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CHAPTER 1
INTRODUCTION AND OBJECTIVES

Increased traffic, together with changes in allowable operating
procedures for trucks, have created the potential for rapid deterioration
of the highway system. Moreover, new truck and tire designs are resulting
in increasing lToads on single-tired axles. These factors may have
accelerated wear-out of pavements. Thus a need exists for determining
the reltative destructive effect of these factors.

Most of the past studies and literature deal only with relationships
between dual tired single axle and dual tired tandem axles. Therefore,
this study is to examine relative destructive effect of the single tire
versus dual tires and especially between wide single tire (super single,
floatation) and conventional dual tires, There are indications that many
trucks now have front axle loads approaching the maximum allowable
{18,000 1bs. in Washington) for single axles. The fact that these are
on single tires increases the potential for pavement damage.

Confirmation of increased damage can ultimately come only from
observation of pavement performance under known traffic conditions.
Alternatively, one could construct test pavements with a range of variables
and using suitable instrumentation, could measure relative behavior
under varying truck loading. This approach probably has a reasonable
chance of success for determining actual stress-strain values which can
then be used to calculate relative destructive potential. These relative
values can then be translated into an "equivalency" value or rating for
each situation. Before one embarks on such a comprehensive and expensive
study, however, much can be learned from a theoretical study based on
hypothetical pavements and loads, but based on reasonable material

characteristics and pavement behavior from previous research.



This report is intended to be a "state-of-the-art" approach to
answer several pertinent questions using current technology. The results
are a series of relationships based on pavement 1ife. One can then use
them to determine any number of "equivalencies" of relating variables
based on a certain set of conditions.

Basic variables considered in this study include:

1. Wheel load,

2. Tire contact pressure and width,

3. Thickness and nature of pavement layers, and
4. Speed of vehicle,

5. Pavement temperature.

A three-layer pavement structure with an asphalt concrete surface,
AC, untreated aggregate base, UTB, and natural soil subgrade were selected
for this study. Multilayered elastic theory is used to compute structural
behavior.

The deflections, stresses, and strains are computed by using the
Chevron n-layer computer program. The location of critical values in
the pavement structure under single wheel loading is shown in Figure 1.
The horizontal tensile strain at the bottom of the asphalt treated
layer, h and the vertical compressive strain at the top of the subgrade, ey
are examined in determining the maximum number of load applications to
failure. Under dual wheel loading, the location in the pavement structure
where these critical strains are maximum is shown in Figure 2. Two
conditions are checked under various wheel loads. The maximum strains,
especially in the thin pavement layers, can occur directly under one of

the dual wheels rather than midway between them.



The maximum number of load applications, N, are determined from the
criteria developed from laboratory fatigue tests on asphalt to minimize
pavement cracking from repeated loading and from the criteria developed
from that of Shell to minimize surface rutting caused by over stressing
the subgrade.

Based on the maximum number of the standard axle load applications,
fatigue and rutting equivalencies are established. These equivalencies
can be used to compare the destructive effects of various sizes of single
and dual tires, and various axle loads.

The effects of changes in the level of temperature and variation in
vehicle speeds on the fatigue and rutting in terms of the maximum number of
load applications are also examined. The average pavement temperatures
during summer and winter of various depths of asphalt concrete are se]ected
from an assumed pavement temperature profile based on weather records. The
modulus of elasticity for each individual depth corresponding to each tem-
perature is determined from laboratory test data. The load durations of
various speeds on a selected path are calculated. The modulus corresponding
to each load duration is determined from the stress duration vs. resilient
modulus relationship developed from laboratory tests.

The maximum number of load applications at various pavement temperatures
and speeds can be used to compare the relative destructive effects of

various speeds and seasonal changes on pavement.



CHAPTER 11
THEORETICAL BACKGROUND

The original purpose of a pavement was to protect the subgrade from
excessive deformation under traffic, Consequently, vertical displacement
or strain at the surface of the subgrade is a critical factor. Selection
of pavement thickness by conventional procedures ensures that an ailowable
strain at this point is not exceeded.

Also, under moving traffic, the upper layers flex or bend with each
load application. Critical tensile strain occurs at the bottom of the
asphalt layer and, if this strain is excessive, the surface will fail

through cracking.

