OFFICIAL DOCUMENT

DO NOT REMOVE FROM THE
RESEARCH OFFICE

Development of an
Unstable Slope
Management
System

Appendix A
WA-RD 270.2

Final Report
December 1991

A
"T Washington State Department of Transportation
’ Washington State Transportation Commission
Department of Transportation in cooperation with
U.S. Department of Transportation
Federal Highway Administration

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.
WA-RD 270.2 |
4. TITLE AND SUBTITLE 5. REPORT DATE
Development of an Unstable Slope Management System December 1991

6. PERFORMING ORGANIZATION CODE

7 AUTHOR(S) S PERFCRMING CRGANIZATION REPCRT NO.
'

Carlton L. Ho (1) and Sonja S. Norton (2)

3 PERFORMING ORGANIZATION NAME AND ADDRESS 10. WCRK UNIT NO.
Washington State Transportation Center and
Washington Statc University 11. CONTRACT OR GRANT NO.
Pullman, WA 99164-2910 GC-8720, T2

13. TYPE OF REPORT AN PERIOD COVEARED

12. SPONSORING AGENCY NAME AND ADDRESS

Washington State Department of Transportation - Final Report, 7/89-12-91

Olympia, WA 98504 12. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

1) Washington State University
2) U. S. Forest Service, Durango, CO

16. ABSTRACT

This report presents a prototype of an Unstable Slope Management System (USMS) and
corresponding user’s guide. The USMS is a computer program that prioritizes unstable slopes.
I'he system is composed of two parts: a database, and priority programs. The database was
leveloped using dBASE III Plus, Ashton-Tate. The priority programs were developed using the
expert shell system CLIPS, a NASA developed language. The resulting USMS, at this point,
is not an expert system; it is a management system. The USMS was developed by the aid of
conversations with Washington State Department of Transportation (WSDOT) personnel. In
addition, a questionnaire was sent to WSDOT personnel concerned with unstable slope
maintenance. From the conversations and responses to the questionnaire, the factors concerned
with site importance were identified. Also, a method to determine the total importance was
proposed. The USMS identifies factors that determine the importance of a failure site. These
factors pertain to the cause of instability, cost of repair, use of road, and safety to motorists.
Data pertaining to these factors is collected for each failure site and stored in the database.
Priority ratings are assigned by the priority rating programs to the data for each site. The
priority ratings are multiplied by a weight. The sum of the products represents the total priority.
The total priority is a number from 0 to 100, 100 indicates the highest importance. The total
priority represents the importance of the failure site based on the factors identified in the USMS.
The total priority of a failure site is independent of all other failure sites.

47T KEY WORDS 18. DISTRIBUTION STATEMENT
No restrictions. This document is
landslides, slopes, management system, available to the public through the

National Technical Information
Service, Springfield, VA 22616.

13 SECURITY CLASSIF. (of this report) 20, SECURITY CLASSIF. (of this page) t 21. NO. OF PAGES | 22. PRICE
j

None None l 327

FORM 110 222
NOT Lo Tae

TABLE OF CONTENTS
Section

APPENDIX A: USMS.CLP
APPENDIX B: COSTPR.CLP
APPENDIX C: FAILFREQ.CLP
APPENDIX D: FSIZEPR.CLP

. APPENDIX E: PUBRISK.CLP
APPENDIX F: PAVEDAM.CLP
APPENDIX G: PROBTYPE.CLP
APPENDIX H: STRUCTUR.CLP
APPENDIX I: TEMPLOAD.CLP
APPENDIX J;: ADTROADT.CLP
APPENDIX K: DIRT.CLP
APPENDIX L: ECONIMPO.CLP
APPENDIX M: EQUAKE.CLP
APPENDIX N: GEOHAZ.CLP
APPENDIX O: PERMLOAD.CLP
APPENDIX P: ROCK.CLP
APPENDIX Q: TRIMPEDE.CLP
APPENDIX R: MAINMENU.PRG
APPENDIX S: INPUT.PRG
APPENDIX T: DELALLPR.PRG
APPENDIX U: OUTPUT.PRG
APPENDIX V: WEIGHT.PRG
APPENDIX W: TEMPWT.PRG

31
35
42
51
66
73
80
88
99
109
118
153
160
167
174
188
208
216
220
226
231
235
238

TABLE OF CONTENTS

Section

APPENDIX X: PERMWT.PRG

APPENDIX Y: ADDCOST.PRG

APPENDIX Z: EDITCOST.PRG

APPENDIX AA: DELCOST.PRG

APPENDIX BB: SHOWCOST.PRG .
APPENDIX CC: QUESTIONNAIRE

APPENDIX DD: USER GUIDE
BASIC OPERATION STEPS FOR THE USMS
INSTALLATION OF THE USMS
ENTERING THE dBASE PORTION OF THE USMS
Main Menu
Temporary Data Menu
Temporary Database Type Menu
Permanent Data Menu
Permanent Database Type Menu
Output Menu
Cost Menu
EXECUTING CLIPS PROGRAMS
PROBLEMS?
Missing Priority Ratings
Records of Zeros

243
248
251
254
257
260

278
279
280
281
282
291
292
297
299
304
308
325
326
326
326

~e

Figure

~ NI T OTMEOUTUNE

[N I N

CFRRAARARAARARR
nlV=T- IR o ARV B NI UUR S R

M.1
N.1
0.1
0.2
P.1
P.2
P.3
P.4
Q.1
DD.1
DD.2
DD.3
DD.4
DD.5
DD.6
DD.7
DD.8

LIST OF FIGURES

Page
Repair Cost Flow Chart 37
Failure Frequency Flow Chart 44
Failure Size Flow Chart 55
Failure Water Level Flow Chart 56
Failure Date Flow Chartc.ouuuenenen.. .57
Public Risk Potential Flow Chart 68
Pavement Damage Flow Chart 75
Problem (Failure) Type Flow Chart 83
Structure Type Flow Chart 91
Structure Damage Flow Chart 92
Temporary Load Flow Chart 102
Road Type Flow Chart S 111
Average Daily Traffic Flow Chart 112
NoSoil Flow Chart 122
Similar (1) Soil Classification Flow Chart 123
Similar (2) Soil Classification Flow Chart 124
Cohesionless Soil Classification Flow Chart 125
Cohesive Soil Classification Flow Chart 126
Down Slope Dip Soil Layering Flow Chart 127
Cross Slope Dip Soil Layering Flow Chart 128
Horizontal (1) Layering Flow Chart 129
Horizontal (2) Layering Flow Chart 130
Economic Importance Flow Chart 155
Seismic Classification Flow Chart 162
Geographical Hazards Flow Chart 169
New Permanent Load Flow Chart 177
Old Permanent Load Flow Chart 178
Rock Flow Chart 192
Rock Jointing and Layering (1) Flow Chart 193
Rock Jointing and Layering (2) Flow Chart 194
Rock Jointing and Layering (3) Flow Chart 195
Traffic Impedance Flow Chart 210
Main Menu Screeno e e e e 283
USMS User Instructionsot 284
USMS User Instructions (continuation) 285
Temporary Menu Screen, 286
PermanentDataMenu 288
Output (Priority Ratings) Menu 290
Cost MBNU ittt et et et e e e 293
Damage Menuttty 295

Figure

DD.9

DD.10
DD.11
DD.12

DD.13.

DD.14
DD.15
DD.16
DD.17
DD.18
DD.19
DD.20
DD.21
DD.22
DD.23
DD.24
DD.25
DD.26
DD.27
DD.28

DD.29
DD.30

LIST OF FIGURES

Page
Failure Conditions Menu 296
Temporary Load Menu 298
Identity Menu 300
Indentiy Database User Instructions 302
Geology Menut iiiinnennn. 303
Permanent Load Menu 305
Example Output io..... 308
Cost Database User Instructions 309
CostInput Format Screen 311
Failure Conditions User Instructions 312
Failure Conditions Input Format Screen 313
Damage Input Format Screen 314
Damage Database User Instructions 315
Temporary Load Database User Instructions 316
Temporary Load Input Format Screen 317
Identity Database User Instructions 318
Identity Input Format Screen 319
Geology Database User Instructions 320
Geology Instructions (continuation) 321
(a) Geology Input Format Screen 1
(b) Geology Input Format Screen 2 322
Permanent Load Database User Instructions 323
Permanent Load Input Format Screen 324

iv

Table
I.

II.
III.

LIST OF TABLES

Water Level Descriptions and Values
Weights for the Temporary Factors

Weights for the Permanent Factors

53
240
245

APPENDIX A

USMS.CLP

Executes CLIPS Program
(USMS.CLP)
This program controls the execution of all of the CLIPS programs. The programs
are executed in the following order:
1. PROBTYPE.CLP
2. TRIMPEDE.CLP
3. PUBRISK.CLP
4. PAVEDAM.CLP
5. STRUCTUR.CLP
6. TEMPLOAD.CLP
7. FAILFREQ.CLP
8. COSTPR.CLP
9. FSIZEPR.CLP
10. EQUAKE.CLP
11. ADTROADT.CLP
12. DIRT.CLP
13. ROCK.CLP
14. ECONIMPO.CLP
15. PERMLOAD.CLP

16. GEOHAZ.CLP

32

:USMS.CLP Last Revision: 7-31-91
: UPDATED FOR CLIPS VER 5.0

: FROM CONTROL.CLP

- USES BINARY LOAD COMMAND IN CLIPS
(bload "d:\\clipsfil\\probtype.bin")

(reset)

(run)

(printout t "PROBTYPE.CLP has been executed” crlf)
(clear)

(bload "d:\\clipsfil\\trimpede.bin")

(reset)

(run)

(printout t "TRIMPEDE.CLP has been executed” crlf)
(clear)

(bload "d:\\clipsfil\\pubrisk.bin")

(reset)

(run)

(printout t "PUBRISK.CLP has been executed” crlf)
(clear)

(bload "d:\\clipsfil\\pavedam.bin")

(reset)

(run)

(printout t "PAVEDAM.CLP has been executed" crif)
(clear) .

(bload "d:\\clipsfil\\structur.bin")

(reset)

(run)

(printout t "STRUCTUR.CLP has been executed” crlf)
(clear)

(bload "d:\\clipsfil\\tempload.bin")

(reset)

(run)

(printout t "TEMPLOAD.CLP has been executed" crlf)
(clear)

(bload "d:\\clipsfil\\failfreq.bin")

(reset)

(run)

(printout t "FAILFREQ.CLP has been execut " crlf)
(clear)

(bload "d:\\clipsfil\\costpr.bin")

(reset)

(run)

(printout t "COSTPR.CLP has been executed” crlf)
(clear)

33

(bload "d:\\clipsfil\\fsizepr.bin")

(reset)

(run)

(printout t "FSIZEPR.CLP has been executed” crlf)
(clear)

(bload "d:\\clipsfil\\equake.bin")

(reset)

(run)

(printout t "EQUAKE.CLP has been executed" crif)
(clear)

(bload "d:\\clipsfil\\adtroadt.bin")

(reset)

(run)

(printout t "ADTROADT.CLP has been executed" crif)
(clear)

(bload "d:\\clipsfil\\dirt.bin")

(reset)

(run)

(printout t "DIRT.CLP has been executed" crlf)
(clear)

(bload "d:\\clipsfil\\rock.bin")

(reset)

(run)

(printout t "ROCK.CLP has been executed" crif)
(clear)

(bload "d:\\clipsfil\\econimpo.bin")

(reset)

(run)

(printout t "ECONIMPO.CLP has been executed" crlf)
(clear)

(bload "d:\\clipsfil\\permload.bin")

(reset)

(run)

(printout t "PERMLOAD.CLP has been executed" crlf)
(clear)

(bload "d:\\clipsfil\\geohaz.bin")

(reset)

(run)

(printout t "GEOHAZ.CLP has been executed” crlf)
(clear)

34

APPENDIX B

COSTPR.CLP

Repair Cost Priority Rating Program
(COSTPR.CLP)

This program determines the importance of the repair cost. The repair cost can
be either the actual or an estimated value.

The ranges that were developed were determined from the Slope Inventory
provided by WSDOT. This inventory lists approximate costs of repair for each site. By
grouping these costs on the basis of failure type, typical cost ranges can be determined
for each failure type and then these ranges were combined. This approach to the problem
is considered to be adequate method with respect to the uncertainty and the wide range
of the costs.

There is no inflation correction included within this program. The cost ranges
therefore will remain in 1990 dollars.

It may be befter to not rate the costs and use the dollar‘ amount in the decision

making because of budgeting considerations.

36

Figure B.1 Repair Cost Flow Chart

37

;:COSTPR.CLP Last Revision 10-22-90

b
; Direct Cost Priorities

?
-**
’

INPUT FILE= DATACOST.TXT
; OUTPUT FILE= RATCOST.TXT

-**
’

.
?

-**
’

; READS TEXT FILE
- This portion of the program reads the text file and extracts
- the Site ID, Failure Number and the actual or estimated total
. cost. The information is read by the use of a loop.
: Definition of Variables
count: a number from 1 to 3 which tells the program
whether to assign the read data to site-id
(count= 1), failnum (count= 2), cost (count= 3)
read-file: is a flag that notifies the program that a
new piece of information can be read.
data-read: is the temporary address of the read
information until it can be properly identified.
cost: the total cost of repairing the failure
site-id: records the identification number for the site
failnum: indicates how many times the site has failed
2%, N, read-file, ?data-read, ?close-files: are used
to bind the appropriate information to a CLIPS

; address so that the assigned facts can be retracted.
-**
b

(defrule open-file
(initial-fact)
=>
(open "c:\\clipsfil\\datacost.txt" datacost "r")
(open "c:\\clipsfil\\ratcost.txt" outcost "w"
(assert (count 1))
(assert (read-file)))

(defrule read-file ;Begins loop
read-file <- (read-file)
=>
(retract 7read-file)
(assert (data-read =(read datacost))))

(defrule read-site-id

38

7¢ <- (count 1)

?data-read <- (data-read ?site-id& ~ EOF)
=>

(retract ?data-read 7c)

(assert (site-id 7site-id))

(assert (count 2))

(assert (read-file)))

(defrule read-failnum

7c <- (count 2)

7data-read <- (data-read ?failnum& ~ EOF)
=>

(retract ?data-read ?¢)

(assert (failnum ?failnum))

(assert (count 3))

(assert (read-file)))

(defrule read-cost

(defrule close-all-files

. ***
y
. ***

’
’

?

.
’

¢ <- (count 3)

7data-read <- (data-read ?cost& ~ EOF)
=>

(retract ?data-read 7c)

(assert (cost 2cost)))

2close-files < - (data-read EOF) ;EOF has been
7¢c <- (count 7count)

=> ;reached, if so
(retract ?close-files 7c) ;it closes the file
(close))

DETERMINATION OF COST

This portion of the program assigns a priority rating to the
- cost of repairing the failed site. The cost may, if available, be
- the actual total cost or it may be an estimated value.

