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EXECUTIVE SUMMARY

This report documents the development of freeway traffic data prediction using
artificial neural networks (ANNs) and the development of a predictive fuzzy logic ramp
metering algorithm. The neural networks predicted volume and occupancy significantly
better than previous techniques used in the Seattle area. Test results on historical data
from the I-5 freeway in Seattle, Washington, demonstrated that a neural network can
accurately predict volume and occupancy 1 minute in advance, as well as fill in the gaps
for missing data with an appropriate prediction. The volume and occupancy predictions
will be used as inputs to a fuzzy logic ramp metering algorithm currently being tested. A
1-minute data prediction will be a useful input to a ramp metering algorithm because this
insight can help delay or prevent bottleneck formation. Because the ramp metering rates
will be updated every 20 seconds, 1-minute data prediction will provide valuable

information to determine the next few metering rates.

ARTIFICIAL NEURAL NETWORK

A multi-layer perceptron type of ANN was trained using back propagation to
minimize the mean squared error of the prediction. The inputs to the ANN included the
previous ten values of 1-minute volume and occupancy from the predicted station and the
adjacent upstream station. Although the ANNs were trained and tested on historical data,-
they can be implemented for real-time prediction because the inputs are past values of
volume and occupancy. For on-line implementation, a neural network will need to be
trained from data for each prediction site. The training algorithm and neural network
architecture should remain similar for different sites. The ANN parameters should
remain similar as long as the data characteristics are similar to the research sites. If not,
the network code has been written to allow easy modification of the ANN parameters.

For on-line implementation, the neural network should be trained on-line to allow for

vil



seasonal variations. A flag should constantly monitor the accuracy of the prediction to
indicate whether retraining is necessary.

Predictions over 1 minute were unreliable. Because of the somewh.at chaotic
nature of freeway traffic data, longer term prediction with ANNs is a much more difficult
problem. Given that a vehicle may travel over 5 miles in a 5-minute forecasted period,

the random inputs over that time and distance make longer term prediction challenging.

FUZZY 1.OGIC RAMP METERING ALGORITHM

The 1-minute ANN prediction will be one of the inputs to a fuzzy logic ramp
metering algorithm. The fuzzy logic ramp metering algorithm will determine the
‘ metéring rates on the basis of both predicted and actual data. This research laid the
groundwork for the fuzzy logic ramp metering concepts and algorithm. Fuzzy logic
control is well-suited to the ramp metering application for several reasons. It requires a
mathematical model of the system, and it can utilize imprecise or incomplete information.
These traits are important, given that the freeway is difficult to accurately model and that
loop detector data are susceptible to error. The fuzzy logic rules incorporate human
expertise, considering all factors simultaneously rathe1; than making a series of
adjustments.

The fuzzy logic ramp metering algorithm was designed for flexibility and
robustness. For easy algorithm modification and code simplicity, adjustable parameters
define the memberships classes. A weight for each rule allows that rule to be emphasized
or eliminated for tuning purposes. The fuzzy logic algorithm was also designed to
overcome the disadvantages of Seattle's current ramp metering algorithm. The parallel
rules of the controller promote robustness to faulty loop detector data. Fuzzy logic
control can provide smooth transitions rather than threshold activations, as well as
prevent queue formation through the use of qualitative queue inputs. Rules based on the
premise of low downstream speed and high downstream occupancy provide a better
indicator of bottlenecks than downstream storage rate. -
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Fuzzy logic algorithm testing and tuning is recommended for future research, first
with a simulation model. FRESIM was found to be the most appropriate freeway
simulation model for testing the new ramp metering algorithm. Although modifying the
FRESIM source code 1o incorporate the fuzzy logic ramp metering algorithm could take
a few months by an experienced programmer, it would be worth the effort. Testing
on-line would be complicated by the fact that traffic demand and weather characteristics

vary from day to day. Because simulation testing does not have this non-uniformity, it is

-easier to compare and tune algorithms in simulation testing than in on-line testing.

Because no model can perfectly replicate actual freeway behavior, the algorithm
will need further tuning and testing on-line. On-line testing is recommended in four
steps: predictor testing, metering rates generated but not used, metering rates sent to a
simulation field rack, and then metering rates sent to actual ramps. Although on-line
testing is time consuming, it will be necessary to maximize and verify efficiency.
Algorithm testing, first thfough simulation and then on-line, is being continued by the
authors through a TransNow 1994-1995 grant. Overall, the fuzzy logic ramp metering

algorithm utilizing an ANN traffic data predictor appears quite promising.

ix




[

INTRODUCTION

As anyone who drives is well aware, traffic congestion is a growing concern
across the nation. Because of geographical limitations, simply building more lanes can
no longer solve freeway congestion. Today's practical approach to improving traffic flow
now emphasizes maximizing freeway efficiency by methods such as public transit, high

occupancy vehicles, variable direction lanes, and ramp metering. Improving freeway

- efficiency motivated this research, which strove to develop a fuzzy logic ramp metering

algoriihm utilizing artificial neural network (ANN) traffic data predictors.

PROBLEM DESCRIPTION

In 20 metropolitan areas across the United States, studies have shown that ramp
metering has dramatically improved travel times, decreased accident rates, and decreased
fuel consumption (Robinson and Doctor, 1989). A six year study, during which ramp
metering was implemented in Seattle, Washington, indicated that the travel time for a
specific 11.1 km section of Interstate 5 decreased from 22 to 11.5 minutes, and the
accident rate decreased by 39 percent. During this study, the mainline freeway volumes
increased by 86 percent northbound and by 62 percent southbound (Henry and Mehyar,
1989). Given the highly beneficial effects of raﬁp metering, optimizing metering rates is
of great importance. Even slight improvements in the ramp metering algorithm may
producé significant returns.

Although the ramp metering algorithm currently used in Seattle is one of the most
sophisticated in the country, it has limitations (Jacobson, Henry, Mehyar, 1988). The
existing ramp metering algorithm has a time lag between problem detection and

corrective action. For instance, a reaction to existing congestion may result in overly



restrictive metering rates. Excessive queue build-up may consequently activate the queue
override, which increases the metering rate to keep cars from backing up into the
arterials. The resulting increase in freeway congestion may then cause the cycle to
repeat. Once the freeway starts oscillating between restrictive and high metering rates, it
may have trouble escaping this cycle until the congestion dissipates. The algorithm also
depends strongly on loop detector data. Induction loops, located under the freeway
pavement about every 0.8 km, sample freeway data, which a central computer receives
every 20 seconds. Loop detector data are not always reliable because of noisy signals',

transmission problems, construction work, and mechanical failure.

RESEARCH APPROACH

The purpose of this project was to develop a predictive ramp metering algorithm
to overcome the limitations of the existing ramp metering algorithm. An artificial neural
network (ANN) was created to predict freeway volume and occupancy during heavily
congested flow. This data prediction will provide an input to a fuzzy logic ramp metering
algorithm that was also developed. The result may be a ramp metering rate that is based
on both current and predicted traffic flow. Ideally, the new algorithm may help prevent
bottlenecks rather than simply react to them. By considering the freeway as a control
system instead of one section at a time, the fuzzy logic algorithm should avoid an
oscillatory ramp metering rate and should achieve equilibrium more quickly and
smoothly.

There were two stages to this research project: the development of a neural
network traffic data predictor and the development of a fuzzy logic ramp metering
algorithm. The project focused primarily on the ANN traffic data predictors, but it also

laid the groundwork for the fﬁzzy logic ramp metering concepts and algorithm. Because

fuzzy logic algorithm testing and fine-tuning requires a calibrated freeway model capable -
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of closed-loop control, which is unavailable at this time, fuzzy logic algorithm testing

will require further research.

EPORT ORGANIZATION

Following the introduction, the section on ANN research includes previous
freeway traffic prediction techniques, the prediction method, short- and long-term
prediction results, and implementation considerations. In the section about fuzzy logic,
background material on ramp metering algorithms and fuzzy logic are presented. The

report presents a description of the algorithm and algorithm testing options.



ARTIFICIAL NEURAL NETWORK (ANN)

PREVIOUS TRAFFIC PREDICTION TECHNIQUES

Time Series Models

Two previous approaches for predicting traffic data in Seattle on I-5 were based
on time series models (Nihan and Zhu, 1992) and Kalman filtering (Dailey, 1993). Both
of these approaches forecast volume and occupancy 1 minute in advance. Volume is
defined as the aggregate number of cars during a sampling interval, and occupancy is
defined as the average percentage of time that a vehicle occupies the mainline during a
sampling interval. Models were developed on the basis of historical loop detector data.

Of the five time series models Nihan and Zhu explored, the best two were the
adaptive prediction system model and the double exponential smoothing model. The

-adaptive prediction model forecast is a linear weighted sum of past data values. The
double exponential smoothing model forecast follows a linear trend. For these two
methods, volume results are shown in Figure 1 and occupancy results are shown in
Figure 2.

Dailey's system model, used by the Kalman filter predictor, was based on
historical data dynamics and statistical process information. Dailey constructed the
system model on the basis of correlation between state variables, such as volume and
occupancy, data from adjoining lanes, and time series loop detector data. The Kalman
filter prediction is useful for detecting anomalies in the data, such as an incident (defined
as nonrecurrent congestion caused by blockage of one lane or more). If the pfediction
varies significantly from the actual data, an anomaly may have occurred. These results

are shown in Figure 3.
These two approaches are traditional in the sense that they rely on human

khowledge of the system and stochastic processes. They are also traditional in that they
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are restricted to linear system models. Since traffic flow is highly dynamic, complex, and
nonlinear, one cannot expect linear, model-dependent prediction techniques to yieid
accurate or reliable results. Difficulty in obtaining an accurate freeway system model has
suggested an alternative data prediction technique: artificial neural networks.
Use of Artificial Neural Networks

Researchers have had some success in using ANNSs to predict data 5 minutes in
advance for the city of Leicester in England (Clark, Dougherty, and Kirby, 1993). The
ANN is trained on 5-minute historical data collected from the SCOOT traffic control
system (Bretherton, 1989) between 7:30 a.m. and 7:45 p.m. The flow is measured in
Link Profile Units, each vehicle having a value of about 18. The ANN is trained on
approximately 500 examples. The back propagation algorithm discussed later minimizes
the mean squared error of the data prediction. Figure 4 shows the predicted and actual
flow versus time for a particular link.

These researchers have also had some success predicting 5 minutes in advance for
the A2 motorway in the Netherlands (Dougherty and Kirby, 1993). For this problem, the
240 network inputs include upstream speed, volume, and occupancy. The data are

preprocessed using a moving average from the previous 5 minutes.

ARTIFICIAL NEURAL NETWORKS

Interest in artificial neural networks (ANNs) has increased over the years as they
have proved adept at solving a variety of problems. In the transportation area, ANNs
have been used to detect freeway incidents (Chang and Huarng, 1993; Wiederholt,
Okunieff, and Wang, 1993), classify dynamic traffic patterns (Hua and Faghri, 1993;
Mead, Fisher, Jones, Bisset, and Lee, 1994), obtain macroscopic models of freeway
traffic (Zhang and Ritchie, 1993), and estimate multi-period travel times in transportation

networks (Wei and Schonfeld, 1993). This section introduces basic neural network
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concepts and explains why neural networks. are suitable for the traffic data prediction

problem.

Concepts

An artificial neural network, composed of connected artificial neurons, abstractly
emulates the behavior of a biological nervous system. Information is stored in the
strength of the artificial neuron connections, called weights. The ANN process of
adjusting the weights is called learning. ANN learning can be classified as supervised or
unsupervised. Supervised ANNs are given input/output data to train the network.» In
contrast, unsupervised ANNs are only given input data and must cluster similar data
together during training. Once trained, the ANN can provide an appropriate output for a
given input, if the input is within the training domain. When data are outside the training
domain, the problem is oné of prediction. If the underlying dynamics within the training
domain and outside the training domain remain reasonably similar, then the ANN should
perform well. ANN prediction on data pairs outside the training set is called
generalization.

The perceptron (Figure 5), also called a neuron, is the basic building block for a
type of ANN called a multi-layer perceptron (MLP). Cascaded perceptron layers form an
MLP (Figure 6), which can learn complex functions. Each neuron in the MLP sums a

weighted input vector according to

N

-0
where the weight, w jis is the gain from the ith neuron in a layer to the jth neuron in the
next layer. The number of neuron inputs is N, and x; is the ith input to the neuron. A~

function f(y) of this sum, called the activation function, is the perceptron output, u. A

sigmoidal function

1 :
u=f(y) = m Eq.2

is the most commonly used activation function in MLPs.
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During the learning process, adjustment of the weights, or gains of neuron inputs,
minimizes the error between the neural network's actual outﬁut and the desired output. A
commonly used learning algorithm that minimizes the output error is back propagation.
Back propagation minimizes the 2-norm of the output error (mean squared error),
represented below by the cost function J. The desired output is ¢ and the actual output is

u. The ANN has M outputs total.

2 2 2\1/2
J=((t1 —wy)” +(ty —up) .ty — upg) Eq.3
The 2-norm is the most common cost function to minimize, but other cost functions are
possible and sometimes highly desirable. Back propagation adjusts each weight in the
ANN after every training example according to

2
Aw;; =—N—— Eq. 4
I 8w ji
where the weight change is proportional to the learning rate, 7. The error for the output

layer is calculated first and is then propagated backward using the chain rule

du; dy;
J J
dyj owj;
The effective error, 8, , is found by
aJ
S = Eq. 6
J 8u j d
for the jth neuron. The weight change further reduces to
ij,»=n5jf’(yj)ui Eq.7

For more information regarding types of ANNS, the reader is referred elsewhere (Hush

and Horne, 1993; Kung, 1993).

11



Capabilities
One reason for the growing interest in ANNs is that they overcome many of the
drawbacks associated with traditional problem solving techniques. Because most

traditional freeway data prediction techniques rely on the accuracy of the system model

or knowledge of the underlying stochastic process (such as-correlation between state -

variables used by Dailey, 1993), the success of the prediction is limited by human
knowledge of the system. With ANNS, no knowledge of the system model is necessary.
The multi-layer perceptron (MLP) type of ANN requires only a training set of inputs
paired with appropriate outputs to learn the function. Thus, the ANN can be treated as a
black box independent of the particular geometry of a highway section.'

A second advantage is that properly trained ANNs are relatively insensitive to
erroneous or missing data; this is a vaiuable asset in traffic data prediction, as loop
detector data are often unreliable. A third advantage to ANNS is that they readily handle
nonlinear systems, an important trait for dealing with highly dynamic traffic data. ANNs
are also comparatively eassf to program.