Elastic Theory Constants and Assumptions

The materials used in flexible pavement construction are essentially

of four categories:

1.  Bituminous bound

2. Cement bound

3. Unbound aggregate - non-cohesive soil
4. Cohesive subgrade soil

A1l these materials are in reality non-homogeneous, anisotropic
non-Tinear and non-elastic and their properties are to some extent time
dependent and are affected by changes of environment such as temperature
and moisture content.

At the present time, the layered elastic theory, which is relatively
simple, promises to be a reasonable approach for design purposes. The
successful use of this method for predicting stress and strains in a
road structure depends primarily on how well the modulus of elasticity

or its equivalent, and Poisson's ratio, under conditions appropriate to



the particular analysis are known. This is because stresses in a layered
system depend on the ratio of elastic modulus between one Tayer and its
neighbor while strains being calculated from stresses depend also on the
actual value of modulus at the point concerned.

Elastic modulus, E, is the rate at which a material develops strength
when strained. For the purpose of this study, it is the stress divided
by the strain under simple axial loading. In the road, the materials
are seldom strained more than 1%, so the moduli at low strains are those
in which we are interested.

Poisson's ratio, v, is an elastic constant that is difficult to
reliably evaluate for most pavement materials. For an ideal isotropic,
cylindrical specimen of material subjected to a uniform principal stress
state, Poisson's ratio is obtained by dividing the lateral strain by the
axial strain. Variation in Poisson's ratio does not greatly affect
vertical stresses but has a significant effect on horizontal stresses
particularly near the surface and so it merely shifts the plots horizontally
in a rigid manner with no decrease in scatter of the data (1).

The general assumptions of elastic layer theory are:

1. The materials are linear elastic, isotropic and
homogeneous.

2. The load is applied uniformly distéibuted over a
circular area.

3. The interfaces between layers are either completely
"yough" or "smooth," the former being the more normally
assumed condition.

In addition to the well-known basic assumptions on which the classical
elasticity theory is based, the following simplifying assumptions are

made in all of the stress analyses:



1. The tire-pavement surface contact pressure
is assumed to be uniform and equal to the tire
pressure wherever contact pressures have not
been experimentally determined. Thus, the
contact area is computed by means of the tire
pressure and the wheel load, and is assumed
to be circular.

2. Stresses under dual tires and tandem axles are
computed on the assumption of the validity of
the principle of superposition in stress analysis.

3. It is assumed that no surface shear stresses
are induced at the contact between the tire and

pavements,

Material Characteristics

In general, asphalt materials are visco-elastic and therefore their
stress-strain characteristics are dependent on both time of loading and
temperature. At short loading times, the stiffness approaches a constant
value which, under this condition, is analogous to a modulus of elasticity
(2). In addition to the environmental factors, the stiffness also
depends on the mix variables such as aggregate type and grading, bitumen
type and content, degree of mix compaction and the resulting air void
content.

For accurate values of stiffness, measurements should be made at
the appropriate values of temperature, time and stresses. A number of
experimental methods have been developed to describe the relationship
between stress and strain for asphalt mixes (3). Two of these methods,

the dynamic complex modulus and the modulus of resilient deformation,



are similar. The concept and definition of the dynamic complex modulus
for asphalt concrete has been presented by Papazian (25). Seed, Chan,

and Lee (24) developed the background and the concept of the modulus of
resilient deformation. The stiffness modulus is another concept developed
by Deacon (26) for describing the relationship between stress and strain
for asphalt mixes in repeated load beam flexure.

The tests mentioned above are expensive, complicated and, therefore,
may not be available for different pavement design agencies. For this
reason, and in order to effectively evaluate the modulus or strength
properties of the paving materials, researchers have often attempted to
correlate these properties to some standard or conventional tests. It
should be recognized that these correlations should be used for estimating
only when actual test data are not available.