INPUT DATA
cost: dollar value

OUTPUT DATA
cost-pr:

Definition of Variables

39

;checks if the

; cost: estimated or actual
; cost-pr: priority rating
;***
(defrule cost-20,000

2¢ <- (cost 2cost)

(test (< = ?cost 20000))

=>

(assert (cost-pr 1))

(retract 7¢))

(defrule cost-20,000-50,000
2¢ <- (cost 7cost)
(test (&& (> ?cost 20000) (< = 2cost 50000)))
=>
(assert (cost-pr 2))
(retract 7c))

(defrule cost-50,000-100,000
¢ <- (cost ?cost)
(test (&& (> ?cost 50000) (< = 2cost 100000)))
=>
(assert (cost-pr 3))
(retract ¢))

(defrule cost-100,000-250,000
7¢c <- (cost 7cost)
(test (&& (> ?cost 100000) (< = ?cost 250000)))
=>
(assert (cost-pr 4))
(retract 7c))

(defrule cost-250,000-600,000
7c¢ <- (cost 7cost)
(test (&& (> ?cost 250000) (< = 2cost 600000)))
=>
(assert (cost-pr 5))
(retract 7¢))

(defrule cost-600,000-1,000,000
7¢c <- (cost 7cost)
(test (&& (> ?cost 600000) (< = 2cost 1000000)))
=>
(assert (cost-pr 7))
(retract 7¢))

40

(defrule cost-1,000,000-5,000,000
¢ <- (cost Tcost)
(test (&& (> ?2cost 1000000) (< = 2cost 5000000)))
=>
(assert (cost-pr 8))
(retract 7c))

(defrule cost-5,000,000-10,000,000
¢ <- (cost 2cost)
(test (&& (> ?cost 5000000) (< = ?cost 10000000)))
=>
(assert (cost-pr 9))
(retract 7c))

(defrule cost-10,000,000
7¢ <- (cost Tcost)
(test (> ?cost 10000000))
=>
(assert (cost-pr 10))
(retract 7¢))

sk sic sk ok ok ok 3K 3k 3k ok ok ¢ ok 3K 3K e 2 ok 3 o 3K k¢ 3k 3k e Sk k¢ 3k ke 3¢ 3k dbe ok ke 2k e k¢ 3k 2k 3 3 e 3k e e e ke e ke ok 3 2k e ke k¢ ke ke A ke K
’
« 3k 3k 3k 3¢ 2k ok 2k ¢ 3k ke ke o 3K ok 3k 9k ke e ok ok afe ke ok 3k ke 4e e 3k ok ke 3 o ok ke k¢ s ok ok ke e e 3 ke fe 3k o 3 ok ke e ok ok 3k e e e ke e ok K
’

- This rule checks to see if all of the priority ratings have
- been determined for one particular site. If they have been
- determined it will begin the loop again and read data from
; the next slope.
(defrule continue-read
rdno < - (site-id ?site-id)
Mn <- (failnum ?failnum)
2cpr <- (cost-pr ?cost-pr)
=>
(fprintout outcost ?site-id " " ?failnum " " ?cost-pr crlf)
(retract ?cpr ?rdno ?fn)
(assert (count 1)) '
(assert (read-file)))

41

APPENDIX C

FAILFREQ.CLP

Failure Frequency Priority Rating Program
(FAILFREQ.CLP)
In this program the time interval between the failure date and the current date is
determined. The time span is used to estimate the frequency at which the site fails; this
program does not actually calculate the failure frequency. Within this program all dates

are converted into years by use of the equation,

month-1 + day (1)
12 365

date = year +

The system calculates time intervals for each site. However the priority rating
really only applies to the most recent failure. The priority ratings for the earlier failures
would not indicate the failure frequency of the slope. This method, however, was
deemed acceptable until enough data is available to determine a more accurate method.
A program that would be able to identify failure date patterns would be a more accurate

approach. However, this method would require several years of data.

43

Figure C.1 Failure Frequency Flow Chart

44

: FAILFREQ.CLP Last Revision 10-22-90

*
; FAILURE FREQUENCY

’

« s ke ks ok e o o e o Ko ko ke ko ok oo s o ks ok o e o oo ko o ks s ok o s s o s oKk o ko
b

INPUT FILE = DATAFF.TXT
OUTPUT FILE = RATFF.TXT

;
s
. sk ske e ok ok ok 3k 3k k€ ¢ o 2 3 3K 2K 3 e 3k 3K 35 3k ok b ok 0 3k 3 3k ok ok ok 3k ke b ke e e e e b e e e e e e e e o K 3 ok 3k 3k ok ke ok ok e e e e e ok ok
’

; READS TEXT FILE
- This portion of the program reads the text file and extracts
. the Site ID, failure number, the current date, and the previous
- failure date. The information is read by the use of a loop.
Definition of Variables
count: a number from 1 to 8 which tells the program
whether to assign the read data to current-month
(count= 1), current-day (count= 2), current-year
(count= 3), site-id (count= 4), failnum (count= 5),
failure-month (count= 6), failure-day (count= 7),
failure-year (count= 8)
read-file: is a flag that notifies the program that a
new piece of information can be read.
data-read: is the temporary address of the read
information until it can be properly identified.
site-id: records the identification number for the site
failnum: indicates how many times the site has failed.
current-month: number representation of the current month
current-day: current day of the month
current-year: present year
failure-month: month that the last failure on the site
took place
failure-day: day of the month that the last failure took
place on
failure-year: year that the last failure took place
¢, Mread-file, ?data-read, ?close-files: are used
to bind the appropriate information to a CLIPS

; address so that the assigned facts can be retracted.
-**
’

y

(defrule open-file
(initial-fact)
=>
(open "c:\\clipsfil\\dataff.txt" dataff "r")
(open "c:\\clipsfil\\date.txt" date "r")

45

(open "c:\\clipsfil\\ratff.txt" outff "w")
(assert (count 1))
(assert (read-filel)))

(defrule read-file ;Begins loop
read-file <- (read-file)
=>
(retract ?read-file)
(assert (data-read =(read dataff))))

(defrule read-file-date ;Begins loop
read-filel <- (read-filel)
=>

(retract ?fead-ﬁlel)
(assert (data-readl =(read date))))

(defrule read-current-date-month
7¢ <- (count 1)
7data-read <- (data-readl ?current-month& ~ EOF)
=>
(retract ?data-read 7c)
(assert (current-month ?current-month))
(assert (count 2))
(assert (read-filel)))

(defrule read-current-date-day
¢ <- (count 2)
7data-read <- (data-readl ?current-day& ~ EOF)
=>
(retract 7data-read 7c)
(assert (current-day ?current-day))
(assert (count 3))
(assert (read-filel)))

(defrule read-current-date-year
7¢ <- (count 3)
7data-read <- (data-readl ?current-year& ~ EOF)
=>
(retract ?data-read ?c)
(assert (current-year ?current-year))
(assert (count 4))
(assert (read-file)))

46

(defrule read-site-id

7¢ <- (count 4) ;checks if it is
7data-read <- (data-read ?site-id& ~ EOF) ;a site-id line
=>

(retract ?data-read c)
(assert (site-id ?site-id))
(assert (count 5))
(assert (read-file)))

(defrule read-failnum

7¢ <- (count 5) ‘ ;checks if it is
7data-read <- (data-read ?failnumé& ~ EOF) ;a site-id line
=>

(retract ?data-read ?c)
(assert (failnum ?failnum))
(assert (count 6))

(assert (read-file)))

(defrule read-previous-failure-date-month
7¢ <- (count 6)
7data-read <- (data-read ?failure-month& ~ EOF)
=>
(retract ?data-read 7c)
(assert (failure-month ?failure-month))
(assert (count 7))
(assert (read-file)))

(defrule read-previous-failure-date-day
¢ <- (count 7)
7data-read <- (data-read ?failure-day& ~ EOF)
=2>
(retract ?data-read 7c)
(assert (failure-day ?failure-day))
(assert (count 8))
(assert (read-file)))

(defrule read-previous-failure-date-year
7¢ <- (count 8)
7data-read <- (data-read ?failure-year& ~ EOF)
=>
(retract ?data-read ?¢)
(assert (failure-year ?failure-year)))

(defrule close-all-files ;checks if the

47

Iclose-files <- (data-read EOF) ;EOF has been
7cd <- (current-date ?current-date)
7¢ <- (count ?count)

=> ;reached, if so
(retract ?close-files 7c 7cd) ;it closes the file
(close))

« 3j¢ 5k 35 35 3j¢ 2k 346 3k 2k 2fe 3 K 2k ke 3k 3k 3k 3k ok k¢ 2k Dk ke 2k 3k e 3¢ ke k¢ 24 3k 2k ke k¢ e 3¢ 2k 3K 2k e ke e ke 3¢ e A e e k¢ ke ke e vk 3k ke A 3 ke 2k Ak A ke Kk
’
« 3k 3k 3f 3k 3k 3k 3k ok afe 24 34 3k 3k 3k e 3k 3k 34 e ke k¢ ke 2 3¢ 3he 3k 2k e 2k 3k ke 3¢ S 3 ke e ok ke dhe 3¢ e e k¢ 3k e e ke e 3 3k ke K e e ok dk ke K e ok ok ok Kk
’

DETERMINE SPAN BETWEEN the PREVIOUS FAILURE and the PRESENT
; This portion of the program calculates the current and failure

; date in terms of years. It then proceeds to determine the time

; span between the last time the slope failed and the present

; date.

.
2

INPUT DATA
current & failure-month: number from 1 to 12
current & failure-day: number from 1 to 31
current & failure-year: 197?

?
.
b
b
’

OUTPUT DATA
; gap:

Definition of Variables
current-month, day, year: present date
failure-month, day, year: date of the last time the
site failed
gap: the time span in years between the present
date and the most recent failure date

e W wa we woe

;***
(defrule determine-current-date
7cm <- (current-month ?current-month)
2cd <- (current-day ?current-day)
Tcyr <- (current-year ?current-year)
=>
(assert (current-date
=(+ ?current-year (/ (- ?current-month 1) 12)
(/ 2current-day 365))))
(retract 7cm ?cd ?cyr))

(defrule determine-failure-date
Hm <- (failure-month ?failure-month)
Md <- (failure-day ?failure-day)
Myr <- (failure-year ?failure-year)

48

=2>

(assert (fail-date
=(+ ?ailure-year (/ (- ?failure-month 1) 12)
(/ Mailure-day 365))))

(retract 2fm 2fd ?fyr))

(defrule determine-gap
Md <- (fail-date fail-date)
2cd < - (current-date ?current-date)
=>
(assert (gap =(- ?current-date ?fail-date)))
(retract 7fd))

. 3k 3k 3k 2k 2k afe ok 3k 3¢ 3k 3 3 5 2 3k 3¢ 2 3k a4 3k 3k ke 3 35 36 3k e 3 3k e e 39 e e e 2k ke e ok ke e o e o ke e e e e ke ke 3 ok e 3 ke ¢ ok o e ok Ak ok
’
. 3k ¢ sk 4 3k ok o 3k 3k ahe 2 3k K 3K 3k 3k 3 ok k¢ 2 3k 3¢ 3k dhe 3 3k ke 3 3k ke s ke e 3k 3 3 ke 3k afe ke o b e S e oe e e o 2k o ke e o ke e ke ke ok e o ek
’

DETERMINE FAILURE FREQUENCY
. This portion of the program prioritizes the failure frequency
- of the site. Failure frequency is only based on the present date
- and the date of the most recent failure of the site, not on the
- average time span between failures. This method was deemed
: acceptable because there will be very little data available and
- for the first few years of the data collection this method should
- be reasonable. This method will indicate frequent failing sites
- and sparsely failing sites. When more data is available it may
- be beneficial to create programs that are able to search for
; specific patterns in failure times which could then be used to
; predict approximate future failure dates.
INPUT DATA

gap: internally determined, years

OUTPUT DATA
failure-frequency-pr

.+ 5k 3k ok 2k ok 2k ok 3k ofe 3K ake 3 3K 3k 3k a4 k¢ sk 3k k¢ 3 3k e 3k k¢ 3k 3¢ 3 3k e 3k 3 o 3k 3 3k 3k 3 e e 2k 3 o e 3k she e ahe e 3K ahe o 3 A e ke ok ke e ke o ke ke ke
’

(defrule ff-> =10yr
7g <- (gap Tgap)
(test (> = ?gap 10))
=>
(assert (failure-frequency-pr 1))
(retract 7g))

(defrule ff-10yr>gap > =5yr

7g <- (gap ?gap)
(test (&& (< ?gap 10) (> = ?_gap)]

49

=>
(assert (failure-frequency-pr 3))
(retract 7g))

(defrule ff-5yr>gap> =2yr
7g <- (gap 7gap)
(test (&& (< ?gap 5) (> = 2gap 2)))
=>
(assert (failure-frequency-pr 6))
(retract 7g))

(defrule ff-2yr>gap> =lyr
7g <- (gap 7gap)
(test (&& (< ?gap 2) (> = gap 1)))
=>
(assert (failure-frequency-pr 9))
(retract 7g))

(defrule ff-1yr>gap
7g <- (gap 7gap)
(test (< ?gap 1))
=>
(assert (failure-frequency-pr 10))
(retract 7g))

. ***
’

. ***
9

- This rule checks to see if all of the priority ratings have
- been determined for one particular site. If they have been
- determined it will begin the loop again and read data from
; the next slope.
(defrule continue-read
rdno < - (site-id ?site-id)
Mn <- (failnum ?failnum)
Mfpr <- (failure-frequency-pr ?failure-frequency-pr)
=>
(fprintout outff ?site-id " " ?failnum " "
Hailure-frequency-pr crif)
(retract ffpr 7rdno 7fn)
(assert (count 4))
(assert (read-file)))

50

APPENDIX D

FSIZEPR.CLP

Failure Conditions Priority Ratiﬁg Program
(FSIZEPR.CLP)

This program accounts for the importance of the failure size, water level, and
date. The failure size is the volume in cubic yards of the failure. The failure water level
indicates the water content in the slope with respect to the average water content for the
slope at that particular time of year. The failure date is the date that the site failed.

This program considers past failures; however it could, if the information were
available, be applied to future failures.

The numeric ranges for the failure size within the program were determined quite
arbitrarily because there was no data available. Therefore these ranges should be
inspected and adjusted where it is necessary.

The water level within the slope should be described numerically. Table 7 shows
an explanation of the numeric values. Note all comments are with respect to the average
water content for that period of the year. The ranges within the program were
determined with the idea that future versions of the program would be able to use the
average water level of similar past failures as data for future failures. Therefore the future
numbers may not be integers.

The failure date is the month and day of the date in terms of years, so that the
season can be determined. The failure date is calculated, within the database, by the

equation

failuremonth - 1 faiureday (2)
12 365

failure date =

52

Table 7 Water Level Descriptions and Values
PR S

Description Value
Extremely High 10
High 7
Normal 5
Low 3

1

Extremely Low

53

The seasons within this program were determined with the mountains in mind.
‘However another definition of the seasons may be more practical or the use of different

definitions of the seasons for different geographical regions may be better.

54

Figure D.1 Failure Size Flow Chart

55

Figure D.2 Failure Water Level Flow Chart

56

Figure D.3 Failure Date Flow Chart

57

; FSIZEPR.CLP Last Revision 10-22-90

)

FAILURE SIZE, WATER LEVEL, & DATE PRIORITIES

« 3k ok 3k 3k 5i¢ ok 3k 3 2k 2k 3k 2k 3k 2k 9 2k ake 3k 3 e e k¢ 3¢ 3k e e 3k S 3 2k 2k ke 2k 24 3k 2k k¢ b 2 3k 3k 3k 3k 3k dhe ok e e k¢ 2k ke A 3k ok Dk ke 3k e ke ke 2k e Kk K K K

: INPUT FILE = DATAFWD.TXT
OUTPUT FILE = RATFWD.TXT

’
b
?
.
?

« 3k 3 ok 34 3% ok 3 ok 2k 2k 2k 3k 3k 3k 346 24 Sk ke ke e ke 24¢ ok 3k e K 2k 3k 3¢ 24¢ 3k e e ke ke 3k e 3k 36 e 3k ke o e ke e e Ak k¢ Dk ke e ke 3K 2k 2k ke e e Ae ke ke ke Kk K
’

; READS TEXT FILE

; This portion of the program reads the text file and extracts
: the Site ID, failure Number, failure size (cubic yards), water
: level within the slope, failure date. The information is read by
; the use of a loop.