Although ANNs offer a viable alternative to traditional prediction techniques,
disadvantages do exist. The ANN requires a long time to learn the training data and may
have trouble generaliziﬁg to new data outside the training set, as noted previously. In
addition, no standard method exists for finding the optimal architecture, such as choosing
the number of hidden neurons, activation function, and cost function for a MLP. In some
cases, another disadvantage is finding something to serve as the teacher, defined as the

desired output for a given input in the training set.

DEVELOPMENT OF THE ANN PREDICTORS

For the freeway volume and occupancy prediction problem, a MLP trained by a

back propagation algorithm was found to be appropriate: The artificial neural network

12
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code was written in C and runs on a Sun Workstation; Appendix A contains a version of
the program. |

The ANN used historical data to train the ANNs. The 20-second predictors were
trained and tested on 20-second data from the 2:30 to 6:00 p.m. weekday period from
December 14 and 15, 1993. The 20-second data were from a section of northbound I-5
near the Northgate exit (station 159 in Figure 7). The 1-minute and 2-minute predictors
were trained and tested on 1-minute data from the 6:00 to 9:30 a.m. weekday period from
June 1 (Monday), 15, 18 and August 27 (Thursday) and 28, 1992. These data were from
sites 1 and 2 (Figure 8). Sites 1 and 2 were sections of southbound I-5 near the NE 195th
Street and NE 205 Street interchange in Seattle. The 5-minute predictors were tra‘ined
and tested on S-minute historical data from the 6:00 to 10:00 a.m. weekday period from
August 3 (Monday), 4, 5, 6, 7, 10, 24, 25, 26, 27, 28, and 31, 1992. The 5-minute data
prediction was for site 2 (Figure 8). All research sites were chosen for their recurrent
congestion, proximi'ty_ to ramp metering, and data availability.

Volume and occupancy data were collected with loop detectors every 1/60th of a
second, sent to a substation, and then sent to a central VAX computer system every 20
seconds. The volume was the aggregate number of cars over all mainline lanes during the
past sample. The occupancy was the time percentage in which the mainline was
occupied, averaged over the past sampling period and all lanes. Note that the data were
not a true sample but an accumulation or average over the sampling interval. For this
reason, Z-transforms, fast Fourier transforms, and other digital techniques did not
necessarily apply.

The multi-layer perceptron had one hidden layer with a final configuration of 28
hidden neurons. The MLP trained over the historical weekday periods given above.
These training periods turned out to be sufficient for generalization to different days of

the week. Inputs to the neural network included the past sampled volumes and
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occupancies of the station, D, for which data were to be predicted and for the adjacent

upstream station, A. The total number of inputs was given by

# of Inputs=LENGTH*2*STATIONS Eq. 8

" where LENGTH was the length of the tapped delay line (how many past samples to use as

inputs), the factor of 2 accounted for volume and occupancy, and STATIONS was the
number of data stations used as inputs. In Figure 9, LENGTH is 10 and two STATIONS D
and A are used as inputs, for a total of 40 inputs. The two outputs from the ANN are -
volume, VOL, and occupancy, OCC, at the next sample. With this configuration, the
ANN predicts the volume and occupancy 1 minute in advance.

Many different architectures were compared by varying the number of hidden
neurons, the number of past data values used for inputs, the number of training iterations,
and the learning rates. Altering one of these parameters at a time and comparing the new
results with the best previous results helped indicate trends. Even so, extensive trial and
error were necessary before successful results were obtained. Over 100 variations on
architecture and learning technique were compared.

The ANN has a sigmoid activation function f(y) given by

£(y) = —

T l+eY Eq.9
which required the teacher to be scaled between 0 and 1. Originally, the data were scaled
between 0O and 1 by dividing the data by the maximum absolute value of the data set.
However, this method turned out to be fallible to irregular or erroneous data. For
example, the three sharp drops in raw volume data shown in Figure 10 were probably due
to transmission errors, as both the volume and occupancy were exceptionally low for the
peak rush hour. If the anomaly had been caused by stalled traffic, the occupancy should

have been high while the volume was low. Data scaled by the maximum absolute value

scaling method would have been skewed to near 1 because of the irregular low peaks.
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The MLP does not generalize well when trained on data scaled this way, nor does it test

well on data scaled this Way.

Consequently, an improved scaling scheme was devised to better handle irregular

and erroneous data. Assuming a Gaussian data distribution, the mean and standard
deviation of a typical data set scales 98 percent of a typical data set between O and 1 using
the following equations:

VOL—-mean(VOL) +0.5
4std(VOL)

Scaled VOL =

and

OCC-mean(OCC)
45td(OCC)

Scaled OCC = +0.5 Eq. 11

The scaled volufne data in Figure 10 displays how this scaling method handled irregular
data. If trained on these scaled data, the neural network learned a zero output for those
low peaks rather than skewing the entfre data set to one extreme. If the desired output
was less than 0, the teacher became 0. Likewise, if the desired output exceeded 1, the
teacher became 1. Scaled data that fell outside the O to 1 range may have represented
heavy congestion, an incident, or erroneous data.

The back propagation algorithm described previously minimized the 2-norm of
the output error. When learning stalled, the learning rate, 7], was decreased to avoid
bypassing the local minimum. For example, if the mean squared error (MSE) did not
decrease for more than 200 iterations, the learning rate may have been too large. After
numerous trials, the following learning rate pattern was found to yield the best results for

the 20-second predictors:

1n=2.0 for iterations<3000

1=0.9 for 3000<iterations<5000
1=0.5 for 5000<iterations<10,000
11=0.2 for iterations>10,000
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The 1-minute predictors performed best with the learning rate pattern below:

1=2.0 for iterations<1000

1=0.9 for 1000<iterations<1400

1=0.5 for 1400<iterations<1600

11=0.2 for iterations>1600
Appendix B contains details about the learning technique and architecture for the 2-
minute and S-minute predictors.

Training was halted when the testing MSE reached a minimum in order to
generalize to new data. For the 20-second data, the best generalization occurred at
15 000 training iterations. About 3000 iterations produced the lowest testing MSE for the
1-minute predictors. Fewer sweeps did not allow the MLP to learn the training set well
enough to generalize to the testing set, while more sweeps caused the MLP to memorize
the training set and generalize poorly. For the 2-minute predictors, using the past four
samples for fhe input worked best. Using the past 10 samples for the input worked best
for the 1-minute predictors.

Surprisingly, a general trend between performance and architecture variation was
not evident. For instance, reducing the number of past input samples from ten to nine
decreased the prediction performance, so the researchers expected that reducing the
number of past input samples to eight would further decrease prediction abilities.
However, the architecture with eight past input samples outperformed the architecture
with nine past input samples. Similarly, the number of hidden neurons did not correlate
generally with prediction performance. Although prediction performance was best with
28 hidden neurons for both the 20-second and 1-minute predictors, the architecture with
30 hidden neurons was better than that with 29 hidden neurons. With obscure
relationships betweén architecture and prediction performance, trial and error was

necessary to find the most successful architecture.
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A momentum term (an additional weight change in the same direction as the
previous weight change) could have been included in the weight change equation to

speed learning:

Awji(t+1) = najfl(}’j)ui +adwji(t) Eq. 12
where a represents momentum. For most ANNs, no momentum is used because it
degrades generalization.

Once the ANN had been trained, generalization ability was tested on a new data
- set. Running the ANN on another congested historical data set from a different day, but
at the same section and same time of day, tested the performance of the ANN.
Generalization was the most challenging aspect of the ANN traffic predictor. For this
reason, the mean squared error of the testing data best indicated the success of the MLP.
For the ANN to generalize well, it had to learn the general data trend rather than learn
“each training ﬁoint exactly. If the ANN had an excessive number of hiddeﬁ neurons or
was trained over too many iterations, it might have memorized the training set. In this
case, the network would have difficulty generalizing to new data. Instead, the ANN
needed just enough hidden neurons and training iterations to learn the general data trend.
The architecture in Figure 9 with the above learning rates best met this need.

To improve generalization abilities, the ANN was cyclically pruned and retrained,
but with limited success. The pruning process eliminated the smallest weights. For two
reasons, only weights between the input and hidden layer were pruned. The output was
less sensitive to weights between the input and hidden layer than weights between the
hidden and output layer. With 40 inputs, at least some of the 1120 weight connections to
the hidden layer were iikely to be inconsequential. Also, prﬁning a weight between the
input to hidden layer effectively eliminated that input.

After 1000 iterations, the pruning cycle began. Every 100 sweeps, the three
smallest weights in the input to hidden layer were eliminated, and th¢n training
continued. However, this pruning method produced results that were slightly inferior to

20



i

foo

]

]

o

no pruning at all for most predictors. The 1-minute predictor functioned exceptionally
well anyway, so pruning was not used. Apparently, the 1-minute predictor was already a

minimal network.

ANN PREDICTION RESULTS

Short-term prediction of freeway volume and occupancy (1 minute or less) is
useful to a ramp metering algorithm to indicate approaching gaps in the traffic. With this
knowledge, the ramp metering rate can increase when low occupancy is anticipated to fit
more vehicles into traffic gaps. A longer term prediction (over 1 minute) is useful to
indicate general traffic trends. This section reports on 20-second and 1-minute prediction
results, and Appendix B contains 2-minute and 5-minute prediction results.

The figures in this section show the actual volume and occupancy (dotted line)
and the predicted volume and occupancy (solid line) versus time. The training data sets
show how well the neural network learned the input/output examples given to it. The
testing data sets show how well the neural network predicted the outputs for inputs
outside the training set. The testing set MSE, as discussed previously, best measured the
ANN's prediction performance, so the ANN was trained until the testing MSE reached its
minimum. The input data were scaled before neural network operations, as described in
the pfevious section. Using the same equation, the output data were then scaled back to
the original dimensions after neural network operation, which is how these figures show

it.

Twenty-Second Prediction Results

The 20-second predictions performed reasonably well. The 20-second predictors
were trained on data from Site 3, located near the northbound Northgate Exit. The
architecture from Figure 9 was used to predict 20 seconds in advance using 20-second
data for the ANN inputs. The ANN was trained on historical data from a 2:30 to 6:00
p.m. period with about 700 examples in both the training and testing set. The recurrent
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congestion at this site and time is one of the worst on the Seattle I-5 freeway. The data
reached bottleneck conditions from sample 520 to 550 in the training set and from sample
500 to 650 in the testing set, as evident by the high occupancy. For better graphing
resolution, the training data were broken into two graphs (Figure 11), and the testing data
were broken into two graphs (Figure 12).

The trade-off between learning the training data and generalizing well to the
testing set was prevalent for the 20-second prediction problem. The ANN did not learn
the testing set very well, but further training would have increased the testing MSE. The
ANN learned and predicted occupancy better than it did volume. Occupancy is a better
indicator of congestion than volume, so this prediction is more valuable to the ramp
metering algorithm, anyway. The ANN predicted occupancy fairly well for samples 350
to 700, except for the bottleneck conditions between éamples 500 and 650. For this
period, the ANN produced a maximum occupancy prediction of 1, which was then scaled
up to a value of near 30 percent using the scaling equations. The ANN also produced a
minimum volume prediction of 0, which was then scaled back to a value of near 20. This
ANN could be used to detect bottlenecks by looking for a sustained prediction of
maximum occupancy near 30 percent and a minimum volume of near 20. If all data were
scaled within the O to 1 range, as discussed previously, the sensitivity of the prediction
would be reduced to accommodate the extreme points. For this reason, the most
appropriate ANN for incident detection (for which the extreme points would be scaled to
within the 0 to 1 range) would require a different' scaling technique than the ANN most

suitable for data prediction.

One-Minute Prediction Resuits

The ANN architecture in Figure 9 predicted 1 minute in advance using 1-minute
data for the inputs. Training and testing took place over a historical’ data set from the
6:30 to 9:00 a.m. period. Overall, the 1-minute VANN predictors performed extremely
well, especially given thé chaotic nature of 1-minute traffic data. Given that a car travels
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approximately 1.6 km in 1 minute, such an accurate short-term forecast is remarkable.

Because the ramp metering rates are updated every 20 seconds, a I-minute prediction

* would provide valuable insight in determining appropriate ramp metering rates. Table 1

summarizes representative results from research sites 1 and 2.

The figures show results from one ANN for each of the two sites. Figure 13
shows the training set for the site 1 ANN, and figure 14 shows the prediction results for
that ANN. Figure 15 shows the training set for the site 2 ANN, and figures 16 and 17
show the prediction results for that ANN on two different tcsting sets. |

The ANN at site 1, located slightly downstream of an on-ramp, trained on data
from Thursday, August 27, 1992. The mean squared error (MSE) for the training set was
relatively low because of an absence of irregular valleys (Figure 13).

The site 1 ANN generalizes very well to the data from Friday August 28, 1992,
with testing MSEs nearly as low as the training MSEs (Figure 14).

Predicting traffic flow at site 2, located next to an on-ramp, turned out to be more
challenging than at site 1. The site 2 data set contained sharper fluctuations. The ANN
trained on data from Friday, August 28, 1992 (Figure 15). |

The ANN accurately predicted volume and occupancy for the test day, Monday,
June 1, 1992 (Figure 16). Although the ANN did not quite reach all the valleys, the

performance was still far better than that of traditional traffic prediction techniques.

Table 1. One-Minute Prediction Results

Site Training | Testing Training Training Testing Testing
Day Day MSE VOL | MSE OCC | MSE VOL | MSE OCC
8/27 8/28 0.2204 0.3980 0.3002 0.3341
8/28 6/01 0.2097 0.4605 0.3322 0.4014
8/28 8/27 0.2097 0.4605 0.5295 0.6873
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The next figure shows the same ANN trained on the same day, but tested on a
different day. Convergence, defined as the optimal number of sweeps to minimize testing
MSE, was determined on testing day June 1, 1992, so this second testing set on August
27 further verified generalization. It illustrated how this ANN responded to irregular
data, demonstrating robustness. The three valleys near zero, és discussed in the data
scaling discussion, were probably transmission errors. The ANN output at these valleys
was nearly zero before rescaling. Thus, the ANN produced the minimal allowable value
when an unusually low peak occurred. Notice how the ANN only required a few minutes

to regain an accurate prediction.

