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FOREWORD

Dames & Moore and their subcontractor, Inca Engineers, have prepared this Manual of Practice
for conducting bridge foundation-soil interaction analyses. The manual is intended to assist engineers in
the Bridge Design office at the Washington State Department of Transportation (WSDOT) who perform
dynamic analysis of bridge-foundation systems. The primary purpose of the manual is to present practical
and accurate methods for estimating the foundation stiffness matrices for abutment or pier foundations
supported on footings or piles. These matrices are needed for soil-structure interaction analysis to more
accurately determine the seismic loads acting on the bridge superstructure and on the abutment and pier
foundations.

This Manual of Practice consists of two volumes. Volume I presents five bridge example
problems:

1. Coldwater Creek
2. Deadwater Slough
3. Ebey Slough

4. Northrup Way

5. FHWA

The first four examples are actual WSDOT bridges and the fifth example is a fictitious bridge that
appeared in a 1991 FHWA course notebook on seismic design of highway bridges.

. Volume II presents the input and output files of the SEISAB computer program for the dynamic
soil-structure interaction analysis of bridges. The SEISAB computer program is currently used by
WSDOT in the seismic design of Washington state bridges.

Dames & Moore recommends the FHWA and Novak methods to estimate bridge foundation
stiffness matrices. These methodologies are presented in detail in the Coldwater Creek example problem
in Volume 1. In this example, the basic theory and relevant equations or inputs for implementing these
methodologies are provided first and are immediately followed by their application to the Coldwater
Creek bridge. The appropriate equations or inputs from the FHWA and Novak methodologies presented.
in the Coldwater Creek example problem are identified and applied in the other four bridge example
problems.

Volume I also contains three appendices. The basis for the recommendation of the FHWA and
Novak methods is provided in Appendix A, which is a reproduction of the 1992 Dames & Moore report
to WSDOT on the evaluation of methods to estimate foundation stiffnesses. Appendix B consists of
selected pages from the BMCOL 76 computer program user guide; this computer program, which
computes the load-deflection and moment-rotation curves for single piles, is part of the FHWA
methodology. Appendix C presents the method for transforming the foundation stiffness matrices from
one coordinate system to another. This transformation process is important because the coordinate
systems assumed in the FHWA and Novak methods are generally different and therefore are not
necessarily the same as the SEISAB coordinate system. Coordinate transformations are also discussed
in the Coldwater Creek example problem. '

004\REPORTS\FOREWORD . RWP






EXAMPLE NO. 1

COLDWATER CREEK BRIDGE
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1.0 DESCRIPTION OF BRIDGE AND FOUNDATION SOILS

The Coldwater Creek Bridge is a 3-span, slightly-curved, composite-steel, plate-girder
bridge approximately 500 feet long (Figure 1.1). The seat-type (or L) abutments (Piers 1
and 4) at the ends of the bridge (Figures 1.2a and 1.2b) are supported by three rows of
battered H piles (HP 14 x 89 - 5 per row) which penetrate through a medium dense saridy
gravel and terminate in Andesite bedrock. The piles are about 30 feet long and are
embedded one foot in a concrete pile cap, 45’ long x 13°6" wide x 4’ thick, which supports
the seat-type abutment. A construction joint with a roughened surface separates the cap
from the abutment seat. The concrete abutment walls are 1’5" thick and are approximately
10 feet high. A construction joint with a roughened surface separates the wall from the seat.
Continuous reinforcing steel bars pass through this construction joint and the joint between

the seat and the cap.

Triangular-shaped concrete wingwalls, approximately 20 feet long, are attached to each
side of the abutments (Figures 1.3a and 1.3b). The soil .behind the abutment-wingwall

system is predominantly stiff fill.

Each of the two intermediate bents (Piers 2 and 3) consists of a reinforced concrete
cross beam supporting the girders (Figures 1.4a and 1.4b).‘ This cross beam in turn is
supported by two cylindrical reinforced concrete columns, six feet in diameter. Each column
is supported by a square concrete footing that bears on the Andesite bedrock. The
dimensions of the Pier 2 and Pier 3 footings are 18'x18'x4’-2" thick and 17-4" x 17-4" x 4

thick, respectively.
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2.0 SEISMIC DESICN PARAMETERS

The ground acceleration coefficient for the seismic design of the Coldwater Creek
Bridge was 0.55. The appropriate soil category was Soil Type I, which is bedrock or
shallow stiff soil over bedrock. The ATC-6, 5% damped response spectrum (Figure 2.1)
for this soil type was normalized to 0.55 g and was used in the dynamic response analysis
of the bridge by WSDOT. This same spectrum will be used in the example problem
presented herein for the bridge. The spectrufn will be modified where appropriate to
account for the 7% % damping recommended for those modes of vibration where soil-

structure interaction is significant.