: Definition of Variables

; count: a number from 1 to 5 which tells the program
; whether to assign the read data to site-id

; (count= 1), failnum (count= 2), fail-size
(count= 3), water-level (count= 4), fail-date

; (count= 5)

read-file: is a flag that notifies the program that a

; new piece of information can be read.

; data-read: is the temporary address of the read

; information until it can be properly identified.

; site-id: records the identification number for the site
; failnum: indicates how many times the site has failed
; failsize: cubic yards

; water-level: number 1 to 10

; fail-date: month + day in terms of years

; 7c, Mread-file, ?data-read, ?close-files: are used

; to bind the appropriate information to a CLIPS

; address so that the assigned facts can be retracted.
- 3i¢ sk 3k sk 94¢ 3¢ ok 3k 3k 3k 3k 3k 2k 3 3k 3k 3k 3k 3k vk 3k 3k 3k 3k 3k 3k 3k 3k 3¢ o 3k 3k 3k ok A 0¢ e 3k k¢ ake 3¢ 3k 3 3k e 3¢ 2k e e ke ke ke 3¢ 3k Sk k¢ ok ok ok K ke e K e K Xk
b

(defrule open-file
(initial-fact)
=>
(open "c:\\clipsfil\\datafwd.txt" datafwd "r")
(open "c:\\clipsfil\\ratfwd.txt" outfwd "w")
(assert (count 1))
(assert (read-file)))

(defrule read-file ;Begins loop
read-file <- (read-file)

58

=>
(retract read-file)
(assert (data-read =(read datafwd))))

(defrule read-site-id
7¢c <- (count 1)
7data-read <- (data-read Zsite-id& ~ EOF)
=>
(retract ?data-read ?c)
(assert (site-id ?site-id))
(assert (count 2))
(assert (read-file)))

(defrule read-failnum
¢ <- (count 2)
7data-read <- (data-read ?failnumé& ~ EOF)
=>
(retract 7data-read 7c)
(assert (failnum ?failnum))
(assert (count 3))
(assert (read-file)))

(defrule read-fail-size
¢ <- (count 3)
7data-read < - (data-read ?fail-size& ~ EOF)
=>
(retract ?data-read ?c)
(assert (fail-size ?fail-size))
(assert (count 4))
(assert (read-file)))

(defrule read-water-level
7¢ <- (count 4)
7data-read < - (data-read ?water-level& ~ EOF)
=>
(retract ?data-read ?c)
(assert (water-level ?7water-level))
(assert (count 5))
(assert (read-file)))

(defrule read-fail-date
7¢c <- (count 5)
7data-read <- (data-read ?fail-date& ~ EOF)
=>

59

(retract ?data-read 7c)
(assert (fail-date ?fail-date)))

(defrule close-all-files ;checks if the
Iclose-files <- (data-read EOF) ;EOF has been
7¢ <- (count 7count)
=> ;reached, if so
(retract ?close-files 7c) ;it closes the file
(close))

.+ sk ok sk o 3 ok ok ke 3 3k 3k ok 3 3k 3k 3k e e ok sk ke e e 3 ok o e 3 o 3k ok ke 3 ok 2 ke k¢ e 3k 24 ke e 3k 3k ok ke ke e o ok ok ke o o ok ok e e ke ke oK ok Kk
’
+ sk 3k 3k sk ke Sk 3 ke ke ok Sk ske ke oK 3k ok 2k 2k ok 3k sk s ke e 3 3k sk ke 3¢ 3K 2k 3k k¢ 3 3k 3k ok ke e 3k 3k ke e e 3 ke ke ke e ok 3k e ke ke ok ok ke e e ke ke ok K
s

; FAILURE SIZE

: This portion of the program assigns a priority rating to the
; past failure size.

; INPUT DATA

; fail-size: cubic yards

; OUTPUT DATA

; fail-size-pr:

; Definition of Variables

; fail-size: future failure size that is in terms of
; cubic yards
;***
(defrule fail-size-50,000

MUs <- (fail-size Mail-size)

(test (> = ?Mail-size 5.00000e+4))

=>

(assert (fail-size-pr 10))

(retract 7fs))

(defrule fail-size-50,000-40,000
Ms <- (fail-size Mail-size)
(test (&& (< ?fail-size 5.00000e+4)
(> = Mail-size 4.00000e+4)))
=>
(assert (fail-size-pr 9))
(retract 7fs))

(defrule fail-size-40,000-30,000

”s <- (fail-size ?Mail-size)
(test (&& (< ?fail-size 4.00000¢+4)

60

(> = Mail-size 3.00000e+4)))
=>
(assert (fail-size-pr 7))
(retract 7fs))

(defrule fail-size-30,000-20,000
s <- (fail-size fail-size)
(test (&& (< ?Mail-size 3.00000e+4)
(> = ail-size 2.00000e+4)))
=>
(assert (fail-size-pr 6))
(retract ?fs))

(defrule fail-size-20,000-10,000
s <- (fail-size ?fail-size)
(test (&& (< ?ail-size 2.00000e+4)
(> = Mail-size 1.00000e+4)))
=>
(assert (fail-size-pr 5))
(retract s))

(defrule fail-size-10,000-5,000
s <- (fail-size ?fail-size)
(test (&& (< ?Mail-size 1.00000e+4)
(> = Mail-size 5.00000e+3)))
=>
(assert (fail-size-pr 3))
(retract ?fs))

(defrule fail-size-5,000
Ms <- (fail-size ?fail-size)
(test (< ?fail-size 5.00000e+3))
=>
(assert (fail-size-pr 2))
(retract ?fs))

. ***
’
. ***
’

WATER LEVEL
- This portion of the program assigns a priority rating to the
: past failure water levels.
INPUT DATA
water-level: number from 1 to 10

.
’

61

OUTPUT DATA
water-level-pr

; Definition of Variables

; water-level: severity of water level at the time of
; failure. The original descriptions of the water
; content of the site were made with respect to
; the average water content at that particular

; time of year. The original ratings are listed

; below.

; Extremely high = 10

; High = 7

; Normal = 5

; Low =3

; Extrememly Low = 1

« 3k sfe 3k sk sfe 2k Sk 9k¢ 2 Sl 3k 2k Dk 2k 9 9k ke 3k 2k 2k 3 3k 2k 2k 3k 2k ok ¢ ke 2k e e Sk 2k k¢ ok 3k k¢ ¢ ke K 3 K K A e e e A K 3k 3k vk ke K ke e e e ke ek ke Kk

(defrule water-level-10
7wl <- (water-level ?water-level)
(test (> = ?water-level 9.500000))
=>
(assert (water-level-pr 10))
(retract 7wl))

(defrule water-level-9
Mwl <- (water-level ?water-level)
(test (&& (< ?water-level 9.500000)
(> = ?water-level 8.500000)))
=>
(assert (water-level-pr 9))
(retract 7wl))

(defrule water-level-8
Mwl <- (water-level ?water-level)
(test (&& (< ?water-level 8.500000)
(> = ?water-level 7.500000)))
=>
(assert (water-level-pr 8))
(retract 7wl))

(defrule water-level-7
Mwl <- (water-level ?water-level)
(test (&& (< ?water-level 7.500000)
(> = ?water-level 6.500000)))

62

=>
(assert (water-level-pr 7))
(retract Twl))

(defrule water-level-6
2wl <- (water-level 7water-level)
(test (&& (< ?water-level 6.500000)
(> = ?water-level 5.500000)))
=>
(assert (water-level-pr 6))
(retract 7wl))

(defrule water-level-5
2wl <- (water-level ?water-level)
(test (&& (< ?water-level 5.500000)
(> = ?water-level 4.500000)))
=>
(assert (water-level-pr 5))
(retract 7wl))

(defrule water-level-4
wl <- (water-level ?water-level)
(test (&& (< ?water-level 4.500000)
(> = ?water-level 3.500000)))
=>
(assert (water-level-pr 4))
(retract ?wl))

(defrule water-level-3
Mwl <- (water-level ?water-level)
(test (&& (< ?water-level 3.500000)
(> = ?water-level 2.500000)))
=>
(assert (water-level-pr 3))
(retract 7wl))

(defrule water-level-2
7wl <- (water-level ?water-level)
(test (&& (< ?Iwater-level 2.500000)
(> = ?water-level 1.500000)))
=>
(assert (water-level-pr 2))
(retract 7wl))

63

(defrule water-level-1
Mwl <- (water-level ?water-level)
(test (< ?water-level 1.500000))
=>
(assert (water-level-pr 1))
(retract 7wl))

+ sk 3k 35 ok 5% 3K 3k e 3K ok sk 3K e o 3k Dk ke ok 7k ok ke e ok ok ake ¢ 3k e e e 3¢ oK o 34 2k 3 ok 3k 3 3k ke ke e e o sk ke ke o o ke ke ok ok e ke e ok ke ke e K
?
. sk 3k 3¢ 3k K 3k 3k o ok k¢ ok 3 3k oK 24 ok K 3K 3k 4¢ 3k Dk 3¢ sk ke o 3k e 3k ke 3 Sk e e 3 e ok ke e ok e ok o 2k ke 3k ke 3 Sk 3k ok ke ke e 2k o 2k ok ke K ke K K
’

FAILURE DATE

. This section assigns a priority rating to the date past
. failure date.

.
3

; INPUT DATA
fail-date: years, numbers < = 1.0000

; OUTPUT DATA
; fail-date-pr

; Definition of Variables

; fail-date: failure month and day in terms of years

; summer: June 1 to Aug 31

: fall: Sept 1 to Oct 31

; winter: Nov 1 to Mar 31

; spring: April 1 to May 31

: *** NOTE: the general range for the priorities were taken from
; the questionnaire. The season range was developed to correspond

; to the seasons in the mountains.

« 3k 3k sie 3k 3k 3k 5 3k 9K 3K 3K 9k ¢ ok 3k 3k 3k 3k k¢ 3k 3k 3k ¢ 3k 3k 3k o e 2k ok 2k ok 2k ok 3K ke e 2k e 2k e 2k 3k k¢ 3k k¢ ok e 34 e ke 3k ¢ 2k ¢ k¢ e e ke ke ek ke K
’

(defrule fail-date-.417-.668-summer
2d <- (fail-date ?fail-date)
(test (&& (> = ?ail-date 4.17000e-1)
(< 7ail-date 6.68000e-1)))
=>
(assert (fail-date-pr 5))
(retract 7fd))

(defrule fail-date-.668-.835-fall
Md <- (fail-date ?fail-date)
(test (&& (> = ail-date 6.68000e-1)
(< ?ail-date 8.35000e-1)))
=>
(assert (fail-date-pr 7))

(retract ?fd))

(defrule fail-date-.835-.252-winter
7d <- (fail-date ?fail-date)
(test (]| (&& (> = ?ail-date 8.35000e-1)
(< = ail-date 1.00000))
(&& (< = 7Mail-date 2.52000e-1)
(> Hail-date 0))))
=>
(assert (fail-date-pr 10))
(retract ?fd))

(defrule fail-date-.252-.417-spring
2d <- (fail-date ?fail-date)
(test (&& (> ?fail-date 2.52000e-1)
(< Mail-date 4.17000e-1)))
=2>
(assert (fail-date-pr 7))
(retract ?fd))

~***

b

-***
b

- This rule checks to see if all of the priority ratings have
- been determined for one particular site. If they have been
- determined it will begin the loop again and read data from
; the next slope.
(defrule continue-read

rdno < - (site-id 7site-id)

Mn <- (failnum ?failnum)

Mspr <- (fail-size-pr ?fail-size-pr)

Iwlpr <- (water-level-pr Twater-level-pr)

fdpr <- (fail-date-pr ?ail-date-pr)

=>

(fprintout outfwd 7site-id " " ?failnum " " fail-size-pr

Iwater-level-pr " " ?fail-date-pr crlf)

(retract spr ?rdno ?wlpr ?dpr ?fn)

(assert (count 1))

(assert (read-file)))

65

APPENDIX E

PUBRISK.CLP

Public Risk Potential Priority Rating Program
(PUBRISK.CLP)

This program was developed in order to try to account for the possibility of a
catastophic public risk resulting from the effects of the failure. The valid responses to
the lawsuit query are very limited as they exist now. In future versions a more varied
response list would be more accurate. The valid responses are:

1. personal injury or property damage-high: indicates that there has been

a personal injury or property damage for a past failure at this site or that
there is a potential personal injury or property damage for a future failure
at this site.

2. personal injury or property damage-low: indicates that there is a low

possibility for personal injuries or property damage.

3. toxins: indicates that there is a high probability of the release of toxins to

the environment as a result of a failure.

4. property: indicates that a failure will or could result in damage to an

economically vital structure or to an essential public facility.

5. NONE: indicates that there is no likelihood of public risk.

These definitions were developed by a lay person and should be revised.

67

-

Figure E.1 Lawsuit Potential Flow Chart

68

: PUBRISK.CLP Last Revision 11-5-91

b
; PUBLIC RISK POTENTIAL

;

s ks s o sk s o Sk s o K o ok K o k3K ok o e ke e ok e o s ok ks sl o ks o sk o ko o K s R KSR K 3

’ INPUT FILE = DATAPUB.TXT
OUTPUT FILE = RATPUB.TXT

B

.***

: READS TEXT FILE
- This portion of the program reads the text file and extracts
- the Road ID and Damage Type information. The information is
: read by the use of a loop.
Definition of Variables
count: a number from 1 to 3 which tells the program
whether to assign the read data to site-id
(count= 1), failnum (count= 2), damage-type
(count= 3)
read-file: is a flag that notifies the program that a
new piece of information can be read.
data-read: is the temporary address of the read
information until it can be properly identified.
site-id: records the identification number for the site
failnum: indicates how many times the site has failed.
damage-type: damage that may create public risk.
pubrisk-pr: priority rating
2c, Iread-file, 7data-read, ?close-files: are used
to bind the appropriate information to a CLIPS

; address so that the assigned facts can be retracted.
-**

Y

(defrule open-file
(initial-fact)
=>
(open "d:\\clipsfil\\datapub.txt" datapub "r")
(open "d:\\clipsfil\\ratpub.txt" outpub "w"
(assert (count 1))
(assert (read-file)))

(defrule read-file ;Begins loop
Iread-file <- (read-file)
=>
(retract 7read-file)
(assert (data-read =(read datapub))))

69

(defrule read-site-id

7c <- (count 1)

7data-read <- (data-read 7site-id& ~ EOF)
=>

(retract ?data-read 7¢)

(assert (site-id ?site-id))

(assert (count 2))

(assert (read-file)))

(defrule read-failnum

7¢ <- (count 2)

?data-read < - (data-read ?failnumé& ~EOF)
=>

(retract ?data-read ?c)

(assert (failnum ?failnum))

(assert (count 3))

(assert (read-file)))

(defrule read-damage-type

¢ <- (count 3)

7data-read <- (data-read ?damage-type& ~ EOF)
=>

(retract ?data-read ?c)

(assert (damage-type ?damage-type)))

(defrule close-all-files ;checks if the
2close-files <- (data-read EOF) ;EOF has been
?¢ <- (count ?count)
=> :reached, if so
(retract ?close-files 7c) ;it closes the file
(close))

.+ sk ke e e 3k o 3k 3k ke ke ok ke ke ke e e 3k 3k 3K 3K 3k 3k 3K 3K 3K 3k 3k 3k ok 3k 3k ok sk e ke abe b afe ke e e 3k 3 ak o ok o e ke ke o e o e ok ke ok ok K K K Kk
’

-***

b
.
b
y
b

b

DETERMINATION OF PUBLIC RISK POTENTIAL
This portion of the program assigns suitable priorities to

. different types of problems that may create public risk.

