Kl K2 Fy 4K4 ﬂ i
psi | lbs/in? | lbs/in? tbs/in | lbs/in?
Plane-strain condition
2d | 2.5 206. 7. 89. 14. 47841 1.14
2d | 5 490. 42, 157. 22. 0.99
2d | 10 | 2277.
2d | 20 | 2190. 132. 509. 141. 0.26 | 0.69
2d | 40 | 32486.
2d | 80 | 5031.
2d | 160 | 8021.
4d 1 95, 24, 64. 9. 0.08 | 0.63
4d | 2.5 225. 23. 114, 3. 0.19 { 0.97
44 3 414. 79. 173. 16. 0.14 | 1.04
4ad | 10 1040. 79. 2686. 46. 0.06 | 0.92
4d | 20 1073. 39. 682. 27. 0.96
4d | 40 1516. 149, 1319. 59. 0.90
4d | B0 2172. 361. 2504, 130. 0.77
4d | 160 | 3188. 573. 5223. 332. 0.61
8d 1 110.
8d | 2.5 156. 22. 80. 3. 0.46 | 0.90
8d ; 5 324, 33. 123. 3. 0.51  0.90
84 | 10 717. 39. 224. 48, 0.96
& | 20 812, T2. 582. 26. 1.02
8d { 40 1122, 112. 1050. 58. 0.99
8d | 80 1483. 333. 1732 144, 0.39 | 0.86
8d | 160 | 2094. 609. 3783. 302. 0.73
Plane-stress condition
4d{ 1 119.
44 | 5 732.
ad 1 76.
8d | 5 459.
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Table 2.10 NEABS parameters for p-y curves for interaction-spring between two-pile
groups vibrating laterally for different confining pressures. [d = 0.610m, K} = 0.50, f
= 0.40, isotropic hardening, drained condition|

s |og | Ky K, F, Ky B Y
psi | lbs/in? | Ibs/in? | tbs/in | Ibs/in?
Plane-strain condition

2d| 1 117. 35. 72. 9. 0.78
2d 1 25| 305. 29, 159. 22, 0.50 | 1.01
2d| 5 849. 95. 214. 83. 0.57 | 0.78
2d | 10 | 1331. 90. 373. 47. 0.94

2d | 20 1636. 79. 689. 48. 0.87 | 1.00
2d | 40 | 2375. 120. 1683. 83. 0.36 : 0.96

2d | 80 | 3433. 360. 3766. 179. 0.87
2d | 160 | 5041. 697. 8133. 427. 0.77
4d | 1 103. 66. 29. 45. 0.19 | 1.08
4d | 2.5 231. 28. 141. 3. 0.32 ] 0.38
d| 35 483. 36. 225. 6. 0.40 | 0.92
4d | 10 1079. 169. 326. 45. 0.23 ] 0.95
4d | 20 | 1092 64. 835. 51. 0.37 | 0.98
4d | 40 | 1573. 153. 1782. 84. 0.87
4d | 80 | 2241. 205. 3481. 164. 0.31
4d | 160 | 3238. 612. 6813. 340. 0.66
8d | 1 62. 14. 74. 2. 1.08
8d | 2.3 160. 26. 96. 4. 0.57 | 0.89
8l 5 348. 35. 7. 30. 1.28 | 1.10
8d | 10 T44. 138. 275. 24, 0.99
84 | 20 851. 73. 635. 49. 0.56 | 1.10
8d | 40 1068. 136. 1488. 90. 1.00
8d | 80 1439. 61. 2856. 139. 0.92

8d | 160 | 2103. 558. 4785. 339. 034 ] 0.73
Plane-stress condition

2d | 1 112. 47. 57. 12. 0.52 | 0.64
4d | 1 101. 55. 45. 34. 0.75 | 1.02
44| 5 532. 90. 171. 22. 0.62 | 0.65
8d | I 68. 22. 47. 18. 0.94 | 1.11
8d | 5 352. 55. 135. 20. 0.88 | 0.63
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2.3.1.2 Shear-Lateral Vibration

For the computation of shear-lateral interaction spring behavior, the two piles with
soil were modeled within the finite element framework. The same mesh, as shown in
Figure 2.15, is used without the symmetry. The piles were considered to be rigid while
the soil was considered to be elasto-plastic near the pile and elastic away from the pile.
Due consideration was given for the initial Ko-stress condition and sliding interfaces.
From this thin layer finite element model, the interaction behavior was obtained using
the same procedure as that used for that of direct interaction springs. The resulting p-y
behavior of the interaction-springs and the near-field springs is presented in Figures .23
through E.38 for soil from the Snohomish river site. The NEABS parameters for those
spring were computed, and they are presented in Tables 2.11 through 2.14. The values
of Ky, R,. Ry. Fy, v, and 3 given in these tables refer to Figure 2.7. The value of Tl
refers to initial effective confining pressure in the laver. The spacing, s. is expressed in
terms diameters, 4.

From the tables, it is observed that the stiffness of the interaction and near-field
springs increases with confining pressure. The stiffness of the interaction-springs de-
Creases with increasing spacing. The stiffness of the near-field springs increases with
increasing spacing. The stiffness of the near-field springs is almost of the same magni-
tude as that for isolated solitary piles. Although the stiffness does not depend on the pile
diameter, the yield force does. The stiffness of the interaction-spring for shear-lateral
vibration is much less than that for direct-lateral vibration. This essentially means that
the direct-lateral interaction is much more prominent than shear-lateral interaction. The
yield force of the near-field springs is less than, but of similar magnitude to, that of a
single pile. The reason is that a single pile gets better inelastic redistribution. The yield
force of the near-field springs is higher than that of the interaction-springs. All of the

springs displayed hardening property, and the gap effect was shown to be very significant.

100



Table 2.11 NEABS parameters for p-y curves for near-field spring between two-pile
groups vibrating laterally in shear-direction for different confining pressures. [d =
0.457m, Kj = 0.50, f = 0.40, isotropic hardening, drained condition)

s |ols| K K, Fy K g 7
psi | lbs/in® | lbsfin? | Ibs/in | lbs/in?
Plane-strain condition

2d | 1 112. 40. 73. 6. 0.36 | 1.10
2d [ 25 ] 264. 54. 126. 6. 0.28 | 1.06
2d| 5 236. 91. 182. 6 0.33 | 1.03

2d | 10 999. 151. 291. 27. 0.39 | 1.14
2d | 20 | 1425. 298. 470. 40. 0.33 | 1.01
2d | 40 | 1892. 584. 903. 87. 0.38 | 1.05
2d | 80 | 2604. 1038. | 1971. 228. 0.27 | 1.06
2d | 160 | 3490. 1814. | 4632. 584. 0.17 | 1.01

4d | 1 119. 40. 83. 0.27 | 1.08
ad | 2.5 277. 51. 134. 0.23 | 1.05
4d | 5 537. 86. 195. 0.29 | 1.03

3

3

6.
4d | 10 | 1052. 145. 305. 27. 041 1 1.15
4d | 20 | 1582. 305. 501. 4]. 0.35 | 1.08
4d | 40 | 1935. 593. 1022. 101. 0.36 | 1.04
4d | 80 | 2602. 1026. | 2369. 237. 0.19 | 1.02
4d | 160 | 3724. 1799. | 5226. 509. 0.10 | 0.93

8d | 1 128. 40. 109. 5. 0.09 | 1.08
8d | 2.5 297. 53. 159. 3. 0.13 | 1.04
8d| 5 297. 92. 229. 6. 0.25 | 1.02

8d | 10 | 1147. 151. 354. 33. 036 | 1.16
8d | 20 | 1618. 336. 593. 54. 0.32 | 1.03
8d | 40 | 2094. 677. 1194. 127. 0.35 | 1.00
8d | 80 | 2876. 1142, 1 2803. 307. 0.13 | 0.98
8d | 160 | 4023. 1961. | 6309. 741. | -0.06 | 0.97

Plane-stress condition

2d | 1 138. 103. 7. 109. 0.23 | 3.60
2d| 5 635. 451. 12. 377. 0.93 | 4.83
4d | 1 125.
44 ] 5 925.
8d | 1 122.
8d | 5 579. 126. 163. 18. 0.45 | 0.97
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Table 2.12 NEABS parameters for p-y curves for near-field springs for two-pile groups
vibrating laterally in shear-direction for different confining pressures. [d = 0.610m, Ky
= 0.50, f = 0.40, isotropic hardening, drained condition]

s |ols 1 K K Fy Ky g8 Y
psi | Ibs/in? | lbs/in? | ibs/in | lbs/in?
Plane-strain condition

2d | 1 111. 40. 104. 6. 0.24 | 1.06
2d | 2.5 261. 93. 175. 9. 0.37 | L.07
2d] 5 539. 90. 236. 8. 0.32 | 1.03
2d | 10 1067. 92. 319. 78. 0.50 | 1.11
2d | 20 1535. 225. 765. iT. 0.13 1 1.10
2d | 40 1808. 430. 1234. 128. | 0.70 | 1.13
2d | 80 | 2500. 924. 2541. 270. 1 0.30 | 1.11
2d | 160 | 3530. 1561. | 6187. 677 0.42 | 1.03
4d | 1 120. 24. 121. 6. 0.70 | 1.07
4d | 2.3 272. 44. 188. 3. 0.46 | 1.07
4d | 5 562. 72. 254. 5. 0.69 | 1.07
4d | 10 869. 77. 468. 28. 0.72 | 1.17
4d | 20 1566. 303. 730. a0. 1.03

4d | 40 | 2062. 545, 1328. 103. | 0.49 ] 1.09
4d | 80 | 2587. 881. 2784. 820. [0.79[0.38
4d | 160 ] 4102, 1632. | 5136. 489. | 0.67 | 0.93

8d | 1 127, 41. 147. 8. 1.13
8d | 2.5 291. 49, 222. 3. 0.24 1 1.06
8d | 5 621. 102. 296. 14. 0.40 | 1.08
8d | 10 985. 137. 943. a7. 0.13 | 1.20

8d | 20 1638. 302. 870. 58. 0.03 ] 0.97
8d | 40 | 2149. 685. 1619. 143. 1 0.24 | 1.08
8d | 80 | 2809. 1363. | 3016. 295. [0.29 ] 0.91
8d | 160 | 4239. 2256. | T211. 760. | 0.09 | 0.89
Plane-stress condition

2d¢ 1 111.

2d}| 5 640.

4d | 1 112. 29. 115. 10. 0.55}0.98
4d| 5 542, 107. 232. 27. 0.54 | 0.96
8d| 1 107. 27. 135. 32. 1.00
8d | 5 658. 132. 281. 25. 0.27 | 1.05
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Table 2.13 NEABS parameters for p-y curves for interaction-spring between two-pile
groups vibrating laterally in shear-direction for different confining pressures. [d =
0.457Tm, K} = 0.50, f = 0.40, isotropic hardening assumed, drained condition]

5 0’:’,0 I{l Kz Fy K4 ﬂ Y
psi | bs/in? | Ibs/in? | Ibs/in lbs/in?
Plane-strain condition

2 1 38. 21. 48. 4. 0.63 | 1.00
2d | 2.3 207. 20. 102. 4. 0.49 { 0.98
2d) 5 426. 31. 163. 4. 0.39 { 0.97
2d | 10 903. 57. 267. 27. G.61 [ 1.06
2d | 20 1169. 121. 936. 32. 0.28 [ 0.36

2d | 40 1578. 194. 1064. 84. 0.22 1 0.90
2d | 80 | 2261. 334. 1961. 186. 10.33|0.82

2d | 160 [ 2977. 359. 3807. 495. | 040 | 0.69
44 | 1 853. 20. 63. 4. 0.37 | 1.01
4d | 2.5 206. 22. 109. 4, 0.28 | 1.00
4d | 5 429. 34. 164. 9. 0.37 | 0.99
4d | 10 827. 63. 257, 25. 0.56 | 1.11

4d } 20 1055. 140. 310. 42. 0.22 | 0.98
4d | 40 1330. 211. 991. 102. [ 0.14 | 1.00
4d | 80 1836. 391. 1747. 163. |0.33|0.91
4d [ 160 | 2455. 682. 3345. 401. 1 0.31] 0.83

8d | 1 64. 15. o7, 3. 0.32 | 1.01
8d [ 25 163. 22, 85. 4. 0.29 | 1.01
8d| 35 341. 35. 131. 4. 0.40 | 0.99
8d | 10 639. 64. 214. 25. 0.54 | 1.13
8d | 20 779. 132. 444, 33. 0.02 ) 1.01
8d i 40 933. 161. 846. 107. 1.06

8 | 80 1291. 343. 1354. 120. 0.31 | 0.94
8d | 160 | 1728. 632. 2471. 360. 0.34 { 0.93
Plane-stress condition

2d | | 201.

2d| 5 762.

44| 1 110.

4| 35 392. 48. 159. 12. 0.18 | 0.89
8d 1 1 63. 18. 35. 6. 0.16 | 0.80
8d| 5 315. 95. 124. 18. 0.34 | 0.91
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Table 2.14 NEABS parameters for Dy curves for interaction-springs for two-pile groups
vibrating laterally in shear-direction for different confining pressures. [d = 0.610m, K,
= 0.30, f = 0.40, isotropic hardening, drained condition]

S U::O Kl Kg Fy I{4 16 Y
psi | lbs/in? | lbs/in? | Ibs/in {bs/in?
Plane-strain condition

2d| 1 90. 18. 85. 5. 0.41 | 0.99
2d | 25 209. 17. 164. 4. 0.37 1 1.00
2d| 5 479. 32. 230. T 0.39 1 0.97
2d { 10 | 1190. 164. 310. 61. 0.41 | 0.93
2d | 20 | 1304. 66. 722. 60. 0.85 | 1.01
2d [ 40 1602. 160. 1335. 119. 0.92

2d | 80 | 2051. 206. 2894, 219. 1030 0.84
2d | 160 | 2855. 413. 3269. 487. | 0.67 | 0.69

4d | 1 88. 21. 85. 4. 0.31 | 1.02
d | 2.5 194, 19. 154. 3. 0.31{ 1.01
4d | 5 411. 37. 232. 8. 0.44 { 0.88
4d | 10 874. 99. 297. 14. 053 | 1.14

4d | 20 | 1165. 177. 295. 96. 0.49 | 1.05
4d | 40 | 1342. 252. 1171, 94. 0.39 ; 0.95
4d | 80 | 2054. 681. 2382. 728. 1033 0.76
4d {160 | 2502. 747 4436. 368. | 0.2510.79

8d | 1 68. 16. 72. 4, 0.30 | 1.03
8d | 2.5 133. 20. 120. 3. 035 1.03
8| 3 325. 35. 192. 8. 043 | 1.06
8d [ 10 T742. 115. 217. 5, 0.94 | 1.15
8d [ 20 838. 169. 503. o7. 046 | 1.10
8d | 40 992, 244, 1061. 83, 0.16 | 0.87
8d | 80 1354, 303. 20235. 111. 0.99
Bd | 160 | 1727. 640, 3468. 240, 0.16 | 0.81
Plane-stress condition

2d 1} 1 154.

2d | 3 995.

4d | 1 81. 13. 88. 8. 0.50 | 0.84
44| 5 405. 36. 207, 23. 0.64 | 0.88
8d | 1 59. 45, 87. 8. 1.20
8| 5 336. 57. 153, 16. 0.49 [ 0.95
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2.3.1.3 Axial Vibration

Pile groups for axial vibration are modeled in the same way that they were modeled
for lateral vibration. The only difference is that all piles are connected to the surrounding
soil by near-field shear springs, and the piles are connected to themselves by interaction
shear-springs. These interaction Springs resist relative vertical displacements and they
are expected to behave in the same way for both directions of loading. The near-field
elements, such as near-field mass and dampers, and far-field elements connecting the pile
to soil, are still applied. For the determination of the spring characteristics, it is further
assumed that no point in the soil should move laterally during axial vibration of piles in
pile groups.

For the determination of axja] interaction and near-field springs, two piles were mod-
eled once again within the finjte element framework. The same mesh. as shown in Fig-
ure 2.13, was used with an axis of Symmetry. No sliding interface was assumed to exist
to avoid instability and the conditjon of symmetry was utilized. No lateral displacement
boundary condition was used. Vertical displacement of soil at a distance of 20d from
the pile or further apart was neglected by using an artificial, no-displacement boundary.
Vertical stresses were maintained to simulate confining effects. Perturbation was given
only in one pile, and the resulting displacement of the pile and the reactive forces in
both pile segments were observed and analyzed to obtain the interaction characteristics.
t-z curves are computed for the effective vertical stresses of 6.9, 17.3. 34.3, 63.9, 137.8,
275.6. 551.2, and 1102.4 kPa (1, 2.5, 5, 10, 20, 40, 80, and 160 psi) for drained behavior
of the soil, and for center spacing of 2d, id, and 8d. The resulting ¢-z behavior of the
interaction-springs and the near-field springs are presented in Figures E.39 through E.50
for soil from the Snohomish river site. The NEABS parameters for those springs were
computed, and they are presented in Tables 2.15 through 2.13. The values of K|, K,
Fy, and B given in these tables refer to Figure 2.7. The value of 0o refers to initial
effective confining pressure in the laver. The spacing, s, is expressed in terms diameters,
d.

