Traffic Barrier Systems

Service Level 1
Bridge Rail

WA-RD 106.1

Initial Report
January 1987

Washington State Department of Transportation
Planning, Research and Public Transportation Division

in cooperation with the
United States Department of Transportation
Federal Highway Administration
Washington State Department of Transportation

Transportation Research Council

Transportation Commission
Vaughn Hubbard, Chair
William J. Kampe’s* #
Richard Odabashian*
Jerry B. Overton
Albert D. Rosellini
Bernice Stern
Leo B. Sweeney*

* Research Committee # Research Committee Chair

Federal Highway Administration
Paul C. Gregson, Division Administrator

Private Sector
Million “Bug” Egber, President, Skagit Valley Trucking
Richard Ford, Managing Partner, Preston Thorgrimsson Ellis, Holman
William Francis, Vice President, Burlington Northern F.R.
Tom Gaetz, Project Manager, David Mowat & Company, Bellevue
Lawrence Houk, Vice President, Lockheed Shipbuilding
Charles H. Knight, President, Concrete Technology
H. Carl Murschen, VP for Strategic Planning, Boeing Company, Seattle
Michael Murphy, President, Central Pre-Mix Concrete
Richard Norman, President, Associated Sand & Gravel, Everett
John Ostrowski, Public Works Director, Vancouver, WA
Richard S. Page, President, Washington Roundtable
James D. Ray, Senior Manager, IBM Company
Sudarshan Sathe, Director, Technical Services, Polycarb Inc., Cleveland, OH
Paul Turvill, General Manager, PACCAR, Mt. Vernon, WA
Alva Williams, Director, Public Works, Olympia

Universities
Gene L. Woodrufl, Vice Provost for Research, UW
Neil M. Hawkins, Professor & Chair, Civil Engineering, UW
Robert V. Smith, Associate Provost for Research, WSU
Surinder K. Bhagat, Professor & Chair, Civil Engineering, WSU

Washington State Department of Transportation
Duane Berenson, Secretary

A.D. Andrews, Deputy Secretary
C.W. Beerman, District 5 Administrator
R.E. Bockstuck, District 1 Administrator
J.L. Clement, Assistant Secretary for Management Services
R.C. Cook, District 2 Administrator
R.L. Daniels, Administrator, Public Affairs Office
J. Doyle, Manager, Economics
E.W. Ferguson, District 4 Administrator
E.W. Hamilton, Assistant Secretary for Aeronautics
W.L. Hordian, State Aid Engineer
H.W. Parker, Assistant Secretary, Marine Transportation
R.G. Schuster, Assistant Secretary for Highways
J.H. Stakey, Manager, Public Transportation Office
M.O. Tranum, District 6 Administrator
D.V. Vanderheyde, State Construction Engineer
J.D. Zirkle, District 3 Administrator

Representative George Walk, Chair - Legis. Transportation Committee

Federal Highway Administration
M. Eldon Green, Regional Administrator
Ols G. Haselton, Research and T2 Engineer
Ernest J. Valach, Director, Planning and Program Development

Division Office
Paul C. Gregson, Division Administrator
Barr Breck, Programming and T2 Engineer
Charles W. Chappell, Division Transportation Planner

Washington State Transportation Center (UW & WSU)
G. Scott Rutherford, Director
Kon Casavant, Associate Director, WSU
Joe P. Mahoney, Associate Director, UW
Khosrow Babeti, Senior Research Engineer
Rhonda Brooks, Research Implementation Manager
Mark Hallenbeck, Senior Research Engineer
Ed McCormack, Research Engineer
Amy O’Brien, Coordinator
Bov Odegard, Budget Analyst
Ron Porter, Word Processing Technician
Cy Ulberg, Senior Research Engineer
Duane Wright, Research Aid
106.1

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
TRAFFIC BARRIER SYSTEMS SERVICE LEVEL 1 (SL-1)
BRIDGE RAIL

5. Report Date
January 1987

6. Performing Organization Code

8. Performing Organization Name and Address
Washington State Department of Transportation
Olympia, WA 98504

7. Author(s)
Don Gripne

10. Work Unit No.

11. Contract or Grant No.
GC 7740

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
Federal Highway Administration

13. Type of Report and Period Covered
Interim Dec. 1985 to Jan 1987

15. Supplementary Notes
This study was conducted in cooperation with the U.S. Department of Transportation
Federal Highway Administration.