INPUT DATA
damage-type: High-personal, Low-personal,
Toxins, Property, None
OUTPUT DATA
pubrisk-pr

70

Definition of Variables
damage-type: type of damage that may create public risk.
High-Personal: high possibility of public risk.
Low-Personal: low possibility of public risk.
Toxins: contains Toxins on or near the site
that could be released during a failure.
Property: large, expensive, and vital public
property (i.e. water treatment plant).
pubrisk-pr: priority rating.

. ******************************#**********************************

.
2
’
’
.
?
.
b
.
’
.
b
b
.

idefrule damage_None
2dt <- (damage-type ?7damage-type)
(test (eq ?damage-type None))
=>
(assert (pubrisk-pr 0))
(retract 7dt))

(defrule damage High-personal
2dt <- (damage-type 7damage-type)
(test (eq 7damage-type High-personal))
=>
(assert (pubrisk-pr 10))
(retract 7dt))

(defrule damage_Low-personal
2dt <- (damage-type ?damage-type)
(test (eq ?7damage-type Low-personal))
=>
(assert (pubrisk-pr 7))
(retract 7dt))

(defrule damage_toxins
2dt <- (damage-type ?7damage-type)
(test (eq ?damage-type Toxins))
=>
(assert (pubrisk-pr 10))
(retract 7dt))

(defrule damage_property
2dt <- (damage-type ?damage-type)
(test (eq 7damage-type Property))
=>
(assert (pubrisk-pr 10))
(retract 7dt))

71

.11 decision has been made

- This rule checks to see if all of the priority ratings have
- been determined for one particular site. If they have been
- determined it will begin the loop again and read data from
; the next slope.
(defrule continue-read
rdno <- (site-id ?site-id)
n <- (failnum ?failnum)
Ipubpr < - (pubrisk-pr ?pubrisk-pr)
=>
(fprintout outpub ?site-id " " ?ailnum " * ?pubrisk-pr
crlf)
(retract ?pubpr ?rdno ?fn)
(assert (count 1))
(assert (read-file)))

72

APPENDIX F

PAVEDAM.CLP

Pavement Damage Priority Rating Program
(PAVEDAM.CLP)

This program accounts for the severity of the damage to the road surface due to
a failure type of erosion, settlement, or wave-action. Only these failure types were
considered because of there speed of progression. It is assumed that these failure types
occur slowly enough to allow for noticeable degradation of the road surface. This
degradation must occur primarily from the failure process and not normal wear. The
other failure types are considered to happen too rapidly and therefore all repairs would
need to be completed at one time.

This program requires two input factors, problem type and pavement damage.

Refer to Appendix G for the proper responses to the problem type. The valid responses
for the pavement damage are:

1. severe: indicates that the pavement deterioration is potentially hazardous
to motorists and that immediate repair is necessary.

2. moderate: indicates that the deterioration of the pavement causes motorists
to slow down, but the damage itself is not hazardous. This indicates that
repairs will have to be made soon.

3. low: indicates that the pavement deterioration is noticeable to drivers but
is not dangerous at legal speeds, just an irritant.

4, NONE: indicates that there is no damage to the road.

In future versions of the program additional and more specific responses would be

helpful.

74

Figure F.1 Pavement Damage Flow Chart

75

; PAVEDAM.CLP Last Revision 10-22-90

: PAVEMENT DAMAGE

+ 5 ok 3k 3k e 3k 3¢ 3 ok k¢ 3k 3 2k 3 3he k¢ 3 ok e 3k 3k 3 3k 24 e o ke 3¢ ok k¢ 3 o e A 3k 3 e Sk e 3 e e 2 ke 3 e 3k ke e e e e e ke K 2k e e ke e ok e ke e ek

: INPUT FILE = DATAPAVE.TXT
; OUTPUT FILE = RATPAVE.TXT

« s 3k je 3K 3K 3k 3K 94¢ 3k ok 3K 3K 3k ¢ 30 3 K ok 3k 3k 3 3k 3 3k 3k 3k 3k 2k 3k ke 2k 2k 3k 3¢ 30 e 3 3 2k e 2k 2k e 3he e e ke A ke Sk e 3 3¢ ke e 2k e ke 3k e ke e ke e e
’

; READS TEXT FILE

; This portion of the program reads the text file and extracts

: the Site ID, Failure Number, Problem Type, and Pavement Damage

; information. The information is read by the use of a loop.

; Definition of Variables

count: a number from 1 to 4 which tells the program
whether to assign the read data to site-id
(count= 1), failnum (count= 2), problem-type
(count= 3), or pavement-damage (count=4)

read-file: is a flag that notifies the program that a
new piece of information can be read.

data-read: is the temporary address of the read
information until it can be properly identified.

problem-type: type of failure

site-id: records the identification number for the site

failnum: indicates how many times the site has failed

pavement-damge: indicates if the pavement has been

; damaged due to the failure

; 2c, read-file, 7data-read, ?close-files: are used

; to bind the appropriate information to a CLIPS

; address so that the assigned facts can be retracted.
;**

(defrule open-file
(initial-fact)
=>
(open "c:\\clipsfil\\datapave.txt" datapave "r")
(open "c:\\clipsfil\\ratpave.txt" outpave "w")
(assert (count 1))
(assert (read-file)))

(defrule read-file ;Begins loop
Tread-file <- (read-file)
=>
(retract ?read-file)

76

(assert (data-read =(read datapavej))) ;reads the data

(defrule read-site-id
7¢ <- (count 1)
7data-read <- (data-read ?site-id& ~ EOF)
=>
(retract ?data-read 7c)
(assert (site-id 7site-id))
(assert (count 2))
(assert (read-file)))

(defrule read-failnum
7¢c <- (count 2)
?data-read <- (data-read ?failnumé& ~ EOF)
=>
(retract 7data-read 7c)
(assert (failnum ?failnum))
(assert (count 3))
(assert (read-file)))

(defrule read-problem-type
7¢ <- (count 3)
?data-read <- (data-read ?problem-type& ~ EOF)
=>
(retract 7data-read ?c)
(assert (problem-type ?problem-type))
(assert (count 4))
(assert (read-file)))

(defrule read-pavement-damage
7¢ <- (count 4)
7data-read <- (data-read ?pavement-damage& ~ EOF)
=>
(retract ?data-read ?c)
(assert (pavement-damage ?pavement-damage)))

(defrule close-all-files ;checks if the
Iclose-files <- (data-read EOF) ;EOF has been
?c <- (count ?count)
=> ;reached, if so
(retract ?close-files 7¢) ;it closes the file
(close))

. ***
’

77

-***
’

DETERMINATION OF PAVEMENT DAMAGE SEVERITY
. This portion of the program determines if the failure has
- damaged the pavement and determines the extent of the damage.
. Pavement damage as a direct result of the failure is considered
: to only occur for the problem types of Erosion, Settlement and
; Wave-Action.
INPUT DATA
problem-type: Rockfall, Fast-Landslide, Erosion,
Fast-Debris-Flow, Slow-Landslide, Settlement,
Slow-Debris-Flow, Wave-Action, Piping
pavement-damage: severe, moderate, low, NONE
OUTPUT DATA
pavement-damage-pr

.
?

.
’

Definition of Variables
problem-type: type of failure problem
pavement-damage: indicates the extent of the damage
severe: dangerous (holes, drop offs,...)
moderate: causes drivers to slow down
low: noticeable to drivers but not a danger
pavement-damage-pr: pavement damage priority rating

b
2
3
3
H
’
.
?
)
’
b
?
b
’
b

« sk 3k sk 3 ok 9k 3k 5k 3k ahe 3 3k 3¢ 3k 3 9 3k k¢ sk 3 3k sk 3 3k 3k Sk 3 e 3 ke 3 ok e e ke 3 e 3k 2k e 3 ke 2k ke e ok e ok Sk Sk ke ok ke e ok o ok ok ok ke ok ke ke ke ke

(defrule severe-pavement-damage
pt <- (problem-type ?problem-type)
pv <- (pavement-damage ?pavement-damage)
(test (eq ?pavement-damage severe))
=>
(if (| | (eq ?problem-type Erosion)
(eq ?problem-type Wave-Action)
(eq ?problem-type Settlement))
then (assert (pavement-damage-pr 10))
else (assert (pavement-damage-pr 0)))
(retract ?pt 7pv))

(defrule moderate-pavement-damage
Ipt <- (problem-type ?problem-type)
pv <- (pavement-damage ?pavement-damage)
(test (eq ?pavement-damage moderate))
=>
(if (] | (eq ?problem-type Erosion)
(eq ?problem-type Wave-Action)
(eq ?problem-type Settlement))
then (assert (pavement-damage-pr 7))

78

else (assert (pavement-damage-pr 0)))
(retract ?pt 7pv))

(defrule low-pavement-damage
7pt <- (problem-type ?problem-type)
7pv <- (pavement-damage ?pavement-damage)
(test (eq ?pavement-damage low))
=>
(if (| | (eq ?problem-type Erosion)
(eq ?problem-type Wave-Action)
(eq ?problem-type Settlement))
then (assert (pavement-damage-pr 3))
else (assert (pavement-damage-pr 0)))
(retract 7pt 7pv))

(defrule no-pavement-damage
pt <- (problem-type ?problem-type)
7pv <- (pavement-damage ?pavement-damage)
(test (eq ?pavement-damage NONE))
=>
(assert (pavement-damage-pr 0))
(retract 7pt ?pv))

;1! decision has been made
+ sk sk 5k 9k 9k ok e 2K 3K 3K 3K 2k 3K 9 3k 2k 2k 2k 24¢ k¢ Sk ok 3k 3k 3K 3 3k 34 246 3k 3K 3k 2k 3 3k 3k e e 3 3k 3 3k 3 e 3K 2k 2 ke 2 3 2k e K 3K K e 3K A 3K K A ke kK kK
?

+ 3 3i¢ sfe 3k ok 3k 3k k¢ 9k 3K 9k 3k 2k 3k ke 3k 3k ok 3k k¢ 3K 2k 3k 2k 3k 3 3k 3k 3k 3k 3 30 e 3k vk 2k e ke 3¢ sk 3¢ 2k e 4 ke ke e e 2k 3 o ke 3k Dk 3K 246 K vf¢ e e ke e e K¢ ¢
’

. This rule checks to see if all of the priority ratings have
- been determined for one particular site. If they have been
: determined it will begin the loop again and read data from
; the next slope.
(defrule continue-read
rdno <- (site-id ?site-id)
Mn <- (failnum ?failnum)
Ipdpr <- (pavement-damage-pr ?pavement-damage-pr)
=>
(fprintout outpave ?site-id " " Mailnum
?pavement-damage-pr crlf)
(retract ?pdpr 7rdno ?fn)
(assert (count 1))
(assert (read-file)))

79

7dl <- (dynamic-load ?dynamic-load)

2dll <- (dynamic-load-location ?dynamic-load-location)
7dlt <- (dynamic-load-time ?dynamic-load-time)

(test (eq ?dynamic-load NONE))

=2

(assert (perm-dynamic-pr 0))

(retract 7dl 7dll 2dlt))

(defrule dynamic-load-on-site-new
?dl <- (dynamic-load ?dynamic-load)
2dll <- (dynamic-load-location ?dynamic-load-location)
2dit <- (dynamic-load-time ?dynamic-load-time)
(test (eq ?dynamic-load dynamic))
(test (eq ?dynamic-load-location on-site))
(test (eq ?dynamic-load-time NEW))
=>
(assert (perm-dynamic-pr 9))
(retract 7d1 2dll 7dlt))

(defrule dynamic-load-on-near-site-new
7dl <- (dynamic-load ?dynamic-load)
2dll <- (dynamic-load-location ?dynamic-load-location)
2dlt <- (dynamic-load-time ?dynamic-load-time)
(test (eq ?dynamic-load dynamic))
(test (eq ?dynamic-load-location on-near-site))
(test (eq ?dynamic-load-time NEW))
=>
(assert (perm-dynamic-pr 10))
(retract 7d1 2dil 7dlt))

(defrule dynamic-load-near-site-new
2dl <- (dynamic-load ?dynamic-load)
2dll <- (dynamic-load-location ?dynamic-load-location)
21t <- (dynamic-load-time ?dynamic-load-time)
(test (eq ?dynamic-load dynamic))
(test (eq ?dynamic-load-location near-site))
(test (eq ?dynamic-load-time NEW))
=>
(assert (perm-dynamic-pr 8))
(retract 7d1 2dl1 ?7dlt))

(defrule dynamic-load-on-site-old

2dl <- (dynamic-load ?dynamic-load)
2dIl <- (dynamic-load-location ?dynamic-load-location)

185

2dlt <- (dynamic-load-time ?dynamic-load-time)
(test (eq ?dynamic-load dynamic))

(test (eq ?dynamic-load-location on-site))

(test (eq ?dynamic-load-time OLD))

=>

(assert (perm-dynamic-pr 6))

(retract 7d1 2dll ?dlt))

(defrule dynamic-load-on-near-site-old
?dl <- (dynamic-load ?dynamic-load)
2dll <- (dynamic-load-location ?dynamic-load-location)
2dlt <- (dynamic-load-time ?dynamic-load-time)
(test (eq ?dynamic-load dynamic))
(test (eq ?dynamic-load-location on-near-site))
(test (eq ?7dynamic-load-time OLD))
=>
(assert (perm-dynamic-pr 7))
(retract 7d1 2d1l ?dlt))

(defrule dynamic-load-near-site-old
2dl <- (dynamic-load ?dynamic-load)
2dll < - (dynamic-load-location ?dynamic-load-location)
2dit <- (dynamic-load-time ?dynamic-load-time)
(test (eq ?dynamic-load dynamic))
(test (eq ?dynamic-load-location near-site))
(test (eq ?dynamic-load-time OLD))
=>
(assert (perm-dynamic-pr 5))
(retract 2d1 2dll 2dlt))

;1! decision has been made

« 3k 3k K 9k 3¢ 35 3¢ 3k 2k 3 2k 3k ke 3¢ 2k b ke ¢ k¢ ke 3k k¢ 3k sk 3k e 2k 3 3 e ke 2k e Sfe 24 3k e e e ke 2k e e ke dhe e e e k¢ Sk K k¢ 2k ke 3k ke dk Kk ke 3k e ke Kk k¢ K¢
H
o 3% 34¢ ok 34 2k afe ok ok ke 2k 2k 9k 3k 2k 2k 3k sk 2k ok 3k 3k ke e 2k e sk 3k e 3k e ke d4¢ k¢ k¢ 3k 24 3k e ke 3he A 34¢ 34 ke 34 2k 3¢ dfe 34¢ dhe 2k ke ke 3k ke ke e 3k ke 3fe 2k 2k ¢ K
’

; This rule checks to see if all of the priority ratings have
; been determined for one particular site. If they have been
; determined it will begin the loop again and read data from
; the next slope.
(defrule continue-read

rdno <- (site-id ?site-id)

?slpr <- (perm-static-pr ?perm-static-pr)

2dlpr <- (perm-dynamic-pr ?perm-dynamic-pr)

=>

(fprintout outprml 7site-id * " ?perm-static-pr " "

186

?perm-dynamic-pr crlf)
(retract ?slpr 7dlpr ?rdno)
(assert (count 1))

(assert (read-file)))

187

APPENDIX P

ROCK.CLP

Rock Classification Priority Rating Program
(ROCK.CLP)

This program determines the priority ratings for the presence, ofientation, and
structure type of the rock that composes the failure site. This program determines three
priority ratings: joint-layer, loose, and intact priority ratings.

The first portion of the program considers the jointing and layering of the rock
structure. If the rock is composed of different types of rock, the rock types are assumed
to have approximately the same compressive strength. The type of jointing that can be
specified are:

1. NONE: the rock is not jointed or rock is not present on the site.

2. horizontal: the joints within the rock are horizontal.