Long-Term Prediction Results

Longer term prediction would be useful to a ramp metering algorithm to indicate
general trends, but it is more difficult to obtain accurately. The prediction difficulty
increases dramatically with time. For example, predicting 2 minutes in advance turns out
to be more than twice as difficult as predicting 1 minute in advance. The reason is
random variation in traffic flow and driver behavior. As the distance that a vehicle can
travel during the forecasted period increases, the random inputs add cumulatively.
Because of the somewhat chaotic nature of tfafﬁc data, the length of time over which
traffic behavior can be predicted is limited. Although several methods for longer term
prediction were explored, none of these ANNs successfully generalized to new data.
Appendix B shows results from 2 and 5 minute predictors, discusses why various
techniques were inadequate, and recommends methods for future long-term prediction
attempts.

Despite these results, longer term prediction may still be possible. In fact,
Dougherty's research group, discussed previously, was able to predict 5 minutes in
advance, but was unsuccessful with 1-minute predictions for the A2 Motorway in the
Netherlands (Dougherty and Kirby, 1993). An explanation for this paradox is that a
trade-off exists between smoother data with a greater sampling period, and the ease in
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predicting over a shorter time span. Five-minute data have smoother trends because the
volume is an accumulation over the sampling period, while the occupancy is an average
over the sampling period. However, an ANN requires a vast amount of past upstream
information to predict 5 minutes in advance using 5-minute data because a vehicle can
travel over 5 miles during the forecasted period. Twenty second data turn out to be more
difficult to predict than 1-minute data because of the more extreme fluctuations in volume
and occupancy. During an incident, volume can decrease to zero, and occupancy may
reach 100 percent. For the Seattle area, 1-minute data predictions appeared to be a
satisfactory compromise between these trade-offs. Dougherty's research used a different
type of data (speed, as well as volume and occupancy) with a different preprocessing
technique (a moving average of the past 1-minute samples). Because of variations among
sites, it is not surprising that the most practical prediction period would vary for specific

applications.

ANN IMPLEMENTATION CONSIDERATIONS

This research was conducted with implementation on Seattle's Traffic Systems
Management Center (TSMC) in mind. Because the ramp metering algorithm the TSMC
currently uses is written in C, all neural network code was written in C. Although
training the neural network may require an hour or so, the trained neural network
produces its prediction in a fraction of a second. Thus, the network would have no
problem performing in the 20-second sampling period. These neural networks use
historical data to test prediction accuracy, but real-time prediction would be ideal for
TSMC implementation. For on-line predictions, the input/output portion of the neural
network code would need modification. Currently, the network reads files containing the
information it needs. Each data file contains volume and occupancy of a particular
station for one day during the desired time frame. Since the incoming on-line data would
be in a different form, the file reader subroutine would also have to be altered. The
network code outputs training and prediction results to a file. The TSMC would require a
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different results format. The training and testing portion of the neural network should
need only slight modifications.

Extension to Seattle I-5

Because this research only predicted traffic data at two sites on I-5, more neural
networks would have to be trained to predict traffic at the remaining mainline sites with
metered on-ramps. Each neural network would predict volume and occupancy at one

mainline site. The training algorithm and basic MLP architecture should remain the same

for different sites. Although each neural network would need to be trained with data from

that particular site, the parameters should be similar as long as the data characteristics
were similar to the research site. If not, the number of hidden neurons, tapped delay line
length, number of training iterations, and learning rates might need alteration. The
network code was written to allow easy modification of these parameters.

Role in Ramp Metering Algorithm

The fuzzy logic ramp metering algorithm would simply use the neural network
prediction as one of the algorithm inputs. The metering rates would then be based on
both actual and predicted data. When the ramp metering algorithm used the prediction as
an input, a flag would have to constantly monitor the accuracy of the prediction. The flag
could monitor the mean squared error of the past several predictions from the actual data.
If the prediction accuracy did not maintain certain criteria, the flag would notify the ramp
metering algorithm, which would then no longer rely on the prediction input. When the
prediction regained accuracy either by a change in data characteristics or retraining of the
ANN, the flag would turn off and the ramp metering algorithm would start using the
prediction again.

One complication with the neural network predictor is that it was trained on

bottleneck ramp metered data. The fuzzy logic ramp metering algorithm would alter the

‘traffic characteristics. Although the neural network successfully predicts bottleneck ramp

metered data, it would need to be retrained on the fuzzy logic ramp metered data to

33



accurately predict the new traffic patterns. Initially, a cyclic settling process would be
expected, in which the retrained network would pfedict more accurately, which, in turn,
would produce better metering rates. These new metering rates would again alter the
traffic characteristics. Eventually, the neural network would settle into a prediction of the
fuzzy logic ramp metered traffic rather than the bottleneck ramp metered traffic, and
should then seldom require retraining. Training would occur continually using a recent
set of historical data, but the most recently trained network would only replace the old
network when the prediction remained inaccurate for a specified time. It ﬁﬁght be useful
to keep track of weight sets from each neural network. Over time, combining the weight
sets from previous neural networks by some form of averaging might produce a more
robust predictor. Weight sets from several months might provide insight into the

underlying statistical process throughout seasonal variations.

ANN CONCLUSIONS

The neural networks predicted volume and occupancy significantly better than
previous techniques used in the Seattle area. Test results on historical data from the I-5
freeway in Seattle, Washington, demonstrated that a neural network can accurately
predict volume and occupancy 1 minute in advance, as well as fill in the gaps for missing
data with an appropriate prediction. The volume and occupancy predictions will be used
as inputs to a fuzzy logic ramp metering algorithm currently being tested. A 1-minute
data prediction is a useful input to a ramp metering algorithm because this insight can
help dela;y or prevent bottleneck formation. Since the ramp metering rates are updated
every 20 seconds, a 1-minute data prediction can provide valuable information to
determine the next few metering rates.

A multi-layer perceptron type of ANN was trained using back propagation to
minimize the mean squared error of the prediction. The inputs to the ANN included the
previous ten values of 1-minute volume and occupancy from the predicted station and the
adjacent upstream station. Although the ANNs were trained and tested on historical data,

34



(E-

they can be implemented for real-time prediction because thé inputs are past values of
volume and occupancy. For on-line implementation, a neural network will need to be
trained from data for each prediction site. The training algorithm and .neural network
architecture should remain similar for different sites. The ANN parameters should
remain similar as long as the data characteristics are similar to the research sites. If not,
the network code has been written to allow easy modification of the ANN parameters.
For on-line implementation, the neural network should be trained on-line to allow for
seasonal variations. A flag should constantly monitor the accuracy of the prediction to
indicate whether retraining is necessary.

Predictions over 1 minute were unreliable. Because of the somewhat chaotic
nature of freeway traffic data, a longer term prediction using ANNs is a much more
difficult problem. Given that a vehicle may travel over 5 miles in a 5-minute forecasted
period, the random inputs over that time and distance make longer term prediction

challenging.
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FUZZY LOGIC RAMP METERING ALGORITHM

SEATTLE'S CURRENT RAMP METERING ALGORITHM

Seattle's current ramp metering algorithm, one of the most sophisticated in the
country, helps ease freeway congestion, but it could benefit from further improvements.
This section encompasses the operation of the existing Seattle ramp metering algorithm
and the reasons that fuzzy logic control could potentially overcome the algorithm's
shortcomings. |

Operation of the Current Seattle Algorithm

The factors that make Seattle's ramp métering algorithm more sophisticated than
others in this country include a volume reduction based on downstream bottlenecks and
further local adjustments, such as advanced queue override (Havinoviski, 1991). |

The Seattle ramp metering system currently responds to real-time loop detector
data through a centralized computer and field-located microprocessors. The controller
calculates both a local metering rate and a bottleneck metering rate and uses the more
restrictive of these two rates. The local metering rate is based upon adjacent upstream
mainline occupancies. Linear interpoiation between the actual occupancy and
predetermined metering rates for given occupancies determines the local metering rate.
The bottleneck algorithm is activated when the following two criteria are met: 1) a
downstream bottleneck-prone section surpasses a predetermined occupancy threshold,
and 2) that section stores vehicles. A section stores vehicles when more vehicles enter
the. section than leave the secfion. When these two criteria are met, the algorithm
reduces the number of vehicles entering the freeway by the number of vehicles being
stored in the bottleneck section. This volume reduction is distributed over the upstream
ramps that can influence that bottleneck. The number of ramps that can affect a
bottleneck varies for each site. A weighting factor for each ramp determines the fraction
of the volume reduction targeted for that ramp. |
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After selecting the more restrictive of the local and bottleneck metering rates, the
controller further adjusts the metering rate on the basis of local conditions. Queue
adjustments prevent the ramp queue from blocking arterials. A queue adjustment occurs
when the occupancy on a ramp exceeds a predetermined threshold for at least a specified
duration. In this event, the metering rate increases by a certain number of vehicles per
minute; the increase is dependent on which of the two occupancy and duration threshold
sets has been exceeded. An advance queue adjustment occurs when a loop detector
located near the arterial activates over a particular occupancy threshold for at least a
specified duration. The advance queue adjustment also increases the metering rate by a
specific number of vehicles per minute. - High occupancy vehicle (HOV) adjustment
accounts for the difference between the number of cars targeted for freeway entry and the
actual number of cars that enter. Basically, this adjustment subtracts the number of HOV
entries per minute from the metering rate. For more details on Seattle's ramp metering
system, see other literature (Jacobson, Henry, and Mehyar, 1988).

Suitability of Fuzzy Logic to the Current Algorithm

This research sought to overcome limitations in the current Seattle algorithm.
One problem with the current algorithm is that it reacts to existing bottlenecks rather than
preventing them. An algorithm with predictive capabilities could help prevent or delay
bottleneck formation. Hence, the accurate, 1-minute neural network prediction would be
a powerful asset to the ramp metering algorithm. An additional problem with the existing
algorithm is that it gets caught in a cycle between queue override activations and
restrictive metering rates. The fuzzy logic ramp metering algorithm could combat this
problem by providing smooth transitions rather than threshold activation. In addition, a
fuzzy logic controller could evaluate several rules in parallel and then determine one
metering rate based on all factors rather than making a series of adjustments.

Another disadvantage of the current algorithm is its strong dependency on loop

detector data. Loop detector data are commonly unavailable or erroneous. For this
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reason, algorithm robustness is essential. Fuzzy logic controllers produce appropriate
outputs given uncertain or incomplete information. The defuzzification process, which
uses a centroid calculation, helps suppress parameter variations and stochastic
disturbances. A parallel rule evaluation also promotes robustness. Even if an appropriate
rule does not fire because of faulty input data, a different rule can produce the same
output. For instance, two of the rules within the knowledge bank might be "If upstream
occupancy is high, reduce the metering rate" and "If predicted occupancy is high, reduce
the metering rate." Even if the loop detector upstream temporarily failed, the predicted
occupancy could still reduce the metering rate, since the prediction would be based on
data from the past 10 minutes of two stations.

Fuzzy logic is well-suited to ramp metering for several more reasons. The rule
base, defined as the set of rules in the fuzzy logié controller, incorporates human
expertise. For example, a ramp metering expert might say, "If a downstream bottleneck

"

is forming, reduce the metering rate.” Since these rules are easy to alter or eliminate,
fuzzy logic allows simple development and modification. Fuzzy logic control is
especially suitable when an accurate system model is unavailable. Without doubt, the
freeway's complexity, nonlinear nature, and nonstationary behavior makes obtaining a
model extremely difficult. Most traditional controllers are only as good as the system
model and usually force nonlinear systems into a linear context. Because a fuzzy logic
controller can handle nonlinear systems with unknown models, it has a distinct advantage
over traditional controllers for the ramp metering problem. In addition, higher order,

nonstationary, and MIMO (multi input/multi output) systems do not impose limitations

on a fuzzy logic controller.

There are also disadvantages to fuzzy logic controllers. One disadvantage is that
the design process depends on the developer's knowledge and abilities. Fuzzy logic
controller design is not as methodical as traditional controller design; the design process

requires on-line tuning of rules and membership functions. However, on-line tuning of
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any ramp metering algorithm is expected, as no model can perfectly replicate freeway
behavior. The completeness of the rule base when a MIMO system is encountered needs
consideration. With several inputs to the fuzzy logic ramp metering algorithm, the
designer must be careful that the algorithm accounts for any possible situation. Overall,
the disadvantages are minor when compared to the advantages of using fuzzy logic

control for the ramp metering application.

FUZZY LOGIC

Fuzzy logic allows the use of qualitative knowledge. Rather than forcing a yes or
no, on or off response, fuzzy logic utilizes imprecise information such as maybe,
occasionally, and probably. Fuzzy set theory, developed by Zadeh in 1965 (Zadeh,
1965), excels in a variety of control applications.

Fuzzy logic control (FLC) is now common in Japan. Since 1987, the FLC Sendai
subway designed by Hitachi, Ltd (Yasunobu and Miyamoto, 1985) stops three times
more accurately in position than a manually controlled train and has an exceptionally
smooth ride. An FLC air conditioner reduced Mitsubishi Heavy Industries’ power
consumption by 20 percent. Of the clothing washers produced by Matsushita Electrical
Industrial, over 70 percent are fuzzy controlled. Canon's H800 camera uses FLC auto
focusing. With fuzzy logic's widespread applicability, development ease, and cost
effectiveness, its popularity will continue to grow in the United States.

FLC involves four main steps: fuzzification, rule evaluation, implication, and
defuzzification. There are many variations on how to implement an FLC. The
techniques that are most appropriate depend on user preference and the specific

application. This section discusses the most common FLC techniques.

Fuzzification
The fuzzification process translates each precise input into a set of fuzzy variables
defined by membership classes, also called membership functions. A membership
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function describes, on a scale of O to 1, the degree to which an input belongs to that set.
Membership functions can be discrete or continuous, and triangles or bell-shaped curves
commonly define them. Figure 18 shows membership classes appropriate for the storage
rate, that is, the number of vehicles entering a section minus the number of vehicles
| exiting a section during the past minute. Each fuzzy variable represents a class:
| NB  negative big

NS  negative small

ZE  zero

PS positive small

PB  positive big
If the numerical, or crisp, storage rate input is 12 vehicles/minute, then the fuzzy PS
degree is 0.6, and the PB degree is 0.2, with the remaining classes zero. If the crisp input
is less than -20 vehicles/minute, the NB membership function is 1, and if the crisp input
is greater than 20 vehicles/minute, the PB membership function is 1. If more
membership classes are added, such as negative medium and positive medium, the
triangular bases can be narrowed. With fewer membership classes, more overlap is
needed. The best percentage of overlap between classes depends on the specific

application. Researchers recommend between 25 percent overlap (Kosko, 1992) and 75

percent overlap (Lin and Lee, 1993; Gupta, 1991).