One of the more useful as well as convenient methods for estimating
resilient modulus of asphalt treated mixtures is based on the stiffness
concept of Van der Poel. By this method the stiffness or resilient
modulus of pure asphalts can be estimated from nomographs. The penetration
and ring and ball softening point of the asphalt in the mix are needed
as input for this estimate. |

Heukelom and Kiomp (27) extended the work of Van der Poel to estimate
the stiffness of asphalt treated mixtures. In addition to the penetration
and ring and ball softening point data, the volume concentration of the
aggregate, Cv’ must be determined. Heukelom and Klomp's semi-empirical
equation for mixture stiffness is reliable for mixtures with approximately
3% air voids. Subsequently, Van Draat and Sommer modified this relationship

to include the effects of different air voids.



For asphalt-bound materials, stiffness is defined by the relation

(8):
_a
S (t!T) _-E_
where
S(t,T) = Mixture stiffness at a particular temperature and time of
loading and oc,e = applied stress and strain, can be used and either

measured directly or estimated.

The subgrade is defined as the soil prepared to support the pavement
and is sometimes called "basement soil" or "foundation soil." The
design thickness of the pavement is strongly influenced by the design
strength assigned to the subgrade. This subgrade strength can be measured
directly or estimated from tests on the subgrade soil. Three tests
frequently used to determine the strength or modulus of subgrade soils
are:

1. The resilient modulus test using repeated load triaxial apparatus.

2. The California bearing ratio {CBR) test.

3. The repeated plate load test.

For untreated materials such as the subgrade, a measure of stiffness
termed the resilient modulus can be determined from a simple repeated

load triaxial compression test defined as:

M. = Repeated Axial Stress
R Recoverable Axijal Strain

Such techniques are described in Appendix C of Reference (4). However,

this equipment is not always available or convenient to use.



A widely used method of estimating subgrade modulus, Es’ is the relationship
between subgrade CBR and dynamic modulus developed by Heukelom and

Foster (5).
E = 1500 CBR (in psi)

The repeated-plate load test (6) is another method that can be used
to estimate the subgrade modulus.

For untreated granular materials, the same type of test can be used
to determine a stiffness modulus. That modulus is dependent on the

applied stresses

where: @ o * 0y + 0g (sum of principal stresses)

Ké&n the material constants
Alternatively, one can make use of the procedure suggested originally
by the Shell (7) investigators wherein the stiffness of the granular

layer is proportional to the stiffness of the underlying material, i.e.,

(Egran) - F(E

)

subgrade

where F is a function of the stiffness of both the subgrade and the
asphalt-bound layer varying from 1 to 4 (1). Environmental influence
must be considered when the response of untreated materials is assessed.
Accordingly, proper water contents (or soil suction) as well as the

effects of freezing and thawing should be reflected in stiffness measurements.
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Structural Analysis and Evaluation

To permit estimation of the potential for fatigue distress requires
an estimation of the stress and deformations resulting from moving wheel
loads on realistic representations of pavement structures. As noted by
a number of researchers {Barksdale and Hicks; Deacon; Terrel; Havens,
Deen and Southgate; and Witczak), the assumption of the pavement responding
as a layered elastic system appears reasonable at this time. Computer
solutions are available (CHEV 5L, BISTRO or BISAR and GCP-1) to facilitate
determination of the stresses. Typical results from a specific analysis
are shown in Figure 3 for the horizontal tensile strains on the under
side of asphalt concrete. This is a reasonable fatigue damage determinant.
When using such solutions for material response characteristics
that depend on stress, it is necessary to use an iterative type of
solution as indicated in Figure 4 for pavement section containing

a granular material (9).

Distress in Pavement Structure

For convenience, the various distress mechanisms have been grouped
into three categories (10) which either by themselves or in combination
can lead to a reduction in pavement serviceabiiity with time. The three
distress modes (i.e., fracture, distortion and disintegration) have been
listed in Table 1 and various manifestations as well as distress mechanisms
have been included for asphalt pavements. Moreover, the distress mechanisms
have been sub§ivided into those caused by both traffic and non-traffic
associated factors.