3. down-slope-dip: the joints slope towards the road and dip in the
same general direction as the slope.

4. cross-slope-dip: the joints slope in the opposite direction that the
slope dips and away from the road.

S. vertical: the joints within the rock are vertical.

6. down-slope-block: there are two jointing systems, down-slope-dip
and cross-slope-dip, which result in the formation of blocks thai
dip towards the road.

7. horizontal-block: there are two jointing systems, vertical and

horizontal, which result in the formation of blocks within the rock.

The types of layering that can be specified are:

189

1. NONE: the rock is not jointed or rock is not present on the site.

2. horizontal: the joints within the rock are horizontal.

3. down-slope-dip: the joints slope towards the road and dip in the
same general direction as the slope.

4, cross-slope-dip: the joints slope in the opposite direction that the

slope dips and away from the rock

The second portion of the program determines what type of loose rock is present

on the site. The proper responses to the variable, loose, are:

1. NONE: there is no loose rock present.

2. gravel: there is an appreciable quantity of loose gravel present on
the site.

3. boulders: there are boulders present on the site.

The final portion of the program deals with whether or not the rock is
homogeneous, one rock type, and intact, absence of discontinuities. The proper
responses to the intact variable are:

1. NONE: the rock is not homogeneous and/or intact.

2. Yes: the rock is homogeneous and intact.

To improve this program, it could be useful to account for the different

compressive strengths of the different types of rock that may compose the site. Also the

190

priority ratings within this program will probably need to be adjusted.

191

Figure P.1 Rock Flow Chart

192

Figure P.2 Rock Jointing and Layering (1) Flow Chart

193

Figure P.3 Rock Jointing and Layering (2) Flow Chart

194

Figure P.4 Rock Jointing and Layering (3) Flow Chart

195

; ROCK.CLP Last Revision 11-12-90

’
; GEOLOGY: ROCK

;

« sk s e e ok sk o sk o ks skl ke ke o sk ko ks o ok sk o ok ks ok ks ke e e o s e ke sk e ko e e o ke ok k ok
b

INPUT FILE = DATAROCK.TXT
OUTPUT FILE = RATROCK.TXT

’
>
+ 3k 3i¢ 3K i€ 3§ 3K 3K 3 3K 3K 2k 3K ok ok 3¢ ok 3k 3 3K 3K Sk e 3k 3 ke ok 2k ok 3k 3K 2k ok 2k o e 3k e 3k e k¢ 2k 3 e ke fe ke ke ke ke ke fe 3k ok 2k e A vk o ok K oK K 4 ke K¢
b

: READS TEXT FILE
: This portion of the program reads the text file and extracts

y

: the Site ID, Presence of loose Rock, Presence of homogeneous,

b

; intact or jointed rock, and the layering of the rock. The
: information is read by the use of a loop.
Definition of Variables
count: a number from 1 to 5 which tells the program
whether to assign the read data to site-id
(count= 1), loose (count= 2), homogeneous-intact
(count=3), joints (count= 4), layers (count= 5)
~ loop: is a counter that keeps track of how many priority
ratings have been determined. When the appropriate
number has been determined, information for a new
site is read and the loop begins again.
read-file: is a flag that notifies the program that a
new piece of information can be read.
data-read: is the temporary address of the read
information until it can be properly identified.
; site-id: records the identification number for the site
loose: indicates the presence of loose rock on the site.
homogeneous-intact: indicates if the rock is solid and
: consists of one type of rock.
joints: indicates the type of jointing in the rock.
layers: indicates the presence of layers of rock and
; their orientation.
2c, N, read-file, ?data-read, ?close-files: are used
; to bind the appropriate information to a CLIPS

; address so that the assigned facts can be retracted.
;**

M

(defrule open-file
(initial-fact)
=>
(open "c:\\clipsfil\\datarock.txt" datar "r")
(open "c:\\clipsfil\\ratrock.txt" outr "w"

196

(assert (count 1))
(assert (loop 0))
(assert (read-file)))

(defrule read-file ;Begins loop
(loop 0)
read-file <- (read-file)
=>
(retract 7read-file)
(assert (data-read =(read datar)))) ;reads the data

(defrule read-site-id
7¢ <- (count 1)
7data-read <- (data-read ?site-id& ~ EOF)
=>
(retract ?data-read ?c)
(assert (site-id ?site-id))
(assert (count 2))
(assert (read-file)))

(defrule read-loose "Presence_of_loose_rock"”
?c <- (count 2)
7data-read <- (data-read Noose& ~ EOF)
=>
(retract ?data-read ?7c)
(assert (loose ?loose))
(assert (count 3))
(assert (read-file)))

(defrule read-homogeneous-intact
7c <- (count 3)
7data-read <- (data-read ?homogeneous-intact& ~ EOF)
=>
(retract ?data-read 7c)
(assert (homogeneous-intact Thomogeneous-intact))
(assert (count 4))
(assert (read-file)))

(defrule read-joints
?¢ <- (count 4)
7data-read < - (data-read ?joints& ~ EOF)
=>
(retract ?data-read 7c)
(assert (joints ?joints))

197

(assert (count 5))
(assert (read-file)))

(defrule read-layers

¢ <- (count 5)

?data-read <- (data-read ?layers& ~ EOF)
=>

(retract ?data-read 7c)

(assert (layers ?layers)))

(defrule close-all-files ;checks if the

close-files <- (data-read EOF) ;EOF has been
7¢ <- (count ?count)
N <- (loop ?loop)

=> ;reached, if so
(retract ?close-files 7c 1) ;it closes the file
(close))

;******************** ROCK LAYERING & JOINTING 2§ 3¢ 3K 2k di¢ 24¢ 2§ 3K k¢ 3¢ A e 4 K A Ak Ok K K K

3

This portion of the program deals with the different

; combinations of rock layering and jointing. This program only
; deals with layers of rock which have approximately the same
; compressive strength.

b

INPUT DATA
layers: NONE, horizontal, down-slope-dip (\\\|_),
cross-slope-dip (////|_)
loops
joints: NONE, horizontal, down-slope-dip (\\\\| _),
cross-slope-dip (////|_), vertical,
down-slope-block, horizontal-block

OUTPUT DATA
joint-layer-pr: priority rating for the particular
layering and jointing present in the rock

Definition of Variables

layers: indicates whether or not the rock is layered and
specifies in which direction the layers slope. The
layers can slope towards the road (down-slope-dip),
away from the road (cross-slope-dip) or not slope at
all (horizontal)

joints: indicates whether or not the rock is jointed and
specifies what kind of jointing is present

198

; 7j, Nay, ?1: retraction addresses
;***
: The section below considers unlayered & unjointed sites
(defrule no-layering-no-joints

Nay <- (layers MNayers)

7 <- (joints ?joints)

N <- (loop ?oop)

(test (eq ?layers NONE))

(test (eq ?joints NONE))

=>

(assert (joint-layer-pr 0))

(retract N Nay %)

(assert (loop =(+ MNoop 1))))

: This section considers only layered rock, no joints
(defrule down-slope-dip-layers

MNay <- (layers ?layers)

N <- (loop Noop)

7} <- (joints ?joints)

(test (eq Mayers down-slope-dip))

(test (eq ?joints NONE))

=>

(assert (joint-layer-pr 9))

(retract N ?Nay 7))

(assert (loop =(+ ?oop 1))))

(defrule cross-slope-dip-layers
MNay <- (layers MNayers)
N <- (loop oop)
7} <- (joints ?joints)
(test (eq Nayers cross-slope-dip))
(test (eq ?joints NONE))
=2>
(assert (joint-layer-pr 1))
(retract 71 Nay %)
(assert (loop =(+ TNoop 1))))

(defrule horizontal-layers
MNay <- (layers ayers)
N <- (loop Noop)
7} <- (joints ?joints)
(test (eq ?layers horizontal))
(test (eq ?joints NONE))

199

=>

(assert (joint-layer-pr 2))
(retract N ?Nay 7))

(assert (loop =(+ oop 1))))

; The section below considers layered rock & horizontal joints
(defrule no-layering-horizontal-joints
MNay <- (layers Mayers)
7 <- (joints ?joints)
N <- (loop MNoop)
(test (eq Nayers NONE))
(test (eq ?joints horizontal))
=>
(assert (joint-layer-pr 5))
(retract N MNay)
(assert (loop =(+ 2oop 1))))

(defrule down-slope-dip-layers-horizontal-joints
MNay <- (layers Mayers)
N <- (loop Noop)
7} <- (joints ?joints)
(test (eq ?layers down-slope-dip))
(test (eq ?joints horizontal))
=>
(assert (joint-layer-pr 10))
(retract 71 Nay 7))
(assert (loop =(+ MNoop 1))))

(defrule cross-slope-dip-layers-horizontal-joints
Nay <- (layers ?layers)
N <- (loop Noop)
7j <- (joints ?joints)
(test (eq Nayers cross-slope-dip))
(test (eq ?joints horizontal))
=>
(assert (joint-layer-pr 8))
(retract N MNay %)
(assert (loop =(+ oop 1))))

(defrule horizontal-layers-horizontal-joints
MNay <- (layers Nayers)
N <- (loop Noop)
7 <- (joints ?joints)

200

(test (eq ?layers horizontal))
(test (eq ?joints horizontal))
=>

(assert (joint-layer-pr 5))
(retract 71 Nay ?2j)

(assert (loop =(+ ?loop 1))))

; The section below considers layered rock & vertical joints
(defrule no-layering-vertical-joints
MNay <- (layers ?layers)
7 <- (joints 2joints)
N <- (loop oop)
(test (eq ?layers NONE))
(test (eq ?joints vertical))
=>
(assert (joint-layer-pr 9))
(retract 71 Nay 7j)
(assert (loop =(+ oop 1))))

(defrule down-slope-dip-layers-vertical-joints
MNay <- (layers ayers)
7 <- (loop oop)
7 <- (joints ?joints)
(test (eq Nayers down-slope-dip))
(test (eq ?joints vertical))
=> .
(assert (joint-layer-pr 10))
(retract 71 Nay 7j)
(assert (loop =(+ ?oop 1))))

(defrule cross-slope-dip-layers-vertical-joints
MNay <- (layers ?layers)
N <- (loop ?oop)
7 <- (joints ?joints)
(test (eq Nayers cross-slope-dip))
(test (eq ?joints vertical))
(assert (joint-layer-pr 8))
(retract 71 ?ay ?j)
(assert (loop =(+ ?loop 1))))

(defrule horizontal-layers-vertical-joints

MNay <- (layers ?layers)
N <- (loop Noop)

201

MNay <- (layers Mayers)

71 <- (loop MNoop)

7 <- (joints ?joints)

(test (eq ?layers horizontal))
(test (eq ?joints cross-slope-dip))
=>

(assert (joint-layer-pr 7))
(retract 71 lay %)

(assert (loop =(+ oop 1))))

; The section below considers unlayered rock & down sloping blocks
; or wedges joints
(defrule no-layering-down-slope-block-joints
MNay <- (layers Mayers)
7 <- (joints ?joints)
N <- (loop Noop)
(test (eq Nayers NONE))
(test (eq ?joints down-slope-block))
=>
(assert (joint-layer-pr 10))
(retract N1 ?ay %)
(assert (loop =(+ MNoop 1))))

; This section considers unlayered rock & horizontal blocks or
; wedges joints
(defrule no-layering-horizontal-block-joints
Nay <- (layers ayers)
7 <- (joints ?joints)
N <- (loop Noop)
(test (eq Nayers NONE))
(test (eq ?joints horizontal-block))
=>
(assert (joint-layer-pr 6))
(retract 71 ?ay 7j)
(assert (loop =(+ MNoop 1))))

;11 decision has been made loop= 1

o 3 djeok 3k e 3k 3k 3k 24 2k A 2k e 3 24 k¢ k¢ o e ¢ 3¢
; 3 ek A KKk * LOOSE ROCK 24 34e 3k 3fe 24 34 246 20 24 3k 24e ok 2k ke 3k df¢ ¢ Ak 3k Ak Ak e A K e A A A K K

; This portion of the program identifies whether or not loose

; Tock is present on the site. The loose rock may be specified as

; gravel or boulders. The site may consist only of loose rock or it
; may have intact (or near intact) rock below the loose rock.

.
)

204

INPUT VARIABLES
loose: NONE, gravel, boulders
loop

-

OUTPUT VARIABLES
loose-pr

DEFINITION OF VARIABLES
loose: indicates what type of loose rock exists on the
site

M We W U we W we we we we

« 3k 3§ 3i¢ 2k ok ok akc 3k ok 2k 3k 2k ake 2k 3k 3f¢ 3 24 2 24 24 24 24 3he 2 3 2 2 35 2 2 3 3k 2 3 2 2k 3k ke 3k 2k 3k 2)¢ 3 3 e 2k 3k e Ak Ak ke 2k 5 k¢ 9k ok 3k Ak e A e e K Kk

defrule no-loose-rock
Noos < - (loose ?Noose)
N <- (loop ?loop)
(test (eq Noose NONE))
=>
(assert (loose-pr 0))
(retract 21 ?oos)
(assert (loop =(+ MNoop 1))))

e

(defrule loose-gravel
Noos <- (loose ?Noose)
N <- (loop Noop)
(test (eq ?oose gravel))
=>
(assert (loose-pr 7))
(retract 71 ?oos)
(assert (loop =(+ MNoop 1))))

(defrule loose-boulders
Noos < - (loose ?1oose)
N <- (loop Noop)
(test (eq Noose boulders))
=>
(assert (loose-pr 5))
(retract 71 2loos)
(assert (loop =(+ Toop 1))))

;11 decision has been made loop= 2

;******************** HOMOGENEOUS & INTACT ROCK ke 3k 2k 24¢ 3k dk 2k 3¢ ¢ 3K 2K 2 A< A 3k vk k¢ Kk K
; This section determines if the site is composed of solid rock
; that is of one type.

205

INPUT VARIABLES
homogeneous-intact: NONE, Yes
loop

intact-pr

; OUTPUT VARIABLES
; DEFINITION OF VARIABLES

; homogeneous-intact: identifies homogeneous, solid rock
; 7hi, 71: retraction addresses

o 3k 3k 2k 20 3k 20 24 3k 20 34 34¢ 38¢ 34 2k 3he 3k ok 3k 34¢ 34 3fe 3k 2k 24 2k 34c 3k ke 34 ke ke 3 3K ke ke 2k e e ke 34 24 2k 3k e ke 3k 3¢ 3¢ ke e 2k ok e ke A e k¢ k¢ 24 dke ¢ k¢ %k k¢ ke Kk

(defrule no-homogeneous-intact-rock
7hi <- (homogeneous-intact Thomogeneous-intact)
N <- (loop Noop)
(test (eq ?homogeneous-intact NONE))
=>
(assert (intact-pr 0))
(retract 71 7hi)
(assert (loop =(+ MNoop 1))))

(defrule homogeneous-intact-rock
7hi <- (homogeneous-intact ?homogeneous-intact)
N <- (loop MNoop)
(test (eq Thomogeneous-intact Yes))
=>
(assert (intact-pr 1))

- (retract 71 ?hi)

(assert (loop =(+ MNoop 1))))

;1! decision has been made, loop= 3

« 3 3k ok ahe 4 3¢ 3k o ok e e 3¢ 2 ok ke 2 e ok ok 3 e ok 2k 2 3 e ke 3k o o 3 3k 4 3 3k e 3k 0 2 3¢ o ok e 3k 3 o ok A e o ok k¢ e ok K 3k K oK oK K
’

« 35 3j¢ 3k ok 3k 3k 3k 3k 3k ok 3k 3 e 2k e 3K 3k 3K 2k 2l e Ak Ak ok e e 3k Ak 2k Ak e e ke ke ke 4 06 246 e ¢ e 2k e 3 2k Ak e e e Ak 2k ke 3 e e k¢ Ok 3k 3k K
’ .