16. Abstract
The Washington State Department of Transportation (WSDOT) designed and
installed Service Level 1 (SL-1) bridge rails on three treated timber bridges in the
state. To date there have been no accidents or maintenance problems reported at any
of the modified bridges.

17. Key Words
Bridge rail modification
Rail for Timber bridge

18. Distribution Statement

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
38

22. Price

TRAFFIC BARRIER SYSTEMS
SERVICE LEVEL I (SL-1)
BRIDGE RAIL

by

Don Gripne
Project Development Office

Initial Report
FHWA Demonstration Project No. 64

Prepared for
Washington State Department of Transportation
and in Cooperation With
U. S. Department of Transportation
Federal Highway Administration

January 1987
DISCLAIMER

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification or regulation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>STUDY SITE AND DESIGN</td>
<td>2</td>
</tr>
<tr>
<td>VICINITY MAPS</td>
<td>4</td>
</tr>
<tr>
<td>CONSTRUCTION SUMMARY</td>
<td>6</td>
</tr>
<tr>
<td>SUMMARY OF COSTS</td>
<td>6</td>
</tr>
<tr>
<td>RAIL PERFORMANCE</td>
<td>9</td>
</tr>
<tr>
<td>ADDITIONAL RESEARCH</td>
<td>9</td>
</tr>
<tr>
<td>CONTACT PERSON</td>
<td>9</td>
</tr>
<tr>
<td>APPENDIX A. Design Sheets</td>
<td>11</td>
</tr>
<tr>
<td>APPENDIX B. Photographs</td>
<td>23</td>
</tr>
</tbody>
</table>
RAIL PERFORMANCE

To date there have been no accidents or maintenance problems reported at any of the modified bridges.

Maintenance personnel have expressed their liking for the SL-1 rail since it will cause little or no damage to the bridge when struck. The replacement of the wooden rail required extensive work when struck.

ADDITIONAL RESEARCH

Wood posts as an alternative to the G-2 posts for the approach rail needs to be investigated.

CONTACT PERSON

The principal investigator of the project is:

Don J. Gripne
Design Standards Engineer
Washington State Department of Transportation
Olympia, WA 98504
(206) 753-0826
This demonstration project, consisting of the installation of a Service Level 1 (SL-1) railing system on timber bridges, has been completed on the three bridges that were selected for the study. The Middle Nemah River Bridge and the Jorgenson Slough Bridge are located on SR 101 and the Coulter Creek Bridge is located on SR 106, all in western Washington (see vicinity maps).

Below are data of these bridges:

<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>Middle Nemah River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge No.</td>
<td>101/31 M.P. 33.8</td>
</tr>
<tr>
<td>Life Expectancy</td>
<td>1995</td>
</tr>
<tr>
<td>ADT</td>
<td>2250</td>
</tr>
<tr>
<td>Accident Experience</td>
<td>None</td>
</tr>
<tr>
<td>Width</td>
<td>Twenty-eight feet</td>
</tr>
<tr>
<td>Appr. Rdwy. Width</td>
<td>Twenty-four w/ two-foot asphalt shoulders</td>
</tr>
<tr>
<td>Bridge</td>
<td>Eighty-six feet/creosote treated</td>
</tr>
<tr>
<td>Length/Type</td>
<td>Timber trestle</td>
</tr>
<tr>
<td>Average Operating Speed</td>
<td>55 MPH</td>
</tr>
<tr>
<td>Vehicle Mix</td>
<td>13% Trucks</td>
</tr>
<tr>
<td>Completion Date of SL-1 Installation</td>
<td>Dec. 31, 1985</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>Jorgenson Slough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge No.</td>
<td>101/33 M.P. 34.3</td>
</tr>
<tr>
<td>Life Expectancy</td>
<td>1994</td>
</tr>
<tr>
<td>ADT</td>
<td>2250</td>
</tr>
<tr>
<td>Accident Experience</td>
<td>None</td>
</tr>
<tr>
<td>Width</td>
<td>Twenty-eight feet</td>
</tr>
<tr>
<td>Appr. Rdwy. Width</td>
<td>Twenty-four feet w/two-foot shoulders</td>
</tr>
<tr>
<td>Bridge</td>
<td>Seventy feet/timber treated</td>
</tr>
<tr>
<td>Length/Type</td>
<td>Longitudinal laminated deck</td>
</tr>
<tr>
<td>Average Operating Speed</td>
<td>55 MPH</td>
</tr>
<tr>
<td>Vehicle Mix</td>
<td>13% Trucks</td>
</tr>
<tr>
<td>Completion Date of SL-1 Installation</td>
<td>Dec. 31, 1985</td>
</tr>
</tbody>
</table>
PURPOSE

The Service Level-1 (SL-1) Bridge Rail was designed to function adequately and to be cost-effective when compared to conventional longitudinal barriers. The purpose of this demonstration project is to determine if these design goals can be achieved and to identify any modifications that could improve field performance.

The SL-1 system was developed and tested for the FHWA by Southwest Research Institute. The Demonstration Projects Division of the FHWA wanted to verify the laboratory tests under actual field conditions and to obtain installation, performance, and maintenance data for this barrier system.

The purpose of this demonstration project is to show the feasibility and practicability of installing an SL-1 system on timber bridges and to perform an in-service evaluation to obtain maintenance costs and identify any design deficiencies.

The SL-1 systems were installed on low-volume state highways at sites suggested by the WSDOT and approved by the FHWA, Washington Division.
<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>Coulter Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge No.</td>
<td>302/3 M.P. 1.99</td>
</tr>
<tr>
<td>Life Expectancy</td>
<td>1997</td>
</tr>
<tr>
<td>ADT</td>
<td>1950</td>
</tr>
<tr>
<td>Accident</td>
<td>None</td>
</tr>
<tr>
<td>Experience</td>
<td>Twenty-eight feet</td>
</tr>
<tr>
<td>Width</td>
<td>Twenty-four feet w/two-foot shoulders</td>
</tr>
<tr>
<td>Appr. Rdwy. Width</td>
<td>One hundred sixteen feet/creosote</td>
</tr>
<tr>
<td>Bridge</td>
<td>Treated timber trestle</td>
</tr>
<tr>
<td>Length/Type</td>
<td>45 MPH</td>
</tr>
<tr>
<td>Average Operating Speed</td>
<td>6% Trucks</td>
</tr>
<tr>
<td>Completion Date of SL-1 Installation</td>
<td>Oct. 1, 1986</td>
</tr>
</tbody>
</table>

Plans were prepared by the Washington State Department of Transportation.

The design of the bridge rails followed the criteria in NCHRP Report 239, "Multiple-Service-Level Highway Bridge Railing Selection Procedures." The 239 report addressed the use of the SL-1 system on concrete bridges, so in order to use the system on wooden bridges, brackets were designed that could be bolted to the wooden deck. The rest of the system could then be connected to the bracket.

The mounting brackets for the rail posts were designed for use with the different timber bridge decks. All of our wooden deck bridges have an asphalt overlay on them. It was determined these brackets could be modified to accommodate an asphalt overlay depth of up to 9 inches. Asphalt depth greater than 9 inches will create a design that will cause construction problems in trying to install the system under traffic. Each bridge needs to be reviewed to see what modification needs to be made to the bracket to accommodate that bridge.