It has been indicated (11) that the most frequently occurring mode
of distress in asphalt highway pavements in the United States is fatique

cracking associated with traffic loads.
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Fatigue has been defined as the phenomenon of fracture under repeated
or fluctuating stress having a maximum value generally less than the
tensile strength of the material. It appears that stiffness plays a
predominant role in determining the fatigue behavior of asphalt mixes
and maximum principal strain is a major determinant of fatigue crack
initiation. Poorest fatigue results are from the base and base course
type mixes with low binder contents and, unfortunately, it is the layer
consisting of these mixes which normally carry the highest tensile
strains {2). Factors affecting the stiffness and fatigue behavior of
asphalt mixtures are shown in Table 2 (10).

For comparatively thin asphalt bound layers the controlled strain
mode of loading is more appropriate. The controlled-stress mode of
loading will only be approached in pavements containing comparatively
thick (greater than 6"), stiff sections of asphalt concrete.

Fatigue behavior of asphalt concrete can be represented by an

equation of the form

where
Nf = stress applications to failure
Enix - tensile strain repeatedly applied
to the mix
Ken o= constants depending on mixture characteristics,

n depends on mixture stiffness and ranges from 2 to 6.



12

In practice, pavements are subjected to a range of loadings; accordingly,
a cumulative damage hypothesis is required since fatigue data are usually
determined from the results of simple loading tests. One of the simplest
of such hypotheses is the linear summation of cycle ratios. This cumulative

damage hypothesis states that fatigue failure occurs when

where:

=
n

number of applications at strain level i

=
n

number of applications to cause failure

in simple loading at strain level 1.

Fatigue 1ife prediction under compound loading becomes a determination
of the time at which this sum reaches unity.

Permanent Deformation

Structural failure of a flexible pavement may be defined as a state
in which repeated application of a specified wheel load results in ever-
increasing plastic deformations of the pavement surface. A pavement
should be considered structurally adequate for certain wheel Toads if
the depth of rut caused by repeated application of that wheel load
reaches a final value which does not increase with further load applications.
0f course, a flexible pavement may be inadequate and become unserviceable
if the rut depth exceeds a certain limit. HNormally, it is to be expected
that the safety factors against structural failure will be of such
magnitude that pavements remain serviceable for the specified number of

load repetitions.
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Observations indicate that the phenomenon of structural failure of
flexible pavements is governed by the relative resilience or compressibility
of the subgrade soil with respect to the shear strength of the pavement
structure. In the case of a relatively weak, compressible subgrade and
a strong, well-compacted, but thin pavement structure, structural failure
occurs essentially through punching shear. Rutting is then due primarily
to compression and distortion of the subgrade soil.

On the other hand, in the case of a relatively firm, incompressible
subgrade and a poorly compacted or generally weak pavement structure, as
well as in the case of any subgrade supporting a very thick pavement
structure, failure phenomena may resemble more the phenomenon of general
shear of an incompressible soil under a footing. Rutting is then caused
primarily by distortion or shear deformation of the pavement structure.
Of course, all possible combinations of the two extreme types of phenomena
occur in intermediate cases.

It is of interest to note that there apparentiy exists a critical
subgrade stress level beyond which the rutting is extended into the
subgrade soil. If the vertical stresses on the subgrade never exceed
the critical level, ruts are formed primarily by shear deformations in
the pavement structure. This finding justifies the selection of limiting
subgrade stress or strain as one of the major design criteria in flexible
pavement design.

From an examination of stresses and deformations (using elastic
theory) in pavements designed (10) according to CBR procedures, and
those at the AASHO road test, the pavement will carry the corresponding
load repetitions without excessive permanent deformation as long as the
vertical compressive strain at the surface does not exceed the values

chown as follows:
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Compressive Strain

Weighted Load At Surface of Sub-,
Applications grade {in/in x 107"}
10° - 10.5
10° 6.5
10/ 4.2
108 2.6

Environmental Effects

Because the response of asphalt-bound materials is dependent on
temperature, distributions of temperature within layers containing such
materials should be determined.

Pavement temperatures can be computed from weather data. That is
done by solving the heat conduction equation by numerical technique,
such as finite-difference procedure or finite-element procedure, or by
closed-form techniques as presented by Barber (28). Alternatively, a
representative temperature can be estimated by the procedure suggested
by Havens, Deen and Southgate or by Witczak.