; This rule checks to see if all of the priority ratings have
; been determined for one particular site. If they have been
; determined it will begin the loop again and read data from
; the next slope.
(defrule continue-read

N <- (loop Noop)

(test (|| (= Noop 3) (> MNoop 3)))

rdno <- (site-id 7site-id)

%lpr <- (joint-layer-pr ?joint-layer-pr)

206

Npr <- (loose-pr ?loose-pr)

?ipr <- (intact-pr ?intact-pr)

=>

(fprintout outr ?site-id " " ?joint-layer-pr " "
Noose-pr " * Tintact-pr crlf)

(retract ?1 7rdno %jlpr pr ?ipr)

(assert (count 1))

(assert (loop 0))

(assert (read-file)))

207

APPENDIX Q

TRIMPEDE.CLP

Traffic Impedance Priority Rating Program
(TRIMPEDE.CLP)

This program considers the degree of traffic impedance resulting from the failure,
and if paved detours are used. There are two factors considered in this program, traffic
impedance and detours. The valid responses to the traffic impedance factor are:

1. Road-Closed: the entire road is closed to traffic.

2. one-way-traffic: only one direction of traffic can pass at one time.

3. three-quarter-half: this response can only be used if one-way-traffic is

not applicable. It indicates that 3/4 or less of the road’s width is affected.

4, half-shoulder: this response can only be used if one-way-traffic is not

applicable. It indicates that up to 1/2 of the road’s width is affected.

5. shoulder: only the shoulder of the road was affected.

The proper responses to the detour factor are: |

1. Yes: paved detours are possible

2. NONE: paved detours are not possible.
The possibility of paved detours is considered only for the cases of Road-Closed

and one-way-traffic. In all other cases, at least two lanes of traffic would be open, which

is assumed to be adequate.

209

Figure Q.1 Traffic Impedance Flow Chart

210

; TRIMPEDE.CLP Last Revision 10-22-90

TRAFFIC IMPEDANCE

+ 34 3k sk ok 3k 3k 35 3k k¢ 3K 3 ke 3 3 3k 3be b e e 3k 3k ke 3¢ e 3 3k 3 3 e e 2 2 b 0 fe 3 2 3 3 ke e 3 e e 3 3 o ake e e e e e o o o ke e ke e e ke ok ok ke

INPUT FILE = DATATLTXT
OUTPUT FILE = RATTLTXT

’
’
’
]
’
’

-**#************************

READS TEXT FILE
ThlS portion of the program reads the text file and extracts
. the Road ID, Road Impedance, and Detour Availability information.
: The information is read by the use of a loop.
Definition of Variables
count: a number from 1 to 4 which tells the program
whether to assign the read data to road-id
(count= 1), failnum (count= 2), road-impede
(count= 3), or detours (count=4)
read-file: is a flag that notifies the program that a
new piece of information can be read.
data-read: is the temporary address of the read
information until it can be properly identified.
site-id: records the identification number for the site
failnum: indicates how many times this site has failed
road-impede: indicates how severely the road is impeded
detours: indicates if detours are available
¢, N, Mread-file, 7data-read, ?close-files: are used
to bind the appropriate information to a CLIPS

address so that the assigned facts can be retracted.
****************************#*************************************

(defrule open-file
(initial-fact)
=>
(open "c:\\clipsfil\\datati.txt" datati "r")
(open "c:\\clipsfil\\ratti.txt" outti "w")
(assert (count 1))
(assert (read-file)))

(defrule read-file ;Begins loop
read-file <- (read-file)
=>
(retract ?read-file)
(assert (data-read =(read datati)))) ;reads the data

211

(defrule read-site-id
¢ <- (count 1)
7data-read <- (data-read ?site-id& ~ EOF)
=>
(retract ?data-read ?c)
(assert (site-id 7site-id))
(assert (count 2))
(assert (read-file)))

(defrule read-failnum
¢ <- (count 2)
7data-read <- (data-read ?failnumé& ~ EOF)
=>
(retract ?data-read ?c)
(assert (failnum ?failnum))
(assert (count 3))
(assert (read-file)))

(defrule read-road-impede
7¢c <- (count 3)
7data-read <- (data-read ?road-impede& ~ EOF)
=>
(retract 7data-read)
(assert (road-impede ?road-impede))
(assert (read-file))
(assert (count 4)))

(defrule read-road-detours
¢ <- (count 4)
7data-read <- (data-read ?detours& ~ EOF)
=>
(retract ?data-read 7c)
(assert (detours ?detours)))

(defrule close-all-files ;checks if the
Iclose-files <- (data-read EOF) ;EOF has been
7c <- (count ?count)
=> ;reached, if so
(retract close-files 7c) ;it closes the file
(close))

o 3f e ok 26 24 2k 26 e 3 e 3 2 3 e e 30 ke 56 e e 346 6 34 3¢ 24 3¢ 24 36 3¢ 35 3 e 3 24 246 34 25 24 346 236 250 24 3¢ 24 2 2 4 3 24 e e ok 3 e e e 3¢ ke e e ke ke ok
’ .

» 3fe:3jc 34 3k 3k 34 ke 3¢ 3k 3k 3k 34 ¢ 34 4 34 ke 3¢ e 3 3 3 3 A 3 3 3 2k e e 3k 3k e e 3k 3k e e e e e 2 ke e 2 e e e 3 3¢ Ak 3k k6 A A ke e e e ke e k¢ 3k
’

212

TRAFFIC IMPEDANCE SEVERITY
This portion of the program identifies how severely a road is
impeded and if detour routes are available and then assigns a
priority rating.
INPUT DATA
road-impede: NONE, Road-Closed, one-way-traffic,
three-quarter-half, half-shoulder, shoulder
detours: Yes, NONE

OUTPUT DATA
road-impede-pr:

Definition of Variables
road-impede: indicates if and to what extent the road is
impeded
Road-Closed: failure has closed road to traffic
one-way-traffic: traffic can only progress in
one direction at a time
three-quarter-half: 3/4 to 1/2 of the road is
closed (this description can only be used
when two way traffic is available
half-shoulder: 1/2 to the shoulder is closed
shoulder: only the shoulder is affected
detours: indicates if paved detours are possible
road-impede-pr: road impedance priority rating

e We We WE NS We W W W WE WE W WS WS We W WA M W M We U WE W W W

+ aje fe e ke ke o 3 3 3 3k 0 K a4 ke e 3¢ 3 3 3 36 3 b b e e e afe ke e ke ke e e ke e e e 3 e ke e 3 3 3 3 o e 3 3 e e e e e e o 3k ok e e e ke ok

defrule Road-Closed

i <- (road-impede ?road-impede)
7d <- (detours detours)
(test (eq road-impede Road-Closed))
=>
(if (eq ?detours Yes)

then (assert (road-impede-pr 9)))
(if (eq ?detours NONE)

then (assert (road-impede-pr 10)))
(retract i 7d))

>

(defrule One-Way-Traffic
i <- (road-impede ?road-impede)
7d <- (detours ?detours)
(test (eq ?road-impede one-way-traffic))
=>
(if (eq ?detours Yes)

213

then (assert (road-impede-pr 7)))
(if (eq ?detours NONE)

then (assert (road-impede-pr 8)))
(retract ?ri 7d))

(defrule three-quarter-half
i <- (road-impede ?road-impede)
7d <- (detours ?detours)
(test (eq ?road-impede three-quarter-half))
=>
(assert (road-impede-pr 8))
(retract ?ri 7d))

(defrule half-to-shoulder
i <- (road-impede ?road-impede)
7d <- (detours ?detours)
(test (eq ?road-impede half-shoulder))
=>
(assert (road-impede-pr 5))
(retract 7ri 7d))

(defrule shoulder
i <- (road-impede ?road-impede)
7d <- (detours ?detours)
(test (eq ?road-impede shoulder))
=>
(assert (road-impede-pr 2))
(retract 7ri 7d))

(defrule No-impedance
i <- (road-impede ?road-impede)
2d <- (detours ?detours)
(test (eq ?road-impede NONE))
=>
(assert (road-impede-pr 0))
(retract ?ri 7d))

; decision has been

« 3k 3k 356 3¢ 34 2k ke ke 2k 2k 3k e 3¢ 35 3k e 3k 34 2k dhe 3 3k 3fe k¢ 2k ke d4c e ke 3¢ 3¢ e 34 24¢ he e 56 k¢ ke e 3k 3¢ k¢ e 2 ¢ ke e 3k 4 k¢ k¢ ok e k¢ ok ke ke 3k k¢
’ .

» 34 K 3 2k 34 2k 2k 2k e e 3k 3k ok 2 3¢ 2k ke 2k 3k 3k 2k e A 3¢ k¢ k¢ k¢ k¢ e sk ke ¢ ¢ k¢ k¢ e e ¢ k¢ k¢ e 3¢ 2k ke 3 3¢ k¢ e 3 ke ¢ k¢ ¢ ke ¢ k¢ 3k A A ok
’

; This rule checks to see if all of the priority ratings have
; been determined for one particular site. If they have been
; determined it will begin the loop again and read data from

214

; the next slope.
(defrule continue-read
road-no <- (site-id 7site-id)
Mn <- (failnum ?failnum)
%impedepr <- (road-impede-pr ?road-impede-pr)
=>
(fprintout outti ?site-id " " failnum " " ?road-impede-pr
crlf)
(retract 7impedepr ?road-no ?fn)
(assert (count 1))
(assert (read-file)))

215

APPENDIX R

MAINMENU.PRG

Main Control Program for the Database
(MAINMENU.PRG)

This program allows access to every dBASE program. The program displays the
Figure DD.1. The user can then branch to different menus and programs. See the
MAIN MENU section IN Appendix DD for further information on the functions of each

choice in the menu,

This program follows the same general format as all of the menu programs.

217

** MAINMENU.PRG***
SET TALK OFF
SET ECHO OFF
STORE " " TO choice
USE date
CLEAR
7"Please Enter the Current Date.”
@ 2,10 SAY "Current Month (1 to 12): "
@ 2,35 GET nowmonth
@ 4,10 SAY "Current Day (1 to 31): "
@ 4,35 GET nowday
@ 6,10 SAY "Current Year (197? or 207?)."
@ 6,40 GET nowyear
READ
DO WHILE .t.
CLEAR

DAl s ok ok e e e 3 3 2K 3K 3K 3K 3 3 0 3 2k 4 34 0 K 3K 3k ok ok 3k 3k o ke ke ok ke 4 af e fe e e e e e 3¢ o 3¢ o o ok ok A 3k e e 1

” MAIN MENU"

DA s 3k e 3k abe ke e ok 3k ke ok 3 o 3k ke e 3 3k b e e e ok o ok ke 3¢ 3 3k 3k 3 e 3 e 0 e o e 3 e e e 3 ok ke 3 o ke ok ok

" 1 User Instructions”
?
™ 2 Working with the Temporary Databases”
?
" 3 Working with the Permanent Databases"
?
™ 4 Add an entire new site"
?
” 5 Show all records”
7
™ 6 Create Input Files for the CLIPS programs”
?
” 7 List/Print the Priority Ratings”
?
” Q Quit"
?
?
WAIT " Enter Task Code " TO choice
DO CASE

CASE choice="1"

Do userinst

CASE choice="2"
DO tempmenu

218

CASE choice="3"
DO permmenu
CASE choice="4"
DO addall
CASE choice="5"
DO showall
CASE choice="6"
- DO input
CASE choice="7"
DO outmenu
CASE UPPER(choice)="Q"
CLOSE ALL
RETURN
OTHERWISE
LOOP
ENDCASE
ENDDO

219

APPENDIX S

INPUT.PRG

Creates CLIPS Input Files
INPUT.PRG

This program converts the database files to DOS text files to be used as the input

files for the CLIPS programs.

221

INPUT.PRG

* This program creates the text files used for the CLIPS

* programs.

SET TALK OFF

SET ECHO OFF

* Create the COST input file, DATACOST

USE cost :

INDEX ON siteid + failnum TO costsort

COPY TO costpr FIELDS siteid, failnum, totalcost

USE costpr

COPY TO c:\clipsfil\datacost.txt TYPE DELIMITED WITH BLANK
7""DATACOST.TXT CREATED"

%K

* Create the FSIZEPR input file, DATAFWD

USE failcond

INDEX ON siteid + failnum TO condsort

COPY TO fsizepr FIELDS siteid, failnum, volume, waterlevel, faildate
USE fsizepr

COPY TO c:\clipsfil\datafwd.txt TYPE DELIMITED WITH BLANK
T""DATAFWD CREATED"

%

* Create the PROBTYPE input file, DATAPROB

USE failcond

INDEX ON siteid + failnum TO condsort

COPY TO probtype FIELDS siteid, failnum, probtype

USE probtype

COPY TO c:\clipsfil\dataprob.txt TYPE DELIMITED WITH BLANK
7"DATAPROB CREATED"

s

* Create the TRIMPEDE input file, DATATI

USE damage

INDEX ON siteid + failnum TO damsort

COPY TO trimpede FIELDS siteid, failnum, roadimpede, detours
USE trimpede

COPY TO c:\clipsfil\datati.txt TYPE DELIMITED WITH BLANK
7"DATATI CREATED"

E 3

* Create the STRUCTUR input file, DATASTRU

USE damage

INDEX ON siteid + failnum TO damsort

COPY TO struct FIELDS siteid, failnum, structype, strucdamag
USE struct A
COPY TO c:\clipsfil\datastru.txt TYPE DELIMITED WITH BLANK
7" DATASTRU CREATED"

222

%*

* Create the LAWSUIT input file, DATALAW

USE damage

INDEX ON siteid + failnum TO damsort

COPY TO lawsuit FIELDS siteid, failnum, damagetype

USE lawsuit

COPY TO c: \chpsﬁl\datalaw txt TYPE DELIMITED WITH BLANK
7"DATALAW CREATED"

%k

* Create the PAVEDAM input file, DATAPAVE

USE damage

INDEX ON siteid + failnum TO damsort

COPY TO pavedam FIELDS siteid, failnum, probtype, pavedamage
USE pavedam

COPY TO c:\clipsfil\datapave. txt TYPE DELIMITED WITH BLANK
7" DATAPAVE CREATED"

sk

* Create the TEMPLOAD input file, DATATMPL

USE tempload

INDEX ON siteid + failnum TO tmplsort

COPY TO c:\clipsfil\datatmpl.txt TYPE DELIMITED WITH BLANK
7"DATATMPL CREATED"

*

* Create the FAILFREQ mput file, DATAFF

USE failcond

INDEX ON siteid + failnum TO condsort

COPY TO failfreq FIELDS siteid, failnum, 1

failmonth, failday, failyear

USE failfreq

COPY TO c:\clipsfil\dataff.txt TYPE DELIMITED WITH BLANK
7"DATAFF CREATED"

%k

* Create FAILFREQ input file, DATE

USE date

COPY TO c:\clipsfil\date.txt TYPE DELIMITED WITH BLANK
7"DATE CREATED"

%

* Create the EQUAKE input file, DATAEQ

USE geology

INDEX ON siteid TO geosort

COPY TO equake FIELDS siteid, accelcoeff

USE equake

COPY TO c:\clipsfil\dataeq.txt TYPE DELIMITED WITH BLANK
7"DATAEQ CREATED"

223

*

* Create the ADTROADT input file, DATAATRT

USE identity

INDEX ON siteid TO idensort

COPY TO adtroadt FIELDS siteid, roadtype, adt

USE adtroadt

COPY TO c:\clipsfil\dataatrt.txt TYPE DELIMITED WITH BLANK
7"DATAATRT CREATED"

*

* Create the DIRT input file, DATADIRT

USE geology

INDEX ON siteid TO geosort

COPY TO dirt FIELDS siteid, composed, firstsoil, secondsoil, soillayers, topsoil,
lowsoil, spt

USE dirt

COPY TO c:\clipsfil\datadirt.txt TYPE DELIMITED WITH BLANK
7"DATADIRT CREATED"

%k

* Create the ROCK input file, DATAROCK

USE geology

INDEX ON siteid TO geosort

COPY TO rock FIELDS siteid, loose, homogintac, joints, i
rocklayers

USE rock

COPY TO c:\clipsfil\datarock.txt TYPE DELIMITED WITH BLANK
7"DATAROCK CREATED"

%

* Create the ECONIMPO input file, DATAECON

USE identity

INDEX ON siteid TO idensort

COPY TO econimpo FIELDS siteid, accesstype, population

USE econimpo

COPY TO c:\clipsfil\dataecon.txt TYPE DELIMITED WITH BLANK
7"DATAECON CREATED"

%

* Create the PERMLOAD input file, DATAPRML

USE permload -

INDEX ON siteid TO prmlsort

COPY TO c:\clipsfil\dataprml.txt TYPE DELIMITED WITH BLANK
7"DATAPRML created”

s

* Create the GEOHAZ input file, DATAGHAZ

USE geology

INDEX ON siteid TO geosort

224

COPY TO geohaz FIELDS siteid, geohazard

USE geohaz
COPY TO c:\clipsfil\dataghaz.txt TYPE DELIMITED WITH BLANK

? "DATAGHAZ CREATED"
RETURN

225

APPENDIX T

DELALLPR.PRG

Program to Delete All Output Data
(DELALLPR.PRG)

This program deletes all data from the output databases. The output databases
contain the priority ratings determined from the CLIPS programs. There is an output

database for each CLIPS output file.