3.0 SOIL PROPERTIES

The soil parameters provided by WSDOT for the fill and sandy gravel soil layers are:

y = total density in pcf

¢ = cohesion in psf

¢ = friction angle in degrees

k = modulus of subgrade reaction in pci
G = low-strain shear modulus in psf or ksf
v = Poisson’s Ratio

Values of G, v, and y were also provided to characterize the Andesite bedrock.

Because the behavior of soil is nonlinear during strong shaking, simple procedures
were implemented to approximately account for the effect of this nonlinearity on the
computation of the abutment and pier foundation stiffnesses. These procedures are
described below, and they are illustrated in the subsequent sections dealing with the

foundation stiffness computations.
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At locations where the ground acceleration coefficient Z is less than 0.2, then
modifications to the low-strain elastic soil properties or the load-deflection curves for the

piles (i.e. t-z, Q-z, and p-y curves) are not recommended.

However, at locations of high ground acceleration where Z > 0.2, then the following
modifications are recommended in the FHWA and Novak methods. For footings and
abutment walls, reduce the low-strain G value by 50%. Implement the same reduction
in G for the pile-head stiffness calculation using the Novak method. For the calculation
of the pile-head stiffness following the FHWA approach, compute the t-z, Q-z, and p-y
curves using the low strain G or k values and reduce the resulting t, z, and p amplitudes

by 50%

The above recommendations are suitable for locations where soil liquefaction is not
anticipated. If soil liquefaction is expected for a given Z value, then site-specific studies
are recommended to determine the extent of the liquefaction before estimating soils

properties.

4.0 PIER 1 STIFFNESS CALCULATION - FHWA METHOD

In this section the calculation of foundation stiffnesses using the FHWA (1986)
method is presented in detail for Piers 1 and 2 of the Coldwater Creek Bridge. (The use
of the Novak method is illustrated in Section 5.0). Because Piers 3 and 4 are similar to
Piers 2 and 1, respectively, only the final results of the stiffness calculations will be

presented for Piers 3 and 4.

A side-elevation view of the abutment and the soil-property profile at Pier 1
(NW Abutment) is shown in Figure 4.1. The basic approach to compute the foundation
stiffness matrix at this pier is to first compute the pile-group stiffness, abutment-footing

(pile cap) stiffness, and abutment-wall stiffness, and then combine these stiffnesses to

3

004 \REPUR TS\WSDO TH . KW






obtain the abutment stiffness matrix at a specified point on the abutment foundation.
This point (Point O in Figure 4.1) is located on top of the 4-foot thick footing at its

geometric center.
4.1  PILE-STIFFNESS CALCULATION

Individual pile-head stiffnesses are first computed at the point where the piles enter
the abutment footing. Several steps are involved in this calculation. First, the
appropriate length parameters of the HP 14 x 89 piles are estimated (Section 4.1.1) and
used in the calculation of the so-called t-z (vertical load - vertical deflection), Q-z (tip

load - tip deflection), and p-y (lateral load - lateral deflection) curves.

The t-z and p-y curves specify the resistances provided by the soil bearing against the
pile subjected to vertical and axial loads, and can be visualized as the force-deformation
relationships of springs attached to small incremental pile segments comprising the pile.
The Q-z curve is simply the force-deflection relationship of the pile tip and end-bearing
soils. The calculation of the t-z and Q-z curves is illustrated in Sections 4.1.2 and 4.1.3,
respectively; the p-y curve calculation is illustrated in Section 4.1.4. These curves are
input to the computer program BMCOL-76 (Matlock et al, 1981) , which computes the
load-deflection curves of the pile head under either the pinned-head or fixed-head
condition for pile-head fixity. For this example problem, a pinned connection was
assumed. The input to the BMCOL-76 program is described in Section 4.1.5 and the
output is presented in Section 4.1.6. It should be noted that this program is similar to
the COM624 program that has been used by WSDOT.