.Temperature stresses can often be as high as lToad stresses, as has
been shown in numerous studies, particularly in rigid pavements, where
temperature stresses are due to curling, warping, expansion or contraction.
Those same types of stresses are present in asphaif concrete pavements.
They are tensile or compressive stresses due to increase or decrease in
the general level of temperature and bending stresses due to temperature
differential within the pavement structure itself.

The tensile or compressive stresses due to general or seasonal
changes in the level of temperature, as are the resulting changes in

material properties, notably asphalt stiffness. The bending stresses,
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on the other hand, are due to diurnal or daily temperature cycles or

variations.



CHAPTER ITI
COMPUTATIONS

Input Variables and Pavement Material Selection

Various wheel loads and tire widths to be considered as input
variables in the computer analysis were suggested by the Washington
State Highway Department as shown in Table 3.

Assuming that tire-pavement surface contact pressure is uniform and
equal to the tire pressure and the contact area is circular, various
tire pressures have been calculated by dividing wheel load by a tire
contact area, These values are tabulated in Table 4.

Several thicknesses of pavement structure have been selected: 3",
6" and 9.5" of asphalt concrete surface on 8" untreated base. The
subgrade layer is assumed to be semi-infinite.

The types of material in each layer of the pavement structure
selected for this study are based on the availability of the laboratory
and field test data in combination with those common in Washington.
They are (lass "B" wearing course, untreated aggregate base and the

natural undisturbed clay type soil.

Estimate of Material Parameters

Asphalt Concrete

The major factor influencing the modulus of the asphalt treated layer
is the temperature. A temperature vs. dynamic modulus relationship for
class "B" wearing course (mean density is equal to 149.9#/ft.3) is
developed from Washington State University Test Track data and is shown
in Figure 5 (14). From this figure, a modulus of 400,000 psi has been
selected for an average temperature of 68.5°F, and the Poisson's ratio

is assumed as 0.3.
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Untreated Base

The modulus of the untreated base is sensitive to density, gradation,
and confining stress. A relationship between resilient modulus and buik
stress has been developed from laboratory tests by using repeated load
triaxial compression test (15). The effect of bulk stress on the modulus
is shown in Figure 6. The central curve on this figure is used to check
for the modulus required by stress conditions during the iterative
computational procedure. As shown in Figure 6, a range of modulus has
established on either side of this curve so that any modulus used for
computation that lies within this range is considered to be acceptable.
The untreated base modulus used for computation is assumed to be from 1
to 3 times the value for underlying material (16). Poisson's ratio is

taken as 0.4 (17).

Subgrade

A relationship between repeated plate load stress and subgrade
modulus has been developed from laboratory test data {18) and shown in
Figure 7. As in the case of untreated base, this curve is used to check
for the modulus required by calculated stress conditions. A range of
modulus has also been established. An average modulus of 6500 psi has
been selected for the subgrade and varied but little for all calculations.

Poisson's ratio is taken as 0.45 (17).

Calculation Procedure

The Chevron 5L computer program (19) was used to calculate the
strains and deflections, under the application of a single circular load
with a uniformly distributed pressure, at several depths within each
layer and at several radial distances from the axis of the loaded area.
The effect of the dual load on any point is then determined manually by

Tinear superposition of the effects of each of the loads at the point in
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question. The appliication of superposition implies Tinear response and,
thus, the utilization of this principle is an approximation of the dual
load.

Figure 8 illustrates the cross-sectional geometry (thickness) of
the assumed pavement structure, input variables, and material parameters
as used in the computer analysis. The untreated base layer which is 8
inches has been divided into three sublayers for convenience during the
stress-modulus matching procedure for each iteration.

In order to eliminate many variables, some of them have been assumed
to remain constant for all computations as noted in Figure 8. Additional
input variables such as the depths and radial distances where strains

and deflections being considered are summarized in Figure 9.