Rules

The rules, sometimes called the knowledge base, are the heart of a fuzzy logic
controller. Rules are based on expert opinions, operator experience, and system
knowledge. For the fuzzy logic ramp metering algorithm, the existing ramp metering
algorithm provides a starting point for rule development. Rule evaluation, based on fuzzy
set theory, uses fuzzy operators to perform logical operations such as the complement,
intersection, and union of sets. Complementation corresponds to one minus the
membership degree in fuzzy set theory. An AND operation, analogous to the intersection
of sets, takes the minimum of given membership degrees. An OR operation, analogous to
the union df sets, takes the méximum of given membership degrees.
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A simplified example for a fuzzy logic ramp metering algorithm demonstrates
rule evaluation. Suppose a knowledge base includes the following rules:
Rule 1: If downstream storage rate is positive big and downstream occupancy
is big, then metering rate is small.

Rule 2: If queue override occupancy is big and queue duration is big, then
metering rate is small.

Rule 3:  If upstream occupancy is small, then metering rate is big.

Rule 4:  If predicted occupancy is small, then metering rate is big.

These rules can be rewritten more compactly using the variables in Table 2. The
variables in parenthesis below represent the qualifying conditions, and the number in
brackets is a hypothetical membership degree. This conditional pair is followed by the

output MR to the degree in brackets:

Rule 1: If (SR_PB [.5], DO_B [.7]) then MR_S [.5]
Rule 2: If (QO_B [.6], QD_B [.2]) then MR_S [.2]
Rule 3: If (UO_S [.3]) then MR_B [.3]

Rule 4: If (PO_S [.2]) the MR_B [.2]

Table 2. Variable Descriptions for FLC Example

Variable Description
SR downstream storage rate
DO downstream occupancy
QO ramp queue occupancy
QD ramp queue duration
Uo upstream occupancy
PO predicted mainline occupancy
MR ramp metering rate
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Two methods for further reducing rules with similar outputs are the maximum and
additive methods. The maximum method of rule deduction takes the maximum MR_B
degree of rules 1 and 2, since this corresponds to a union of the two output sets. Using
the maximum method, rules 1 and 2 further reduce to
Composite Rule 1 and 2:

If (SR_PB {.5], DO_B [.7]) OR (QO_B [.6], QD_B [.2])

then MR_S [.5] -

Similarly, the maximum method combines Rules 3 and 4 to
Composite Rule 3 and 4:

If (UO_S [.3]) OR (PO_S [.2]), then MR_B [.3]

The additive method adds the two output degrees together. With this metHod, rules 1 and
2 produce MR_S [.7], and rules 3 and 4 produce MR_B [.5]. These two rule deduction
methods produce different results, and the one that is most appropriate depends on the
application. At this point, each output variable class is implicated to a degree.

Implication

Implication expresses the area that an output variable class activates for use in the
defuzzification calculation. Two common implication mechanisms are correlation-
minimum encoding and correlation-product encoding. The correlation-minimum

method uses the min operator,

-min(w, f(x)), Eq. 13
which simply cuts off the class, f{x), at the output degree, w. The correlation-product

encoding method scales the output area by the output degree:

w¥f(x) Eq. 14
Figure 19 demonstrates these two implication methods graphically for an output degree
of 0.5. The shaded area represents the implicated area. These two methods may produce

different results, but correlation-product implication can make defuzzification easier.
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Defuzzification

The defuzzification process produces a crisp output given a fuzzy output variable
set. The commonly used centroid method finds the crisp output by dividing the sum of
the implicated areas into two equal areas:

fo(x)dx
I

Figure 20 illustrates the centroid method for the previous ramp metering example. Using

Eq. 15

the correlation-minimum inference mechanism, the sum of the MR_S [.5] and MR_B [.3]
implicated areas produces a crisp metering rate of 6 vehicles/minute.

In practice, a discrete fuzzy centroid is easier to calculate than the above
continuous centroid equation. For the case in which correlation-product inference is
used, the following discrete centroid equation is equivalent to the continuous centroid

equation (see Kosko, 1992 for proof):
N
D wicl;
i=1

N
Y wil;
i=1

where ¢; is the centroid and I; is the area of the output class for the ith rule.

Eq. 16 -

DESCRIPTION OF THE FUZZY LOGIC RAMP METERING ALGORITHM

Flexibility was a key issue in the design of the fuzzy logic ramp metering
algorithm. For reasons that will be discussed, WSDOT is contracting out the work to
incorporate the fuzzy logic algorithm into a freeway model. For this reason, additional
source code modifications would be time consuming, so the initial algorithm had to be
designed to be flexible. Because the purpose of model testing is to tune the algorithm by

trial and error, the class definitions and rules had to be designed for easy modification.
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It is desirable to have a minimum number of inputs and rules. The initial fuzzy
ramp metering algorithm contains a reasonable number of inputs and rules that may be
useful for control, and the testing and tuning process with a model will determine.which
of these inputs and rules are useful. The inputs and rules that are unnecessary may be
eliminated without making extensive source code modificatioﬁs.

Table 3 describes the variables used as inputs to the fuzzy logic controller, and
Figure 21 shows the location of each input variable. All input variables are based on a
20-second sampling period, unless stated otherwis¢ in the table. Mainline variables are
based on loop detectors across all lanes. For example, volﬁme is in vehicles per 20
secénds accumulated across all lanes. The predicted occupancy is a neural network
output.

Each variable has several parameters that add flexibility to the class definitions.
The first two scaling parémeters set the low limit (LL) and high limit (HL) for the
dynamic control range of each variable. The following scaling equation normalizes the

crisp variables from the (LL, HL) range to the (0,1) range:

crisp variable  LL
HL-LL HL-LL

scaled crisp variable = Eq. 17

The scaling simplifies the code by allowing all variables to use the same fuzzification
equations, as well as allowing easy class modification. By increasing LL and decreasing
HL, the sensitivity to a particular input can be increased, which causes the rules with that
premise to fire to a greater degree.

The fuzzification process translates each of the controller input variables into 5
classes (Table 4). In addition to limit parameters, each variable class has a centroid ( C;)
and width ( ;) parameter to define the ith class. The NS, ZE, and PS classes are defined

by an isosceles triangle with a base of 2 ; and a height of 1. The triangle is centered at
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Advance Queue Occupancy (AQO)
Advance Queue Duration (AQD)

Queue Occupancy (QO)
Queue Duration (QD)

Upsteam
Occupancy (UO)

Downstream Occupany (DO) Volume (VO)
Downstream Speed (DS) Occupancy (OC)
Storage Rate (SR) Predicted Occupancy (PO)

Figure 21. Location of Algorithm Variables
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Table 3. Description of Algorithm Variables

Variable Description
VO mainline volume just before ramp outlet
oC mainline occupancy just before ramp outlet
DO downstream occupancy of nearest bottleneck prone section
uo upstream occupancy for adjacent station
PO 1-minute prediction of mainline occupancy just before ramp outlet
SP speed for mainline just before ramp outlet
DS downstream speed of nearest bottleneck prone section
SR downstream storage rate of nearest bottleneck prone section
QO ramp queue occupancy over the past sample
QD ramp queue occupancy averaged over the past 6 samples
AQO | advanced queue detector occupancy over past sample
AQD | advanced queue detector occupancy averaged over past 3 samples
MR metering rate (the control action)

Table 4. Fuzzy Classes

i Class Description
1 NB negative big
2 NS negative small
3 ZE Zero

4 PS positive small
5 PB positive big
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C; and has slopes of ii. The resulting fuzzy classes are defined by the scaled crisp
i

variable, x. For NS, ZE, and PS,
ﬂi(x-—C,-+ﬂ,-) for C;—B; < x< C;
fi(x)=9"4 Egq. 18

-—-E-(x—C,--—ﬂ,-)for Ci<x<Ci+ﬂi
‘ v

As in Figure 20, a right triangle defines NB and PB. For NB, the peak is at 0, so C; is
-ﬁ3—i. The class is 1 if x is less than 0. For NB,

1 forx< 0
1
For PB, the peak is at 1, so C; is ——l-;i . The class is 1 if x is greater than 1. For PB,

1

fi(x)=3B; (x=1+p;) for 1-B; <x <1

Eq. 20
1 forx>1

An example of parameter values to define the set of fuzzy classes for SR (shown in
Figure 18) are LL=-20, HL=20, C=[0.083, 0.3, 0.5, 0.7,0.916], and B =[0.25, 0.25, 0.2,
0.25, 0.25). Table 5 shows a sample input card containing the parameters that are user
specified. Default values are shown. One input card is required for each on-ramp that
uses fuzzy control metering. Notice that C_NB and C_PB are not user specified, as they
can be calculated from B_NB and B_PB.

Like the class definitions for each variable, the rules need flexibility. Hence, each
rule is assigned a weight, which can be set to zero to eliminate that rule (See Table 5). If
a rule is more important than other rules, it can have a greater weight. For example, the

advance queue override rules 7c and 7d in Table 5 may have a weight of 2, while most

other rules have a weight of 1. To avoid future source code modifications, the initial
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Table 5. Parameter Input Card

Fuzzification Parameters

Ll |HL |CNS |CZE |CPS |B.NB|B.NS |B_ZE | B.PS | B_PB

v [vo |1so0 [185 |03 |05 |07 |o25 |025 |02 |025 |025

a |oc |8 18 03 |05 |07 |025 |025 |02 {025 | o025

r |po |s 18 03 |05 |07 {025 |025 |02 |o025 |o025

i |uvo |s 18 03 |05 |07 |o025 |025 {02 |025 |025

a |po |8 18 03 |05 |07 |o025 |025 |02 |o025 |025

b |sp |45 65 03 |05 |07 |o25 o025 |02 |o025 |o025

1 |ps |as 65 03 |05 |07 |o2s o025 |02 |025 |025

e [sR [-15 |15 03 105 |07 |o025 |[025 |02 [025 |025

s Qo |10 60 03 |05 |07 |o025 [025 |02 025 |025
QD |10 60 03 |05 |07 |o25 |o025 |02 |o025 | 025
AQO |5 10 03 |05 |07 |025 |025 |02 |025 |025
AQD |5 10 03 105 |07 |o025 |025 |02 |025 |025
MR |2 5 03 |05 |07 |o025 |o025 |02 o025 |o025

Rule Weights

Rue# |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 {11 |12 |13 |14

Weight |1 |1 |1 |1 [t {1 fv [t tr {1 1 {1 |t |1

Rule # 15 116 |17 |18 |19 |20 |21 |22 {23 |24 |25 |26 |27

Weight |1 |1 |1 |1 [t |1 |1 |1 |t [1v |1 |1 [|1
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ramp metering algorithm contains a large number of rules which that will be tested in
simulations (Table 6). By testing this algorithrh on a freeway mbdel, this large rule base
can be pared down to as few rules as possible. For each rule in the table, the intersection
of the premises involves using the minimum of the premise de’gfees és the output degree.
To combine rules that produce the same output class, the additive method is used rather
than the maximum method. The additive method is expected to be less sensitive to faulty
loop detector data. While the rhaximt_qn method may "choose" the faulty value because it
is the most extreme, the additive method will average together each rule contribution.
Another factor to consider is that this rule base does not individually consider all of the
possible 513 input combinations. Instead, the rule base is completed by specifying a
metering rate given any value of occupancy or upstream occupancy. By averaging rule
outcomes together, the controi action should be smoother.

Related rulés are grouped together. Rules la through le address the concern for
the completeness of the rule base. Bgcause the entire range of occupancy inputs is
considered, at least one of these fi\}e rules should fire. If OC is not available, the
predicted occupancy rules 2a and 2b and the upstréam occupancy rules 3a through 3e can
produce a similar output. Volume is not used as a premise for rule 1 because occupancy
is a more reliable indicator of congestion. However, volume is used in the speed
calculation, which is also a reliable indicator of congestion. Rules 4a through 4d adjust
the metering rate on the basis of mainline speed. |
| Rules 5 and 6a through 6d are devoted to preventing or delaying downstream
bottleneck formation. Rule 5 emulates Seattle's existing bottleneck algorithm, in which
high storage rate and high occupancy downstream indicate a bottleneck. However, plots
of storage rate show that it is not an accurate indicator of congestion (Nihan 95). Storage
rate fluctuates around zero whether in light traffic or heavy congestion. This traffic
behavior agrees with intuition. Consider that storage rate is the number of vehicles being

added to a freeway section during a sampling period. The number of vehicles that can fit
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Table 6. Rule Base for Fuzzy Ramp Metering Algorithm

Rule Premise MR outcome
la OC_PB NB
Ib OC_PS NS
lc OC_ZE -ZE
1d OC_NS PS
le OC_NB PB
2a PO_PB NB
2b PO_NB PB
3a UO_PB NB
3b UO_PS NS
3c UO_ZE ZE
3d UO_NS PS
3e UO_NB PB
4a SP_NB,OC_PB NB
4b SP_NS NS
4c SP_PS - PS
4d SP_PB, OC_NB PB
5 SR_PB, DO_PB NB
6a DS_NB, DO_PB NB
6b DS__NS, DO_PS NS
6¢c DS_ZE, DO_ZE ZE
6d DS_PS, DO_NS PS
6e DS_PB, DO_NB PB
7a QO_PB PS
7b QD_PB PB
Tc AQO_PB PB
7d AQD_PB PB




i

e

into a freeway section has a limit, so the average storage rate over a long time is zero.
Even in stop and go traffic, vehicles must still exit the bottleneck section. Because
vehicles tend to travel in platoons, the storage rate oscillates rapidly between positive and
negative. The fuzzy algorithm uses downstream speed and occupancy inputs, which are
superior indicators of mainline congestion (Iwasaki 1991; Masher, Ross, Wong, Tuan,
Zeidler and Petracek, 1975)." Rules 6a through 6e use the premise that high downstream
occupancy and low downstream speed indicate bottleneck conditions. For an improved
bottleneck indicator, rules 6a through 6e can be used in place of rule 5.