Because t-z, Q-z, and p-y curves are nonlinear, the pile-head load-deflection curves
are also nonlinear. The procedure to compute the pile-head stiffnesses from the pile-
head load-deflection curves is described in Section 4.1.7. This procedure approximately

considers the nonlinear soil behavior due to strong ground shaking.
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The final step is to compute the pile-group stiffness matrix by using the GPILE
program. Per the recommendation in the Task 1 report (Appendix A), group effects are
neglected. The preparation of the input file and listing of the output from the GPILE
program is presented in Section 4.1.8. The resulting pile-group stiffness matrix is listed

in Section 4.1.9.

4.1.1 Estimation of H-pile Parameters

The cross-sectional dimensions and properties of the HP 14 x 89 pile are provided
in Table 4.1, taken from the AISC Manual. In the figure of the H section shown in this
table, the symbols d and b,; demote the depth of the section and the width of the flange,
respectively. For the calculation of the t-z and Q-z curves in the next section, the pile
perimeter, s, is the relevant parameter, and it is defined as the perimeter of a
circumscribed rectangle of length, d, and width, b Thus, for the HP 14 x 89 pile
(Table 4.1),

»
I

2(d + by) = 2(13.83 in + 14.695 in)
57.05 in.

i

or s

For the calculation of the p-y curves, the di‘r.nensi()n of the side of the circumscribed |
rectangle normal to the applied load is the proper length parameter. Thus, for loads
normal to the web (i.e. loads parallel to x-x axis in the Table 4.1 figure), d = 13.83" is

used as the length. For loads normal to the flange, b, = 14.695" is used.
The cross-sectional area of the H pile from Table 4.1is A = 26.1 in®. The moments

of inertia from Table 4.1 are I, = 904 in* and I, = 326 in*. The Young’s modulus of

the steel H-pile is the standard value, E = 29 x 10° psi.
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Thus, the axial (EA) and flexual (EI) rigidities are:

EA = 7.569 E 08 Ib
EL, = 2622E 10 lb-in’
EL, = 9.454 E 09 Ib-in’

The above information was used in the calculation of the t-z, Q-z, and p-y curves, and

the load-deflection curves of the pile-head.

4.1.2 Computation of t-z Curves

4.12.1 General Procedure. The procedure for computing the t-z curve was adapted
from information in Vijayvergiya (1977), Scott (1981), API-RP2A (1991), and NAVFAC
(1986). The general formula relating the axial resistance (force) provided by the soil per

unit pile length, t, and vertical pile déflection, z, is (Vijayvergiya, 1977).

t=t, tanh(z/z,) 4.1

where t___ is the maximum resistance and z,., is a reference deflection. The form of this

max ref

hyperbolic t-z curve is plotted in Figure 4.2. The parameters, t,, and z ., are computed

from the following formulas:

t =f-s | (4.2)

4,y = /% (43)
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Thus, the axial (EA) and flexual (EI) rigidities are:

7.569 E 08 Ib

EA =
El, =  2622E 10 Ib-in®
EL, =  9.454 E 09 Ib-in’

The above information was used in the calculation of the t-z, Q-z, and p-y curves, and

the load-deflection curves of the pile-head.

4.1.2 Computation of t-z Curves
4.1.2.1 General Procedure. The procedure for computing the t-z curves was adapated from
information in Vijayvergiya (1977), Scott (1981), API-RP2A (1991), and NAVFAC (1986).

The general formula relating the axial resistance (force) provided by the soil per unit pile

length, t, and vertical pile deflection, z, is (Vijayvergiya, 1977):

t =1, tanh(zz, ) 4.1)

where t_, is the maximum resistance and z, is a reference deflection. The form of this
hyperbolic t-z curve is plotted in Figure 4.2 The parameters, t,, and z,, are computed

from the following formulas:
t.=f"s 4.2)

2,y =flk “43)
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where f is the pile-shaft friction in units of stress, s is the equivalent pile perimeter (see

Section 4.1.1), and k s a stiffness parameter given by (Scott, 1981),

k=Gn/2s 4.4)

In Equation (4.4), G is the soil shear modulus. As shown in Figure 4.2, the initial slope

of the t-z curve is k-s .
The pile-shaft friction is computed from the following formula in API RP2A (1991):

a c (cohesive soils) 45
= {Kpotanb (cohesionless soils) (@.5)

where ¢ = undrained shear strength or cohesion of soil,
K = coefficient of lateral earth pressure (ratio of horizontal to vertical normal
effective stress),
p, = effective overburden pressure at point in question, and

§ = friction angle between soil and pile wall.