Summar
The computational procedure includes several iterative steps. For
a particular computation, these can be summarized as follows:

1. Select thickness of each layer.

2. Estimate modulus and Poisson's ratio for each layer.

3. Select wheel load and contact area (radius of circular
area of contact with pavement).

4. Select points for calculation of stresses, strains, and
displacements. These will usually include depths ranging
from the surface downward at least into the subgrade.
Points are selected radially from the center of load
sufficiently far to include the adjacent dual tire (if
any). Preliminary calculations indicated that tires at
the opposite end of the axie from those under consideration

do not contribute significantly.
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5. Following computer calculation, appropriate values are selected
from the printout and compared to the material behavior, i.e.,
Figs. 6 and 7. If the required moduli are not within the given
range, they are adjusted and the computations repeated until
required agreement is attained. When dual tires are utilized,
the additive values are used for this comparison so that
maximum values are always considered.

6. When agreement is attained, the final iteration is used as
being representative of that combination of load and pavement
response,

7. The above steps are repeated for each combination of load,

tire width, pavement thickness, etc.

Comparison With Experimental Data

Pavement response computed according to the above procedure is
entirely theoretical, although input variables and computation techniques
are reasonably acceptable. In order to gain confidence that computed
values are reasonable, they were compared to data from several test
roads where instrumentation permitted actual measurement of pavement
response. Although nearly impossible to select identical conditions,
pavements similar to those assumed in this study were found in the San
Diego Test Road {20), Brampton, Ontario Test Road (21), and the WSU Test
Track (14). These comparisons are summarized in Table 5.

Results

For various sizes of single and dual tires and various wheel loads,

the relationships between various thicknesses of asphalt concrete and

the maximum subgrade compressive strains, surface deflections, subgrade
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deflections and radial tensile strains are shown in Appendix A, from
Figs. Al to A24. These four types of response have been selected for
analysis in the following section.

In addition to the response for actual wheel loads as originally
selected, interpolated values were determined for axle loads of 18, 20,
22 and 24 kips. Maximum horizontal tensile strains for these axle loads
as well as maximum vertical compressive strains are shown in Appendix B,

Figs. Bl to BS.



CHAPTER IV
EQUIVALENCY DETERMINATION

Although behavior has been established for both strain and deflection,
as shown in Appendices A & B, strain criteria appear to be more suitable
at this time. Surface deflection is often a good indicator of pavement
behavior changes, but in itself it cannot be readily related to performance
over a wide range of conditions. Therefore, the main concern will be
with radial tensile strain on the bottom of asphalt concrete layers as
it relates to fatigue cracking or failure. In addition, vertical compressive
strain on the subgrade is examined with respect to its relationships to

limiting rutting in the pavement structure.

Fatigue

Laboratory testing of asphalt paving mixtures have been tested over
a wide range of conditions with reasonable success. In addition, an
engineering estimate can be made as to the predicted 1ife of a pavement
with respect to initial fatique cracking, Accordingly, a typical fatigue
curve representing mixtures similar to class B has been selected for
this project {22) and is shown in Appendix C, Fig. CI.

Also included in Appendix C are plots showing the expected number
of load application to failure for the various combinations of wheel
load, tire size, axle load, and pavement thickness. These are shown in
Figs. C2 - C5 and provide a convenient means of transferring computed
tensile strain values (Figs. Bl - B4) to number of load applications.

A complete and reasonably convenient summary of all these data is
shown in Fig. 10. In this figure, the relative number of applications

of a particular load or combination of loads can be determined. As a

basis for comparison in establishing Fig. 10, a "standard" condition was
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defined as an 18-kip axle load with 10-inch wide dual tires on a pavement
with 6 inches of asphalt concrete. Thus, this point on Fig. 10 has an
equivalency equal to unity. With the data normalized in this manner,
any two points can be compared (divided) directly using the relative

equivalencies on the vertical scale.

Rutting

Permanent deformation or rutting of asphalt pavements and the
engineer's ability to predict it are less well-defined than for fatigue.
This limitation results from the more complex nature of the problem.
Current research is well underway to providing a solution, but for the
purposes of this study, the data developed by Shell (7) is used. This
approach is based on the fact that if the vertical stress or strain at
the top of the subgrade is Timited to some specific value, permanent
deformation in the form of rutting will not occur in the overlying
layers. From field measurements compared to multi-layer elastic theory,
strain was found to be the better indicator. A general relationship was
developed with respect to the level of traffic as shown in Appendix D,
Fig. DI1.