Rules 7a through 7d in Table 5 address ramp queue occupancy and duration.
Seattle's current algorithm is susceptible to cycling between restrictive and high metering
rates during peak hours. Rules 7a through 7d provide smooth transitions rather than
threshold activations. When the queue occupancy is high, the metering rate increases. A
high queﬁe duration over the past six samples indicates that the queue is building up over
time. Unlike the threshold activation of Seattle's current algorithm, the queue duration
input provides qualitative information regarding the queue formation. With this
information, rules 7a through 7d can help prevent queue formation and avoid an
oscillatory metering rate. The advance queue override detector for rules 7c through 7d is
located closer to the arterial than the queue override detector for rules 7a and 7b, so rules
7¢ and 7d should be weighted more heavily to prevent vehicles from backing up into the
arterial.

For calculation simplicity, the implication method used is correlation-product
encoding rather than correlation-minimum encoding. Correlation-product inference

allows use of the discrete centroid equation,
N
> wicil;
e

N
Zwili :
i=1

Eq. 21
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where ¢; is the centroid and I; is the area of the output class for the ith rule. Given that

this FLC has a large number of inputs and rules and requires flexibility, the discrete
centroid equation is used for code simplicity. For MR classes of NS, ZE, and PS, the
class area I; equals ;. For MR classes of NB and PB, the class area /; equals Bi/2.
Once the centroid of the crisp MR has been found, this control action must be rescaled
back to its dynamic range uéing the scaling equation. Like Seattle's bottleneck algorithm,
the MR should then be adjusted to account for thé number of HOVs during the previoué

sampling interval. The maximum MR possible is 900 vehicles/lane/hour to allow a

4-second cycle for each car, when one car is released at a time. The minimum MR is 240 -

vehicles/lane/hour, for a maximum vehicle delay of 15 seconds. Drivers are apt to run a
ramp metering light if it 1s red for more than 15 seconds. Thus, reasonable limits for
headway (defined as the cycle length of the light sequence) are 4 and 15 seconds. The
metering rate is equal to the sampling period divided by the headway, for limits of LL=2
and HL=5 vehicles/sample. Appendix C contains the C code for the fuzzy logic

controller described in this section.

TESTING THE RAMP METERING ALGORITHM

Because fuzzy logic controllers require tuning, the fuzzy logic ramp metering
algorithm must be tested with a model and/or on-line. Testing the algorithm with a
model is highly desirableb before on-line testing. The absence of random variations with
simulation testing allows algorithms to be tuned and compared more easily than does on-
line testing. However, problems such as the model inaccuracy, limitation, and calibration
difficulty reduce the validity of model tested results. |

The freeway models currently available for testing ramp metering with closed-
loop control are limited. Sigriificant source code modifications would be necessary to
incorporate the fuzzy logic controller into any of the freeway models explored. Although

freeway models have been used in Seattle to determine HOV lane entry and exit
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placement and to determine whether ramp metering should be added to a specific freeway
section, model testing of comprehensive closed-loop control ramp metering has not been
done in Seattle. To the authors' knowledge, no models have been calibrated for a ramp
metered section of a Seattle freeway to simulate the bottleneck ramp metering algorithm.
Because of model limitations, the existing Seattle ramp metering algorithm was tunqd on-
line. Similarly, other researchers have bypassed model testing for their ramp metering
algorithms (Nihan and Berg, 1991; Washburn, 1993). Nevertheless, because of driver
impact concerns and other benefits of simulation testing, it is worthwhile.

After the algorithm has been tuned through simulation testing, the algorithm
should then be tested further on-line. Unfortunately, on-line ramp metering testing can
potentially affect thousands of drivers. Any on-line testing must be conducted with great
caution to reduce commuter impact and safety hazards. Variable traffic conditions
further complicate on-line testing. An algorithm tester has no way of knowing what the
results would have been if one algorithm had been used instead of another. If new
algorithm testing happens to fall on less congested days, the new algorithm performance
may be deceptively better. Hence, the algorithm testing must take place over a
several-day span so that average performance can be compared to other algorithms.

Given its time constraints, this project did not test the algorithm's performance,
but it did explore the best model testing options and on-line testing options for future
research. Algorithm testing, first through simulation and then on-line, is being continued
through a TransNow 1994-95 grant. The following sections 10.1 through 10.3 elaborate
on the work in progress for simulation testing and recommend an on-line testing

procedure.

Freeway Model Testing
Freeway Model Options. Developing a freeway model is quite involved, so

using existing models is most logical. There are two types of freeway models:
macroscopic and microscopic. While microscopic model calibration requires adjusting
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driver behavior, macroscopic model calibration requires adjusting capacity, the number of
vehicles per lane per hour. Macroscopic models consider platoons, rather than individual
vehicles. Both macroscopic and microscopic calibration require adjusting speeds, which
means driving the freeway section numerous times to determine typical speeds. The
freeway models most appropriate for this application are FREQ (May 1993), FRESIM
(Hassan and Torres, 1990), and INTRAS (Wicks and Lieberman, 1980).

FREQ, a macroscopic freeway model, allows demand, supply, and control
modification. Although FREQ presents the best macroscopic model testing option, it is
limited in two basic ways for this application: length of run and closed-loop control
unavailability. FREQ can simulate up to 24 continuous time slices, and the intervals can
be set by the user. This application requires a 20-second time slice interval to equal the
sampiing period for the existing Seattle freeway system, so.a maximum length run is only
8 minutes. Ideally, the algorithm needs to be tested over a continuous 3-hour peak
commute. If runs could be made continuous, FREQ could simulate more than 8 minutes.
Disappointingly, FREQ simﬁlations cannot be made continuous, as queues cannot be
initialized to the ﬁnalv conditions of the previous run. Although demand can be specified,
FREQ initializes the queues to zero. With queues forming during each simulation, this
initialization set-up is not realistic for long-term testing. Despite this drawback, an
8-minute simulation may still be useful if the model is accurate and well-calibrated.
Using different demands for each simulation, FREQ could test algorithm performance
under various condi;ions.

FREQ's other limiting factor is the unavailability of closed-loop control. FREQ
accepts an external input file with ramp metering rates that are specified for each time
slice. However, the metering rates cannot be altered once a sim\;lati(')n begins. In other
words, the control is open-loop rather than closed-loop. The ramp metering rates cannot
be specified at every sampling period on the basis of current information. The best

scenario for imitating closed-loop control would involve doing 24 simulations, altering

56

Ll



the inputs for one time slice between each run. After the first simulation, the fuzzy logic
controller would determine the metering rates for the first interval on the basis of data
from that time, and it would alter the input file accordingly. After the second simulation,
the controller would determine the metering rates for the second interval, and again it
would alter the input file. In this way, the input file would contain the -closed-loop
metering rates after 24 simulations for an 8-minute simulated run. The other user
interface option specifies objectives and lets FREQ determine the metering rates. This
second method would allow comparison of the fuzzy logic algorithm results with FREQ
generated results.

A microscopic model is more practical for the ramp metering application because
it keeps track of individual vehicles. FRESIM, which is written in FORTRAN for a PC,
is the most suitable of the microscopic models. Although FRESIM does not currently
allow an external closed-loop controller, adding it would not require an unreasonable
amount of source code modification. FRESIM allows the user to choose one of four
control criteria: pretimed, speed, gap acceptance merge, and capacity. FRESIM decides
the metering rate on the basis of the chosen criteria. Testing fuzzy logic ramp metering
would require adding the new controller as a user option within the source code. The
fuzzy logic controller results could be compared to that of the other four controllers. Like
FREQ, the simulation is limited to a certain number of periods. But with source code
modifications, the simulation could be given metering rates at a specified time step within
each time interval. Point processing would calculate data at these time steps.

INTRAS is another suitable microscopic freeway model for testing ramp
metering. FRESIM is an enhanced version of INTRAS that can interface with a surface
street model, among other improvements. Like FRESIM, a closed-loop controller could
be added to INTRAS with source code modification. Since INTRAS and FRESIM both
have over 90,000 lines of code with very few comments, adding another controller would

be no small task to someone unfamiliar with the source code. The portions of code
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needing modification are not isolated, so locating the relevant code to add a controller
could be difficult. The preference for FRESIM over INTRAS is based on programming
support for FRESIM. The Federal Highway Administration (FHWA) has agreed to
support the source code modifications necessary to incorporate the fuzzy logic controller
into FRESIM. The senior technical advisor for the programming modifications is Hassan
Halati, a FRESIM developer (Hassan and Torres, 1990) of the Viggen Corporation, while
the actual programming would be done by Steven Chien of the Viggen Corporation.
Although the fuzzy ramp metering algorithm is designed to allow any foreseeable
adjustments, additional source code changes would most likely be necessary.
Consequently, model testing would requir_e a copy of the source code, with permission
from FHWA, and the ability to compile it. The programming support for FRESIM makes
FRESIM a more efficient and cost-effective choice. |

FRESIM Modifications. The modifications to incorporate the fuzzy logic
controller (code in Appendix C) into FRESIM are estimated to take an experienced
FRESIM programmer two months. The first capability that would have to be added to
FRESIM is the ability to call the fuzzy logic controller to obtain a metering rate every 20
seconds. The fuzzy logic controller would be added as one of the ramp metering options.
The user specified input parameters (Table 5) would simply have to be passed as
arguments to the controller.

The most formidable FRESIM modification hecessary is obtaining the inputs to
the controller every 20 seconds. Currently, FRESIM does not allow a time interval of
less than 1 minute. Point processing would be needed to bring information out of
memory in between time intervals. FRESIM does not presently offer any ramp data, so
adding the queue occupancy and duration inputs would require significant programming.

Obtaining the prediction of occupancy 1 minute in advance is another notable
programming task. Because the neural networks have already been tested on actual

historical freeway- data, they would not need to be retested on FRESIM. However, the
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fuzzy logic controller would still require this predictive input. By using background
simulation in which a coprocessor ran the simulation one step in advance, FRESIM could
obtain predicted occupancy. This way, the neural network would not have to be
incorporated into the controller, yet the controller would still be proactive rather than
reactive. A limitation of FRESIM is that it cannot directly model HOV lanes at the
present time,v but this capability is currently being added to FRESIM.

FRESIM Study Site. Run control information, freeway geometry, calibration
data, and other simulation data would have to be specified by a FRESIM input file.
Calibrating the freeway model would involve specifying entry volumes, turn movements,
speeds, driver aggressiveness, and other factors. Care would have to be taken to ensure
that simulation behavior emulated actual freeway conditions. For a detailed description
of FRESIM, see the user guide (FHWA, 1994).

The study site chosen is the northbound section of I-5 between NE Northgate Way
and NE 175 Street (Figure 22). This study site is suitable because it contaiﬁs three
consecutive metered ramps and recurrent congestion in the afternoon. Free flow data are
available before September 1994, when ramp metering for the NE 145 St. and NE 175 St.
on-ramps began. Actual ramp demand obtained from free flow data rather than metered
ramp volume would be helpful in calibrating the freeway model. The freeway geometry
is described in terms of links and nodes, as required by FRESIM (Figure 22). For further
information regarding how to input the data set, see the FRESIM User Guide (Federal
Highway Administration, 1994). For debugging purposes, a minimal study site
containing only the Ndrthgate section would be used initially while incorporating the
fuzzy controller into FRESIM.

The NE 145 and NE 175 on-ramps both have an HOV bypass around the ramp
metering.  There is also an HOV mainline lane throughout the freeway section. If

FRESIM's HOV capability becomes available in time, the user will specify the
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percentage of the vehicles in each link that are HOV. These vehicles will use the HOV
bypass and HOV lanes.

If the HOV capability is not available in time, FRESIM will need to be tricked
into modeling the HOV lanes and bypass. The HOV lane for this study site typically has
about 80 percent less volume than the other mainline lanes during peak hours. Because
FRESIM averages the data across all lanes, the mainline lanes volumes would drop when
averaged with the HOV lane. One way to avoid this discrepancy without making source
code modifications would be to pad all entry volumes just enough to account for the
disproportionate HOV volume. Attempts at directly modeling the HOV bypass geometry
were unsuccessful in simulation. Alternatively, a technique to account for the HOV
bypass would be to add an additional, unmetered on-ramp for HOV vehicles. Another

way would be to add the HOV vehicles into the metered vehicles.

On-Line Testing Procedure

After the algorithm had been tested with a model, the next step would on-line
testing. No model can perfectly replicate actual freeway behavior, so the algorithm
would need fine-tuning on-line. The success of the fuzzy logic controller will hinge on
the developer's abilities and the extent of on-line tuning. On-line testing is recommended
in four stages: predictor testiﬁg, metering rates generated but not used, metering rates
sent to a simulation field rack, and then metering sent to actual ramps.

The neural network prediction testing would not impact the freeway whatsoever,
'so it could be tested without using a model. The predictor can operate independently of
the fuzzy logic ramp metering algorithm, and it should be tested before the complete
algorithm is tested. Predictor implementation considerations are discussed in Section II.

Before actually sending metering rates to ramps, the new algorithm should be
debugged by generating metering rates while the bottleneck is in use. The generated

metering rates would have no impact on the freeway, but they could be compared to the
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bottleneck metering rates to make sure the new algorithm was reasonable. The dummy
data generator might be useful in collecting data from specified stations.

The next step could partially determine the effect of the generated metering rates
by sending them to a hardware simulated field rack. Although this testing would also
have no impact on the freeway, it would have an impact on the simulated loop detector
inputs of the field rack. By varying the demand of the field rack, this testing would
further tune the algorithm and affirm that the generated rates had a beneficial effect.

Finally, the algorithm would be ready for true on-line testing. Without doubt, an
override to switch back to the bottleneck algorithm at any time should be available. Like
the neural network predictor, the new algorithm should contain a flag to indicate when it
is performing poorly, signaling automatic switch back to the old algorithm. Testing
should start with one ramp to make sure the -algorithm performed reasonably before it was
applied to all ramps. The new algorithm would have to be calibrated so that it behaved
similarly to the bottleneck algorithm and then gradually changed to improve
performance. This technique would have a less noticeable effect on drivers, as well as
ensure safety. Since traffic conditions are not uniform from day to day, the algorithm
should be tested over a reasonable time span to determine its effect. Alternating
week-long operation of the bottleneck algorithm with the fuzzy logic algorithm would
reduce nonuniformity caused by seasonal variations. By making one change at a time,
the tester could determine which modifications were beneficial, as well as verify that an
improvement was due to the algorithm rather than lower demand. Although this testing
procedure would be time consuming, the results should be meaningful.

Overall, both model and on-line testing would require extensive time and effort. |
Model calibration and integration with the controller would require at least a few months.
At least one skilled programmer would be necessary for full-scale, on-line

implementation. Algorithm testing and fine-tuning might take a year. However, any
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ramp metering algorithm must go through this testing and tuning process to maximize

and verify its efficiency.