227

DELALLPR.PRG

* This program deletes the information in the output databases.

SET TALK OFF

SET ECHO OFF

USE ratprob :

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE ratti

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE ratpave

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE ratstru

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE rattmpl

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE ratff

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE ratcost

DO WHILE .NOT. EOF()
* Delete the site
DELETE

228

PACK

ENDDO

USE ratfwd

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE rateq

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE ratatrt

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE ratdirt

DO WHILE .NOT. EOF(

* Delete the site
DELETE
PACK

ENDDO

USE ratrock

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE ratecon

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

USE ratprml

DO WHILE .NOT. EOF()
* Delete the site
DELETE
PACK

ENDDO

229

USE ratghaz
DO WHILE .NOT. EOF(Q
* Delete the site
DELETE
PACK
ENDDO
7" The files have been deleted”
WAIT
CLOSE ALL
RETURN

230

APPENDIX U

OUTPUT.PRG

Creates Output Databases
(OUTPUT.PRG)

This program creates output databases from the CLIPS output files. The created
databases contain the priority ratings determined from CLIPS. It creates an individual

database file for each CLIPS output file.

232

QUTPUT.PRG

* Creates the priority databases

SET TALK OFF

SET ECHO OFF

USE ratprob

APPEND FROM c:\clipsfil\ratprob.txt TYPE DELIMITED WITH BLANK
?"ratprob imported"

USE ratti

APPEND FROM c:\clipsfil\ratti.txt TYPE DELIMITED WITH BLANK
?"ratti imported”

USE ratlaw

APPEND FROM c:\clipsfil\ratlaw.txt TYPE DELIMITED WITH BLANK
?"ratlaw imported” ,
USE ratpave

APPEND FROM c:\clipsfil\ratpave.txt TYPE DELIMITED WITH BLANK
?"ratpave imported”

USE ratstru

APPEND FROM c:\clipsfil\ratstru.txt TYPE DELIMITED WITH BLANK
?"ratstru imported"

USE rattmpl

APPEND FROM c:\clipsfil\rattmpl.txt TYPE DELIMITED WITH BLANK
?"rattmpl imported”

USE ratff

APPEND FROM c:\clipsfil\ratff.txt TYPE DELIMITED WITH BLANK
?"ratff imported"

USE ratcost

APPEND FROM c:\clipsfil\ratcost.txt TYPE DELIMITED WITH BLANK
?"ratcost imported"” '
USE ratfwd

APPEND FROM c:\clipsfil\ratfwd.txt TYPE DELIMITED WITH BLANK
?"ratfwd imported"

USE rateq

APPEND FROM c:\clipsfil\rateq.txt TYPE DELIMITED WITH BLANK
?"rateq imported"”

USE ratatrt

APPEND FROM c:\clipsfil\ratatrt.txt TYPE DELIMITED WITH BLANK
?"ratatrt imported”

USE ratdirt

APPEND FROM c:\clipsfil\ratdirt.txt TYPE DELIMITED WITH BLANK
?"ratdirt imported"”

USE ratrock

APPEND FROM c:\clipsfil\ratrock.txt TYPE DELIMITED WITH BLANK
?"ratrock imported”

USE ratecon

233

APPEND FROM c:\clipsfil\ratecon.txt TYPE DELIMITED WITH BLANK
?"ratecon imported”

USE ratprml

APPEND FROM c:\clipsfil\ratprml.txt TYPE DELIMITED WITH BLANK
?"ratprml imported”

USE ratghaz

APPEND FROM c:\clipsfil\ratghaz.txt TYPE DELIMITED WITH BLANK
?"ratghaz imported"”

CLOSE ALL

SET PRINT OFF

RETURN

234

APPENDIX V
WEIGHT.PRG

Calculates the Total Priority Rating
(WEIGHT.PRG)

This program calculates the Toral Priority Rating. It begins by applying the
proper weights to each factor in the temporary and permanent output databases, see
Appendices W and X. The weighted temporary factors are added and the sum is stored
in the Failure Condition database. The weighted permanent factors are added and the
sum is stored in the Identity. These two sums are then added divided by 19, the total
number of factors. The final number can theoretically range from 0 to 100, where 100
indicates an extremely important site.

Executing this program will cause the weighted permanent and temporary factors

and their respective sums to be printed. The total priorities for each site are then printed.

236

WEIGHT.PRG
&
SET TALK OFF
SET ECHO OFF
DO tempwt
DO permwt
SET PRINT ON
0
?
?
” TOTAL PRIORITY RATING"
0 .
? " SITE ID Failure No. TOTAL PR"
?"*********lll********#********#**#******#****#t*******"
SELECT 1
USE identity
SELECT 2
USE failcond
DO WHILE .NOT. EOF()
SELECT 2
sid =siteid
nf=failnum
tf=twt
SELECT 1
GO TOP
LOCATE FOR siteid=sid
pf=pwt
totalpr=(pf + tf)/19
? siteid, SPACE(3), nf, SPACE(10), totalpr
SELECT 2
SKIP
ENDDO
SET PRINT OFF
WAIT
CLOSE ALL
RETURN

237

APPENDIX W

TEMPWT.PRG

Program to Calculate Temporary Weighted Factors
(TEMPWT.PRG)
This program multiplies the temporary priority ratings by an appropriate weight.
The program then sums these products. The total for each site is then stored in the
Failure Condition database. The total for each site is also printed.

The weight values for each factor are listed in Table 8.

239

Table 8 Weights for the Temporary factors .
[e

Jactors weights
1. problem type 6
2. traffic impedance 5
3. lawsuit potential 1
4. pavement damage 3
5. structure type & damage 5
6. temp. static & dynamic load 3
7. failure frequency 8
8. repair cost 15
9. failure size 2
10. failure water level 10
11. failure date 1

e 346 afe 24 2k 3¢ dke 3k ok oK ¢ ok
WEIGHT TOTAL 59

240

TEMPWT.PRG

*

SET TALK OFF

SET ECHO OFF

SELECT 1

USE ratprob

SELECT 2

USE ratti

SELECT 3

USE ratlaw

SELECT 4

USE ratpave

SELECT 5

USE ratstru

SELECT 6

USE rattmpl

SELECT 7

USE ratff

SELECT 8

USE ratcost

SELECT 9

USE ratfwd

SELECT 10

USE failcond

? " Make Sure that PRINTER is ON"

WAIT

SET PRINT ON

9

9

7"SITE ID Failure No. Sum of Temp. PR"

?"***#*********************##**#*****#******t********"

DO WHILE .NOT. EOF()
SELECT 1
sid =siteid
nf=failnum
probwt= probtypepr * 6
SELECT 2 '
GO TOP ‘
LOCATE FOR siteid=sid .AND. failnum=nf
impedewt= impedepr * 5
SELECT 3
GO TOP
LOCATE FOR siteid=sid .AND. failnum=nf
lawwt= lawpr * 1

241

SELECT 4
GO TOP
LOCATE FOR siteid=sid .AND. failnum=nf
pavedamwt= pavedampr * 3
SELECT 5
GO TOP
LOCATE FOR siteid=sid .AND. failnum=nf
strucwt= (strucpr + strdampr)/2 * 5
SELECT 6
GO TOP
LOCATE FOR siteid=sid .AND. failnum=nf
tmplwt= (tstaticpr + tdynapr)/2 * 3
SELECT 7
GO TOP
LOCATE FOR siteid=sid .AND. failnum=nf
ffwt= failfreqpr * 8
SELECT 8
GO TOP
LOCATE FOR siteid=sid .AND. failnum=nf
costwt= costpr * 15
SELECT 9
GO TOP
LOCATE FOR siteid=sid .AND. failnum=nf
sizewt= sizepr * 2
waterwt= waterpr * 10
datewt= datepr * 1
twtl= probwt + impedewt + lawwt + pavedamwt + strucwt + tmplwt
twt2= ffwt + costwt + sizewt + waterwt + datewt
ttwt= twtl + twt2
? siteid, SPACE(6), failnum, SPACE (10), ttwt
SELECT 10
GO TOP
LOCATE FOR siteid=sid .AND. failnum=nf
REPLACE twt WITH ttwt
SELECT 1
SKIP

ENDDO

SET PRINT OFF

WAIT

CLOSE ALL

RETURN

242

APPENDIX X

PERMWT.PRG

Program to Calculate Permanent Weighted Factors
(PERMWT.PRG)
This program multiplies the permanent priority rating by an appropriate weight.
The program then sums these products. The total for each site is then stored in the
Identity database. The total for each site is printed.

The weight values for each permanent factor are listed below.

244

Table 9 Weights for the Permanent Factors

S N

Jactors weights
1. ADT 12
2. road type 10
3. seismic 3
4. soil type & layers 4
5. rock joint-layers & loose & intact 4
6. economic 3
7. perm. static & dynamic load 3
8. geographical hazard 2
e 2c 2k 3k e e e ok e o
PERMANENT WEIGHT TOTAL 41

245

WEIGHT.PRG
%k

SET TALK OFF
SET ECHO OFF
SELECT 1

USE ratatrt
SELECT 2

USE rateq
SELECT 3

USE ratdirt
SELECT 4

USE ratrock
SELECT 5

USE ratecon
SELECT 6

USE ratprml
SELECT 7

USE ratghaz
SELECT 8

USE identity
SET PRINT ON
0

9

9

7" SITE ID Sum of Perm. PR"

?"*************************************"
DO WHILE .NOT. EOF()
SELECT 1
sid =siteid
adtwt= adtpr * 12
roadtypewt= roadtypepr * 10
SELECT 2
GO TOP
LOCATE FOR siteid =sid
seismicwt= seismicpr * 3
SELECT 3
GO TOP
LOCATE FOR siteid =sid
soilwt= (soiltypepr + soillaypr)/2 * 4
SELECT 4
GO TOP
LOCATE FOR siteid =sid

rockwt= (jointlaypr + loosepr + intactpr)/3 * 4

SELECT 5

246

GO TOP
LOCATE FOR siteid =sid
econwt= economicpr * 3
SELECT 6
GO TOP
LOCATE FOR siteid =sid
pldwt= (pstaticpr + pdynapr)/2 * 3
SELECT 7
GO TOP
LOCATE FOR siteid =sid
ghazwt= geohazpr * 2
pwtl = adtwt + seismicwt + roadtypewt + soilwt + rockwt
pwt2= econwt + pldwt + ghazwt
ppwt= pwtl + pwt2
? siteid, SPACE(10), ppwt
SELECT 8
GO TOP
LOCATE FOR siteid =sid
REPLACE pwt WITH ppwt
SELECT 1
SKIP

ENDDO

SET PRINT OFF

WAIT

CLOSE ALL

RETURN

247

APPENDIX Y

ADDCOST.PRG

Program to Append the Cost Database
(ADDCOST.PRG)

This program appends a record to the Cost database. It gives the user the option
to view Cost Instructions (Figure DD.14), which list the valid responses to each factor.
The data input screen that appears when this program is executed is shown in Figure
DD.15. This program follows the same general format that all of the append programs
follow.

This program calculates the labor costs, equipment costs, repaving costs, and

earthwork costs and enters this data into the database.

249

ADDCOST.PRG
* This program allows the user to enter cost information for
* a new failure.
SET TALK OFF
SET ECHO OFF
CLEAR
USE cost
STORE " "TOb
? "Do you wish to see an explanation of the variables and a list"
? "of valid responses?”
WAIT " Pleascanswer Yor N" TO b
IF UPPER(b)="Y"

DO costinst
ENDIF
SET FORMAT TO cost.fmt
APPEND BLANK
READ
newlabor= manhours * manrate
REPLACE laborcost WITH newlabor
newequip= equiphours * equiprate
REPLACE equipcost WITH newequip
newearth= earthwork * earthrate
REPLACE earthcost WITH newearth
newpave= repavehour * paverate
REPLACE pavecost WITH newpave
RETURN

250

APPENDIX Z

EDITCOST.PRG

Program to Edit Information in the Cost Database
(EDITCOST.PRG)

This program edits existing data within the Cost Database. It gives the user the
option to view the Cost Instructions (Figure DD.14), which lists the valid responses to
each factor. The program then asks for the Site ID and the failure number of the failure
site that is to be edited. It then displays Figure DD.15 with the appropriate information
included. This program follows the same general format that all of the edit programs
follow.

This program calculates the labor costs, equipment costs, repaving costs, and

earthwork costs and enters this data into the Cost database.

252

EDITCOST.PRG
* This program edits information already present in the COST
* database.
SET TALK OFF
SET ECHO OFF
USE cost
STORE " "TO a
? "Do you wish to see an explanation of the variables and a list
? "of valid responses?”
WAIT * Please answer Yor N " TO a
IF UPPER(2)="Y"

DO costinst
ENDIF
DO findsite
CLEAR
SET FORMAT TO cost.fmt
READ
newlabor= manhours * manrate
REPLACE laborcost WITH newlabor
newequip= equiphours * equiprate
REPLACE equipcost WITH newequip
newearth= earthwork * earthrate
REPLACE earthcost WITH newearth
newpave= repavehour * paverate
REPLACE pavecost WITH newpave
RETURN

253

APPENDIX AA

DELCOST.PRG

Program to Delete a Record from the Cost Database
(DELCOST.PRG)
This program deletes information for a specific site from the Cost Database. The
program asks the user for the Site ID and the failure number of the site to be deleted.
This program is an example of a deletion program. All other delete programs follow the

same format.

255

DELCOST.PRG
* This program deletes the cost information for a certain site.
SET TALK OFF
SET ECHO OFF
USE cost
* Ask user for the appropriate site and then find the site.
DO findsite
IF .NOT. sitefound .AND. failnumfound
* No such site found
RETURN
ELSE
* Delete the site
DELETE
PACK
@10,1 SAY "The site cost information has been deleted."
WAIT
ENDIF
RETURN

256

APPENDIX BB

SHOWCOST.PRG

Program to Display Records in the Cost Database
(SHOWCOST.PRG)

This program displays all of the information stored in the Cost Datébase. The
program gives the user the option to print this information.