From the tables, it is observed that the stiffness of the interaction and the near-
field springs increases with confining pressure. The stiffness of the interaction-springs
decreases with increasing spacing. The stiffness of the near-field springs increases with

increasing spacing. The stiffness of the near-field springs is almost of the same magnitude
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as those for isolated solitary piles. Although the stiffness does not depend of the pile
diameter, the yield force does. The yield force of the near-field springs is less than, but
of similar magnitude to, the yield force for a single pile. The reason is that a single pile
gets better inelastic redistribution. The yield force of the near-field springs is higher for
higher spacing. The hardening of the springs with displacements js insignificant. During
the analysis, it was assumed that the interface is perfect and no gap is formed. The

results show that slippage occurs, causing a perfectly plastic ¢-2 behavior.
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Table 2.15 NEABS parameters for ¢-
vibrating axially for different confini

hardening, drained condition]

s o] K, K F, B
psi | ibs/in? | Ibs/in? lbs/in

2d| 1 96.

2d | 2.5 | 243,

2d | 3 490. 119. 139,

2d | 10 975. 332. 208. | 0.30

2d | 20 | 1183

2d | 40 | 1265.

2d | 80 | 1580.

2d | 160 | 2206.

4d | 1 98.

4 { 2.3 252,

4d| 5 312. 69. 173.

4d | 10 | 1023 347 236. | 0.00

4d | 20 | 1227,

4d | 40 | 1326.

4d | 80 | 16352

4d | 160 | 2317.

8d | 1 105.

8d | 2.5 | 269.

8d | 5 949. 190. 208. | 0.10

8d | 10 | 1094. 447. 287. ] 0.10

8d ! 20 | 1312

8d | 40 | 1418.

8d | 80 | 1766.

8d j 160 | 2480.

gs for two-pile groups

ng pressures. [d = 0.457m, Ky = 0.50, isotropic

107




Table 2.16 NEABS parameters for ¢-z curves for near-field springs for two-pile groups
vibrating axially for different confining pressures. [d = 0.610m, Ky = 0.50, isotropic
hardening, drained condition]

§ O'LO .Kl K2 Fy ,l?
psi | Ibs/in® | Ibs/in? | bs/in

2d 1 93.
2d | 2.5 240.
21 5 487.
2d | 10 976.
2d | 20 1169.
2d | 40 12865.
2d | 80 1584,
2d | 160 | 2222.
4d 1 98.
4d | 2.3 232.
44| 5 505.
4d | 10 1022.
4d | 20 1227,
4d | 40 1325.
4d | 80 1660.
4d | 160 | 2303.
8d 1 104.
8d | 2.3 272.
8d| 5 538.
8d | 10 1095.
8d{ 20 1309.
8d | 40 1418.
84 | 80 1773.
8d | 160 | 2482.
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Table 2.17 NEABS parameters for -z curves for interaction-spring between two-pile
groups vibrating axially for different confining pressures. [d = 0.457m, K = 0.50,
isotropic hardening, drained condition)]

s | ol K Ky F, a
psi | lbs/in® | Ibs/in?® | Ibs/in

2d7 1 212. 99, 103. {0.48

2d | 2.5 538. 7l. 160.

2d ! 5 1059. 86. 241. 1 0.29
2d ] 10 [ 2171 313. 320. | 0.33
2d | 20 | 2607. 1074. 433. [ 0.35
2d | 40 | 2845. 1231. 893. | 0.43
2d | 80 | 3343. 1475, | 1760. | 0.48
2d | 160 | 5005. 2640. | 1003. | 0.06

4d | 1 148.

4d | 2.5 | 372

4d | 5 704, 72. 221. | 0.43
4d | 10 | 1502. 309. 296. | 0.54
4d | 20 | 1804.

4d | 40 1949.

4d 1 80 | 2424

4d | 160 | 3415.

8d | 1 100.

8d | 2.5 250.

8d| 5 508. 170. 183. | 0.48
8d [ 10 | 1013. 432. 250. | 0.66

8d | 20 | 1214.
8d | 40 | 1312.
8d | 80 | 1631.
8d | 160 | 2295.
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Table 2.18 NEABS parameters for {-z curves for interaction-spring between two-pile
groups vibrating axially for different confining pressures. [d = 0.610m, K = 0.50,
isotropic hardening, drained condition]

s o] K, K F, | 3
psi | lbs/in? | lbs/in? lbs/in

2d| 1 216.

2d | 2.5 542.

2d | 35 1101. 183. 283. | 0.52

2d | 10 2192. 737. 348. | 0.31

2d | 20 | 2633. 1272. 572, | 0.34
2d | 40 | 2846. 1511. | 1132. | 0.36
2d | 80 | 3337. 1841. | 2273. | 0.41
2d | 160 | 5037. 1243. | 1640. | 0.23

4d | 1 148.

4d ] 25| 372.

4d | 5 762.

4d | 10 | 1505. 850. 331. | 0.36
4d | 20 | 1804.

4d | 40 | 1949.

4d | 80 | 2439.

4d | 160 | 3436. 1055. | 1588. | 0.59
8d | 1 101.

8d | 2.5} 250.

8d| 5 520.

8d | 10 | 1014,

8d | 20 | 1212.

8d | 40 | 1311.

8d | 80 | 1640.

8d | 160 | 2296.
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2.3.2 Modeling of Near-Field Dampers

The damping constants for the near-field elements were based on Rayleigh's proportional
damping for the dominant loading frequency. This loading frequency comes from the
earthquake loading. This loading frequency can be obtained by counting the number of
maxima, minima, crossings, or from the Fourier analysis of the acceleration history. The initial
or unloading spring stiffness is the basis of the damping coefTicient.

C=2Ko [2.23]

233 Modeling of Near-Field Masses

The nodes corresponding to pile segments can have a mass from the pile itself and a
contribution from the soil. The concept of tributary area may be used for the determination of
lumped masses. The contribution from the soil to an interior pile segment may be considered
to come from the hatched region, as shown in Figure 2.16. Then for the piles at the center,

mp = p,7 ro’ + ps(8iS: - m1pY) [2.24]

For piles on the sides and in the corners of the group, the mass contribution of the soil
also comes from a large distance. This contribution to the mass can be estimated by
considering tributary area and an approximate shape function. The consistent mass matrices
can then be developed. The HRZ lumping scheme may be followed to get a diagonal mass
matrix, which is then used to identify the contribution of soil to the lumped nodal masses.
According to this procedure, the mass contribution from soil, and the total masses in side and
corner piles, may be defined. For piles on the side,

my = (eripy oSS (P ) [225]
ar, @ni+n+D) o0’ | p,

For piles in the corner,

My = (M, ynete +81820,)/4+2 (soil contribution from sides) + zrruzpp(l—- ZP_J [2.26]
P

f.
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Figure 2.16 Concept of tributory area emploved to find approximate mass
contributions from soil to the piles in a pile group
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2.3.4 Estimation of the Far-Field Elements

In the estimation of the far-field elements, it may be assumed that the waves produced
by the inner piles of the group are reflected by the piles around them. Thus, the radiation
energy dissipated from the inner piles comes back into the system. On the other hand,
it may be assumed that the waves generated by the surrounding piles either at the sides
or at the corners of the group do not come back.

Therefore, modeling of the far-field for a pile group can be done by connecting far-
field elements to the surrounding piles with the near-field elements through the auxiliary
nodes. Furthermore, for the sake of modeling, it may be assumed that piles in the group
do not interact with each other at the far-field. So, the far-field elements connecting
a pile in a pile group may be assumed to be those for a single pile. Alternatively. the
far-field spring stiffnesses, damping coefficients, and the lumped masses for a single pile
which is equivalent to the pile group can be distributed along the external pile using
a reasonable ad hoc procedure. In this case, a reasonable equivalent radius of the pile

group would be required.
2.4 Pile Cap Behavior

In almost no cases are solitary piles used. Piles come in groups and they are usually
connected at the top with sufficiently rigid caps. If the cap is above the ground and it
is not connected to the soil, it will not contribute to the lateral resistance. On the other
hand, if it is connected to the soil and embedded in it, it will produce lateral resistance.
It can produce lateral resistance in two ways: bearing and shearing along the vertjcal
surface, and shearing along the bottom surface.

At the surface, the confining pressure is small. The soil is normally soft (that js
why piles are necessary) and the vertical surfaces will contribute little to the pile-group
resistance compared to that of the piles. For the modeling of this resistance, P-y curves
were developed for circular and rectangular pile caps of different dimensions in the same
way as done for single piles, and they are useful for lateral vibration analysis. During
the analysis, rigid behavior of the cap, elasto-plastic and elastic behavior of the soil in
the near- and far-zones respectively, sliding interfaces, and plane-stress conditions were

considered. Displacement of the soi] at a distance of 20d or 20a {d, a = Dimensions of
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the circular and square caps, respectively) was considered to be negligible by providing
an artificial, no displacement boundary. The resulting p-y curve was generated for four
different sizes of square and four different sizes of circular pile-caps for the soil of the
Snohomish river site. The resulting p-y behavior of the near-field springs are presented
in Figures E.51 through E.52. The NEABS parameters for those springs were computed,
and they are presented in Table 2.19.

Because soil layers were considered to be independent within the framework of the
Winkler hypothesis, the shearing resistance at the bottom of the pile cap should be zero,
because both layers of soil above and below the cap bottom will move the same amount
during lateral vibration. The cap and pile segment will produce bearing resistance.
and the bottom surface of the cap should move automatically without any resistance.
However. the deformed shape of the soil laver for the movement of pile-groups will differ
from that required for the movement of the cap bottom. This difference will produce
some resistance. Only a relatively small effective part of the cap bottom will produce this
lateral resistance. This effectjve area should be less than the cap bottomn area less the
sum of the pile cross-sectional areas. The approximate stiffness of this p-y curve may be
determined from elastic solutions available in the literature. The ultimate value of p. le.
Pue, will depend on the actual vertical load carried by the cap itself and the coefficient
of friction.

During bridge vibration. the rocking component will produce a nonuniform distribu-
tion of bearing stress. This spatial and temporal variation of bearing stress makes it too
cumbersome to develop a realistic p-y curve for the cap bottom. Moreover, for soft soil
conditions, when the pile tip takes a higher contribution than the skin friction. vibration
may cause the soil to be compacted and a gap may be produced between the pile-cap
bottom and the soil. Then, the contribution of the shearing of the cap bottom will be
negligibly small. On the other hand, a finite element analysis of the shear resistance
produced by the cap bottom in shear would require a complete 3D analysis of different
dimensions and shapes of the pile cap, the soil conditions, and confining pressures. An
extensive use of computer time would not produce an appreciable result. That is why it
is left to the judgment of the designer.

For the vertical movement of the pile cap, resistance comes from bearing at the cap

bottom and the side shear resistance of the vertical surface of the cap. For resistance of
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the cap bottom, only a part of the cap area is effective. This area should be the gross
area of the cap bottom less the sum of the pile cross-sectional areas. Also the rocking
compogent of the cap motion will interact with the model making the problem more
complicated. The exact determination of the T.-Z. curve for the cap bottom would be
cumbersome and it would not be cost-effective with respect to computer time. It is left
up to the judgment of the designer.

The side shear resistance to vertical movement was also developed for both circular
and rectangular caps in the same manner as for the single pile segment. No sliding
interface was assumed to exist. Very little confining pressure was considered. No lateral
movement of the soil was assumed. The resulting p-y behavior of the near-field springs
are presented in Figures E.53 through E.534. The NEABS parameters for those spring

were computed, and they are presented in Table 2.20.

Figure 2.17 A FE model for square pile-cap

2.5 Pile Tip Response

The vertical force-displacement relation for axial response, T,-Z,, of the pile-tip is
much more important for end-bearing piles than frictjon piles. Pile tip vertical response

is also important for latera] response of pile groups. The lateral response for the pile
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Table 2.19 NEABS parameters for P.-Y, curves for
different sizes and shapes. [K§ = 0.50, f

pile-caps vibrating laterally for
= 0.40, isotropic hardening, drained condition]

Size Initial | Post-yield Initial First Gap Hardening Gap
’ (shape), stiffness, stiffness, | yield force stiffness, parameter, | parameter,
in(S/C) {bs/in? lbs/in? lbs/in tbs/in? B8 ¥y
Circular in plan
d=200 260. 80. 244, 148. 0.37 0.64
d=300 240. 101. 329. 140. 0.74 0.46
d=400 311. T4, 398. 161. 0.37 0.42
Square in plan
a=50 227. 33. 273. 23. -0.49 1.36
a=100 242. 45. 378. 32. (.08 1.51
a=200 213. 28. 1209. 38. -0.68 1.72
a=300 253. 22, 1913. 47. -1.13 1.34
S = Square, C = Circular, a = Lengh, d = Diameter

Table 2.20 NEABS parameters for
different sizes and shapes. [}

T.-Z. curves for pile-caps vibrating axially for

= 0.50, isotropic hardening, drained condition]
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Size Initial | Post-yield | Imitial Hardening
(shape), stiffness, stiffness, | yield force parameter,
in(S/C) tbs/in? lbs/in? tbs/in 3
Circular in plan
d=100 202, 161. 502. -0.06
d=200 203. 161. 1004. -0.06
d=300 253, 315, 2083. 0.96
d=400 219, 25. 2617. 2.59
Square in plan
a=50 213. 171. 209. 0.98
a=100 253. 157. 296. 0.83
a=200 348. 767. 3241. 0.96
a=300 292, 208. 882. -1.67
S = Square, C = Circular, a = Lengh, d = Diameter




tip, F;-Y;, is important for determining the lateral response of end-bearing piles and pile
groups. For the determination of the lateral response of the pile tip, an actual 3D analysis
is required. However, the result has little significance. The lateral force-displacem_ent
behavior for the perfectly elastic condition is available in the literature (Wolf 1988, pages
20-25) and will be adopted. It might be possible to use the bearing capacity as the
strength of the vertical spring.

Alternatively, the use of the pile tip response may be avoided by considering soil
column as part of the pile with soil materjal properties. The near-field and the far-field
elements can be added to this extended soil column. Nogami and Konagai (1986, 1937)
adopted this concept in their work.

The interaction between pile-tips might also be considered. However, the designer
may adopt the elastic interaction factors. In that case, one should keep in mind that
interaction effects reduce with increasing plasticity, and elastjc interaction factors are the

upper limits of those factors.
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3.1

3. INTERPRETATION, APPRAISAL, AND APPLICATION

General

In this chapter, the results obtajned by numerical and analytical techniques used in

the previous chapter have been interpreted, assessed, and evaluated. An evaluation of

the applicability of the proposed near- and far-field elements has been described in detajl

in this chapter. The limitations and the areas of application have also been discussed.

3.2 Calibration of the Model

The models developed and described in the previous chapter for single piles and pile

groups with or without caps were mostly based on the following assumptions:

The lateral reaction of a single pile or of a pile in a pile group depends only on the
lateral displacement or relative lateral displacement of that pile or those piles at
that particular level (Winkler hypothesis). This means that the distributed lateral

neighboring springs do not interact with each other.

The axial reaction of a single pile or of a pile in a pile-group depends only on
the axial displacement or relative axial displacement of that pile or those piles at
that particular level (Winkler hypothesis). This also means that the neighboring

distributed axial springs do not interact each other.

The near-field discrete masses can be obtained from tributary area and shape funec-

tion concepts.

The damping coefficients can be determined from proportional damping, initial

spring stiffness, and the dominating frequency of loading or response.

The loading frequency is as small as normally encountered in practice for loading

arising from earthquake excitation.
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The first two assumptions work well for most cases because the pile itself is a stiff and
strong element which connects those reactive springs. The displacement at one point in a pile
induces displacement at other points due to some rigid body movement within a small length
of the pile. This rigidity of the pile forces the springs to interact.

The lumped masses are based on some physically conceivable assumptions. A small error
in the computation of masses is not expected to produce a large error for low frequency
loading, such as that from earthquake excitation. Some researchers (Penzien 1970) have
obtained "accurate” results without considering the lumped mass contributed by soil.
Therefore, the third assumption is a reasonable one.

The damping coefficient can not be obtained from finite element or other numerical
techniques unless the viscosity parameters are known. The typical stiffness-proportional or
Rayleigh damping procedure is usually adopted. The near-field damping ratio basically
depends on the strain amplitude in the soil. An average strain amplitude must be obtained to
get this damping ratio from the equations derived by Seed and Idris (1979) or Hardin &
Dmevich (1972). The total uncertainty comes from the selection of the damping ratio,
dominant frequency, and spring stiffness values. A reasonable value of loading frequency can
be obtained from the earthquake loading by peak counting or crossing counting, or by using a
Fourier analysis of the accelerogram record, although it is not a purely harmonic load.
Although the above assumptions and approximations are based on realistic bases of physical
attributes, they should be subjected to evaluation.