According to API RP2A (1991),

K = 0.8 (open -ended piles) (4.6)
1.0 (closed-ended or plugged piles)
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Although values of § are suggested in API RP2A, the following values are preferred
(NAVFAC, 1986)

5 - 20° (steel piles) 4.7)
0.75¢ (concrete and timber piles)

where ¢ is the friction angle (in degrees) of the cohesionless soil.

4.1.2.2 Application to Coldwater Creek Bridge Abutment Piles. The calculation of the
t-z curves for input to the BMCOL-76 program is described below for piles supporting

the NW abutment (Pier 1). The pile batter is not considered in these calculations; the
piles are assumed to be vertical. However, pile batter is considered in the calculation

of the pile-group stiffnesses (Section 4.1.8).

Because the soil surrounding the piles is cohesionless, the relevant soil parameters
are p,, ¢, and G. The values of these parameters are shown in Figure 4.3, as taken from
Figure 4.1. The input to BMCOL-76 only requires that the t-z curves be computed at
the top and bottom of each soil layer (i.e. at Elevations A, B, C, and D in Figure 4.3).
The calculation of the t-z curve is illustrated at Elevation A = 2547 ft (at base of the

pile cap). The following equations and figures are used:

Eqn. (4.5): f = Kp,tan é (cohesionless soil - sandy gravel)
Eqn. (4.6): K = 0.8 (H pile is open-ended)
Figures 4.1 & 4.3: p, = 2.12 ksf (= 125 pcf x 16 ft + 115 pcf x 1 ft), 1k = 1,000 Ib
Eqn. (4.7): § = 20° (H pile is steel) |
Therefore, f = 0.8(2.12 ksf) tan (20°)
= 0.62 ksf

From Section 4.1.1, s = 57.06 in = 4.76 ft; use this value to compute t,..
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Parameters for Computation of T-Z Curves
at Elevations A, B, C, and D

p, (ksf)
EL 2564
Fill
EL 2548 2-°°\
EL 2547 @_!
2.12
Sandy Gravel
¢ = 34
G = 1800 ksf
EL 2525 @ry| 465
Dense Gravel
¢ = 36
G = 19,200 ksf 5.49

B EE N Vi N G N N N N

Rock

Notes

P, Effective Overburden Pressure

¢ Friction Angle

G Low Strain Shear Modulus

Figure 4.3



Eqn. (4.2): tg, =f-s
= (0.62 ksf)(4.76 ft)
= 2.95 kpf

Compute the length parameter, z,.

Eqn. (43): <z, =f/k

Eqn. (44): k = Gn/2s
Figures 4.1&4.3: G = 1800 ksf

_ (062 kH@)A.T6 /) _ 00104 fr = 0.0125 in
(1800 ksf)(3.14)

Therefore, z,,,

The above calculation pertains to ground acceleration coefficients, Z < 0.2. For this
example, Z = 0.55. Therefore, reduce t,, in Equation (4.1) by 50% per the
recommendation in Section 3.0, and construct the t-z curve. Thus,

] _ (295 kp z
t=t tanh(Z/Z,,f) = ( 2 /Jtanh(o.0125 in)

A plot of this t-z curve is shown in Figure 4.4, where the units of t,, are Ib/in (rather

than kpf as in the above equation).

A spread sheet containing the values of 10 points on the t-z curves at seven depths
within the soil profile is provided in Table 4.2. The t-z curves for the last four depths
in this table were input to the BMCOL-76 program; these depths correspond to
Points A, B, C, and D in Figure 4.3.
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Stiffness, t (Ib/in)

00

1 ]
0.025
Displacement, z (in.)