In all cases, the brackets need to be designed so that the posts are the same length and the top of the rail is 32 inches from roadway surface. The installed system will then be compatible with the system that was crash tested.

Most of our timber bridges have timber rub rails or curbs. This rail has to be removed to install the SL-1 system, thus requiring asphalt to fill in the void. To provide a nice finished surface at the edge of the bridge, a treated timber was bolted to the deck to provide a barrier to place the asphalt against.
CONSTRUCTION SUMMARY

This project consisted of replacing wood railing with SL-1 bridge rail on three bridges to upgrade the bridge rails for the three bridges.

The Middle Nemah River and Jorgenson Slough bridges were retrofitted by the bridge crews of District 4 based in Vancouver, Washington. The Coulter Creek bridge rail was rebuilt by the District 3 bridge crew based in Tumwater, Washington.

Typical crews included one Bridge Lead Tech, three Bridge Tech 2's, one Bridge Tech 3, and one Bridge Tech 1. Typical equipment for this project included one bridge tool truck, two bridge trucks, one carry-all, one three-quarter ton pickup, and one six-passenger pickup.

The actual total cost for these three bridges, including approach rail, is $96,872.52. The cost breakdown is as follows:

Summary of Cost

Middle Nemah River Bridge

Bridge Rail Cost:

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>$ 5,892.18</td>
</tr>
<tr>
<td>Equipment</td>
<td>3,180.15</td>
</tr>
<tr>
<td>Per Diem</td>
<td>1,585.65</td>
</tr>
<tr>
<td>Materials</td>
<td>4,412.90</td>
</tr>
<tr>
<td>Total</td>
<td>$15,070.88</td>
</tr>
</tbody>
</table>

Approach Rail Cost:

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>$ 5,633.00</td>
</tr>
<tr>
<td>Equipment</td>
<td>3,055.43</td>
</tr>
<tr>
<td>Per Diem</td>
<td>1,066.68</td>
</tr>
<tr>
<td>Materials</td>
<td>3,963.44</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$13,718.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$28,789.43</td>
</tr>
</tbody>
</table>
Equipment costs for the Coulter Creek rail replacement were higher because of unexpected soil conditions in the approaches. Large rocks were used in the fill at time of bridge construction and power auger was required for boring the holes for guardrail posts.

Included below are some of the problems which were encountered during construction of the Service Level 1 bridge rails.

Most of the bolt holes didn't have enough clearance for bolts to fit through after they were galvanized. The holes needed to be reamed in the field. All bolt threads needed to be chased prior to installation because of the galvanizing.

The deck for Middle Nemah Bridge was figured to be 3-1/2 to 4 inches thick, but was actually 6 inches. One-inch by 8-inch bolts were used to go through the mounting bracket, deck, and backing plate, as the 6-inch bolts which were ordered were not long enough.

Three-quarter inch by 10-inch lag screws on 3-foot centers were called out to secure the pressure treated timber two-by-two's and four-by-four paving rails to the deck. Galvanized spikes at 4-foot centers were used in place of the 10-inch lag screws.

All bridge work for Coulter Creek went smoothly. Except for the soil problem described above, all work went smoothly on the approaches.
Jorgenson Slough Bridge

Bridge Rail Cost:

Labor $5,539.22
Equipment 2,944.68
Per Diem 1,743.99
Materials 5,686.45
$15,914.34

Approach Rail Cost:

Labor $6,276.62
Equipment 3,320.59
Per Diem 1,406.49
Materials 4,194.16
$15,197.86

Subtotal $31,112.20

Coulter Creek Bridge

Bridge Rail Cost:

Labor $3,889.30
Equipment 8,894.79
Per Diem 40.00
Materials 6,732.51
$19,556.60

Approach Rail Cost:

Labor $5,750.76
Equipment 6,557.40
Materials 5,106.13
$17,414.29

Subtotal $36,970.89

TOTAL $96,872.52

The cost of bridge rail was $87.62 per foot for the Middle Nemah River Bridge, $113.67 per foot for the Jorgenson Slough Bridge, and $84.30 for the Coulter Creek Bridge. These costs can be compared with work done by a contractor to remove a wood rail and install an SL-1 system. The cost to do this work was $91.34 per foot.