3.3 Evaluation of the Model for Lateral Response of a Single Pile

The model proposed in the previous chapter has been evaluated by simulating one full
scale loading test. The response obtained from the full scale model simulation of pile-soil
interaction with sliding interfaces for lateral loading are compared with those obtained from
the proposed model for the same conditions. The details are described as follows.

A single pile of diameter 0.632m (d = 24") was modeled in two different ways, one
using complete finite element discretization of the full pile-soil combination and the other
using the proposed finite layer model The other was modeled using discrete elements with
lumped masses, non-linear springs, and linear dashpots. The models are presented in
Figures 3.1 and 32. The length of the pile was 225J. In the finite element model,
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the diameter and the length of the soil domain was 20d and 36d, respectively. The
soil non-linearity, slippage, gap formation, and initjal geo-static stress were considered.
The damping was assumed to come from geometric damping and hysteretic damping.
The infinite soil domain was simulated using a finite soil domain with non-reflecting
boundaries. The condition of symmetry was utilized. The pile was assumed to be linearly
elastic. '

The basic soil parameters were needed exactly for these specific vertical confining
pressures. These are interpolated from Tables D.1 through D.2. The depth independent
Parameters are exactly same as those given in Table D.1. The depth dependent param-
eters are given in 3.1 The resulting cap parameters for those soils at different layers are
presented in Table 3.9,

The other was modeled using discrete elements with lumped masses. non-linear springs,
and linear dashpots. In the discrete model, the lumped masses, non-linear springs. and
linear dashpots were used to model the same pile. For the nonlinear near-field springs.
the p-y curves computed in Chapter 2 and presented in Table 2.2 were used. The Dy
curves were scaled by the thickness of the layer to get the proper resistance. Similarly,
the linear spring and damping constants are computed according to the Equation A.l
and A.2. The lumped masses are computed according to Section 2.2.1.3. The propor-
tional damping was used for the near-field damper. The resulting parameters are given
in Tables 3.3 through 3.6.

The vibration was simulated for harmonic forced transient response. The forcing
function is a half-sine wave with an amplitude of 150 kips, as shown in Figure 3.3. The
analysis was done to obtain the response for 2 seconds. The duration of loading was 1
second. Peak load was attained at time ¢t = 0.5 second. The pile displacement shapes
at different times obtained from both the full scale finite element model and from the
discrete mode! are presented in Figures 3.4 through 3.6. The pile head displacement
histories are plotted in Figures 3.7 and 3.8. The curvature values along the pile are also
plotted in Figures 3.9 and 3.10.

It is observed that the results obtained from the FE model compare well with those
obtained from the lumped model with high damping. Although no Rayleigh damping
was assumed in the FE model, the result show high damping in the response. The reason

might lie in the fact that the energy is dissipated at a high rate through the non-reflecting

120



Table 3.1 Depth dependent basic soil parameters used for FE analysis of lateral
vibration of a single pile

h | OCR Strength

] S
—_—
avﬂ,can a’
vQ.con
psi

00.5| 3.50 | 0.668 | 11.67
01.5 | 3.30 | 0.668 | 11.67
0251 3.00 | 0.668 | 11.67
03.7 3.00 | 0.668 | 11.67
05.2 1 2350 | 0.668 | 11.67
0v.0 | 2.30 | 0.668 | 11.67
09.0 | 2.30 | 0.663 { 11.67
1151 2.00 | 0.668 | 11.67
1451 200 | 0.612 { 15.42
180 2.00 | 0.612 | 1542
23.0 | 1.50 | 0.575 | 31.40
205 1.00 | 0.551 | 36.26
35.5 | 1.00 | 0.551 | 36.26
40.0 | 1.00 | 0.351 | 36.26
3.0 ] 1.00 | 0.351 | 36.26
4.5 1 1.00 | 0.351 | 36.26
455 1.00 | 0.351 | 36.26
47.0 | 1.00 | 0.551 | 36.26
49.5 1 1.00 | 0.351 | 36.26
33.0 1 1.00 | 0.351 | 36.26
97.5 | 1.00 | 0.531 | 36.26
63.5| 1.00 | 0.551 | 36.26
71.0] 1.00 | 0.551 | 36.26
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Table 3.2 The cap parameters obtained from the basic soil properties.

h W R D Xo E v K G
ft psi psi psi psi

00.5 | 0.233 | 0.269 | 1.377 -0.717 85.181 {0.100 { 35.492 38.719

01.5]0.238 | 0.269 ! 0.459 -2.151 255.542 | 0.100 | 106.476 116.156
02.5 | 0.235 | 0.269 | 0.275 -3.586 431.639 /0.100 | 179.858 196.208
03.7 | 0.235 | 0.269 | 0.186 -3.307 638.853 | 0.100 | 266.189 290.383
05.2 1 0.231 | 0.269 | 0.132 -T.458 912.007 | 0.100 | 380.003 114.549
07.0 | 0.231 | 0.269 | 0.098 -10.040 | 1227.702 | 0.100 511.343 | 558.046
09.0 | 0.231 | 0.269 | 0.076 -12.908 [ 1578.474 | 0.100 637.698 | T17.488
11.5 | 0.227 | 0.269 | 0.060 -16.494 | 2055.259 | 0.100 856.333 | 931.209
14.5 1 0.233 } 0.384 { 0.044 -22.410 | 2526.483 | 0.100 1052.701 | 1148.401
13.0 ] 0.233 | 0.584 | .032 -30.525 | 3070.981 | .108 1306.301 | 1335.405
23.0 | 0.243 [ 0.712 | 0.025 -40.276 | 3173.476 | 0.170 1601.447 | 1356.501
29.5 1 0.238 | 0.910 | 0.018 | -54.715 3306.719 | 0.238 | 2100.027 | 1335.978
35.5 | 0.238 | 0.910 | 0.015 -68.124 | 3429.713 | 0.274 25327.131 | 1346.243
40.0 | 0.233 | 0.910 | 0.013 -78.180 | 3521.959 | 0.294 2847.494 | 1361.032
43.0 1 0.238 | 0.910 | 0.012 -84.885 | 3533.455 | 0.305 3061.056 | 1373.087
44.3 | 0.238 | 0.910 | 0.011 -88.237 | 3614.204 | 0.310 3167.837 | 1379.626
43.5 | 0.233 ] 0.910 | 0.011 -90.472 | 3634.703 | 0.313 3239.025 | 1384.149
47.0 1 0.238 | 0.910 | 0.011 -93.8214 | 3665.451 | 0.317 3345.806 | 1391.157
49.5 1 0.233 | 0.910 { 0.010 | -99.41] 3716.699 | 0.324 | 3523.774 | 1403.366
53.0 [ 0.238 | 0.910 | 0.009 -107.233 | 3788.445 | 0.333 3772.930 | 1421.398
37.5 1 0.238 | 0.910 | 0.0083 -117.290 | 3880.690 | 0.342 4093.273 | 1445.873
63.5 1 0.233 | 0.910 | 0.008 | -130.699 4003.684 | 0.352 | 4520.397 | 1480.23]
71.0 1 0.238 | 0.910 | 0.009 | -147.460 4157.426 | 0.363 | 5054.302 | 1525.204
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Table 3.3 The properties of the nonlinear springs.

Node | 4 o, K K, F A 3 v

v

¥
in | psi Ib/in lb/in Ib Ib/in

0 | 0.00 370.00 126.00 810.00 42.00 1 0.55 | 1.00
12 | 0.71 1857.08 448.34 1961.47 84.00 |0.55 | 1.05
24 [ 142 | 2993.56 626.03 2448.37 84.00 |0.49 | 1.06
36 | 2.13 | 5352042 988.91 3793.19 105.00 | 0.40 | 1.04
54 | 3.20 | 9882.97 1531.11 5715.91 I41.15 {0.37 § 1.03
2] 427 | 13366.51 | 2171.72 1932.41 19156 | 0.41 | 1.03
96 | 5.69 | 23208.60 | 3036.12 10882.02 | 269.36 | 0.44 | 1.02
120 [ 7.11 | 35805.93 | 4443.93 15728.15 | 414.15 | 0.46 | 1.01
156 | 9.25 | 55198.46 | 6300.54 22699.91 | 633.27 [ 0.49 | 1.00
192 [ 11.38 | 70981.83 | 8348.46 31846.38 | 1128.90 | 0.50 | 1.03
14.23 1 105978.27 | 12762.97 5664443 | 2585.90 | 0.50 | 1.12
312 [ 18.50 | 146694.27 | 18223.91 95378.09 |5259.37 | 0.49 | 1.25

23.48 | 148835.43 | 21844.17 112805.38 | 6510.38 | 0.50 | 1.27
456 | 27.03 | 119703.33 | 19830.37 98183.74 | 5680.05 | 0.51 | 1.23

o O 0o~ U L) RS —
1
~

—
—_
3]
-
o

—_ e
e G2 1D
[ ]
[f]
(=]

15 504 [ 29.88 | 81109.82 15059.38 | 72698.33 | 4211.82 | 0.5] 1.21
16 928 | 31.30 | 43131.81 7989.39 | 38159.79 | 2212.19 0.52 1 1.19
17 940 | 32.01 | 29113.51 547949 | 26043.41 | 1510.22 | 0.52 1.19
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Table 3.4

The properties of the linear springs.

| Node | & o | &v)] G v, Iy I A

1 0 | 0.00 |1.252] 3872 | 810.00 1023.24 | 104156 | 1608.15

2 120071 | 1.252 | 116,16 | 196147 | 6139.36 6249.30 | 96438.81

3 24 1142 [ 1.232] 19621 | 244837 | 10370.46 10556.18 | 16293.55
4 36 | 213 | 1.252 | 29039 | 3793.19 | 1918537 19523.94 | 30152.33
5 o4 320 [ 1.252 | 414.35 | 571591 | 39866.13 33454.69 | 51633.15
6 721 427 11252 | 538.05 | 793241 | 31616.61 52540.95 | 81122.29
7 96 | 5.69 | 1.252 | 71749 | 10882.02 | 7584454 77203.06 | 119200.15
8 1120 TA1 | 1252 | 93421 | 15798.15 | 123442 79 125653.32 | 194006.47
9 1156925 | 1.252{1148.40 | 22699.91 | 182094 95 185355.17 | 286185.08
101192 111.38 | 1.258 | 1385.41 | 31846.83 | 257514 99 262126.54 | 404718.70
111240 [ 14.23 [ 1.293 | 1356.50 | 56644.43 370224.99 | 376854.94 | 581857.29
121312 1 18.50 | 1.341 | 1335.95 | 95378.00 491607.53 | 500411.18 | 772625.93
131396 ] 23.48 | 1.376 | 1346.24 | 112805.35 | 469213 20 477615.83 | 737430.30
14 1456 | 27.03 | 1.401 | 1361.03 | 9818374 362239.72 | 368726.67 | 569307.39
15 504 129.88 1 1.426 | 1373.00 | 72698.33 247979.58 | 252420.37 | 389732 54
16 528 | 31.30 | 1.426 | 1379.63 | 38159.79 124580.26 | 126811.23 | 195794.98
17 | 540 | 32.01 | 1.426 | 1384.15 | 26043.4] 83325.79 | 84817.98 | 130957.45
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Table 3.5 The properties of the linear dampers.

Node | v | &(nu) G v C; C, C4
psi in/sec | Ib-sec/in | Ib-sec/in ! lb-sec/in
i 0.10 | 1.252 38.72 502.36 31430.30 £984.70 2601.79
2 0.10 | 1.252 | 116.16 | 870.11 103879.03 | 24195.60 9012.582
3 0.10 1 1.252 | 196.21 | 1130.87 | 2141508.25 | 31146.61 11713.81
4 0.10 | 1.252 | 290.39 | 1375.77 | 215190.33 | 47820.53 17813.09
5 0.10 | 1.252 | 414.55 | 1643.78 | 308533.70 | 68563.77 | 25339.39
6 0.10 | 1.252 | 558.05 | 1907.18 | 417634.38 | 92808.67 34571.07
7 0.10 | 1.252 | 717.49 | 2162.33 | 541203.66 | 120263.76 44799.91
8 0.10 | 1.252 | 934.21 | 2467.62 | 771943.36 171544.79 | 63900.14
9 0.10 | 1.252 | 1148.40 { 2735.91 | 1027049.66 | 228235.68 85017.40
10 0.11 | 1.238 | 1385.41 | 3005.00 | 1322379.59 293863.25 | 109464.31
11 0.17 | 1.293 | 1336.50 | 2973.48 | 1921310.98 426962.53 | 159042.32
12 0.24 ] 1.341 | 1335.98 | 2950.91 | 2570756.04 371283.18 | 212802.76
13 0.27 | 1.376 | 1346.24 | 2962.22 | 2444277.39 | 543178.52 202333.08
14 0.29 | 1.401 | 1361.03 | 2978.45 | 1876739.07 417057.35 | 155353.23
15 0.31 | 1.426 | 1373.09 | 2991.61 | 1279112.92 284250.33 | 105382.77
16 0.31 | 1.426 | 1379.63 | 2998.72 | 641077.52 142463.18 | 53067.29
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Table 3.6 The properties of the lumped masses.

Node | & v | &mlv) m, My m, myy | my
in slug | slug | slug slug | slug

1 0 |0.10 0 16.24 1 426 | 11.98 | 0.59 | 0.00
2 12 10.10 0 3243 | 852 | 23.97 | 1.18 | 0.00
3 24 10.10 0 3248 | 8.52 | 23.97 | 1.18 | 0.00
4 36 | 0.10 0 40.60 | 10.65 | 29.96 | 1.47 | 0.00
5] 34 | 0.10 0 48.72 | 12.78 | 35.95 | 1.77 | 0.00
6 72 10.10 0 56.84 | 14.90 | 41.94 | 2.06 | 0.00
7 96 | 0.10 0 64.96 | 17.03 | 47.93 | 2.36 | 0.00
8 120 | 0.10 0 81.21 | 21.29 | 59.91 | 2.95 | 0.00
9 156 | 0.10 0 97.45 | 25.55 | 71.90 | 3.54 | 0.00
10 192 { 0.11 0 113.69 | 29.81 | 83.88 | +.13 | 0.00
11 240 | 0.17 0 162.41 | 42.58 [ 119.83 | 5.89 | 0.00
12 312 ] 0.24 0 211.14 | 35.36 | 155.78 { 7.66 | 0.00
13 396 [ 0.27 | 0.007 | 194.89 | 51.10 143.79 | 7.07 | 55.97
14 456 1 0.29 | 0.014 | 146.17 | 38.33 107.85 | 5.31 | 83.95
15 504 1 0.31 { 0.021 | 97.45 | 25.55 71.90 | 3.54 | 83.95
16 528 1 0.31 | 0.021 | 48.72 | 12.78 35.95 | .77 | 41.98
17 540 | 0.31 | 0.021 | 32.48 8.52 | 23.97 | 1.18 | 27.98
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boundary. In the lumped model, it is required to add a damper with the nonlinear near-
field spring. But it is very difficult, if not impossible, to compute the damping parameter
for the near-field element. This research concentrated on the spring parameters. The
damping parameters are still unknown and here they are adjusted to obtain a similar level
of damping to those obtained in FE model. Also, the FE model is itself an idealization.

The damping shown by the FE model may also be a computational artifact. DYNA3D
uses a simple 8-node element which is subject to “hour-glass zero energy” modes. To
suppress these hour-glass modes, artificial damping is used as a tool. This artificial
damping is not intended to affect the response significantly. However, the parameters
used to specify the artificial damping are not unique. Although the recommended values
were used, a parametric study is necessary to confirm/disprove this possibility. Although
the FE model provides a better idealization of the pile and soil than the lumped model.
the FE model is also not “exact”. Both of the models are subject to scrutiny. because the
most realistic response is to be found only by experiment. The lumped model provides a
response of the same order as that given by the FE model and we can conclude that the

lumped model is a reasonable practical alternative to complex finite element models.

Figure 3.1 The FEM model used for the analysis of lateral vibration of a single pile.

127



F
TRGL. T

12

24

120

156

192

240

312

396

456

504

528

LY

[ 1]
(3 ]
[ 4 ]
[ 5 ]
6]
[ 8 ]
LS ]
0]
0]
14 ]
[ 5]

18

3
<
(%)
>

A
I
)
b
i
Qs Op Qg O Oy Q O, O, O,

]

Q O, O, O, O,
o s & w '

(2
Q,

Discrete foundation [DF] elernents
consisting of springs and dashpots

Node with lumped mass
Node without Jumped mass

Extra node to define axes of DF elements

Linear elastic beam elements

Figure 3.2 The lumped models used for the analysis of lateral vibration of a single pile.