1 J
0.050

Figure 4.4
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4.1.3 Computation of Q-z Curve

4.13.1 General Procedure. The procedure for computing the Q-z curve for each pile
tip was adapted from information in Vijayvergiya (1977), Scott (1981), API-RP2A (1991),
and NAVFAC (1986). This formulation is similar to that for the t-z curves. The general
formula relating the resistance (vertical force) provided by soil bearing against the pile

tip, Q, and the vertical tip deflection, z, is (Vijayvergiya, 1977)

Q = Q,, tanh(z/z,) 4.8)

where Q,,, is the maximum resistance and z. is a reference deflection. These

parameters are computed from the following formulas:

Q.. = A4q (4.9)

2,y = a/F, (4.10)

where A is the cross-sectional area of the pile, q is the unit end bearing in units of stress,

and k, is a stiffness parameter given by Scott (1981),
k = Gn/4s (4.11)

The initial slope of the Q-z curve is k, - A, as shown in Figure 4.5.

10
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Form of Q—z Curves

Qmax

Resistance (Q)

k *A

Zref
Displacement (z)

V

Figure 4.5



The unit end bearing, q, is given by (API RP2A, 1991),

_ | 9¢  (cohesive soils) 4.12)
9 PN, (cohesionless soils)

where ¢ = undrained shear strength,
p, = effective overburden pressure at the pile tip, and
N, = dimensionless bearing capacity factor.

q

Values of Nq as a function of friction angle, ¢, are provided in Table 4.3, taken from
NAVFAC (1986).

For situations where the piles bear on bedrock, the development of Q-z curves is not
recommended. In this case, the axial displacement of the pile tip is set equal to zero in

the BMCOL-76 program input file.

4.1.3.2 Application to Coldwater Creek Bridge Abutment Piles. The calculation of the
Q-z curves for input to the BMCOL-76 program is not required for piles supporting the

NW abutment (Pier 1) because the pile tips bear on the Andesite bedrock as shown in
Figure 4.1. Rather, the axial displacement of each pile tip was set equal to zero in the

BMCOL-76 input file per the recommendation above.

4.1.4 Computation of p-y Curves

4.1.4.1 General Procedure. The procedure for computing the p-y curves was taken from

API RP2A (1991). In this reference, formulas are provided that relate the lateral

resistance (load) provided by the soil per unit length of pile, p, and the lateral pile

deflection, y. The same functional form used for the t-z and Q-z curves (i.e. Eqns. 4.1

11

004 \REPORTS\WSDOTM. RWP



Capacity parameters of single pile in granular soils.

BEARING CAPACITY FACTORS - Nq

¢*

{OEGREES)

26

28

30

3l

32

33

34

35

36

37

38

39

Nq
(DRIVEN PILE

DISPLACE -
MENT)

2l

35

42

145

Ng **

(DRILLED
PIERS)

17

2

25

38

T2

% UMIT ¢ TO 28° IF JETTING IS USED
%% (A) IN CASE A BAILER OR GRAB BUCKET IS USED BELOW GROUNDWATER TABLE ,CALCULATE END

BEARING BASED ON ¢ NOT EXCEEDING 28°.

(B) FOR PIERS GREATER THAN 24 -INCH DIAMETER,SETTLEMENT RATHER THAN BEARING CAPACITY
USUALLY CONTROLS THE DESIGN. FOR ESTIMATING SETTLEMENT, TAKE 50% OF THE SETTLEMENT
FOR AN EQUIVALENT FOOTING RESTING ON THE SURFACE OF COMPARABLE GRANULAR SOILS.

(CHAPTER S ,DM-7.1).

Ref.: NAVFAC (1986)

Table 4.3



and 4.8), is also used for the p-y curves for sands. A different functional form is used

for clays.

p-y Curves for Sands. The general formula for the p-y curve is

p = Ap, tanh(y /y) C @1m)

where: A is a factor to account for cyclic or static loading conditions; p, is the

ultimate bearing capacity at depth H and is in units of force/length; and, y. is a

reference length. The parameters A, p., and y, are computed from the following

formulas:

A = 0.9 (cyclic or earthquake loads) 4.14)

_ . J(CH + CD)p, (4.15)
pll = min { C3Dp0

Ap, (4.16)
kH

Yo =

where: C,, C,, and C; are functions of friction angle, ¢, and are plotted in Figure 4.6;
D is the average (or equivalent) pile diameter; p, is the effective overburden pressure
at depth H; and, k is the modulus of subgrade reaction in units of force/length® and is
given in Figure 4.6 as a function of ¢. For cylindrical piles of constant cross section, D
is the outside pile diameter; for tapered cylindrical piles that are fully embedded in the

12
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soil, D is the average pile diameter from the pile top to depth, H. For floating tapered

piles, D is the average pile diameter from the ground surface to depth, H.