FUZZY RAMP METERING ALGORITHM CONCLUSIONS

The 1-minute ANN prediction will be one of the inputs to a fuzzy logic ramp
metering algorithm. The fuzzy logic ramp metering algorithm will determine the
metering rates on the basis of both predicted and actual data. This research laid the
groundwork for the fuzzy logic ramp metering concepts and algorithm.

Fuzzy logic control is well-suited to the ramp metering application for several

reasons. It requires a mathematical model of the system, and it can utilize imprecise or

incomplete information. These traits are important, given that the freeway is difficuit to
accurately model and that loop detector data are susceptible to error. The fuzzy logic
rules incorporate human expertise, considering all factors simuitaneously rather than
making a series of adjustments.

The fuzzy logic ramp metering algorithm was designed for flexibility and
robustness. For easy algorithm modification and code simplicity, adjustable parameters
define the memberships classes. A weight for each rule allows that rule to be emphasized
or eliminated for tuning purposes. The fuzzy logic algorithm was also designed to
overcome the disadvantages of Seattle's current ramp metering algorithm. The parallel
rules of the éontroller promote robustness to faulty loop detector data. Fuzzy logic
control can provide smooth transitions rather than threshold activations, as well as
prevent queue formation through the use of qualitative queue inputs. Rules based on the
premise of low downstream speed and high downstream occupancy provide a better
indicator of bottlenecks than downstream storage rate.

Fuzzy logic algorithm testing and tuning is recommended for future research, first
with a simulation model. FRESIM was found to be the most appropriate freeway
simulation model to test the new ramﬁ metering algorithm. Although modifying the
FRESIM source code to inéorporate the fuzzy logic ramp metering algorithm could take
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a few months by an experienced programmer, it would be worth the effort. Testing on-
line is complicated by the fact that traffic demand and weather characteristics vary from
day to day. Because simulation testing does not have this non-uniformity, it is easier to
compare and tune algorithms in simulation testing than in on-line testing.

Since no model can perfectly replicate actual freeway behavior, the algorithm will
need further tuning and testing on-line. On-line testing is recommended in foﬁr steps:
predictor testing, metering rates generated but not used, metering fates sent fo a
simulation field rack, and then metering rates sent to actual ramps. Although on-line
testing is time consuming, it is necessary to maximize and verify efficiency. Algorithm
testing, firét through simulation and then on-line, is being continued by the authors
through a TransNow 1994-1995 grant. Overall, the fuzzy logic ramp metering algorithm

utilizing an ANN traffic data predictor appears quite promising.

65



I

i

66



@

)

]
{

ACKNOWLEDGMENTS

I could not have done this research project without the support of many others.
Professor Deedee Mveldrum has been an excellent mentor as well as a dedicated advisor.
She has always been available for assistance. Her friendship has made graduate school a
much richer and more enjoyable experience for me. Professor Juris Vagners has provided
me with valuable guidance and support throughout my graduate career. Thanks go to
Professor Mahoney for his time and encourageinent. I feel fortunate to have had such an
outstanding committee. Professor J. N. Hwang, Professor Nancy Nihan, Professor Dan
Dailey, and Professor Bob Marks have offered helpful suggestions. |

The Washington State Department of Transportation sponsored this research. The
Washington State Transportation Center and Washington State Department of
Transportation employees have been especially supportive. Larry Senn and Pete Briglia
of WSDOT have been tremendously considerate and helpful from the conception of this
research project and throughout it. Thanks go to Amy O'Brien for her editing of this
report. I appreciate Les Jacobson's strong enthusiasm for this project. Thanks also go to

Mark Morse, Amity Trowbridge, Dina Palas, Mike Lewey, Brian Goble, and Abel Wong

for providing me with information and data from the Traffic Management Center.

The Federal Highway Administration sponsored the necessary code modifications to
FRESIM to test our fuzzy logic ramp metering algorithm. I am grateful for the FRESIM
programming support from Hassan Halati, Steven Chien, Jifeng Wu, and Yenlin Li at the

Viggen/IDI Corporation.

67



68



)

o

REFERENCES

R. Bretherton, "SCOOT Urban Traffic Control System-Philosophy and Evaluation,"
IFAC Symposium on Control, Communications in Transportation, 1989.

E. Chang and K. Huarng, "Incident Detection Using Advanced Technologies,"
. Transportation Research Record #1399, National Research Council, Washington,
D.C., 1993.

S. Clark, M. Dougherty, and H. Kirby, "The Use of Neural Networks and Time Series
Models for Short Term Traffic Forecasting: A Comparative Study,” Proceedings
of PTRC 21rst Summer Annual Meeting, Manchester, 1993.

D. Dailey, "An Optimal Recursive Estimator for Detecting Traffic Anomalies using Real
Time Time Inductance Loop Data," Transportation Research Board, National
Research Council, Washington, D.C., 1993.

M. Dougherty and H. Kirby, "Using Neural Networks to Forecast Measurement
Parameters of Motorway Traffic Data," presented at the PacRim Conference,
Seattle, 1993, .

Federal Highway Administration, FRESIM User Guide, Version 4.5, Turner-Fairbank
Highway Research Center, McLean, VA, April 1994.

A. Gupta, "Controller Design Using Fuzzy Logic (RT/Fuzzy)," Integrated Systems, Inc.,
1991.

H. Hassan and J. Torres, "FRESIM Simulation Model Enhancement and Integration,"
FRESIM User Manual, FHW A Contract DTFH60-85-C-00094, Sept. 1990.

 G. Havinoviski, "Ramp Queues? "Not in My Back Yard! A Survey of Queue Detector

Design and Operation Criteria for Metered Freeway Entrances, " Compendium of
Technical Papers, Institute of Transportation Engineers, 1991.

K. Henry and O. Mehyar, "Six-Year FLOW Evaluation," Washington State Department
of Transportation, District 1, Jan. 1989.

J. Hua and A. Faghri, "Dynamic Traffic Pattern Classification Using Artificial Neural
Networks," Transportation Research Board #1399, National Research Council,
Washington, D.C.,1993.

D. Hush and B. Horne, "Progress in Supervised Neural Networks: What's New Since
Lippman?" IEEE Spectrum Signal Processing Magazine, Jan. 1993.

J. N. Hwang, H. Li, M. Maechler, D. Martin, J. Schimert. "Projection Pursuit Learning
Network for Regression," Engineering Applic. Artif. Intell., Pergamon Press Ltd.,
1992. ' - '

M. Iwasaki, "Empirical Analysis of Congested Traffic Flow Characteristics and Free

Speed Affected by Geometric Factors on an Intercity Expressway," Transportation
Research Record 1320, National Research Council, Washington D.C., 1991, p. 244.

69



L. Jacobson, K. Henry, and O. Mehyar, "Real-Time Metering Algorithm for Centralized
Control," Transportation Research Board #1232, Washington State Department of
Transportation, 1988.

B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to
Machine Intelligence, Prentice-Hall, New Englewood Cliffs, New Jersey, pp. 318
and 386, 1992.

S. Kung, Digital Neural Networks, Prentice Hall, Englewood Cliff, New Jersey, 1993.

Y. Lin and T. Lee, "Modeling for Fuzzy Logic Control of Deformable Manipulators,”
Proceedings of the American Controls Conference, San Francisco, June 1993.

Masher, Ross, Wong, Tuan, Zeidler, and Petracek, Guidelines for Design and Operation
of Ramp Control Systems, Stanford Research Institute, Menlo Park, CA, 1975,
p. II_18-1I_24.

A. May, "Washington Workshop: A Basic Course in FREQ10," prepared for
Washington State Department of Transportation, Institute of Transportation Studies,
University of California, Berkley, Oct. 1993.

Mead, Fisher, Jones, Bisset, and Lee, "Application of Adaptive and Neural Network
Computation Techniques to Traffic Volume and Classification Monitoring,"
preprint from Transportation Research Board, National Research Council,
Washington, D.C.,1994.

N. Nihan, "FreewayCongestion Prediction," draft technical report, Waéhington
Transportation Center, National Technical Information Service, March 1995.

N. Nihan and D. Berg, "Predictive Algorithm Improvements for a Real-Time Ramp
Control System,” Washington State Transportation Center, National Technical
Information Service, Sept. 1991. 4

N. Nihan and J. Zhu, "Short-Term Forecasts of Freeway Traffic Volumes and Lane
Occupancies,” Phase I, Vol. IV, Washington State Tranportation Center, National
Technical Information Service, Nov. 1992.

J. Robinson and M. Doctor, "Ramp Metering Status in North America: Final Report,”
' Office of Traffic Operations, Federal Highway Administration, U. S. Department of
Transportation, Washington, D. C., Sept. 1989.

Rumelhart, McClellan, and the PDP Research Group, Parallel Distributed Processing,
Vol. 1, MIT, pp. 354-362, 1986.

S. Washburn, "Development of a Predictive Freeway Congestion Algorithm Using
Statistical Pattern Recognition Techniques,” Master's Thesis, Department of Civil
Engineering, University of Washington, 1993.

C. Wei and P. Schonfeld, "An Artificial Neural Network Approach for Estimating
Multiperiod Travel Times in Transportation Networks,” presented at Annual
Meeting of the Transportation Research Board, National Research Council,
Washington, D.C.,1993.

70



[

D. Wicks and E. Lieberman. "Development and Testing of INTRAS, a Microscopic
Freeway Model,” Vol. 1, Program Design, Parameters Calibration, and Freeway
Dynamics Component Development. Final Report, FHWA/RD/80/106. FHWA,
U.S. Department of Transportation, Oct. 1980.

L. Wiederholt, P. Okenieff, and J. Wang, "Incident Detection and Artificial Neural
Networks," Large Urban Systems, Proceedings of the Advance Traffic Management
Center, St. Petersburg, Florida, Oct. 1993.

Williams and Zisper, "A Learning Algorithm for Continually Running Fully Recurrent
Neural Network," Neural Computation, Vol 1, MIT, pp. 270-280, 1989.

S. Yasunobu and S. Miyamoto, "Automatic Train Operation by Predictive Fuzzy
Control," Industrial Applications of Fuzzy Control, editor M. Sugeno, pp. 1-18,
North-Holland, Amsterdam, 1985.

L. Zadeh, "Fuzzy Sets," Information and Control 8, pp. 338-353, 1965.

H. Zhang and S. Ritchie, "Macroscopic Modeling of Freeway Using an Artificial Neural

Network," presented at Annual Meeting of the Transportation Research Board,
National Research Council, Washington, D.C.,1993.

71



APPENDIX A
' NEURAL NETWORK PREDICTOR CODE



o

(-

e

APPENDIX A: NEURAL NETWORK PREDICTOR CODE

/* Predictd.c trains and tests a MLP neural network

to predict freeway volume and occupancy 1-minute in advance
for southbound I-5 just before NE 205th St. on-ramp.

Data is historical loop detector data from

Seattle I-5 mainline near NE 205th St.

This neural network has 4*D inputs which are the past D
occupancy and volume values for stations s61 and s60.

The neural network has two outputs which are the predicted
volume and occupancy for s61 at the next sample. */

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#define D 10 /* D=past number of delays used as inputs to NN */
#define S 4000 /* S=number of training iterations */

#define H 28 /* H=number of hidden neurons */

#define MAXR 200

#define MAXIN 20

#define MAXH 50

#define RAND_MAX Ox7fffffff

/* tdat3 returns the training and testing input/teacher pairs and their length */

void tdat3(float (*x1)[MAXIN], float (*t1)[2], int *n1, float (*x2)[MAXIN],
float (*t2)[2], int *n2)

{

/* each of the 4 data files below contains 1-minute volume and occupancy
between 6:30 and 9:00 a.m. for a particular station */
FILE *s6128;
FILE *s6101;
FILE *s6028;
FILE *s6001;
FILE *input;
FILE *result;
char bogus[9];
int k, i, j;
int IN=D*4; /* # of inputs to ANN=4 if 2 stations used for input data */
float m1=12.94; /* mean of occupancy output in training/testing sets */
float m2=94.3; /* mean of volume output in training/testing sets */
float s1=1.99;  /* standard deviation of volume in data sets */
float s2=12.0; . /* standard deviation of occupancy in data sets */
float s60_28_1[MAXR], s60_01_1[MAXR], s61_28_1[MAXR], s61_01_1[MAXR];
float s60_28_2[MAXR], s60_01_2[MAXR], s61_28_2[MAXR], s61_01_2[MAXR];

(*n1)=0;

if ((s6128=fopen("s61-28.txt", "r"))== NULL) {
printf("Can't open input file s61-28.txt\n");
exit(0);

}

while(fscanf(s6128, "%s %f %f %s", &bogus, &s61_28_1{*n1], &s61_28_2[*n1],
&bogus) != EOF) '
(*nl)++;

fclose(s6128);
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*/

[*

(*n2)=0;

if ((s6101=fopen("'s61-01.txt", "r")) ==NULL) {
printf("Can't open input file s61-01.txt\n");
exit(0);

}

while(fscanf(s6101, "%s %f %f %s", &bogus, &s61_01_1{*n2}], &s61_01_2[*n2],
&bogus) = EOF)
(*n2)++;

fclose(s6101);

(*nl)=0;

if ((s6028=fopen("s60-28.txt", ")) == NULL) {
printf("Can't open input file s60-28.txt\n");
exit(0);

-}
while(fscanf(s6028, "%s %f %f %s", &bogus, &s60_28_1[*n1}, &s60_28_2[*nl],

&bogus) != EOF)
(*nl)++;
fclose(s6028);

(*n2)=0;

if ((s6001=fopen("s60-01.txt", "r")) == NULL) {
printf("Can't open input file s60-01.txt\n");
exit(0);

}

while(fscanf(s6001, "%s %f %f %s", bogus, &s60_01_1[*n2], &s60_01_2[*n2],
bogus) != EOF)
(*n2)++;

fclose(s6001);

/* calc. mean */

for (i=0; i<(*nl); i++) {
ml=ml+s61_28_1[i]+s60_28_1[i];
m2=m2+s61_28_2[i]+s60_28_2[i];

}.

for (i=0; i<(*n2); i++) {
ml=m1+s61_01_1[i]+s60_01_1[i];
m2=m2+s61_01_2[i]+s60_01_2{i];

}
ml1=m1/(float) (2*(*nl));
m2=m2/(float) (2*(*n1));

if ((result=fopen("result6.m", "w"))== NULL) {
printf("Can't open input file result6.m\n");
exit(0);