128



150 |

Load [kip]

¥

Time [sec]

Figure 3.3 The load history used to analyze the lateral vibration of the single pile.
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3.4 Limitations of the Model

The model proposed in this thesis for the analysis of vibration of a single pile and a
pile group is subject to the simplifications and approximations specified in Section 3.2.
It is a very simplified model for piles and pile groups subjected to earthquake inertial
and kinematic loading, and it may be easily adopted by any time domain finite element
program which can handle discrete elements such as discrete mass, general nonlinear
springs, and linear dashpots. However, the user should be aware of the following further

limitations.

3.4.1 Coupling Between Layers

This model is based on the Winkler hypothesis. For the derivation of the reactive
independent lateral springs. plane-strain assumptions for high depths and plane-stress
assumptions for the upper region with constant vertical pressure were used. For axial
vibration, no point is assumed to vibrate horizontally. For the hypothesis, proposed by
Winkler, if a displacement is induced in one spring, the neighboring spring is not assumed
to be subjected to any loading unless the neighboring springs have some displacement
of themselves, i.e. the springs will not interact with each other, because there is no
coupling spring between discrete masses. This coupling exists practically through the
shearing resistance of soil lavers. However, this limitation does not seriously deteriorate

the response of the pile, because the pile itself acts as a large coupling element due to its

shearing and bending stiffness.

3.4.2 Interaction Between Near-Field Springs in the Same Layer

In reality. the behavior of one near-field spring will heavily depend on the load leve]
of the neighboring nonlinear spring. As an example, a single pile may be modeled by
two springs in orthogonal directions for biaxial lateral vibration. The P-y curve obtained
for uniaxial vibration is attributed to both springs, as shown in Figure 3.11. The lateral
displacement degrees of freedoms are defined as 61 and &,. If, at any time, §; = O while

61 has a finite value, a force will develop in the K1 spring as a function of 8.
Fy = F(6), and [3.1]
F, = F(&=0) = 0. [3.2]
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Figure 3.11 A demonstration of the effect of the interaction between the near-field
springs in the same layer
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Similarly, if at any time 6, = 0 while &, has a finite magnitude, then

F1=
F, =

-

F(6,=0) = 0, and

F(5,).

[3.3]
[3.4]

This function F(.) is the same for both pure cases of uniaxial vibration. But, for

biaxial lateral vibration, the displacement § has two components, §, and §,, in two

orthogonal directions.

= {612 + 5%}”2

The force in the direction of X, the direction of d, will actually be F

vibration. So, the component in the orthogonal directions will be

F]_ -

F, =

F =

F($). §,
5,
F(8). 6;
6 and

{Fr+ 2}

For linear structures,

Fy

£

F(é;)
F(,)

5
i
&
§

and for non-linear structures,

F

F
F(4)
F(6,)

5
3G

8,
.2 # P&

&

6
_E
]

E(6y),

il

) = F(fs:) and

Ly # F(8),
) # F(5;), and

[3-3]

(é), as for unijaxial

(3.6)

[3.7]

[3.8]

[3.9]
[3.10]

3.11)

[3.12]
[3.13]

[3.14])

The above formulas show that for linear F-§ curves, the reactions considering inter-

action are the same as those obtained without interaction. But for nonlinear structures,
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these reactive values cannot be obtained from their own displacements. They are subject

to the interaction equations:

F(§) = {F@&)? + F(&:)*}", and (3.15]
Fl&) _ &
F(&) = % [3.16]

For the same example, the yield strength, F,, for individual springs may be examined,
assurning the yield displacements, §,. If the spring stiffness does not harden with plastic

loading, and

6] -_ 62 = 6y,
Ry, = F(§,) = F, and
FZy = F(éy) = Fy’

then the equivalent uniaxial force is ﬁFy. This expression indicates that. when &,
= &, and no interaction between springs is considered. (for the perfectly plastic case).
the yield strength is overestimated by as much as v/2 times the actual vield strength.
However, this is the worst case, because for other combinations of é; and 8. this factor
will be less.

On the whole. by considering no interaction between the near-field springs in the
same layer, the stiffness is over-predicted while the displacement is under-predicted if
the load exceeds the elastic limits at any spring. However, for small load the model can
predict the actual behavior, even though no interactions between springs are considered.
In the explicit form of biaxial lateral vibration finite element programs, these interaction
equations can be considered as constrained equations. [t is expected that the reduction of

yield strength of the near-field springs can minimize the error caused from the interaction.

3.4.3 Effect of Pore-Water Pressure

The analysis can be done, so far, for two standard conditions of soil: the undrained
condition and the drained condition. For intermediate conditions of state, i.e. for un-
saturated soil, it is still difficult to predict stress-strain and volume change-pore pressure
behavior. However in this thesis, analysis is done for only drained conditions. Soil below
the ground water table and a few feet above it can be assumed to be saturated and,
depending on the grain size, an undrained or drained analysis is appropriate there. For
soil well above the GWT, drained analysis is appropriate. Engineering judgment is re-

quired for partially saturated soil. It can be observed that for a degree of saturation less
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than 60%, the pore-pressure factor, 3, is very small and essentially undrained behavior is
appropriate for small load increases. Even for 85% saturation, § < 0.04 for most soils.
However, a complete analysis will require the history of the development and dissipation of
pore-water at every point during the vibration of piles. A finite element analysis with the
capability of handling two problems of the determination of stress-field and the determination
of pore-water pressure field subject to stress change and seepage with the known
displacement and/or stress and seepage boundary conditions is appropriate. But these details
are too cumbersome to consider in the design of bridge foundations. Therefore, the proposed
simplified model is expected to provide acceptable response within engineering accuracy.

3.44 The Effect of Soil Liquefaction

Some soils, such as saturated silt and sand of low relative density, are subject to
liquefaction when the earthquake excitation exceeds a critical value which is appropriate for
the soil of the site. The proposed model did not consider the potentiality of strength and
stiffness reduction due to the soil liquefaction. In fact, a spring which varies the strength and
stiffness with load and time is appropriate there. This analysis is too cumbersome and too
extensive to consider for bridge foundation analysis, and it is left to the judgment of the
geotechnical engineer.

345 Sensitivity of Soil

The model cannot predict the behavior of piles in a sensitive soil by itself. The user is
expected to produce correct p-y behavior for specific soil, pile diameter, and group
configurations if the soil is sensitive. The model can not predict the thixotropic behavior of
soil by itself. Once again, the user is expected to use his/her own judgment.

3.4.6 Pile Installation Procedure

The p-y curve for near-field soil is developed for initial geo-static states of stress, where
the coefficient of earth pressure, K, is assumed to be the coefficient of earth pressure at rest,
K, However, a large amount of disturbance with strength and stiffness reduction in sensitive
soil, and strength and stiffness increase with time due to thixotropic behavior occur in

practice. For driven piles, an increase in K occurs, and for bored piles, a
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decrease in K is expected. The user should consider the pile installation procedure in

his/her analysis.

3.4.7 Pile Batter

The model represented in this thesis is only for vertical piles. However, it is expected
that batter piles can be modeled by the near-field and far-field elements specified in this
thesis for vertical piles. It is also expected that the pile foundation response can be
obtained for earthquake response within engineering accuracy. It is advisable that the
lateral and axial springs be placed in the lateral and axial direction of the batter piles
instead of placed horizontally and vertically. The interaction-spring can be placed in
the horizontal direction. When specifying the interaction-spring p-y behavior, it should
be kept in mind that the spacing is not constant between two batter piles or between
a vertical and a batter pile. However, batter piles do not perform well for resisting

earthquake load. It increases lateral rigidity, inducing higher load in the structure.

3.4.8 Piles in Sloping Ground

All p-y curve characteristics determined in this research are for vertical piles in leveled

horizontal ground. For sloping ground, the p-y behavior is expected to change.

3.4.9 Strength and Stiffness Degradation of Soil

The effect of strength and stiffness degradation has not been considered in this re-

search. It should be considered for the Dy curves.

3.4.10 Kinematic Interaction Effect

The model presented in this thesis was developed primarily for inertial earthquake
loading. It is expected that it can reproduce the behavior of pile foundations for kinematic
loading as well. However, this model should be used for kinematic loading with caution.
For a kinematic type of loading, it is expected that the ends of the far-field element
will represent the actual far-field. Moreover, it is expected that far-field displacement or

acceleration boundary condition would be specified at those nodes.
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3.5 Application Areas

The model proposed in this thesis is primarily developed for vertical single piles and
pile groups embedded in horizontal ground. Therefore, engineering judgment is required
to apply this model for batter piles and pile groups, or piles in sloping ground. The
nonlinear springs are developed only for soil with drained conditions. The soil below the
ground water table and, depending upon capillary action, several feet above the ground
water table may be assumed to be saturated, and the undrained loading condition is
expected. Soils with a degree of saturation less than 60% are assumed to be dry for small

load increments, and then the drained condition of loading is expected.
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4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

The main objective of this research was to develop a simplified lumped parameter
model] of pile foundations for bridges for the time domain analysis of the response due to
earthquake excitation. Lumped parameters such as nonlinear near-field springs, linear
near-field dampers, linear far-field springs and dampers. and lumped masses are used
to model a single pile. For pile groups, interaction-springs and dampers are also used
to include group effects. The properties of the model have been evaluated for soil at a
Snohomish river bridge site. It is well recognized that each simplification involves some
approximations. The limitations of the proposed model along with ways to eliminate. or

at least to reduce them, have been discussed in Section 3.4.
4.2 Recommendations

On the basis of the studies done herein, recommendations are made in the following

sections.
4.3 Recommended Models

The model, shown in Figure 2.4, is proposed for a single pile under uniaxial lateral
vibration. The model, shown in Figure 2.10, is proposed for a single pile under axial
vibration. The model, shown in Figure 2.14, is proposed for a 2-pile group under biaxial
lateral vibration. The springs that are shown in Figure 2.14 are the nonlinear near-
field springs and interaction-springs. One dashpot with proportional damping should
be associated with each nonlinear spring in parallel. One end of the nonlinear spring
and dashpot is connected with the pile, and the other with an auxiliary node having a

lumped mass, which is connected with the far-field element. Far-field elements consist of
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three lumped masses connected with three linear springs and dashpots. The springs are
associated with the dampers connected in parallel.

Only the far end of the far-field elements is assumed to be fixed for inertial interac-
tion. The characteristics of the far-field springs and dashpots, the lumped masses, and
the near-field damper for a single pile have been presented in explicit form in Section 2.2.
For pile-groups, each pile is connected with nonlinear near-field springs to the surround-
ing soil, and with nonlinear interaction-springs to nearby piles. For three dimensional
vibration, two piles are connected by a set of three interaction-springs: one for axial
interaction, one for shear lateral interaction, and the other for direct lateral interaction.
For large pile groups. inner piles are not connected with the far-field elements. However,
the behavior of nonlinear springs is site specific. Finite element analysis is required to
establish their force-displacement behavior. The p-y curves for the near-field elements
presented in this thesis were developed for soil at the Snohomish-river—crossing-bridge~site
for piles of diameters 0.437m (18”) and 0.610m (24”). The curves are described herein
in Figures E.]1 through E.534 in Appendix E. The simple bilinear parameters for these

curves are presented in Tables 2.1, 2.2, 2.4, 2.5, and 2.7 through 2.20.

4.3.1 Recommended Near-Field Spring

The exact force-displacement behavior of the near-field springs for axial and lateral
vibration of single piles and pile groups are presented in Figures E.1 through E.34 in
Appendix E. However, simplified p-y behavior is needed in some computer programs.
The program, NEABS (McGuire et al. 1994) can only handle bilinear springs with gap
options. The characteristic parameters for the simplified p-y curves are presented in
Tables 2.1, 2.2, 2.4, 2.5, and 2.7 through 2.20 for the drained condition of loading.

4.3.2 Recommended Dampers

It is not possible to establish damping characteristics by the finite element method,
unless viscosity properties are properly known. Therefore, it is recommended that

Rayleigh’s conventional proportional damping or just the stiffness proportional damp-

ing procedure be used.

141



4.3.3 Recommended Masses

The explicit expression for nodal lumped masses is based on tributary area and an
assumed shape function, and it is presented in Section 2.2.1.3 for lateral vibration of single
pile, in Section 2.2.2.3 for axial vibration of single pile, and in Section 2.3.3 for general
vibration of two-pile groups. The explicit expression for lumped masses in far-field nodal
points is adopted from (Nogami & Konagai 1986, Nogami & Konagai 1987, Nogami et
al. 1992) for vibration of a single pile. These are presented in Appendices A and B.

4.3.4 Recommended Far-Field Elements

The explicit expressions for the far-field masses, springs, and dashpots are presented
in Appendices A and B. Those were obtained from (Nogami & Konagai 1986, Nogami
& Konagai 1987, Nogami et al. 1992).
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5. IMPLEMENTATION

5.1 General

The proposed modet can be implemented in any explicit finite element computer program
which can handle discrete elements such as: linear and nonlinear springs, linear dashpots,
lumped mass, and a beam element with or without geometric stiffness. However, the
nonlinear springs should have special features such as gap stiffness in addition to usual the
nonlinear stiffness behavior. The program NEABS, which has been modified (McGuire et al.
1994) as a companion phase of the present research, has all the capabilities required for the
proposed model. Therefore, this version of NEABS is recommended.

5.2 Recommendation for Further Research

In this research, near-field and interaction springs have been developed for only two
specified diameters of piles, leveled ground conditions, vertical piles and pile groups, for
drained conditions, and a site-specific soil. The spring elements must be generalized for
design. It is anticipated that standard p-y curves will be used as near-field elements for single
piles. However, research is needed to determine the most appropriate manner in which to
apply the pile interaction elements, testing is necessary to validate the approach, and the
results must be put into a form that is amenable for design.

An improved analysis method could be developed on the basis of knowledge gained in this
project. The issues that could be considered include (2) the suitability of existing p-y curves
for defining soil stiffness values; (b) the form of the elements to be used between piles in pile
groups; and (c) ease of use in design. A two-stage approach could be considered, similar to
that proposed in the accompanying summary report, in which a relatively complex model can
be used to obtain coefficients for use in a simplified model. The complex model consists of
the piles themselves, connected with p-y springs, masses, and dashpots, the coefficients of
which would be based on soil properties and, for elements connecting piles in a group, pile
spacing. Although this model would be suitable for analysis of the structure, the number of

elements required would make it unwieldy for use in design. To obtain a simpler foundation
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model, two approaches could be considered. For the first, the foundation could be modeled in
the complex fashion, with a very gross approximation of the structure added to include its
dynamic effects. The motion of the foundation at the ground surface could be measured and
applied in a separate analysis to a more realistic structural model. For the other approach, a
model of the foundation could be generated and loaded harmonically with several frequencies.
From the response, an equivalent foundation element could be derived and applied in a
separate analysis at the base of the structural model.

A computer program that could incorporate the new analysis method could also be
developed. It is anticipated that it would be an extension of WSU-NEABS. For future
research, the elements could be enhanced and the program streamlined to be efficient and
focused for pile analysis only. In addition, pre- and post-processors could be written to
facilitate data entry and interpretation of results in a graphical, easy to use format.
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Appendix A: Soil-Pile Interaction Mode] for Lateral Vibration of a Single Pile

A.1 Introduction

The subgrade medium around the pile shaft is modeled within the frame of Winkler's
hypothesis; i.e., the soil response at a given depth is related to the force intensity applied
only at the depth considered. F igure A.l shows a schematic view of such a soil model
proposed for the nonlinear subgrade behavior. The model is completely described in
Figure 2.3. The near-field element in the model can account for the nonlinear soil behavior
in the vicinity of the pile shaft, and the far-field element reproduces the elastic behavior
. The

arrangement of near-field and far-field elements with masses, springs, and dashpots are

of the soil outside the region of strong nonlinear behavior (Nogami et al. 1992)

shown in Figure 2.4, This arrangement enables the model to logically reproduce the
nonlinear effects in the dynamic response by transferring the motion through the area of
strong nonlinear behavior to the far-field. In time-domain analysis. the interface model
is placed in between the pile shaft and the soil model in order to reproduce precisely the

formation and behavior of a gap at the soil-pile interface.
A2 Soil Model

Soil behavior is assumed to be more or less elastic in the area beyond some distance
from the loaded pile shaft. Such a distance is artificially taken to be r1 from the center of
the pile shaft, and uniform displacements in the direction of the applied force are assumed
along this artificial circle. The far-field element is defined by the behavior of the medium
at the artificial circle assuming an empty hole inside of the circle. The system, as shown
in Figure 2.4 with the following parameters, can reproduce the far-field element behavior
very well for 0.02 < a5 < 2.0 (Nogami & Konagai 1988).