For rectangular pile cross-sections, D is the length of the side normal to the loading
direction. In the case of H piles, D is either the flange length, b;, or the depth of the
section, d (see Table 4.1), whichever is normal to the loading direction. For octagonal

piles, D is the diameter of a circle that circumscribes the octagonal section.

The notation, min {  }, in Equation (4.15) for p, means that the value of p, to be
used is the smaller of the two values obtained from the top and bottom expressions with

the { }.

p-y Curves for Clay. The general formula for the p-y curve is

%) ‘ 1/3
p - l/-{’..(y/yc) Y < 8y, (4.17)
Pu Y > 8y

where p; is the ultimate resistance in units of force/length of pile, and y, is a reference

length.

The parameters p, and y, are computed from the following formulas:

‘ _ . 3CD + pOD + JCH (4 18)
p, = min {9cD }
y. =25¢.D , 4.19)

13
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where, as before: c¢ is the undrained shear strength; p, is the effective overburden
pressure, H is the depth, and D is the average or equivalent pile diameter. The
parameter, J, is a dimensionless empirical constant ranging from 0.25 (soft clays) to 0.5
(medium and stiff clays), and the parameter, €. is the strain which occurs at one-half the
maximum undrained compressive strength. The parameter, €, usually ranges between
0.005 and 0.020. In the absence of field or laboratory test data, the values recommended

for J and €, are summarized in Table 4.4.

TABLE 4.4
RECOMMENDED VALUES OF J AND €. FOR CLAY

CLAY CONSISTENCY J £,
Soft 0.25 0.020
Medium 0.50 0.010
- Stiff 0.50 0.005

4.1.4.2 Application to Coldwater Creek Bridge Abutment Piles. The calculation of the
p-y curves for input to the BMCOL-76 program is described below for piles supporting

the NW abutment. The pile batter is not considered in these calculations.

As previously noted in the calculation of the t-z curves, the soil surrounding the piles
is cohesionless. The relevant soil parameters are provided in Figure 4.3, taken from
Figure 4.1. As with the t-z curves, the input to BMCOL-76 only requires that the p-y
curves be computed at the top and bottom of each soil layer (i.e. at elevations A, B, C,
and D in Figure 4.3). The calculation of the p-y curve is illustrated for loading in the
y direction (transverse direction) at Elevation A = 2547 ft (at base of pile cap). The H
piles are oriented such that the direction normal to the web of each pile is parallel to

the y direction (see Figures 1.1 and 4.1). The following parameters are first computed:

14

004 \REPORTS\WSDOTH. v



Eqn. (4.14): A =09

. J(CH + C,D)p,
Eqn. (4.15): p, = mm{ éaDPo 2 }

Eqn. (4.15): y, = ﬂ
kH
For calculation of p, , obtain the following parameter values:
Figure 4.3: H = 2564 ft - 2547 ft = 17 ft
Figure 4.1: ¢ = 34°
Section 4.1.1: D = 1383 in = 1.15ft( = d, dﬁepth pf H section)
Figures 4.1 & 4.3: p, = 2.12 ksf (= 125 pcf x 16 ft + 115 pcf x 1 ft)
Figure 4.6: For¢ = 34°,C, = 2.8,C, = 3.3, C; = 47

Therefore,

15
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)l @8x 17 +33x 115 212 ksf | _ . [109 kpf | _
p, = {(47x 1.15 f)2.12 ksf } —mm{115 kpf} = 109 kpf

For the calculation of y, , obtain k = 80 pci = 0.080 kci from Figure 4.1.

Therefore,

3
y, = 0200 kph (LA 59042 fi - 0501 in
(0.080 kci)(17 f5) 1728 in®

The above calculation pertains to ground acceleration coefficients, Z < 0.2. For this

example, Z = 0.55. Therefore, reduce Ap, in Equation (4.13) by 50% per the

recommendation in Section 3.0 and construct the p-y curve. Thus,

p = Ap, tanh(y /y,) = (M-I-Z(ﬁ-kﬂ-)tanh(y/o.sol in)

Implementing the above calculation procedure for the x (longitudinal) direction yields
the same p-y curve at Elevation A = 2547 ft. However, at greater depths, different
values of p, are computed for the two directions, and thus the longitudinal and

transverse p-y cur<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>