}

printf("m1= %5.4f\n", m1);
printf("m2= %5.4f\n", m2),
fprintf(result, "mi= %10.6f;\n", m1);
fprintf(result, "m2= %10.6f;\n", m2);

/* calc. std. dev. */

for (i=0; i<(*n1); i++) {
s1=s1+(float) (pow((double) (s61_28_1[i]-m1),2.0)+

A-2
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pow((double) (s60_28_1[i]-m1),2.0));
s2=s2+(float) (pow((double) (s61_28_2[i]-m2),2.0)+
pow((double) (s60_28_2[i}-m2),2.0));
}
for (i=0; i<(*n2); i++) {
s1=s1+(float) (pow((double) (s61_01_1[i]-m1),2.0)+
pow((double) (s60_01_1{i]-m1),2.0));
s2=s2+(float) (pow((double) (s61_01_2{i}-m2),2.0)+
pow((double) (s60_01_2[i}]-m2),2.0));

}
s1=(float) sqrt((double) (s1/(float) 2*(*n1)+2*(*n2))));
s2=(float) sqrt((double) (s2/(float) (2*(*n1)+2*(*n2))));

printf("s1= %5.4f;\n", s1);
printf("s2= %5.4f\n", s2);
fprintf(result, "s1= %10.6f;\n", s1);
fprintf(result, "s2= %10.6f;\n", s2);
fclose(result); ’

/* normalize data using mean and std */

for.(i=0; i<(*nl); i++) {
s61_28_1[il=(s61_28_1[i]-m1)/(4*s1)+0.5;
s61_28_2[i]=(s61_28_2[i]-m2)/(4*s2)+0.5;
s60_28_1[i}=(s60_28_1[i}-m1)/(4*s1)+0.5;
s60_28_2[i]=(s60_28_2[i]-m2)/(4*s2)+0.5;

}

for (i=0; i<(*n2); i++) {
$61_01_1[il=(s61_01_1[i]-m1)/(4*s1)+0.5;
§61_01_2[i}=(s61_01_2[i]-m2)/(4*s2)+0.5;
$60_01_1[i}=(s60_01_1[i}-m1)/(4*s1)+0.5;
s60_01_2[i]=(s60_01_2[i]-m2)/(4*s2)+0.5;

}

/* set up teacher for training and testing */

k=0; :

for (i=D; i<(*nl); i++) {
t1[k][0]=s61_28_2[i];
t1[k][1)=s61_28_1[i];
k++;

}

k=0;

for (i=D; i<(*n2); i++) {
12{k]{0]=s61_01_2[i];
2{k][1]=s61_01_1[i];
k++;

}

/* set up training and testing input */
for (i=1; i<(D+1); i++) {
j=D-i;
for (k=0; k<((*n1)-D); k++) {
x1[k][2*i-2]=s61_28_2[j1;
x1[k][2*i-11=s61_28_1[j];
x1[k][2*i+D*2-2]=560_28_2[j1;
x1{k][2*i+D*2-1}=s60_28_1[j];



j++

}

j=D-i;

for (k=0; k<((*n2)-D); k++) {
x2[k][2*i-2]1=s61_01_2[j];
x2[k][2*i-1]=s61_01_1[j];
x2[k][2*i+D*2-2]=s60_01_2[j};
x2[k}[2*i+D*2-1]=s60_01_1[j};
jH

}

}
*nl1=(*nl)-D;
*n2=(*n2)-D;
if ((input=fopen("input.m", "w")) == NULL) {

printf("Output file input.m cannot be opened\n");

exit(0);
}
fprintf(input, "x1=[");
for (k=0; k<6; k++)

for (i=0; i<IN; i=i+5) .

fprintf(input,"%7.4f, %7.4f, %7.4f, %7.4f, %7.4f\n",
x1[k][], x1[k]1[+1], x1[k][i+2], x1[k]{i+3], x1[k][i+4]);

fprintf(input,"];\n");

fclose(input);
}
/* sigmoid activation function */
float sig(float n)
float g;
g=(float) (1/ (1+exp( (double) (-n) )} );
return g;
}

/* teach network */
void train3(float (*x1){MAXIN], float (*t1)[2], int *n1, float *thetal,

{

float *theta2, float (*w1)[MAXIN], float (*w2)[MAXH])

int IN=D*4; /* IN=number of inputs to ANN */

float LR=2.0;  /* LR=learning rate */

int k, j, m, sweep, pair, century;

float MSE[S/100+1][4]; /* holds sweep, testing mean squared error, LR */

float etror; /* used to calculated mean squared error */
float a[H], out{2], d1{H}, d2[2], output[(*n1)][2], sum[2]; :
FILE *result;

/* save LR, H, S, MSE in m-file result6.m */

if ((result=fopen("result6.m", "a")) == NULL) {
printf("Output file result6.m cannot be opened\n");
exit(0);

}
fprintf(result, "LR= %5.2f;\n", LR);

fprintf(result, "H= %d;\n", H);
fprintf(result, "S= %d;\n", S);
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fprintf(result, "D= %d;\n", D);
fprintf(result, "MSE=[");

/* intialize thetal, theta2, w1, w2 to random value between -.5 and .5 */
for (k=0; k<H; k++) {
/* thetal [k]=(((float) rand())/((float) RAND_MAX))-0.5; */
for (m=0; m<(IN); m++)
/* wllk]{m}=(((float) rand())/((float) RAND_MAX))-0.5; */
for (m=0; m<2; m++) _
/* w2[m][k]=(((float) rand())/((float) RAND_MAX))-0.5; */

}
for (k=0; k<2; k++)
/* theta2[k]}=(((float) rand())/((float) RAND_MAX))-0.5; */

for (sweep=0; sweep<(S); sweep++) {
for (pair=0; pair<*nl; pair++) {
if (sweep==1000)
LR=0.9;

/* compute output of layer 1 */
for (k=0; k<H; k++) /* init. a=zeros(H,1) */
a[k]=0.0;
for (k=0; k<H; k++) {
for (j=0; j<IN; j++){
a[kl=alk}+w1[k]{j1*x1[pairl[j];

}
alk]=sig(a[k]+thetal [k]);
}

/*compute output of layer 2 */
for (k=0; k<2; k++)
out[k]=0.0;
for (k=0; k<2; k++) {
for (j=0; j<H; j++)
outk]=out[k]+w2[k][j]*alj];
out[k]=sig(out[k]+theta2[k]);

}

for (k=0; k<2; k++)
output[pairj[k]=out[k];

/*compute error of output layer */

for (k=0; k<2; k++)
d2[k]=(out[k]*(1-out{k]))*(t1[pair][k]-out[k]);

/* compute error of hidden layer */

for (k=0; k<H; k++)
d1[k]=(alk}*(1-a[k]))*(d2[0]*w2[O]l[K]+d2[1]*w2[1][K]);

/* update weights from hidden layer to output layer */
for (k=0; k<2; k++) {
for (m=0; m<H; m++) {
w2[k][m])=w2[k]}{m]+LR*d2[k]*a[m];
/* printf("w2[k][m]=%7.4f\n", w2[k][m]); */

}
theta2[k]=theta2[k]+LR*d2[k};

/* printf("theta2[k]=%7.4f\n", theta2[k]); */
}
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/* update weights from input to hidden layer */
for (k=0; k<H; k++) {
for (m=0; m<IN; m++) {
wl[k][m]=w1[k}[m]+LR*d1[k]*x1[pair][m];

* printf("w1{k][m]=%7.4f\n", w1[k][m]); */
}
thetal [k]=thetal [kK]+LR*d1[Kk];

/* printf("thetal[k]=%7.4f\n", thetal[k]); */

}

}

/* save results every 100th sweep */
if (((sweep+1) % 100)==0) Il (sweep==0)) {

century=(int) ((sweep+1)/100);
printf("Century= %d\n", century);
printf("Sweep= %d\n", sweep);
MSE|century][{O)=sweep;
MSE[century][3]=LR;
for (m=0; m<2; m++)
sum{m]=0.0; /* init. sum=zeros(2,1) */
for (k=0; k<(*nl); k++) {
for (m=0; m<2; m++) {
error=t1 [k][m]-output{k][m];
sum[m]=sum[m]}+(float) pow((double) error,
(double) 2.0);
}

}
if (sweep==99)
printf("sum=%7.4f, %7.4f\n", sum([0], sum{1]);
MSE[century][1]=(float) sqrt((double) sum{0});
MSE([century]{2]=(float) sqrt((double) sum[1]);
fprintf(result, "%7.0f, %7.3f, %7.3f;\n",
MSE[century]{0], MSE[century][1]}, MSE[century][2],
MSE(century][3]);
printf("MSE[1], MSE[2]= %7.3f, %7.3f\n", MSE[century][1],
MSE(century][2], MSE[century][31);
} .
}
fprintf(result, "J;\n");
fclose(result);

}

/* test network */

void test3(float (*x1)[MAXIN], float (*t1)[2], int *nl, float (*x2)[MAXIN],
float (*t2)[2], int *n2, float (*w1)[MAXIN],
float (*w2)[MAXH], float *thetal, float *theta2)

int IN=D*4;
int pair, k, j;
float a[H], out[2], outputl[*n1][2], output2[*n2][2], error1[*n1}{2];
float sum1{2], sum2[2], MSE1[2], MSE2{2], error2[*n2}{2];
FILE *result;
for (k=0; k<2; k++) /* init. suml */
sum1[k]=0.0;
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for (k=0; k<2; k++)
sum2[k]=0.0; /* init. sum2 */

for (pair=0; pair<((*n1)+(*n2)); pair++) {
/* compute output of layer 1 */
for (k=0; k<H; k++) /* init. a=zeros(H,1) */
a[k]=0.0;
for (k=0; k<H; k++) {
for (j=0; j<IN; j++) {
if (pair<(*n1))
alk]=a[k]+w1[k][j1*x1[pair](j];

a[k]=a[k]+w1[k](j]*x2(pair-(*n1)]{j};

else

}
a[k]=sig(alk}+thetal[k]);
)

/* compute output of layer 2 */
for (k=0; k<2; k++)
out[k]=0.0; /* init. out=zeros(2,1) */
for (k=0; k<2; k++) {
for (j=0; j<H; j++)
out[k]=out[k]+w2[k][j]*alj];
out{k]=sig(out[k]+theta2[k]);

}
if (pair<(*nl))
for (k=0; k<2; k++) {
outputl{pair][k]=out[k]; i
error! [pair][k]=t1[pair]{k]-output1[pair}[k];
sum1 [k]=sum1[k]+(float) pow((double) error1[pair][k],
(double) 2.0);
}
else

for (k=0; k<2; k++) {
output2[pair-(*nl)][k}=out[k];
error2[pair-(*n1)][k]=t2[pair-(*n1)][k]-
output2[pair-(*n1)][k];
sum2[k]=sum2[k}+(float) pow((double)
error2[pair-(*n1)][k],
(double) 2.0);
| }
printf("sum1=%7.4f, %7.4f\n", sum1{0], sum1[1]);
for (k=0; k<2; k++) {
MSEI1 [k]=(float) sqrt((double) sum1[k]);
MSE2[k]=(float) sqrt((double) sum2[k]);
}
/* save t1, outputl, MSE]I, errorl, t2, output2, MSE2, error2 in m-file */
if ((result=fopen("result6.m", "a")) == NULL) {
printf("Output file result6.m cannot be opened\n”);
exit(0);
}
fprintf(result, "MSE1l= [%7.4f, %7.4f];\n", MSE1[0], MSE1[1]);
fprintf(result, "MSE2=(%7.4f, %7.4f];\n", MSE2[0], MSE2[1]);
fprintf(result, "t1=["); Wil 3 )



}

for (k=0; k<(*n1); k++)

fprintf(result, "%7.4f, %7.4f;\n", t1[k][0], t1[k]{1]);
fprintf(result, "};\n");
fprintf(result, "outputl=["); /* outputl */
for (k=0; k<(*nl); k++)

fprintf(result, "%7.4f, %7.4f;\n", output1[k][0], output1[k][1]);
fprintf(result, "];\n");
fprintf(result, "t2=["); /* 2 */
for (k=0; k<(*n2); k++)

fprintf(result, "%7.4f, %7.4f;\n", t2[k][O0], t2[k][1]);
fprintf(result, "];\n");
fprintf(result, "output2=["); /* output2 */
for (k=0; k<(*n2); k++)

fprintf(result, "%7.4f, %7.4f;\n", output2{k]{0], output2[k][1]);
fprintf(result, "];\n");
fclose(result);

/* calls set-up, training, and testing functions */
void main()

{

/* nl=length training data set
n2=length testing data set */
x1=inputs to ANN for training set
x2=inputs to ANN for testing set
ti=actual I-minute output for training set
t2=actual 1-minute output for testing set
w1=weights to hidden layer from input layer
w2=weights to output layer from hidden layer
thetal=offset for hidden layer neurons
theta2=offset for output layer neurons */

int nl, n2;

float x1[MAXR][MAXIN], t1[MAXR}[2] ,x2[MAXR][MAXIN}, 2[MAXR](2];
float wi[MAXH][MAXIN] ,w2[2]{MAXH] ,thetal[MAXH] ,theta2|2];

tdat3(x1, t1, &nl, x2, t2, &n2);

train3(x1, t1, &nl,thetal, theta2, wi, w2);

test3(x1, tl, &nl, x2, t2, &n2, wl, w2, thetal, theta2);
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APPENDIX B: ANN LONG TERM PREDICTIONS

This appendix encompasses results for 2- and S-minute predictions. The
discussion of why various techniques were unsuccessful and how to remedy them

should aid in future long-term prediction attempts.

TWO-MINUTE PREDICTIONS

The first method tried used 1-minute data with the same inputs to the MLP as in
Figure 9, but with the training output being the data sample 2 minutes in advance rather
than 1. This ANN configuration forecasted data 2 minutes in advance. Despite
numerous trials with different architectures and learning techniques, the 2-minute
predictors did not test well on new data. Some of the parameters that were varied
included the number of hidden layers, the length of the tapped delay line (defined as the
number of past samples used as inputs), the learning rate, and the number of sweeps.
For the case of a tapped delay line with 10 taps and a 29 neuron hidden layer, the ANN
learned well (Figure B.1); however, the testing data were not predicted wéll with this
method (Figure B.2).