K, 3.518
{ K, } = G &(v) { 3.518 } , [A.1]

x

3 5.529
C ar 113.0973
C, b = [ - gk(y)J 25133 % . and A.2)
(3 8 9.362
m = wp, r} nv) [A.3]
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Mass from near-field soil

Mass contribution from both near- and far-field soil

Near field element Far field element

Figure A.1 Schematic representation of a soil model for subgrade behavior. Near-field
elements account for the local non-linearity, and the far-field elements represent an
infinite boundary. (Redrawn after Nogami 1992)
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where G, v, and V,, are shear modulus, Poisson's ratio, and shear wave velocity of soil,
respectively. £(v) and &,(v) are parameters dependent on v, provided in Table 2.3 and
Figure 2.9. The near-field element represents the soil in the immediate vicinity of the pile, and
they are strongly affected by the nonlinearity of the soil. It is modeled by the nonlinear
spring and consistent mass matrix, M,,, as shown in Equation A.4. Assuming a linear variation
of the soil displacement with the radial distance from the pile, this consistent mass is defined
by

: < +3 32141
[M,] = fﬂ‘“—[—“—- 1) ro [A.4]
6 \r, 34 +1 241

where p, is the mass of unit volume of soil, 7y is the radius of the pile, and r; s the radius of
near-field zone. The degree of freedom numbers at the pile side and far-field element side are
designated as 1 and 2, respectively. The nonlinear spring stiffness, k., is independent of
frequency but dependent on the amount of its elongation.

A3 Interface Model

Because only the amplitude and damping are needed in frequency domain analysis, the
effects of the soil-pile separation can be conveniently accommodated in the complex soil
stiffness, K, On the other hand, time domain analysis requires the response at each time step
following the response process and, therefore, soil-pile separation must be treated precisely
by using the interface model, as shown in Fi gure A 1. It is assumed that the soil displacement
at the front side,

ur=u’ + [A.5]
accompanies the soil displacement at the back side,
u,=u + (1 - Y)up [A6]

where #* is the elastic displacement, #” is the plastic soil displacement, and Y is an empirical
parameter between O and 1. Therefore, when the plastic displacement develops, the gap is
formed according to Ugap = 1. If Y= 0, no gap is formed, if Y= 1, the gap is equal to the full
plastic displacement at the front side. A reasonable agreement was obtained by Nogami
assuming Y = 0.8 for the particular site and pile conditions that were analyzed (Nogami et al.
1992). 1t is also seen that negligence of the gap effects results in overestimation of the
hysteretic damping.

165



Appendix B: Soil-Pile Interaction Model for Axial Vibration of a Single Pile

The pile-soil interaction model for axial vibration of single piles is adopted from
Noga,mi and Konagai (1986, 1987, 1988). This model is similar to that described in
Appendix A for lateral vibration of single pile. Similar to the model for lateral vibration,
this model also includes two nodes for each layer: a pile node and an auxiliary node, two
lumped masses, a nonlinear near-field spring, a linear near-field viscous damper, three
linear far-field springs and three linear far-field viscous dampers. The far-field spring
constants, damping coefficients, and mass contribution from far-field to the auxiliary node
can be obtained from the same equations given for lateral vibration, Equations A.1, A2
and A.3, respectively. But the difference is that the functions §k(v) = land é,(v) = 1 for
all values of v in this mode of vibration. Also, it should be obvious that all the elements
would provide resistance to axjal response, rather than lateral response. The complete

model is shown in Figure 2.10.
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Appendix C: Laboratory Test Results of Soil from Snohomish River Site

C.1

Introduction

The rheological parameters of the piles for dynamic analysis were computed for a
site-specific soil at the Snohomish river site. For use in the finite element model, the
constitutive properties of soils were needed. However, these properties of soil are based
on the conventional soil properties. These conventional soil properties were measured in
the laboratory. The tests that were performed included the moisture content test, the
specific gravity test, the hydrometer test, the triaxial consolidation test, the permeability
test, and the triaxial test. For the last three tests, undisturbed cylindrical samples were
needed, which were made from the soi] sample provided by WSDOT. The trimmed soil
was used for the first three tests. In the following subsections the tests are described in
brief. The results are summarized in Tables C.1 through C.6 and Figures C.1 through
C.4. The laboratory measured quantities are used to compute some other properties

which are given in Table C.7.
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Figure C.1 Grain size distribution,

The isotropic consolidation and the triaxial tests were done on samples of diame-

ters 3.7 cin and with an approximate length/diameter ratio of 2.5, Comprehensive and
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Figure C.2 Void ratio-effective mean stress relationship.
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Table C.1 Description and identification of soil samples from Snohomish river site.

Bore hole location Hole Dr. Tube Depth Sample | SPT | WSDQT
Station | Offset No. No. | posn. ID Unit
LE 65462 | 15 RT | T-H-9-92 U4 B 22'04"-22'08" | F-0100-10 | 2-4 2-4A
LE 65462 | 15 RT | T-H-9-92 U4 B 22'08"-23'00" | F-0100-11 | 2-4 2-4A
LE 65462 | 15 RT | T-H-9-99 U8 E 48'04"-48'08" | F-0100-26 | 6-8 5
LE 65462 | 15’ RT | T-H-9-92 U8 F 48'08"-49'00" | F-0100-27 | 6-8 3
LE 80+44 | 18’ RT | T-H-12-92 | U3 B 19'087-20'00” | FO141-11 | 0-2 2
LE 80+44 | 18 RT | T-H-12-92 | U3 C 19'08"-20'00" | F0141-12 | 0-2 2
LE 83+22 | 18 OC | T-H-11-92 | U9 B 25'08"-26'00" | F-0114-20 | (-4 2-3
LE 83+22 | 15 OC | T-H-11-92 | U9 B 3000"-30"04" | F-0114-22 | 0-4 3
LE 83+22 | 15 OC | T-H-11-92 ! Ug B 30°04"-30'08" | F-0114-23 | (-4 3

Notes:

1. Snohomish river to Ebey Slough east bound replacement
2. Contact number L-0686
3. WSDOT soil descriptor

® Unit 1A: Fill - sand and gravel.
# Unit 1B: Fill - gravelly sand, silty sand, and sand.

* Unit 2: Very soft to soft, clayey silt, sandy silt, organic silt, and silty clay with thin to
thick layers of peat. Fibrous organic material is present,

¢ Unit 3: Very loose to loose sand and silty sand.
¢ Unit 4: Medium dense to very dense slightly silty sand.

* Unit 4A: Medium dense to dense sand, gravelly sand and sandy gravel with variable
amount of silt and inter-bed of sandy silt. Cobbles might be encountered.

¢ Unit 5: Inter-bedded medium stiff to stiff clayey silt and sandy silt, and medium dense
to very dense silty sand.
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Table C.2 The physical properties of soils from Snohomish river site.

Bulk

Sample | Depth [ Moisture Degree of | Sp. Gr. LL | PL PI
designator | (ft) content | saturation | of solid | den.
F-0100-10 20.50 62.1 91.2 2.63 1.528 [ 40.4 | 36.4 | 4.0
F-0100-11 22.83 56.8 91.7 2.64 1.571 | 404§ 349 | 4.5
F-0100-26 48.50 28.0 85.0 2,71 1.833 | 22.3 | xxxx | x¢xx
F-0114-22 30.17 43.2 89.5 2.71 1.681 [ 31.2 ] 26.7 | 4.5
F-0114-23 30.41 34.5 89.0 2.73 1.784 | 27.1| 23.5 | 3.5
F-0141-12 19.50 56.3 79.1 2.75 1.453 | 54.9 | 40.9 | 14.0
xxxx data not available
Table C.3 The grain size distribution and classification.

Sample Grain sizes in mm Coeflicient Classification
designator D10 Dgo D30 DGO D'm Cu Cc DrSGS WSDOT
F-0100-10 | 0.0008 | 0.004 | 0.011 0.016 | 0.020 | 20.0 { 1.25 ML Unit 2
F-0100-11 | 0.0008 | 0.005 0.012 | 0.016 | 0.020 | 20.0 1.95 ML Unit 2
F-0100-26 | 0.0300 | 0.100 0.160 | 0.170 | 0.210 | 5.67 2.10 SM Unit 3
F-0114-20 | 0.0300 | 0.085 0.110 | 0.130 | 0.140 | 4.33 | 1.65 SM Unit 2
F-0114-22 [ 0.0010 | 0.011 | 0.024 | 0.032 0.046 | 32.0 | 4.18 ML Unit 3
F-0114-23 {0.0013 | 0.028 | 0.040 0.040 | 0.070 | 30.8 | 2.50 ML Unit 3
F-0141-12 | 0.0006 | 0.004 | 0.008 0.010 { 0.014 | 16.7 | 2.67 MH ‘ Unit 2
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Sample Depth | ¢, C. C, Pprecon | o | OCR
designator ft psi psi
F-0100-10 20.50 | 1.79 | 0.51 { 0.042 | 21.18 14.91 | 2.20
F-0100-11 22.83 | 1.37|0.40 ; 0.036 | 11.60 15.56 | 1.15
F-0100-26 48.50 | 0.89 [ 0.14 | 0.031 | 22.63 38.54 | 1.00
F-0114-22 30.17 | 1.29 | 0.48 | 0.084 | 11.60 22.00 | 1.00
F-0114-23 30.41 | 1.05 | 0.46 { 0.023 | 22.77 23.53 | 1.50
F-0141-12 19.50 | 2.01 [ 0.51 | 0.028 | 12.33 1229 | 1.55

Note: OCR is based on v = 102.44 pef and Ky = 0.47.

Table C.4 The isotropic-consolidation test results of soil from Snohomish river site.

Table C.5 The drained triaxial test results of soil from Snohomish river site.

Sample | Depth | E’ K' oy =0}, o, | AL €vf | epsilong;
designator ft psi psi psi psi psi in/in in/in
F-0100-10 20.50 | 36600 | 37900 24.8 140.8 58.0 0.20
F-0114-22 30.17 | 54600 | 36500 38.2 184.2 63.0 -0.063 0.04
F-0114-23 30.41 {63100 | 63100 86.6 208.6 | 106.0 |-0.065 0.20

~Table C.6 The undrained triaxial test results of soil from snohomish river site.

Sample | Depth E K Tro = Tho Auy Thy o | Su ;55*0—
designator ft psi psi psi psi | psi | psi | psi
F-0100-11 22 83 9200 | 553900 36.3 235 {128 | 528 [ 20.0 | 0551
F-0100-26 48.50 | 14820 | 679500 27.2 24.3 132911175 | 42.3 | 0.740
F-0141-22 19.50 5780 | 47979 87.0 65.0 | 220 | 846 | 31.3 | 0.360
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Table C.7

Some computed soil properties of soil from Snohomish river site.

Sample | Depth | ./ G’ Uy, G, ¢ @' ¢ ¢
no. ft psi Psi | psi | degree | psi degree

F-0100-10 | 20.50 | 0.34 | 1367 2.344 | 32.05

F-0114-22 | 30.17 | 0.25 | 2183 2.344 | 32.05

F-0114-23 | 30.41 | 0.44 | 2190 2.344 | 32.05

F-0100-11 | 22.83 0.498 11735 | 2.344 | 32.05 |9.892 10.5
F-0100-26 | 48.50 0.496 | 4951 | 2.344 | 32.05 | 9.892 10.5
F-0141-12 | 19.50 0.4498 | 1929 | 2.344 | 32.05 | 9.892 10.5
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successful tests were done on six samples out of nine samples provided by WSDOT.
Consolidation tests were performed isotropically to obtain pressure volume change be-
havior. Subsequently, triaxial tests were performed on these six samples. Undrained
triaxial tests were performed on three, and drained triaxial tests were performed on the
remaining three samples. For all the tests, standard procedures were followed.

Consolidation was initiated after saturation was completed. The confining pressure
Wwas increased with an increment factor of 2. The change in void ratio was calculated using
the change in volume that was measured, and the volume of the solid was calculated from
the initial conditions of the soil. After performing the test, the void ratio was plotted
with the effective confining pressure as an e-logyg p plot. The compression index. C., was
calculated from the steepest slope by regression analysis, and the recompression index.
C, was calculated from unloading data or, in some cases, from the first load increment.
The results are summarized in Table C.4 and in Figure C.2.

The triaxial tests were performed on the consolidated soil samples after performing
the isotropic-consolidation tests. The consolidated drained (CD) test was performed at
a strain rate of 0.08%/min. The consolidated undrained (CU) test was performed at
a much faster rate. In the CD test, the volume change was measured using the water
flowing in or out of the sample. The tangent modulus was obtained by regression analysis
on the initial portion of the stress-strain curves. Ultimate siress was obtained either from
the peak value or the value at 20% strain. Using regression analysis, the values of the
intercept and the slope in the p-q diagram were obtained and the Mohr circle parameters
were obtained from those data. The same procedure was followed to obtain the Mohr
circle parameters for the undrained condition. Since pore water pressure was measured
in undrained tests, the effective stress properties obtained from undrained tests were also
used in addition to those obtained from the drained triaxial tests to compute effective

strength parameters. The results are summarized in Tables C.5 through C.7 and in

Figures C.3 and C.4.
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Appendix D: Geologic Cap Model for Soil

The Cap model is a nonlinear elastic-plastic isotropic work hardening plasticity model.
Originally, it was developed from the classical incremental theory of work-hardening
plasticity for materials which have time and temperature independent properties. In
general, cap models describe the yielding behavior of soil with an ultimate yield surface
that is fitted with a movable end cap. Both the ultimate yield and cap surfaces are
symmetric about the hydrostatic axis. The movement of the cap is controlled by the
hardening and softening behavior of the soil, which is expressed as a hardening law and
rate of strain. For some versions of the cap model, the ultimate failure surface is also
allowed to move as controlled by a hardening law. Strains are elastic for stress changes
that fall within the region defined by the ultimate vield and cap surface. but are elastic-
plastic for stress changes on the surfaces,

The first such model for use in soil mechanics was proposed by Drucker, et al. (Drucker
et al. 1957). It consisted of a cone shaped extended von-Mises or Drucker-Prager ultimate
yield surface (Drucker & Prager 1952) fitted with a spherical end cap. Both the cone
and cap expand as the soil strain hardens. The current soil density was used in the
hardening law to control the position of successive ylelding surfaces. The concept of
isotropic hardening plasticity was incorporated into the Cam-Clay model (Schofield &
Wroth 1968) for triaxial behavior of clay. It was extended to the general three dimensional
stress state by Roscoe and Burland (1968). The model uses the concept of a critical
state line on which failure of an initially isotropically consolidated sample will occur
regardless of the stress path (Atkinson & Branshy 1978). A generalized cap model was
proposed by DiMaggio and Sandler (1971) and developed further by others (Sandler
et al. 1976, Sandler & Rubin 1979, Simo et al. 1988, Hofstetter et al. 1993, Whirley
& Hallquist 1991). The yield function consists of & fixed ultimate yield surface fitted

with a movable elliptical strain-hardening cap. Movement of the cap was controlled by
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the plastic volumetric strain. The cap controls plastic dilation once the failure stress is
reached.

Several models based on work hardening theory are available for modeling porous
media. The model which was used in this study was developed at Purdue University
(Mizuno & Chen 1982, Chen & Baladi 1985, McCarron & Chen 1986, McCarron &
Chen 1987, Huang & Chen 1990). This model was used for its simplicity and immediate
availability.

With the underlying assumption that soil behavior is independent of the orientation
of the principal axes (isotropic), the model is formulated in terms of the stresses using
the first invariant of the stress tensor, I1, and the second invariant of the stress tensor or

stress deviator tensor J}, given by

R ) D1
1 ! !
fio= Glel=al) + G- ah)? + (-7, [D.2)
where o] = Major effective principal stress,
oy, = Intermediate effective principal stress, and
o3 = Minor effective principal stress.

The first invariant of the stress tensor, Ij, is simply the sum of the effective normal
stresses, or equivalently three times the effective pressure. The square root of the sec-

ond invariant of the deviatoric stress tensor, \/J3, is an objective scalar measure of the

distortional or shearing stress.

The cap model consists of three surfaces in space, as shown in Figure D.1. First,

there is a failure envelope surface denoted by fi:

h=h - F() =0, D.3]
where F, is given by

F(ll) = &« - al, (D.4]

This failure envelope surface is fixed in space and therefore does not harden. Next, there

is a cap surface denoted by fa:

fo = B — F(IL, &) = 0, [D.5]
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Figure D.1 Cap model in 7!-J, space. (After Chen 1985)
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Figure D.2 Relation between ¢, b, and Inp. (After Humphrey 1986)
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where F. is defined by

FAll, ) = =/ IX() — P — [ — L(a). D.6)

X(x) is the intersection of the cap surface with the I/ axis,
X(k) = L{s) + R F.(x), [D.7]

and the value of R is the ratio of major to minor axes of the quarter ellipse defining the

cap surface. R is defined by

_ X(x) - L(#)
= R -

and L(x) is defined by
= {10 8 220 os

The hardening parameter, , is related to the plastic volume changes, ¢, through the

hardening law.

eh = W {exp[DX(x)] — 1}. [D.10]

The value of W represents the void fraction of the uncompressed sample, and D governs
the slope of the initial loading curve in hydrostatic compression. Finally, there is the

tension cutoff surface, denoted by f;. The function f; is given by
fs = T—-1) =0, [D.11]

where T is an input material parameter which specifies the maximum hydrostatic tension
sustainable by the material. The elastic domain in I — J;‘m space is then bounded by the

failure envelope surface above, the tension cutoff surface on the left, and the cap surface

on the right.