No cost comparison for installing the approach rails could be made. The approach rail installed under the contract was not compatible with an SL-1 system, and had to be redone by change order.
APPENDIX A

DESIGN SHEETS
G-2 Guardrail Post

Use With Special Beam Guardrail Only

3/8" Ø Holes

1/2" Ø Holes For 1/2" Ø x 1 1/2" Bolt (Rail Element Rests On Bolt Head)

1/4" V

8" x 24" x 1/2"

Bottom Corners May Be Clipped 2" x 2" To Aid Drilling.

3/4" Ø Hole Optional For Handling During Galvanizing.

3" x 6" x 1/4" Steel Tube
APPENDIX B

PHOTOGRAPHS
NEW SECTION AT END-SPAN

NEW OUTSIDE ELEVATION OF RAIL

EXISTING SECTION AT END-SPAN

EXISTING OUTSIDE ELEVATION OF RAIL

* All Dimensions Same On Mid-Span
 Except Stringers are 10' x 26'

MIDDLE NEMAH BRIDGE
8 Sections of Thrle Beam @ 12'-6" = 100'
12 Spaces @ 8'-4" = 100'

Bridge Length 86'-0"

Type I Anchor

8 Sections of Thrle Beam @ 12'-6" = 75'-0"
8 Spaces @ 8'-4" = 68'-8"

Bridge Length 70'

MIDDLE NEMAH RIVER BRIDGE 101/31

For Type I anchor and wood post details see Standard Plan sheet C-6.

JORGENSEN SLOUGH BRIDGE 101/33

Special steel beam guardrail post for attachment to structure.

Special steel beam guardrail post 53x5.7.

For Thrle Beam Guardrail details see Standard Plan sheet C-1a.

T (Transition section) and BCT (3 - 12'-6" sections of W Beam at 6'-3" spacing) are typical for all bridge ends.
G-2 Guardrail Post

- 3\(\times\)3\(\times\)5.7
- 3/4 in. holes
- 5/8 in. holes for 1/2 in. x 1/2 in. bolt (Roll element rests on bolt head)
- 8\(\times\)24\(\times\)1/2 in.
- Bottom corners may be clipped 2\(\times\)2 to aid driving.

3\(\times\)6\(\times\)1/4 in. steel tube

1/2 in. hole for 5/8 in. bolt and square washer.

Roll Post Tube

MIDDLE NEMAH BRIDGE
STEEL POST DETAILS
BACKING PLATE DETAIL

MOUNTING BRACKET DETAIL

BASE PLATE DETAIL

DISTRIBUTION PLATE DETAIL

Notes:
- If unsound wood is encountered in mounting, it should be replaced.
- To insure proper bearing for the mounting bracket, the deck surface and side timbers must be sanded smooth & even under the plates and thoroughly dried.
- Do not install under wet conditions.
- Deck surface shall be square with side surface.
- Galvanize all pieces, repair welded parts with galvanizing paint.
- All plate material ASTM A36.
- Horizontal threaded rods ASTM A325.
- Vertical bolts thru deck ASTM A357.
- Roll post tubes ASTM A501.
- Bolt holes diameter thru deck 1 1/2.
- All bolts to be UNC.
COULTER CREEK BRIDGE

NOTES:

1 Special steel beam guardrail post for attachment to structure.
2 Special steel beam guardrail post 53 x 5.7.
3 6" x 8" wood posts.
4 Transition section.

For Type 1 Anchor and wood post details see Std. Plan C-8.