Because a vehicle may travel over 2 miles during a 2-minute forecasted period,
a successful predictor may require input data from the next four adjacent upstream
stations (with an average spacing of a half mile between loop detectors). Therefore, the
next attempt at predicting 2 minutes in advance used an MLP architecture similar to
Figure 9, except it included the input data from the next two adjacent stations and the
station to be predicted, for a total of three input stations rather than two. Although this
ANN learned the training set, it could not generalize to the testing set. The ANN output
was frequently stuck at 1 on the testing set. Network saturation may have been the

cause for output stuck at 1. Another problem with this ANN was that the greater
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complexity made training more cumbersome. Network saturation seems to be more
likely with a larger ANN. In addition, a technique may be necessary to keep the ANN
minimal. Because the generalization abilities of the three-station input MLP were worse
than the two-station input MLP, 2-minute prediction attempts using additional upstream

station inputs were not pursued further.

FIVE-MINUTE PREDICTIONS

The 5-minute prediction methods used data sampled every 5 minutes. As with
.l-minute data, the volume was an accumulation, and the occupancy was an average
over the sampled period. The 5-minute data were smoother than the 1-minute data,
with more noticeable general trends. However, each day's data looked different from
other days, making generalization challenging. In addition, the greater dynamic range
of the 5-minute data required more scaling to fit inside the O to 1 range. The dynamic
range of the 5-minuté data made both training and generalization more difficult. The
5-minute predictors used the same architecture as the 1-minute predictor shown in
Figure 9, with a tapped delay line of past samples for the input, and the next sample as
the output. Because the ANN used 5-minute data instead of 1-minute data, it predicted
'S minutes in advance.

The ANN trained over several days instead of one in order to have enough
training examples. For 1-minute data, a one day 6:00 to 9:30 AM period provided 180
training examples. For 5-minute data, 4 days during 6:00 to 10:00 AM provided 192
training examples. Thus, the training set for such an ANN should be a minimum of 4
days to provide an adequate number of training examples. To create a training set over
several days, each day had to be given initial start up conditions. The length of the
tapped delay line was the number of initial conditions each day required, which further

reduced the number of training examples.
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Figures B.3 and B.4 show a 6-day training and a 6-day testing set,
resbectively. Notice the high occupancy around 150 samples on the training set and
around 70, 120, and 260 samples on the testing set. These high occupancies may
represent either bottleneck congestion or data errors. The causes of these irregular data
points were not certain, but they most likely indicated bottleneck conditions. One way
to find out what events irregular i)oints represented would be to watch the traffic on
closed-circuit television and later compare remarks to plots of the data. This procedure
would be time consuming, as several days of morning data would be needed. Another
approach would be to compare loop detector data with that from the AUTOSCOPE
(developed by the University of Minnesota Center fdr Transportation Studies and
manufactured by Econolite). The AUTOSCOPE visually counts vehicles, so it could
indicate whether the irregular points were caused by loop detector errors.

Figures B.5 and B.6 show the testing and training data for an MLP with two
input stations, training over four days, and testing over two days. This example had a
tapped delay line of length 4, a 25-neuron hidden layer, and 8000 training iterations
with an adjustable learning rate. Using a momentum term, defined as an additional
weight change in the direction of the previous weight change, degraded generalization,
so no momentum was used in this example. The MLP had more difficulty learning the
5-minute training data than it did learning the 1-minute data, possibly because of the
greater dynamic range. The ANN was trained until the testing MSE reached a
minimum, but it could learn the training data better at the price of less generalization.
The generalization to new data shown in Figure B.6 was poor.

The ANN may have had trouble generalizing because the daily pattern varied
considerably from one day to the next. If this assumption is correct, the ANN may
have generalized better if it had been given more training examples. The next effort

used six days for both training and testing. The MLP used a tapped delay line of length
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5, a 25-neuron hidden layer, 8000 training iterations, and an adjustable learning rate.
For this éase, a momentum rate of .0.3 speeded leamirig without affecting generalization
ability. The MLP mimicked the training data (Figure B.7), but the testing output was
often stuck at 1.0 (Figure B.8). When the training error has an offset rather than
hovering around zero, this indicates that the MLP is not truly learning the training data.
Since the training error was usually above zero for this example, learning was poor.
The mean training error was positive, but the mean testing error is negative. To
overcome the training and dynamic range difficulties, another learning technique or data
preprocessing scheme may be necessary.

| Network saturation may have contributed to the training difficulty with the 5-
minute data. Saturation occurs when a weight freezes at a value because the neuron has
an output of 0 or 1. The factor

output * (1-output)
in the error gradient calculation sets the gradient to zero. To avoid this problem, an
offset of 0.1 was added to this factor. This attempt failed because the sigmoid offset
degraded the training performance for the S-minute predictor. The next attempt added a
random offset between 0 and 1 to this factor whenever the neuron output was within
.001 of 0 and 1. This random offset degraded performance and decreased learning
speed, so attempts using offsets to avoid sa;uration were not pursued further.

Because a vehicle can travel over 5 miles in 5 minutes, including further
upstream data stations as inputs seems logical. However, the complexity of the neural
network with 10 input stations would make training more cumbersome. A neural
network of this size would have around 6000 input layer weights. Also, the random
inputs over the 5 mile distance that a vehicle can travel during the forecasted period
would réduce the prediction accuracy. Examination of four adjacent stations indicated

that peaks occur simultaneously in 5-minute data. Consequently, nearby upstream
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stations do not provide as much insight with S-minute data as they do with 1-minute
data. Nevertheless, one would hope for a better prediction with an additional upstream
input station. Attempts using additional upstream input stations had the same problems

as the previous example, such as network saturation and traversing the dynamic range.

FUTURE RESEARCH RECOMMENDATIO

Although the long term prediction results were discouraging, predictions
beyond 1 minute are probably feasible with a different learning technique and
architecture. To avoid training difficulty, a second order learning algorithm such as the
Newton, Conjugate Gradient, or Quasi-Newton method (Kung, 1993) might speed
learning. Although more computatidnally intensive, these methods use the second
derivative as well as the derivative of the error function to minimize the mean squared
error.

Smoothing the data before training the ANN would make prediction an easier
task. However, vehicles naturally travel in platoons, so many of the rapid data
fluctuations would indicate actual traffic gaps rather than a noisy signal. Although
some of the information would be lost during the smoothing process, a smoothed
long-term prediction would be mdre useful than no prediction at all.

A technique to minimize the network becomes more important for larger neural
networks. Two techniques that minimize the neural network are pruning and growing.
Pruning eliminates inconsequential weights of a functional network. The fact that a
weight is small does not necessarily mean that the output is insensitive to that weight,
which may be the reason pruning did not help the previously mentioned ANNs.
Growing, on the other hand, adds one neuron at a time until adding more neurons no
longer improves performance. Projection Pursuit Learning (Hwang, Maechler, Martin,

and Schimert, 1992) is a promising growing technique that learns a polynomial
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activation function for each neuron in addition to learning the optimal number of
neurons. Minimizing the ANN systematically should improve generalization abilities.
A third concern with predicting temporal signals is that the prediction might
require a dynamic tapped delay line length (the number of past samples used as inputs).
For instance, sométimes the predictor would need the past ten samples, while other
times the predictor would only need the past five samples. Providing too many past
samples might garble the prediction, while inadequéte information would hinder the
prediction. A dynamic length tapped delay line is difficult to program for an MLP, so a
different architecture would be more suitable for temporal problems. Two recurrent
ANN architectures that address this problem are Real-Time Recurrent Learning (RTRL)
and Back Propagation Through Time (BPTT). The RTRL feeds back the hidden layer
outputs as fully connected internal inputs (Williams and Zisper, 1989). The external |
inputs include only the past sample, so the network must internally store any additional
past information that it needs. The BPTT is based on the concept that any recurrent
neural network behaves in a manner identical to a feed forward network unfolded a

layer for each time step (Rumelhart, McClellan, and the PDP Research Group, 1986).
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HL-LL);

APPENDIX C:

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#define M 10
#define N 12
#define R 27
#defineC 5

FUZZY LOGIC CONTROLLER CODE

/* number of fuzzification parameters */
/* number of inputs to controller */

/* number of control rules */

/* number of fuzzy classes */

/* Calculates a set of fuzzy inputs for each crisp input */
void fuzzify(fioat (*finput)[C], float *input, float (*parameter)[M]) {

float crisp; /* input normalized to 0-1 range */
float LL, HL; /* low and high limit of crisp input */
float centroid; /* centroid for S, M, B classes */
float base; /* base width of right triangle to define class */
int i, k;
for (i=0; i<N; i++) { /* ith input */
LL=parameter(i]{0];
HL=parameter[i]{1];
if (HL-LL<0.001)
printf("Warning: Division by small number, HL-LL=%7.4f\n",
crisp=input[i}/(HL-LL)-LL/(HL-LL); /* normalize to 0-1 range */
for (k=0; k<C; k++) { /* kth class */
base=parameter(i][5+k];
if (k==0) { /* VS class */
if (crisp<0.0)
finput[i]{k]=1.0;
else if (crisp<base)

finput[i][k]=-1/base*(crisp-base);
else
finput[i][k]=0.0;

}
else if (k==4) { /* VB class */
if (crisp>1.0)
finput[i]{k]=1.0;
else if (crisp>1-base)
finput(i}[k]=1/base*(crisp-1+base);
else
finput[i][k]=0.0;

else { /* S, M, B classes */
centroid=parameter][ij[k+1];
if (crisp>centroid-base && crisp<centroid)
finput[i][k]=1/base*(crisp-centroid-+base);
else if (crisp>=centroid && crisp<centroid+base)
finput{i]{k]=-1/base*(crisp-centroid-base);
else
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finput[i][k]=0.0;

}

/* returns the minimum of two numbers */
float min(float y1, float y2)

{
float minimum;
if (y2<yl)
minimums=y2;
else
minimum=yl;
return minimum;
}

/* Rules finds the consequent of each rule, weights it according
to the importance of each rule, and aggregates the
contributions toward each fuzzy class */
void rules(float *fmr, float (*finput)[C], float *w) {
FILE *control;
int i;
/* rule is the consequent for each rule */
float rule[R}={finput{1}{4], finput[1][3], finput[1]]2], finput{1]{1],
finput[1][0], finput[4]{4], finput[4][0], finput[3][4],
finput[31{3], finput{3]{2], finput[3]{1], finput{3}{0],

min(finput[5][0], finput[1][4]), finput(5]{1], finput{5][3],
min(finput{5}{4], finput{1][0}), min(finput[7}{4], finput[2]{4]),
min(finput[6][0], finput[2}[4]), min(finput[6}{1], finput{2]{3]),
min(finput{6][2], finput[2][2]), min(finput[6][3], finput[2][1]),
min(finput[6][4], finput[2][0]), finput[8][4], finput[9][4],
finput[10}{4], finput[11][41};

/* print rule outcomes to a file for tuning purposes */
if ((control=fopen("control.txt", "a"))==NULL) {
printf("Output file control.txt cannot be opened\n”);

exit(0);
}
for (i=0; i<R; i++) {
if (rule[i]>0.0)
fprintf(control, "rule[%d]1=%5.3f ", i, rule[i]);
if (i%7==0)

fprintf(control, "\n");
}
fprintf(control, "\n");

fmr[0]=w[0]*rule[0]+w[S5]*rule[S]+w[7]*rule[7]
+w[12])*rule[12]4+w[16]*rule{16]+w{17]*rule[1 7]
for[1]=w[1}*rule[1]+w([81*rule[8]+w[ 13]*rule[13}+w[18]*rule[18];
fmr[2]=w[2]*rule[2]4+w[9]*rule[9]+w([19]*rule[19];
fmr[3]=w[3]*rule[3]+w{101*rule[10]+w[14]*rule[14]
+w[20]*rule[20]+w[22]*rule{22]+w[23]*rule[23];
fmr{4]=w[4}*rule[4]+w[6]*rule[6]+w[11]*rule[11]



N

*/

+w[15]*rule[15]+w[21]*rule[21}4+w[24] *rule[24]+w([25]*rule[25];

/* print aggregate consequents to a file for tuning purposes */
fprintf(control, "fmr={%6.3f, %6.3f, %6.3f, %6.3f, %6.3f}\n",

fmr([0], fmr[1], fmr[2], fmr[3], fmr{4]);
fclose(control);

/* Defuzz calculates a crisp metering rate using the discrete fuzzy centroid

when given the accumulated rule consequents for each class */

float defuzz(float *fmr, float (*parameter){M]) {

float output; /* control action--the metering rate */

float base; /* base width of the right triangle to define class
float area; /* area of the class */

float centroid; /* centroid of the class */

float num=0.0;

float den=0.0;

float LL=parameter[N][0]; /* low limit for metering rate */

float HL=parameter[N][1]; /* high limit for metering rate */

int I;

/* Find areas and centroids of each fuzzy class of MR */
for (i=0; i<C; i++) {
base=parameter[N][i+5];
if (i==0) {
area=1.0/2.0*base;
centroid=1.0/3.0*base;

}

else if (i==4) {
area=1.0/2.0*base;
centroid=1-1.0/3.0*base;

else {
area=base;
centroid=parameter[N][i+1];
}
num+=fmr[i}*area*centroid;
den+=fmr{i]*area;

}

/* Check for division by zero */
if (den<0.01) {
printf("Warning: division by small number\n");
printf("den=%7.4f\n");
printf("May have insufficient rules firing\n");
if (HL-LL<0.01)
printf("Warning: division by small number\n");
printf("HL-LL=%7.4f\n", HL-LL);
printf("Need to increase range limit\n");
}
/* calculate metering rate and rescale to (LL, HL)) range */
output=(HL-LL)*(num/den+LL/(HL-LL));
/* Check for output outside allowable range */
if (output<LL Il output>HL)



printf("Warning: Metering rate is outside allowable range\nMR=%7.4f\n",
output);
return output;

}

/* flc.c is a fuzzy logic controller that determines a metering rate based
on several inputs:
parameters define memberships classes for each input (user specified)
weights indicate the importance of each rule (user specified)
v inputs are the crisp inputs to the controller (from sensors) */
float fic(float (*parameters){M], float *weights, float *inputs) {

float finputs[N][C]; /* fuzzified inputs */

float fmr[C]; /* accumulated consequent for each MR
class */

float MR; /* metering rate */

fuzzify(finputs, inputs, parametérs);
rules(fmr, finputs, weights);

MR=defuzz(fmr, parameters); /* vehicles/20 secs */
printf("MR=%7.4f\n", MR);
return 20.0/MR; /* return headway in seconds */
}
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