This program follows the same general format as all of the show programs.

258

SHOWCOST.PRG
* This program displays a site in the COST Database. It also
* allows the user to print this information.
SET TALK OFF
SET ECHO OFF
USE cost
CLEAR
STORE " " TO a
? "Do you wish to print this information?"
WAIT " Please enter Yor N" TO a
IF UPPER(a)="Y"
SET PRINT ON
ENDIF
SET FORMAT TO cost.fmt
DISPLAY ALL siteid, failnum, laborcost, equipcost, earthcost,
pavecost, totalcost OFF
WAIT '
SET PRINT OFF
RETURN

259

APPENDIX CC

QUESTIONNAIRE

Questionnaire

The questionnaire was sent to various WSDOT Personnel. The following

pages are a copy of what they received.

261

DIRECTIONS FOR QUESTIONNAIRE

Throughout the questionnaire I ask for you to rate an item from 1to 10. Ten
represents the most important, severe, or extreme case. One represents the least
important, severe, or extreme case. Any item within an area can have any number.
For example if you feel landslides, rockfall, and flows are all extremely important
assign tllém all the value of 10 or which ever value you feel is appropriate. You do
not always have to assign values of 1 or 10, just the value you feel is adequate.

If you feel an item is unnecessary please put a "UN" in the appropriate blank.
If you feel an item is not applicable please put a "NA" in the appropriate blank.

Please, feel free to add any additional items to a category or make additional

comments.

262

DEFINITIONS

Some of the following defintions have been taken from Landslides

Analysis and Control Special Report 176 Chapter 2 "Slope Movement
Types and Processes” by David J. Varnes.

TYP F MOVEME
Slides: movements that consist of shear strains and displacements along one or several
surfaces that are visible or may be inferred. |

Debris s Flows: composed of unconsolidated materials that can be wet or dry, with
fast or slow movements. A velocity distribution of a flow resembles
that of a viscous fluid.

Lateral Spreads: flows that occur laterally instead of down. slope.

Fill or Subgrade Settlement: considered to be compaction of the fill material.

Degradation of Fill: settlement of the fill due to the actual decomposition of the ﬁll

material.

TYPES OF DISTRESS

Settlement: considered to be the vertical displacement between two adjacent sections
of road.

Cracking: any type (longitudinal, transverse, or alligator); specify the length, width,

263

and depth of the crack.

* Undulations: caused by freeze-thaw action or by the shrink-swell potential of the soil
and can be described as a solitary heave or a dip or a series of heaves and dips
(waves); specify the total vertical displacement, crest to trough or original

road surface to the crest or trough, of the displacement.

SEASONS

Spring: March 1 through May 31
Summer: June 1 through August 31
Fall: September 1 through November 30

Winter: December 1 through Feburary 28 (29)

264

Feburary 13, 1990

NAME
ACTUAL JOB TITLE
DISTRICT
DATE

Unstable Slope Management Questionnaire

1. FACTORS CONCERNING PRIORITIZATION OF SLOPES
TYPES OF SLOPE MOVEMENT

(Please refer to the definitions section for further clarification)
Rate the failure types according to COST, where 10 is the most costly and 1 is the least costly.

ASSUME that the slope movements in each case below will have the same mass and volume, be
the same proximity to a certain road, and have no buildings in their area.

Overatt
Iype of Slope Movements Cost COMMENTS:
1. Slides
2. Rockfall

3. Debris Flows

4. Lateral Spreads

5. Fill Degradation & Settlement
6. Others? (Specify)

1] 8

Indicate the relative site ACCESSIBILITY for each type of failure, where 10 is the most accessible
and 1 is the least accessible.

ASSUME that the slope movements in each case below will have the same mass and volume, be
the same proximity to a certain road, and have no buildings in their area.

Equipment
Iype of Slope Movements Accessibility COMMENTS:

1. Slides

2. Rockfall

3. Debris Flows

4. Lateral Spreads

5. Fill Degradation & Settlement
6. Others? (Specify)

Indicate the relative smount of time required to repair each type of failure, where 10 is the most
time required and 1 is the least time required.

ASSUME that the slope movements in each case below will have the same mass and volume, be
the same proximity to a certain road, and have no buildings in their area.

Type of Slope Movements Repair Time COMMENTS :
1. Slides

2. Rockfall

3. Debris Flows

4. Lateral Spreads

5. Fill Degradation & Settlement
6. Others? (Specify)

265

Indicate how difficult each type of failure is to repair, where 10 is the most difficult and 1 is
the least difficult.

ASSUME that the slope movements in each case below will have the same mass and volume, be
the same proximity to a certain road, and have no buildings in their area.

Repair
Iype of Slope Movements pifficulty COMMENTS:
1. Slides
2. Rockfall

3. Debris Flows

4. Lateral Spreads

S. Fill Degradation & Settlement
6. Others? (Specify)

Indicate which type of failure is the most difficult to contract work for, where 10 is the most
difficult and 1 is the least difficult.

ASSUME that the slope movements in each case below will have the same mass and volume, be
the same proximity to a certain road, and have no buildings in their area.

Iype of Slope Movements Contracting COMMENTS:
1. Slides
2. Rockfall’

3. Debris Flows

4. Lateral Spreads

5. Fill Degradation & Settlement
6. Others? (Specify)

Indicate which type of failure is the most important when deciding in which order'slopes should be
repaired, where 10 is the most important and 1 is the least important.

ASSUME that the slope movements in each case below will have the same mass and volume, be
the same proximity to a certain road, and have no buildings in their area.

©

Type of Siope Movements rogrammi COMMENTS:
1. Slides

2. Rockfall

3. Debris Flows

4. Lateral Spreads -

5. Fill Degradation & Settlement

6. Others? (Specify)

TYPE OF STRUCTURES INVOLVED

Indicate the importance of each type of structure if it were in danger of being severely
damaged or destroyed. (10 - most important; 1 - insignificant)

1. Railroad bridges
2. Automobile bridges

Road Capacity
(average daily traffic: thousands/day)
>30 10 to 30 5 to 10 <5
Interstates —_ — - —
Multi-lane arterials - — - —
2-lane primary hwy —_— - —_— .
Gravel roads - — — _
Frontage road - — - _—
3. Pedestrian bridges
4. Homes
5. Storage Buildings
6. Industrial or Commercial Buildings
7. Roads
Road Capacity
(average daily traffic: thousands/day)
>30 10 to 30 5 to 10 S
Interstates

Multi-lane arterials
2-lane primary hwy
Gravel roads
Frontage road

8. Drainage Structures

9. Utility Infra-Structure
(power lines, sewers, water lines,...)

10. Others?

NERNR

If there were a chance that the slopes involved could affect any storage tanks or other
structures containing hazardous wastes, fuels, explosives, or other pollutants, how would
you rate these structures in comparison with the structures previously listed?

267

ISTR F

Please indicate the dimensions of each of the distress types that would cause the road to

be unsafe, failed, impaired and uncomfortable to drivers.

further clarification.

Uncomfortable

Type of Distress
Drivers
1. Settlement

2. Cracking - length
- width
- depth
3. Undulations

4. Road Covered
by Debris

5. Others? (Specify)

See the definitions section for

Magnitude (actual displacement) of Distress that will
cause the road to be:

Unsafe

Failed

Impaired to

1. Does misalignment of a road ever occur due to slope movements? (yes or no)

1f so is it ever a serious problem in itself? (Are the misalignments ever large enough to
be a hazard to motorists?) Explain and indicate the dimensions.

2. When evaluating the quality and life of a road, how much importance do you assign ride quality?
(very important,..., not important) Explain.

To what degree do you consider these types of distress to be unsafe? (10 - very unsafe; 1 - safe)
1. Settlement
2. Cracking

3. Misalignment
4. Debris on road
5. Undulations
6. Others? (Specify)

268

MOBILIZATION & SAFETY OF WORK FORCE

(Please fefer to the definitions section for further clarification on seasons)

for the next sections 10 indicates the most important case and 1 indicates the least
difficult cese.

GEMERAL SLOPE FAILURE

How difficult is it to mobilize a work force during the specific seasons to repair a general slope
failure? (1 to 10)
Seasons

Size of Slope Repair Job $pring Summer Fall Winter COMMENTS :

1. Small - 1 piece of equip. :
crew of 1-3 people

2. Medium - 2 to 3 pieces of
equip. crew of 3-8 people

3. Large - 4 or more pieces of
equip. crew of 7 or more

4. Emergency Contract -

How safe is each situation for the maintenance crews? (1 to 10)

Seasons
Size of Slope Repair Job Spring Summer Fall Winter COMMENTS:

1. Small - 1 piece of equip.
crew of 1-3 people

2. Medium - 2 to 3 pieces of
equip. crew of 3-8 people

3. Large - & or more pieces of
equip. crew of 7 or more

4. Emergency Contract

Time of Day: MORNING (7am to 1Zpm)

How difficult is it to mobilize a work force during the specific seasons in the morning? (1 to 10)
Seasons

Size of Slope Repair Job Spring Summer Fall Winter COMMENTS:

1. Small - 1 piece of equip.
crew of 1-3 people

2. Medium - 2 to 3 pieces of
equip. crew of 3-8 people

3. Large - 4 or more pieces of
equip. crew of 7 or more

4. Emergency Contract

)

How safe is each situation for the maintenance crews? (1 to 10)

Seasons .
Size of Sl Repair Jol spring Summer Fall Winter COMMENTS:

1. Small - 1 piece of equip.
crew of 1-3 people

2. Medium - 2 to 3 pieces of
equip. crew of 3-8 people

3. Large - 4 or more pieces of
equip. crew of 7 or more

4. Emergency Contract

269

Time of Day: AFTERNOON (12pm to 6pm)

How difficult is it to mobilize a work force during the specific seasons in the afternoon? (1 to
10)

Seasons
Size of Slope Repair Job Spring Summer Fall Winter COMMENTS :

1. Smatl - 1 piece of equip.

crew of 1-3 people - . -
2. Medium - 2 to 3 pieces of

equip. crew of 3-8 people -
3. Large - 4 or more pieces of

equip. crew of 7 or more -
4. Emergency Contract -

How safe is each situation for the maintenance crews? (1 to 10) R

Seasons
Size of Slope Repair Job Spring Summer Fall Winter COMMENTS:
1. Small - 1 piece of equip.
crew of 1-3 people
2. Medium - 2 to 3 pieces of
equip. crew of 3-8 people
3. Large - 4 or more pieces of
equip. crew of 7 or more
4. Emergency Contract

Time of Day: NIGHT TIME (6pm to 7am)
How difficult is it to mobilize a work force during the specific seasons at Night? (1 to 10)

Seasons
Size of Slope Repair Job Spring Summer Fall Winter COMMENTS:
1. Small - 1 piece of equip.
crew of 1-3 people
2. Medium - 2 to 3 pieces of
equip. crew of 3-8 people
3. Large - 4 or more pieces of
equip. crew of 7 or more
4. Emergency Contract

How safe is each situation for the maintenance crews? (1 to 10)

Seasons
Size of Slope Repair Job Spring Summer Fall Winter COMMENTS:
1. Small - t piece of equip.
crew of 1-3 people
2. Medium - 2 to 3 pieces of
equip. crew of 3-8 people
3. Large - 4 or more pieces of
equip. crew of 7 or more
4. Emergency Contract

270

1. At what point are emergency contracts issued? Explain.

2. Does season affect the cost of repair? (ie. Spring more expensive...) Explain.

3. Does the time of day have any significance on how easily a work force can be mobilized? (Yes or
No) Explain.

4. Will a failure that must be immediately repaired cause significant problems if it fails during
off hours, holidays, weekends? (Yes or No) Explain.

Will costs go up significantly? (Yes or No) Explain.
Will the use of the equipment cost more? (Yes or No) Explain.

Are workers more difficult to find? (Yes or No) Explain.

5. Does the fact that a slope is wooded or is grassy make a significant impact upon the ease or
difficulty of clean up or the cost of clean up? (Yes or No) Explain.

6. Are most slopes fairly accessible (easy to get equipment to where it is needed)? (Yes or No)
Explain.

7. When considering repairing a slope, how important is the accessibility of the site?

8. 1f machinery is unable to access the slope, will the slope be repaired? (Yes or No) Explain.

9. 1f the slope must be repaired without using machinery (i.e. manual labor) how much more
expensive will it be?

271

CosTS

Below are some factors that can contribute to the costs that slope movements may incur. Please
indicate the relative importance of these factors and add any additional factors you feel are
necessary.
(Indicate 1 to 10, where 10 represents the most important and 1 represents the
least important factor.)

DIRECT COSTS
1. Distress to road and actual incurred repair costs (including any stabilization or
improvement steps)
2. Size of failure
3. Debris removal
4. Damage to structures
5. whether or not work must be done in off hours (overtime or the incidence occurs
ring off hours)
6. Rehabilitation measures (drainage system, rock bolts,...)
7. Consultation fees
8. Equipment Costs
9. Others (Specify)

AN

INDIRECT COSTS
____ 1. Cost of traffic delay
2. Cost of extra mileage due to use of alternative route
3. Hindrance to local business (denies or hinders access teads to discouraging
business)
4. Excess wear on vehicles due to rougher roads
5. Are there vehicle restrictions (size, weight) on alternate routes that could lead
to expense?
6. Deterioration of alternate route due to increase in traffic
7. Lawsuits filed due to loss or damage to life or property
8. Economic impact on the ares
9. Envirormental impact on the area
10. Others? (Specify)

How important is the cost? Does cost importance vary with the amount? (ie. importance goes up with
cost, importance goes down with cost,...)

Listed below are several categories of cost. Please indicate the relative importance of each
category.
(10 - very important; 1 - least important)

1. Maintenance Costs

2. Emergency Repair Costs
3. Construction Costs

4. Labor Costs

5. Equipment Costs

6. Material Costs

How is the cost determined?

COMMENTS:

272

DECISION FACT

In this section there are several different scenarios that consider different factors, for each
scenario indicate the significance of each factor in the decision making process.
" (10 - very important; 1 - insignificant)

For Scenarios 1, 2, and 3 assume that a land slide covers one direction of traffic of the interstate
on Snowqualamie Pass during the winter. The slide causes direct damage to a major hotel near a ski

area.

Scenario No. 1

I1f the factors below were involved in determining the priority of a slope please rate each

factor according

1.
2.
3.

- -
N o
. .

13.

L
rs
.

15.
16.

COMMENTS:

COMMENTS:

to its importance in deciding which slopes are more critical.

Possibility of fatality or injury
Property damage (except to road itself)
Cost

Type of failure

Type of distress to road

Type of road

Alternate Routes (availability & convenience)
Volume of traffic

Frequency of failure

Size of failure

Fluctuation of ground water table
Earthquake effects

Flooding

Road sliding into a body of water

Road sliding off a cliff

Others? (Specify)

Scenario No. 2

Property damage (except to road itself)
Cost

Type of failure

Type of distress to road

Type of road

Alternate Routes (availability & convenience)
Volume of traffic

Frequency of failure

Size of failure

Fluctuation of ground water table
Earthquake effects

273

Scenario No. 3

1. Property damege (except to road {tself)
2. Cost

3. Type of failure

4. Type of distress to road

5. Type of road

6. Volume of traffic

7. Frequency of failure

8. Size of failure

COMMENTS:

For Scenarios 4 and 5 assume that a land slide covers the entire width of a portion of the
interstate along the Columbian River Gorge during the winter. Assume the affected area lies
somewhere between The Dalles and Portland.

Scenario No. &

If the factors below were involved in determining the priority of a slope please rate each
factor according to its importance in deciding which slopes are more critical.

Possibility of fatality or injury
Property damage<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>