For Thrie Beam Guardrail details see Std. Plan Sheet C-1a.
BACKING PLATE DETAIL

MOUNTING BRACKET DETAIL

DISTRIBUTION PLATE DETAIL

Notes:
If unsound wood is encountered in mounting, it should be replaced.

To insure proper bearing for the mounting bracket, the deck surface and side timbers must be sanded smooth and even under the plates and thoroughly dried.

Do not install under wet conditions.

Deck surface shall be square with side surface.

Galvanize all places, repair welded parts with galvanizing paint.

All plate material ASTM A36.

Horizontal threaded rods ASTM A325.

Vertical bolts thru deck ASTM A307.

Rail post tubes ASTM A501.

Bolt hole diameter thru deck 1\(\frac{1}{8}\).

All bolts to be UNC.

JORGENSON SLOUGH BRIDGE
Notes:

If unsound wood is encountered in mounting, it should be replaced.

To ensure proper bearing for the mounting bracket, the deck surface and side timbers must be smoothed & even under the plates and thoroughly dried.

Do not install under wet conditions.

Deck surface shall be square with side surface.

Galvanize all places, repair welded parts with galvanizing paint.

All plate material ASTM A36.

Unless otherwise noted bolts and nuts conform to requirements of ASTM A307 and nuts to requirement of ASTM A563, Grade A or better.

Bolt hole diameter thru deck 1/2.

Roll post tubes ASTM A502.

All bolts to be UNC.

Coulter Creek Bridge
JORGENSEN SLOUGH: SERVICE LEVEL 1 BRIDGE RAIL NEAR COMPLETION WEST SIDE OF BRIDGE.

JORGENSEN SLOUGH: SERVICE LEVEL 1 BRIDGE RAIL COMPLETE.
JORGENSEN SLOUGH: BEFORE INSTALLATION OF THE BRIDGE RAIL.
JORGENSEN SLOUGH: RAIL POST TUBE INSTALLATION ON EAST SIDE OF BRIDGE.

JORGENSEN SLOUGH: COMPLETED INSTALLATION OF SERVICE LEVEL 1 BRIDGE RAIL
JORGENSEN SLOUGH: RAIL POST TUBE INSTALLATION.

JORGENSEN SLOUGH: MOUNTING BRACKET INSTALATION BEFORE ASPHALT IS PLACES.
MIDDLE NEMAH RIVER: SERVICE LEVEL 1 BRIDGE RAIL NEAR COMPLETION WEST SIDE OF BRIDGE.

MIDDLE NEMAH RIVER: SPECIAL MAINTENANCE BRIDGE CREW INSTALLING BRIDGE RAIL.
MIDDLE NEMAH RIVER: BEFORE INSTALLATION OF BRIDGE RAIL.
MIDDLE NEMAH RIVER: COMPLETED SERVICE LEVEL 1 BRIDGE RAIL WITH COMPLETED APPROACH GUARD RAIL.
MIDDLE NEMAH RIVER: RAIL POST TUBE INSTALLATION OF DISTRIBUTION PLATE.

MIDDLE NEMAH RIVER: TRANSITION OF THRIE-BEAM TO STANDARD W-BEAM GUARD RAIL.
COULTER CREEK: COMPLETED SERVICE LEVEL 1 BRIDGE RAIL WITH COMPLETED APPROACH GUARD RAIL.
COULTER CREEK: BEFORE INSTALLATION OF BRIDGE RAIL.
DEMONSTRATION PROJECT 64
SERVICE LEVEL 1 BRIDGE RAIL

COULTER CREEK: COMPLETED INSTALLATION OF SERVICE LEVEL 1
BRIDGE RAIL.
DEMONSTRATION PROJECT 64
SERVICE LEVEL 1 BRIDGE RAIL

COULTER CREEK: RAIL POST TUBE INSTALLATION OF DISTRIBUTION PLATE.

COULTER CREEK: TRANSITION OF THRIE-BEAM TO STANDARD W-BEAM GUARD RAIL.