The yield condition may be written as

file) <0 ‘ [D.12]
fa(oyr) < 0O [D.13]
fsle) < 0 - [D.14]
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and the plastic continuity condition requires that

M fo = 0 [D.15]
Ae 20 D.16]

where £ = 1, 2, and 3; and A is the plastic consistency parameter for surface k. If
fx <0, then A\ = 0 and the response is elastic. If fy > 0, then surface & is active and Ak
is found from the requirement that fi=0.

An additive decomposition of the strain into elastic and plastic parts is assumed:
€ = € + € [D.17]

where €, is the elastic strain, and €7 is the plastic strain. Stress is found from the elastic

strain using Hooke’s law,

oi; = Cini (e — €y, (D.18]

where o is the stress, and ' is the elastic constitutive tensor.

Associated plastic flow is assumed 50, using Koiter’s flow rule, the plastic strain rate

is given as the sum of contributions from all of the active surfaces,

3
g
€; = E /\k£k— [D.IQ]
ij

k=1
D.1 Elasto-Plastic Constitutive Relationship

The constitutive matrix depends on the current state of stress. If the stress point is
such that it falls within the yield surface, then the stiffness matrix is the same as that
for elastic stiffness. If the stress point falls on the specific yield surface, elasto-plastic
stiffness should be used. The elasto-plastic stiffness depends on the yield surface.

A general formulation of the elasto-plastic stiffness matrix cormputation for the cap
model described in the previous section was presented by Chen and McCaron ( 1983) and
McCarron & Chen (1986). Detailed derivation is also given by others (Mizuno & Chen
1982, Humphrey 1986). This formulation has been used in this work.
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The formulation presented in those references is based on the tangent stiffness ap-
proach. However, it has been found that the tangent stiffness operator consistent with
“continuum” elasto-plastic equations performs much better than the tangent stiffness
operator. The reasons lie in the consistency of state determination and stiffness compu-

tation. It is expected that the consistent tangent stiffness will improve the convergence.

D.2 State Determination

In finite element analysis it is necessary to compute the stresses and the internal
variables for a strain increment starting with a known state. The algorithm for this
determination is given in Sandler and Rubin (1979), Chen and Baladi (1985), and Chen
and Han (Chen & Han 1988). This involves numerical integration of the rate form of the
constitutive equations. The details of the procedure of this integration depend on the
stress path. Also, subintegration with forward or backward integration is needed. For
every increment, it is necessary to keep the stress point on the vield surface if elasto-
plastic strain is involved.

The algorithm described by Chen and Baladi (1985) was adopted with the modifica-

tion (Simo et al. 1988) in the “corner coding”.

D.3  Procedure for Determination of Cap Parameters

There are 16 parameters used to describe soil behavior in the current version of the
cap model. They can be conveniently grouped into parameters for the ultimate fajlure
surface, elastic behavior, strain hardening cap, initial stress, and pore pressure response.
They are generally based on experimental data. The parameters « and o are usually
evaluated by fitting a curve through failure data taken from a set of triaxial compression
tests. The parameters W, D, and X, define the cap hardening law. Additional details

and guidelines for fitting the cap model to experimental data may be found in the book

by Chen and Baladi (1985).
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Traditionally, the model parameters, for example, R, X,, D, and W, were obtained
by using a trial and error procedure or using an optimization procedure (Simo et al.
1988). These procedures are tedious for routine applications. New procedures were
developed (Chen & McCarron 1983, Humphrey 1986, Huang & Chen 1990) to determine
the bulk modulus, hardening parameters, cap aspect ratio, and initial cap position which
eliminate the need for a trial and error solution. The parameters can be determined
from commonly available soil properties such as results from consolidation tests and
consolidated undrained triaxial tests on normally consolidated samples. The procedures

are described in the following sections.
D.3.1 Ultimate Failure Surface

The Drucker-Prager criterion is used to describe the ultimate failure surface. Its
circular cross-section is an approximation of the Mohr-Coulomb criterion which has a
hexagonal shape in stress (Chen & Saleeb 1982). For triaxial compression (g; = a3) the
criteria can be matched on the compressive meridian to obtain the material constants o

and « from shear strength parameters ¢’ and ¢’ by

2sin ¢’
- , D.20
“ V3(3 - sin @) [ ]
and,
. - 6’ cos ¢ D.21]

V'3(3 — sin ¢’ )
The tension cut-off, 7, specifies a limiting value of tensile stress for soils with non-zero

cohesion. Since most soils can not support significant tensile stress, the value of T. can

be taken close to but greater than zero.
D.3.2 Elastic Behavior

Elastic behavior is governed by the bulk modulus, K, and shear modulus, G. In the

model, K is assumed to be a function of 1.

K = K4, [/ (34,) ) [D.22)
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where A, is atmospheric pressure, which non-dimensionalizes the formulation. The bulk
modulus parameters, K; and K, are determined from the unloading/reloading portion
of a hydrostatic consolidation test. This curve is assumed to be linear on an ¢, — In(p’)

plot where p’ is the mean effective stress.
7= I3 [D.23]

Furthermore, curves for unloading from different maximum values of p’ are assumed

to be parallel, all having a slope of &, given by

Euz — €4
b = D.24
In(py) — In(p}) [D-24]

where €,3, €, p| are shown in Figure D.2. A similar approach is used in the modified
Cam-clay soil model (Wroth and Houslby 1985) . In the limit, as point 1 approaches
point 2, Equation D.24 becomes

de, de,
= — g, L2
dinp) = dp ? [D-25]

Rearranging and using the definition of K,

K dp p

= = 3 2
de, b [D-26]
For linear unloading/ reloading curves
I\)g = 1, [D?T]
Ky = 1/b, and [D.28]
K = p'/b ID.29]

In many cases, only results of one-dimensional consolidation tests are available. For
this test, the average slope of the unloading/reloading curve on a e-log(o!) scale is the
recompression index, C,. If the unloading /reloading curves from hydrostatic and one-
dimensional consolidation tests are assumed to be parallel, b and C, are related by

= 3 < : D.30]
n(10) (1 + eg)
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where ey is the initial void ratio. Wroth and Houlsby (1985) noted that the curves are
not parallel since the coefficient of lateral earth pressure, K, is not constant during
unloading/reloading, and that the above equation will underestimate b; however, the
approximation is adequate for most purposes.

The shear modulus is known to increase with I{ and with consolidation ratio OC' R
(Wroth and Houslby 1985). However, test data on the relationship is limited. In this
work, it is assumed that G is either constant or proportional to the bulk modulus. The
latter assumption allows G to increase with Ij, but the effect of OCR is not considered.

Accordingly, the following relation is used:
G = Gz + Gllr\’, [Dv?)l]

where G is a constant equal to G, when (7) is 0. For G, equals 0, G is a multiple of K,
which implies that Poisson’s ratio, v’, is constant. Young’s modulus. E, can be evaluated

from the slope of an unloading/reloading cycle of a triaxial test and then G is given by

Chen and Saleeb {1982)

3KE
T E D.32]

If test data is not available, a reasonable value of Poisson’s ratio for effective stress v
can be assumed (Wroth and Houslby 1985), and (' is computed from

_ 3K (1-2v)
G == _QHTV—)-—, or [D33]

E

= m, fv= 0. [D34]

It should be noted that taking G as a function of K can lead to the generation of

energy on some loading/unloading paths.
D.3.3 Cap Surface Parameters

The derivation of the formulae needed here is quite complicated. The formulae are

presented here only. The reader is referred to (Humphrey 1986) for details.
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1. The ratio of J, /2 at failure and the initial vertical stress for a consolidated undrained

test is given by

szl/z 2 5, .
o __ = D.35
T ol \/g G:Jo [ ]

2. The equation for the X parameter at the time of failure and the initial X parameter

is given by

Xf b KZ/O" - Jgfl/zfdi
X; _ _ vo vo b D.36
X, exp{ a—f—bln[ o (1% 2Kg) ,Where (D.36]
C. -
= D.37
“ In(10) (1 + e)’ and [D-37)

C,
= . D.38
In(10) (1 + &) [ !
3. The value of DX, can be found from
In[(1 — P)/P] .
DX, = 2 D.39
0 (Xf/XO__l),where [D.39]
9

_ (L X/ X)) D0

In(X¢/Xo)

The value of D can be found as soon as Xo is known. Xj can not be found until B

15 known.

4. The value of W can be found from the following equation.

In(X,/X,) b
exp[(DXo)(X;/Xo)] — exp[DX,] '

[D.41]

3. The value of R can be found from the implicit equation stated below by trial and

error or some other procedure.

Xy _ [Us/ow)(l —aR) — (J3/"aly)(1 — o?R?)]

Xo a[=R(r/ow) + (1+2Ke) ~ RH1/]

,where [D.42]

H = (1-K)(a*R® ~1)/3 + o*(1 + 2K,)?

+ (K/GL{J) - 20‘("‘/":;0)(1 + 2K,) [D-43]
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6. The initial cap position, X, for normally consolidated soil can be found from the

following equation.

_ ' 1/2 T ,
Xg = [(1 + QKD) - R(IC/O'UD) — RH J {l—m} . [D4—4]
For overconsolidated soil the equation becomes
XO = E/Cl{ - (R + 1/0!) szl/z. [D45]

D.4  Advantages of the Cap Model

One of the major advantages of the cap model over other classical pressure-dependent
plasticity models is its ability to control the amount of dilatancy produced under shear
loading. Dilatancy is produced under shear loading as a result of the vield surface having
a positive slope in I} - \/7 space, so that the assumption of plastic flow in the direction
normal to the yield surface produces a plastic strain rate vector that has a component in
the volumetric (hydrostatic) direction. In models such as those of Drucker-Prager (1952)
and Mohr-Coulomb, this dilatancy continues as long as shear loads are applied, and in
many cases produces far more dilatancy than is experimentally observed in material tests.
In the cap model, when the failure surface is active, dilatancy is produced just as with the
Drucker-Prager and Mohr-Coulomb models. However, the hardening law permits the cap
surface to contract until the cap interacts with the failure envelope at the stress point, and
the cap remains at that point. The local normal to the yield surface is now vertical, and
therefore, the normality rule assures that no further plastic volumetric strain (dilatancy)
is created. Adjustment of the parameters that control the rate of cap contraction permits
experimentally observed amounts of dilatancy to be incorporated into the model, thus
producing a constitutive law which better represents the physics to be modeled.

Another advantage of the cap model over other models, such as those of Drucker-
Prager and Mohr- Coulomb, is the ability to model plastic compaction. In these models,

all purely volumetric response is elastic. In the cap model, volumetric response is elastic

186



until the stress point hits the cap surface. Thereafter, plastic volumetric strain (com-
paction) is generated at a rate controlled by the hardening law. Thus, in addition to
controlling the amount of dilatancy, the introduction of the cap surface adds another

experimentally observed response characteristic of geological materials into the model.

D.5 Limitations of the Cap Model
The cap model has at least the following limitations (Humphrey 1986).

¢ The prediction of pore water pressure changes due to change in strain in an undrained
condition is not satisfactory. This is particularly true when stress reversal is ob.
served. The reason is that that effective stress path is obtained from the total stress
path. This limitation is not expected to affect the solution of deformable porous
media significantly, because in this case the pore water pressure is already known

before. This makes the computational stress path equivalent to an undrained path.

¢ The model does not properly account for the strain softening behavior. Strain

softening was not considered in this work.

® It is very difficult to compute the initial valye of Xo for the initial insitu state of
an overconsolidated clay. Moreover, the error involved here deteriorates the pore
water prediction. The effect of OCR was constdered in the determination of the

cap parameters in this work.

D.6 Soil Parameter Computation

For computing all these parameters, a computer program was written in FORTRAN
which is presented at the end of this appendix. The basic parameters used in this
computation are presented in Tables D.] through D.2. The resulting cap parameters for

those soils at different layers are presented in Table D.3. In Table D.1, some averaging
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was used to obtain a set of uniform values throughout the depths. In Table D.2, the
following formulas were used. The mean stress was computed as

o = 1 +2K)

T [D.46]

The value of the depth was computed assuming the GWT would be much below such

that drained condition would be maintained. In that case

b= [D.47]

SERE

The OCR was estimated for the laboratory test result of the soil sample of the same
depth. The value of ¢y was estimated for that specific depth from soils of nearby depth.

The £’ was found linearly varying with confining pressure, p’. From the laboratory test,

it was found to be
E' = 2702 + 43.24p | psi. (D.48]
The bulk modulus, K’ was computed as

Ko P 23031+ )
— b _———_——————

. p. [D.49]
The Poisson’s ratio, v/, was obtained from the following formula
P -
v =10.5 - Y (D.50]

If v was found to be negative, the £’ was adjusted such that, »/ becomes 0.10. This
means that ' was limited as, 0.10 < v < 0.5. The shear modulus, G/, was computed

from the following relation.

E’
L
¢ = iy [D.51]
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Table D.1 Depth independent basic soil parameters used to compute cap parameters

Parameters Average values
C. = (.476
C = 0.0337
¢ = 2.340 psi
¢ = 32.05°
(KO)COMOMM,-M = 1.0 (isotropic consolidation)
(I{O)jield = 0.50 {estimated)
= 102.4 pcf

Table D.2 Depth dependent basic soil parameters used to compute cap parameters

o h |OCR | ¢ E' Strength |
€0 U:'D con TS-“_-
? % 50.con
psi ft psi psi psi
0.5 | 00.5 3.50 0.33 85.2 | 1.191 | 11.67 | 0.668

1.0 1.41 3.50 | 0.66 | 240.2 [ 1.191 { 11.67 0.668
2.5 | 3.51 3.00 1.67 | 606.0 | 1.221 { 11.67 | 0.668
5.0 | 7.03 | 250 | 3.33 | 1233.0 1.256 | 11.67 | 0.668
10.0 | 14.1 2.00 | 6.67 | 2456.8 | 1.241 | 15.42 0.612
20.0 | 28.1 1.00 13.3 1 3278.0 | 1.198 | 36.26 | 0.551
40.0 | 56.25 | 1.00 | 26.7 | 3855.1 1.198 | 36.26 | 0.551
80.0 1 1125 | 1.00 | 53.3 | 5008.1 1.198 | 36.26 | 0.551
160.0 | 225.0 | 1.00 | 106.7 | 7314.3 1.198 | 36.26 | 0.551
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Table D.3 The cap parameters obtained from the basic soil properties.

g, £ v K G K ! R W D Xo
psi psi psi psi psi psi
0.5 85.2 10.10 35.5 38.7 12.782{ 0.248 | 0.269 0.238 | 1.377 | 491.6
1.0 240.2 [0.10 | 100.1 109.2 | 2.782 | 0.248 | 0.269 0.238 | 0.488 | 240.2
2.5 606.0 | 0.10 | 252.5 275.5 | 2.782 1 0.248 | 0.969 0.235 | 0.196 | 114.5
3.0 | 1233.0 | 0.10 | 513.7 960.4 | 2.782 | 0.248 | 0.269 (.231 | 0.098 | 51.6
10.0 | 2456.8 | 0.10 | 1023.7 1116.7 | 2.782 | 0.248 | 0.584 0.233 | 0.046 | 21.5
20.0 | 3278.0 { 0.23 | 2000.4 1335.9 | 2.782 | 0.248 | 0.910 0.238 1 0,019 | 10.1
40.0 | 3855.1 | 0.34 | 4004.3 1438.9 | 2.782 1 0.248 | 0.910 0.238 | 0.009 | 5.0
80.0 | 5008.1 |1 0.40 | 8008.6 1794.0 | 2.782 | 0.248 | 0.910 0.238 | 0.004 | 2.0
160.0 { 7314.3 | 0.42 | 16017.2 2568.4 | 2.782 | 0.248 | 0.910 0.238 | 0.002 | 0.7
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Computer Program to Compute Cap Model Parameters from

Conventional Laboratory Test Results and

Field Condition of Soil

PROGRAM CAP_MODEL

IMPLICIT DOUBLEPRECISION (A-H, 0-2)
DOUBLEPRECISION K, KO, K1, K2, I1
CHARACTER INFILE#*27, OUTFIL*27, OUTFL#*27, INF*5, INFF#23

PARAMETER (SLOP=43.24, CONST=2702.00)
YM(A,B,P)=A*P+B

PI = 4 0*ATAN(1.0)
SRT3 = SQRT(3.0)

TOL = 0.000001
PRINT*

PRINT*, ’'PLEASE TYPE INPUT FILENAME.............. .... .. !
READ(*,’ (A) ') INF
PRINT=*

INFF =INF
INFILE=INFF//’ .dat’
OUTFIL=INFF//’.out’
OUTFL =INFF

OPEN(i,FILE=INFILE,FDRM=’FURMATTED‘,STATUS=’ULD’)
DPEN(2,FILE=0UTFIL,FDRM=’FURMATTED’,STATUS=’UNKNUWN’)
OPEN(3,FILE=QUTFL ,FURM=’FORMATTED’,STATUS=’UNKNUWN’)
READ(1,’(F15.5)’) PHI, CPRIME, CC, CR, PR, EO, SUDSV, SIGMAV, KO
SIGMAV = -SIGMAV

WRITE(2, %)

WRITE(2,’(A)’)‘******************** TEST DATA soskok sk ki ko s sskook o sk o ?
WRITE(2,*)

HRITE(2,’(AIS,FIO.S)’)’PHI (DEGREE) =’, PHI
HRITE(Z,’(AlS,FlO.B)’)’CPRIME =’, CPRIME
WRITE(2,’(A15,F10.3)7) CC =7, CC

WRITE(2,’(A15,F10.3)’)‘CR =', CR

b4
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WRITE(2,’(A15,F10.3)’) PR =’, PR

WRITE(2,’ (A156,F10.3) )’ EQ =’ EO
WRITE(2,’(A15,F10.3)*)’SUDSY =’, SUDSV
WRITE(2,’(A15,F10.3)’) *SIGMAY =’, SIGMAV
WRITE(2,’(A15,F10.3)’) K0 =’ KO
PHIP = PHI*PI/180.0
SINP = DSIN(PHIP)
COSP = DCOS(PHIP)
TANP = DTAN(PHIP)

1000 PRINT*,’TYPE OF TEST DONE:’
PRINT*
PRINT=*, "’ TRIAXIAL COMPRESSION : 1’
PRINT=*, ’ TRIAXIAL EXTENSION - 27
PRINT*,’ PLANE STRAIN : 3
PRINT*,’ OTHER CONDITIONS : 4’

c READ (o, %)1
I=1

IF (I.EQ.1) THEN
ALPHA= 2.0*SINP/((3.0-SINP)*SRT3)
CAPA = 6.0*CPRIME*COSP/((3.0-SINP)*SRTB)
WRITE(2,’(A)’) ’TRIAXIAL COMPRESSION TEST DATA®
ELSEIF (I.EQ.2) THEN
ALPHA= 2.0%SINP/((3.0+SINP)*SRT3)
CAPA = 6.0*CPRIME*COSP/((3.0+SINP)*SRT3)
WRITE(2,’(4)’)*TRIAXIAL EXTENSION TEST DATA’
ELSEIF (I.EQ.3) THEN
ALPHA= TANP/ SQRT(9.0+12*TANP)
CAPA = 3.0*CPRIME/ SQRT(9.0+12*TANP)
WRITE(2,’(A)’)’PLANE STRAIN TEST DATA’
ELSEIF (I.EQ.4) THEN
READ(1,’ (F15.5) ' )SIGMA1, SIGMA2, SIGMA3
ETA=DABS((SIGMAS—SIGMA2)/(SIGMAB-SIGMAI))
THETA= (1.0/3.0)*DACOS(0.5*(2.0*ETA**S-S.0*ETA**2-3.0*ETA+2)/

+ (ETA**Q-ETA+1.0)**1.5)
ALPHA= (1.0/3.0)*SINP/(DSIN(THETA+PI/3.0)—
+ DCOS (THETA+PI/3.0)*SINP/SRT3)
CAPA = CPRIME*COSP/(DSIN(THETA+PI/3.0)-
+ DCDS(THETA+PI/3.0)*SINP/SRT3)
WRITE(2,’ (A)’)’GENERAL TRIAXIAL COMPRESSION TEST DATA'
ELSE

PRINT*, *ERROR’

WRITE(2,’ (A)’)’TYPE OF TEST DOES NOT MAKE SENSE’
GOTO 1000
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2000

ENDIF

A=CC/((1.0+EQ)* L0G(10.0))
B=CR/((1.0+E0)* L0G(10.0))

ITER=1

R1 =-(2.0/SRT3)*SUDSV

R2 = CAPA/SIGMAV

R3 = ((R2-R1)/(ALPHA*(1.0+2.0*K0)))**(B/(B—A))
P = LOG((1.0+R3)/2.0)/ LOG(R3)

DX0 = 2.0% L0G(1.0/P-1.0)/(R3-1.0)

W = (B-A)x LOG(RS)/(DEXP(DXO*R3)-DEXP(DXO))

DELR = 999999999 .0

R =—3.0*R3/R1-1.0/ALPHA

H = (1. 0-KO)**2% (ALPHA**2#R*%2—1 .0)/3.0
H = H+(ALPHA**2)*(1.0+2.0*KO)**2+R2**2
H = H—Q.O*ALPHA*RZ*(i.0+2.0*K0)

IF (H.LT.0.0) THEN
H=0.0
PRINT#*, *CAUTION >>> NEGATIVE VALUE OF H. ERROR LEVEL 1:’
PRINT*,’IT IS MADE ZERO, BUT ACTUAL VALUE OF H IS ’,H
ENDIF

R4 = SQRT(H)
RNEW=(1.0+2.0%K0)

RNEH=RNEW-(R2*(1.0-ALPHA*R)-RI*(l.O-(ALPHA*R)**2)/ALPHA)/R3
RNEW=RNEW/ (R2+R4)

PRINT*,’ITERATION = ', ITER,” R = ’ RNEW
DR = DABS(RNEW-R)

DELR = DR

R = RNEW

ITER = ITER+1

IF (DELR.GT.TOL) GOTO 2000

IF(DABS((i.O—KO)/SRTS).GE.DABS(Rl))PRINT*,’ERRDR : LEVEL 1’
IF(DABS(RI/(RQ—ALPHA*(i.+2.*KO))).GE.1.0)PRINT*,’ERRUR : LEVEL 2’
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H=(1.0-KO)**2*(ALPHA**2*R**2—1.0)/3.0
H=H+(ALPHA**2)*(1.0+72. 0*KQ) **2+4R2* %2
H=H—2.0*ALPHA*R2*(1.0+2.0*K0)

IF (H.LT.0.0) THEN
H=0.0
PRINT=, ’CAUTION >>> NEGATIVE VALUE OF . ERROR LEVEL 1:°
PRINT*,’IT IS MADE ZERO, BUT ACTUAL VALUE OF H IS ’,H
ENDIF

X0 = (SIGMAV/(l.O-ALPHA*R))*((i.0+2.0*K0)—R*R2—R* SQRT(H))
D = DX0/X0
WRITE(2,*)

WRITE(2, 7 (A) ) 2 stk mokok ootk koo PARAMETERS sk sk sk ok ok sk ke sk s sk ok ?
WRITE(2,*)

WRITE(2,’ (A15,F10.3) )’ ALPHA =’ ALPHA
WRITE(2,’(A15,F10.3)?) 'CAPA =?, CAPA
WRITE(2,’(A15,F10.3)’)'D =’ D
WRITE(2,’(A15,F10.3)7) W =,
WRITE(2,’(A15,F10.3) ) R =’, R
WRITE(2,’(A15,F10.3)')’X0 =’ X0
WRITE(2,’(A15,F10.3)’)’DX0 =’ DX0

X0 = CAPA/ALPHA+(2.0/SRTS)*SUDSV*SI

GMAV*(R+1.0/ALPHA)

D = DX0/X0
WRITE(2,*)

WRITE(2,’(A15,F10.3)’)’D =’ D
WRITE(2,’ (A15,F10.3) ) X0 =’ X0

READ(1,’(F15.5) ) SIGMAV, KO

SIGMAV=-SIGMAY

WRITE(2,*)
WRITE (2, (A) 7)) seokoksesksko ok sk ook ok sk FIELD DATA sk kskokkakskk sk skokodk ko ?
WRITE(2,*)

HRITE(2,’(A15,F10.3)’)’PHI (DEGREE) =’, PHI
HRITE(2,’(AIS,FIO.B)’)’CPRIME =’, CPRIME
WRITE(2,’ (A15,F10.3) ') CC =’, CC
WRITE(2,’ (A15,F10.3)’) 'CR =’, CR
WRITE(2,’(A15,F10.3)’) PR =’ PR
WRITE(2,’(A15,F10.3)’) EQ =’, EO
HRITE(2,’(A15,F10.3)’)’SUDSV =’, SUDSV
WRITE(2,’(AlS,FiO.S)’)‘SIGMAV =’, SIGMAV
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WRITE(2,’(A15,F10.3)’)’K0 =’, KO

H=(1.0-K0) **2% (ALPHA**2%R*%2-1 .0) /3.0
H=H+(ALPHA**2)% (1.0+2. O*KO) **24R2%%7
H=H-2.0*ALPHA*R2*(1.0+2.0*KO)

IF (H.LT.0.0) THEN
H=0.0
PRINT*,’CAUTION >>> NEGATIVE VALUE OF H. ERROR LEVEL 2:°’
PRINT*,’IT IS MADE ZERO, BUT ACTUAL VALUE OF H IS ’,H
ENDIF

XO=(SIGMAV/(1.0—ALPHA*R))*((l.0+2.0*K0)—R*R2—R* SQRT(H))
D=DX0/X0

XONC=X0

I1 = SIGMAV*(1.042.0*K0)

Ki = 1.0/B

K2 =1.0

AP = 1.0

K = K1*AP* (ABS(I1/(3.0%AP)))**K2
CONP=-I1/3.0

YMOD=YM(SLOP, CONST, CONP)
PR =0.5-YMOD/(6.0%K)

G2 = 0.0
Gl = 1.5*(1.0—2.0*PR)/(1.0+PR)
G = G2+G1xK

G=YMOD/(2.0%(1.0+4PR))

WRITE(2, %) .
WRITE(2, 7 (A) 7)) * sokkskeskokoon e ok sk sk ook ok ok PARAMETERS sk okeskokok sk ok ok ko ok 0
WRITE(2,*)

WRITE(2,’(A15,F10.3)’)’ALPHA =’ ALPHA
WRITE(2,’(A15,F10.3) ") ’CAPA =!  CAPA
WRITE(2,’(A15,F10.3)’)’'D =, D
WRITE(2,’(A15,F10.3)°) W =’ W
WRITE(2,’ (A15,F10.3)’)'R =’ R
WRITE(2,’ (A15,F10.3)") X0 =’ X0
WRITE(2,’ (A15,F10.3)’)’DX0 =’ DX0

WRITE(2,’ (A15,F10.3)°) K =
WRITE(2,’(A15,F10.3)’) G =!
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X0 CAPA/ALPHA+(2.0/SRTS)*SUDSV*SIGMAV*(R+1.0/ALPHA)
D DX0/X0
X00C = X0

i

IF(ABS(XONC).GT.ABS(XODC)) X0=XONC
D=DX0/X0

WRITE(2,%*)

WRITE(2,'(A15,F10.3)?)’D =', D
WRITE(2,’(A15,F10.3)’) X0 =, X0

WRITE(3,’(4)’) 'material type # 256 (cap model)’

WRITE(3,’(8E10.4)") K, G, 0.0, 0.0, 0.0, 0.0,
WRITE(3,’(8E10.4)’) CAPA, ALPHA, 0.0, 0.0, R, 0.0,
WRITE(3,’ (8E10.4)’) D, W, -X0, 0.0, 0.0, 0.0,
WRITE(3,'(8E10.4)’) 3.0, 0.0, 0.0, 0.0, 0.0, 0.0,
WRITE(3,’(8E10.4)’) 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
WRITE(3,’(8E10.4)°)-0.01, 0.0, 0.0, 0.0, 0.0, 0.0,
STOP

END
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Appendix E: Force-Displacement Curves for Single Piles, Two-Pile Groups, and Pile
Caps

E.1 Introduction

For time domain nonlinear analysis, a rational, dynamic, nonlinear soil-pile interaction
model has been developed for a single pile, a pile group, and a pile group with cap for
axial and lateral vibrations. These are formulated as simple combinatjons of frequency
independent masses, springs, and dashpots. Explicit expressions have been presented for
near- and far-field masses, near- and far-field dampers, and far-field springs. The p-y and
t-z curves of the near-field springs for piles and pile- groups for dynamic analysis were
computed using finite element analysis for a site-specific soil at the Snohomish river site.

The results of these analysis have been presented in this appendix in the following order:

L. Force-displacement curves of the near-field spring of a single pile of diameters 18"

and 24"

(a) Lateral vibration for 8 different confining pressures in plane-strain condition,

(b) Lateral vibration for 4 different confining pressures in plane-stress condition,

and
(c) Axial vibration for 8 different confining pressures.
2. p-y and t-z curves of the pile-pile interaction of two-pile groups of diameters 138”
and 24",
(a) For direct-lateral vibration

i. Near-field spring for plane-strain condition for 8 different confining pres-

sures,

i1. Near-field spring for plane-stress condition for 2 different confining pres-

sures,

197



iil. Interaction-spring for plane-strain condition for 8 different confining pres-

sures, and

1v. Interaction-spring for plane-stress condition for 2 different confining pres-

sures.
(b) For shear-lateral vibration

1. Near-field spring for plane-strain condition for 8 different confining pres-

sures,

li. Near-field spring for plane-stress condition for 2 different confining pres-

sures,

iii. Interaction-spring for plane-strain condition for 8 different confining pres-

sures, and

iv. Interaction-spring for plane-stress condition for 2 different confining pres-

sures.
(c) For axial vibration

1. Near-field spring for 8 different confining pressures, and

1. Interaction-spring for 8 different confining pressures.
3. P.-Y. and T,-Z, curves of the cap-soil interaction-spring due to side friction

(a) For lateral vibration of four different diameters and four different squares, and

(b) For axial vibration of four different diameters and four different squares.

E.2 Characteristics of the Near-Field Springs
E.2.1 Vibration of a Single Pile

E.2.1.1 Lateral Vibration of a Single Pile

To develop the nonlinear near-field spring, the pile segment was forced to move later-
ally either in the plane-stress or plane-strain condition during the computer simulation of

a lateral load test, and the displacement of the segment was observed. A comprehensive
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determination of near-field spring constants has been made for piles with diameters of
0.457m (18") and 0.610m (24"), respectively, using soil parameters determined from lab-
oratory tests performed on soil samples taken from a Snohomish river site in Washington
State. These thin-layer p-y curves were produced for 6.9, 17.3, 34.5, 68.9, 137.8, 275.6,
351.2, and 1102.4 kPa (1, 2.5, 5, 10, 20, 40, 80, and 160 psi) of vertical effective stress,
assuming drained conditions. In all cases, the coefficient of earth pressure at rest was
assumed to be 0.5 and the coefficient of friction between the pile and soil interface was
assumed to be 0.4. The p-y curve for very small vertical stresses, 6.9, 17.3, 34.3, and
68.9 kPa (1, 2.5, 5, and 10 psi), was developed for the plane-stress condition. All p-y
curves are presented in Figures E.1 through E.4, and the corresponding parameters for

the idealized p-y curves are presented in Tables 2.1 and 2.2,
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Figure E.1 p-y curves for lateral vibration of a near-field spring for single pile for
different confining pressures for plane-strain condition [d = 0.457Tm = 18 in.] (continued
to the next page)
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Figure E.1 p-y curves for lateral vibration of a near-field spring for single pile for
different confining pressures for plane-strain condition [d = 0.457m = 18 in.] (continued)
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Figure E.2 p-y curves for lateral vibration of a near-field spring for single pile for
different confining pressures for plane-
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Figure E.3 p-y curves for lateral vibration of a near-field spring for single pile for
different confining pressures for plane-strain condition [d = 0.610m = 24 in.] (continued
to the next page)
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Figure E.4 p-y curves for lateral vibration of a near-field spring for single pile for
different confining pressures for plane-stress condition [d = 0.610m = 24 in.]
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E.2.1.2  Axial Vibration of a Single Pile

To develop the nonlinear spring characteristics, a finite element model was developed
for a thin layer elasto-plastic soil and a rigid pile segment. Soil within 4d of the pile
was modeled with the geologic cap model. It was observed that soj] displacement at a
large distance (20 diameters) from the pile center was negligibly small and, therefore,
an artificial, no displacement boundary was placed there. A pseudo-static load was
applied along the pile axis to observe the resulting displacement. No sliding interface
was assumed to exist between the pile and soil because initial observations showed that
it induces instability. The initial Ko-state of stress was assumed as the initial condition.
The overburden pressure was always maintained to ensure the confining effect.

All nodes along the boundary were assumed to be fixed, and the rest of the nodes were
allowed to move only vertically. The resulting force (per unit thickness)- displacement
behavior, represented by t-z curves, were produced with 8 different confining pressures
for soil of the Snohomish river site. These curves are presented in Figures E.5 and E.6
for piles of 18" (0.457Tm) and 24" (0.610m) diameters respectively. The corresponding

bilinear parameters are presented in Tables 2.4 and 2.5,
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Figure E.5 ¢-z curves for axial vibration of a near-field spring for single pile for
drfferent confining pressures. [d = 0.45Tm = 18 in.] (continued to the next page)
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Figure E.5 ¢-z curves for axial vibration of a near-field spring for single pile for
different confining pressures. [d = 0.457Tm = 18 in.] (continued)
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Figure E.6 ¢z curves for axial vibration of a near-field spring for single pile for
different confining pressures. [d = 0.610m = 24 in.] (continued to the next page)
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E.2.2  Vibration of a Two-Pile Group

All pile segments were assumed to be interconnected to neighboring pile-segments
by interacting nonlinear springs and dashpots. All pile segments were connected to the
soil by near-field nonlinear springs and dampers, while all external pile segments were
connected to far-feld discrete elements through near-field elements. The Spring constants
which represent interaction between piles, i.e. the springs connecting the pile segments
with each other, can be obtained by introducing a displacement into a segment in a
pile group while keeping all others fixed. The force generated in each pile-segment as an

active or reactive force can be analyzed to characterize the interacting spring parameters.
E.2.2.1 Direct-Lateral Vibration of a Two-Pile Group

There are three basic types of springs in pile group models. These include nonlin-
ear near-field springs, nonlinear interacting springs, and linear far-field springs. Non-
linear springs are required for those connecting piles with surrounding soil, and for
those connecting the piles themselves, i.e., interaction-springs. The characteristics of
the interaction-springs between two piles and the near-field spring which connects a pile
to soil have been computed for different confining pressures and for the drained condi-
tion for soil taken from the Snohomish river site. For the determination of the direct
interaction—spring constants for lateral vibration, plane-strain conditions were assumed
for all the depths other than zero. At or near the surface, plane-stress conditions were
assumed. A pseudo-static load was applied to one rigid segment of the pile either toward
the other pile or in the reverse direction, varying sinusoidally with a very small frequency,
keeping the other pile fixed. The resulting displacement in the first pile, and active or
reactive force on both piles, were observed and analyzed to establish the p-y behavior of
the two-pile group. The above procedure was followed for different, depths represented
by 6.9, 17.3, 34.5, 68.9, 137.8, 275.6, 331.2, and 1102.4 kPa (1, 2.3, 5. 10, 20, 40, 80, and
160 psi) vertical stresses in plane-strain condition, and 6.9 and 34.5 kPa (1 and 5 psi) for

plane-stress condition, for drained behavior of the soil, and for center spacing of 2d, 4d,
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and 8d. The resulting p-y behavior of the interaction springs and the near-field springs
are presented in Figures E.7 through E.22 for soil from the Snohomish river site. The

NEABS parameters for those spring were computed, and they are presented in Tables 2.7
through 2.9,
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in.; s = 8] (continued to the next page)
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Figure E.19 p-y curves for the interaction-springs between two piles for direct-lateral
vibration for different confining pressures in plane-strain condition. [d = 0.610m = 24
In.; s = 2d] (continued to the next page)
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Figure E.19 p-y curves for the ihteraction-springs between two piles for direct-lateral
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in.; s = 4d} (continued to the next page)
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Figure E.20 p-y curves for the interaction-springs between two piles for direct-lateral
vibration for different confining pressures in plane-strain condition. [d=0.610m = 24
in.; s = 4d] (continued)
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Figure E.21 p-y curves for the interaction-springs between two piles for direct-lateral
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in.; 8 = 8d] (continued)
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E.2.2.2 Shear-Lateral Vibration of Two-Pile Group

For the two-pile groups with vibration in both lateral directions, two types of addi-
tional springs are required. One is an interaction shear-spring and the other is for connect-
ing pile-segments with the surrounding soil. For the computation of shear-interaction-
spring behavior, the two piles with soil were modeled within the finite element framework.
From this thin layer finite element model, the interaction behavior was obtained using
the same procedure as that used for direct interaction-springs. The above procedure was
followed for different depths represented by 6.9, 17.3, 34.5, 68.9, 137.8, 275.6, 551.2, and
1102.4 kPa (1, 2.5, 5, 10, 20, 40, 80, and 160 psi) vertical stresses in plane-strain condi-
tion, and 6.9 and 34.5 kPa (1 and 5 psi) in plane-stress condition, for drained behavior
of the soil, and for center spacing of 2d, 4d, and 84. The resulting p-y behavior of the
interaction-springs and the near-field springs is presented in Figures E.23 through E.38
for soil from the Snohomish river site. The NEABS parameters for those spring were

computed, and they are presented in Tables 2.11 through 2.14.
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Figure E.23 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. Id
= 0.457Tm = 18 in.; s = 2d] (continued to the next page)
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Figure E.23 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.457Tm = 18 in,; s = 2d] (continued) |
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Figure E.24 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. Id
= 0.457m = 18 in.; s = 4d] (continued to the next page)
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Figure E.24 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.45Tm = 18 in.; s = 4d] (continued)
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Figure E.25 p-y curves for the néar—ﬁeld springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.457m = 18 in.; s = 8d] (continued to the next page)
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Figure E.25 p-y curves for the near-field springs between two piles in a two-pile group

for shear-lateral vibration for different confining pressures for plane-strain condition.
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Figure E.26 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-stress condition. [d

= 0.457m = 18 in ]
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Figure E.27 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.610m = 24 in.; s = 2d] (continued to the next page)

249



Shear Lateral Force {poundsfinch)

Shear Latera] Forve [poundsfinch]

Figure E.27 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
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Figure E.28 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.610m = 24 in.; s = 4d) (continued to the next page)
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Figure E.28 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.610m = 24 in.; s = 4d] (continued)
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Figure E.29 p-y curves for the near-field springs between two piles in a two-pile group

for shear-lateral vibration for different confining pressures for plane-strain

condition. [d

= 0.610m = 24 in.; s = 8d] (continued to the next page)
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Figure E.30 p-y curves for the near-field springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-stress conditior. [d

= 0.610m = 24 in.]
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Figure E.31 p-y curves for the inﬁeraction-springs between two piles in a two-pile group

for shear-lateral vibration for different confining pressures for plane-strain condition.
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Figure E.31 p-y curves for the inferaction—springs between two piles in a two-pile group
for shear-lateral vibration for different, confining pressures for plane-strain condition. [d
= 0.457m = 18 in; s = 2d] (continued)
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Figure E.32 p-y curves for the interaction-springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.457m = 18 in.; s = 4d] (continued to the next page)
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Figure E.32 p-y curves for the interaction-springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. (d

= 0.45Tm = 18 in.; s = 4d] (continued)
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Figure E.33 p-y curves for the inferaction-springs between two piles in a two-pile group

for shear-lateral vibration for different confining pressures for plane-strain condition.
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Figure E.33 p-y curves for the interaction-springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.457m = 18 in.; s = 8d)] (continued)
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Figure E.34 p-y curves for the interaction-springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-stress condition. [d
= 0.457m = 18 in.
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Figure E.35 p-y curves for the interaction-springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.610m = 24 in.; s = 2d] (continued)
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Figure E.36 p-y curves for the interaction-springs between two piles in a two-pile group

for shear-lateral vibration for different confining pressures for plane-strain condition.
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Figure E.36 p-y curves for the interaction-springs between two piles in a two-pile group
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Figure E.37 p-y curves for the interaction-springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
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Figure E.37 p-y curves for the inferaction-springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-strain condition. [d
= 0.610m = 24 in.; s = 8d] (continued)
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Figure E.38 p-y curves for the interaction-springs between two piles in a two-pile group
for shear-lateral vibration for different confining pressures for plane-stress condition. [d
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E.2.2.3 Axial Vibration of Two-Pile Group

For the axial interaction-springs, two piles were modeled once again within the finite
element framework. No sliding interface was assumed to exist to avoid instability and
the condition of symmetry was utilized. No lateral displacement boundary condition was
used. Vertical displacement of soil at a distance of 20d from the pile or further apart
was neglected by using an artificial, no-displacement boundary. Vertical stresses were
maintained to simulate confining effects. Perturbation was given only in one pile, and
the resulting displacement of the pile and the reactive forces in both pile segments were
observed and analyzed to obtain the interaction characteristics. The above procedure was
followed for different depths represented by 6.9, 17.3, 34.5, 68.9, 137.8, 275.6. 551.2, and
1102.4 kPa (1, 2.5, 5, 10, 20, 40, 80, and 160 psi) vertical stresses, for drained behavior
of the soil, and for center spacing of 2d, 4d, and 84. The resulting ¢-z behavior of the
interaction-springs and the near-field springs is presented in Figures E.39 through E.50
for soil from the Snohomish river site. The NEABS parameters for those spring were

computed, and they are presented in Tables 2.15 through 2.13.
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Figure E.39 p-y curves for the near-field springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.457Tm = 18 in; s = 2d]
(continued to the next page)
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Figure E.39 p-y curves for the near-field springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.457m = 18 in.; s = 2d|
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Figure E.40 p-y curves for the near-field springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.457Tm = 18 in.; s = 4d]
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Figure E.40 p-y curves for the near-field springs between pile and soil in a two-pile
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Figure E.41 p-y curves for the near-field springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.457Tm = 18 in.; s = 8]
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Figure E.41 p-y curves for the near-field springs between pile and soil in a two-pile

group for axial vibration for different confining pressures. {d = 0.457m = 18 in.; s = 8d]
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Figure E.42 py curves for the near-field springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.610m = 24 in.: s = 2d)
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Figure E.42 p-y curves for the near-field springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.610m = 24 in.; s = 2d|
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Figure E43 p-y curves for the near-field springs between pile and soil in a two-pile

group for axial vibration for different confining pressures. [d = 0.610m = 24 in.; s = 4d]
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Figure E.43 p-y curves for the near-field springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.610m = 24 in.; s = 4d]
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Figure E.44 p-y curves for the near-field springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.610m = 24 in.; s = 8]
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Figure E.44 p-y curves for the near-field springs between pile and soil in a two-pile
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Figure E.45 p-y curves for the interaction-springs between pile and soil in a two-pile
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Figure E.46 p-y curves for the interaction-springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.457m = 18 in.; s = 4d]
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Figure E£.47 p-y curves for the interaction-springs between pile and soil in a two-pile
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Figure E.48 p-y curves for the interaction-springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. {d = 0.610m = 24 in.; s = 2d]
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Figure E.48 p-y curves for the interaction-springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.610m = 24 in.; s = 2d]
{continued)

290



200

1 T T T T T T T T
=24 inches. Sid=4, Ko=0.5. Sigmav= 1 psi —

150 + : n
= -
2
] -
E
E
2 4
8
H d
k=
o
< .

150 F .

200 1 L 1 ! 1 L 1 1 1

-0 03 96 04 02 00 02 04 06 0B 1D
Axial Displacement [inches]
(a)

400 T T T T Y T T T T

d=24 inches, S/d=+4. Ko=0.5. Sigrmav=5 psi —

m = -
— 200 + b
=
g
2 100 .
H
Z ol ]
©
2
o 100 4
2
"
< a0 4

=300 -
a0 1 1 1 L i 1 i 1 )
-l0 08 06 H4 £2 00 02 04 06 03 10

Figure .49 p-y curves for the interaction-springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.610m = 24 in.; s = 4d]
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Figure E.49 p-y curves for the i‘nteraction-springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.610m = 24 in.; s = 4d]
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Figure E.30 p-y curves for the interaction-springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.610m = 24 in.; s = 8d]
(continued to the next page)
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Figure E.30 p-y curves for the interaction-springs between pile and soil in a two-pile
group for axial vibration for different confining pressures. [d = 0.610m = 24 in.; s = 8]
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E.2.3 Vibration of Pile Cap
E.2.3.1 Lateral Vibration of Pile Cap

For the modeling of this resistance, p-y curves were developed for circular and rect-
angular pile caps of different dimensions. Rigid behavior of the cap, elasto-plastic and
elastic behavior of the soil in the near- and far-zones respectively, sliding interfaces, and
plane-stress conditions were considered. Displacement of the soil at a distance of 20d or
20a (d, ¢ = Dimensions of the circular and square caps, respectively) was considered to be
negligible by providing an artificial, no displacement boundary. The resulting p-y behav-
ior of the near-field springs are presented in Figures E.51 and E.52 for four different sizes
of square and four different sizes of circular pile-caps for soil from the Snohomish river

site. The NEABS parameters for those springs were computed, and they are presented

in Table 2.19.
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Figure E.51 P.-Y, curves for circular pile-caps of different sizes vibrating laterally. [K
= 0.50, f = 0.40, isotropic hardening, drained condition]
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Figure E.532 P.-Y, curves for square pile-caps of different sizes vibrating laterally. [Kj
= 0.50, f = 0.40, isotropic hardening, drained condition]
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E.2.3.2 Axial Vibration of Pile Cap

The side shear resistance to vertical movement was developed for both circular and
rectangular caps in the same manner as for the single pile segment. No sliding interface
was assumed to exist. Very little confining pressure, 6.9 kPa (1 psi) was considered. No
lateral movement of the soil was assumed. The resulting T.-Z. behavior of the near-field
springs are presented in Figures E.53 and E.54 for four different sizes of square and four
different sizes of circular pile-caps for soil from the Snohomish river site. The NEABS

parameters for those spring were computed, and they are presented in Table 2.20.
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Figure E.53 T.-Z. curves for circular pile-caps for different sizes vibrating axially. [A}
= 0.50, isotropic hardening, drained condition]
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Figure E.54 T.-Z. curves for square pile-caps of different sizes vibrating axially. [Kj =
0.50, isotropic hardening, drained condition]
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Appendix F: HRZ Lumping of Soil Mass

F.1 Introduction

A mass matrix is a discrete representation of a continuous mass. A consistent mass matrix
is defined by the equation,

[m]= [ pINJ'[NKV. [F.1]

It is termed “consistent” because [m] represents the same shape functions as those used
to generate the element stiffness matrix. A simpler and historically earlier formulation is the
"lumped” mass matrix, which is obtained by placing particle masses m, at node i of an
element, such that £m; is the total element mass. Particle "lumps" have no rotary inertia
unless they are arbitrarily assigned, as is sometimes done for the rotational d.o.f. of beams
and plates. A lumped mass matrix is diagonal, but a consistent mass matrix is not. The two
formulations have different merits, and various considerations enter into deciding which one,
or what combination of them, is best suited to a particular analysis procedure. In wave
propagation problems using linear-displacement field elements, lumped masses give greater
accuracy because of fewer spurious oscillations. Lumped masses are simpler to form, occupy
less storage, and require less computational effort. Indeed, some methods of dynamic analysis
are practical only with lumped mass matrices. The lumped mass matrices are effective and

widely used. There are three ways to get a lumped mass matrix, as discussed below.

F2  Adhoc Lumping Scheme
This scheme is guided by intuition and physical insight. However, for higher-order

elements or elements of triangular shape, intuition can be risky. Accordingly, systematic
schemes for lumping are necessary.
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F.3 HRZ Lumping Scheme

The HRZ (Hinton, Rock, and Zienkiewicz 1976; Surana 1978) scheme is an effective
method for producing a diagonal mass matrix. It can be used for arbitrary elements. The
idea is to use only the diagonal terms of the consistent matrix, but to scale them in such a
way that the total mass of the element is preserved (Cook et al. 1989). The nodal lumped
mass is proportional to the corresponding diagonal element of the consistent matrix, as
expressed in the following equation:

T

m;

M; Miotat [F.2]

F.4 Optimal Lumping Scheme

Mass lumping can be thought of as the result of applying an appropriate quadrature
rule to evaluate Equation F.2. If the integration points of a quadrature rule coincide
with nodal locations of an element having translational d.o.f. only, then no off-diagonal
terms are gencrated and the mass matrix is diagonal. If the element also has rotational
d.of., then the lumping by quadrature produces block-diagonal matrices that are of
lesser practical usefulness because they are not diagonal. In this report, only lumping by
quadrature for elements with translational d.o.f. is considered.

Nodes of Lagrangian elements coincide with integration points of the Lobatto quadra-
ture rule having positive weights only. Hence, optimal lumping for Lagrangian elements
results in positive definite diagonal mass matrices, i.e., each node in the element has
a positive mass associated with it. But optimally lumped diagonal mass matrices for
triangular and serendipity quadrilateral elements (particularly for quadratic or higher
elements) frequently have some zero or negative nodal masses.

For low order elements, such as the linear-displacement bar, the constant-strain tri-
angle, and the bilinear quadrilateral, ad hoc lumping usually gives the same result as the
optimal lumping. Also, for the quadratic Lagrange element, HRZ lumping and optimal

lumping produces the same diagonal mass matrix. For cubic and higher order Lagrange
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elements, HRZ lumping and optimal lumping may be different. For quadratic and higher
order triangular and serendipity quadrilateral elements, HRZ lumping and optimal lump-

ing are markedly different, and the HRZ lumped model can be less accurate for some

problems (Malkus & Plesha 1986, Malkus et al. 1988).

F.5 Conclusion

Lumped masses based on exact integration is recommended, rather than the use
of numerical integration with gauss points at the nodes. Because the assumed shape
functions are of low order, the consistent matrix can be easily obtained, leading to the

HRZ Jumped mass matrix.
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