Using the data in Fig. D1 in a manner similar to that for fatigue,
the number of applications for various axle loads and tire-pavement
thickness combinations have been plotted in Figs. D2 - D6.

Similar to that for fatigue, Fig. 11 has been prepared as a summary
of all the combined data for rutting behavior. Use of these data are
simitar to that for Fig. 10. Any two points can be compared in terms of

their relative life to failure in terms of their ratio or equivalency.
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Climate (Temperature)

Inasmuch as the preceding approach to development of equivalencies
was necessarily limited to an "average" set of input values, adjustments
may be needed for other conditions.

For the average case, 68.5°F was assumed to be the temperature for
asphalt concrete at all depths. This assumption resulted in an average
stiffness of approximately 400,000 psi (see Fig. 5). It is known,
however, that a range of temperatures is encountered such as during the
summer and winter months. For the State of Washington, two general
zones can be described: (1) West of the Cascade Mountains where the
temperatuées are reasonably mild and constant {(hence, the "average"
case), and (2) East of the Cascade Mountains where more extremes are
found ("winter” and "summer" cases). The profile of temperature within
the asphalt concrete for these pavements are estimated as shown in
Appendix E, Fig. EX.

Because of the excessive computétions and analysis required, the
effect of temperature on pavement behavior is limited to the case for
10-inch tires, 18-kip axle load, and for the usual range in asphalt
concrete thickness, appropriately adjusted for stiffness by sublayers.
These conditions are illustrated in Fig. E2 of Appendix £. In a manner
similar to that for previous calculations, the subgrade and surface
deflections, vertical subgrade strain and horizontal tensile strain in
the asphalt concrete were determined and are shown in Figs. E3 - E6,
respectively.

Using the same fatigue criteria as before (Fig. C1) the number of
load applications to failure were determined and plotted in the format
shown in Fig. 12. Remembering that these data are for 18-kip axle loads
only, they can be extrapolated to include other axle loads by utilizing

the 1inear nature of curves in Fig. 10.
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An analysis similar to that above has been made for rutting and the

data are shown in Appendix E, Fig. E7,

Vehicle Speed

It is generally known that pavement response varies with rate and
duration (speed) of the applied load {truck)}. The cause of such variation
is a result of the viscoelastic nature of the pavement materials, particularly
clay subgrade and asphalt concrete. Since the subgrade is at depth and
rate of load application is tempered by load re-distribution, the contribution
of the subgrade to non-linear pavement response has been ignored for
this study.

Effect of speed, then, is Timited to the viscoelastic response of
asphalt concrete. As before, analysis has been Timited to the standard
18-kip axle load with 10-inch wide tires. Using the 10-inch diameter
contact area between tire and pavement as the contributing loaded area,
the wheel was assumed to be rolling at a range of speeds and these were
converted to load duration as shown in Appendix F, Fig. Fl. These
loading times were then used to determine stiffness of the asphalt
concrete based on the principles of Van der Poel and calculated for a
particular mix by Monismith, et al. (23). These are shown in Fig. F2.

A direct experimental approach was used by way of comparison using data
developed at the University of Washington (3) as shown in Fig. F3.
Although the materials are not exactly the same in Figs. F2 and F3, they
compare favorably in Fig. F4, especially in the region of normal highway
speeds (short load durations).

Further analysis of the effect of speed is very similar to previous

variables. Again, analysis is limited to a single case as shown in
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Fig. F5, illustrating the principle if not all possible examples. The
variation in horizontal tensile strain, vertical compressive strain,
surface, and subgrade deflection have been compared to a range of speeds
as shown in Figs. F6 - F9. Finally, using fatigue data, the relative
effect of speed on the number of applications of Toad to failure is
shown in Fig. 13. A similar plot for rutting damage is in Appendix F,
Fig. F10. These data can be used to estimate additional equivalency
corrections based on changes in speed. Although the basic eguivalency
relationships shown earlier in Figs. 10 and 11 did not indicate a speed,
most of the stiffness data were developed for testing load duration of
about 0.5 sec., i.e., about 10 mph. The user of these data should be
cautioned, however, that relative values only should be compared and not

actual load applications to failure, for example.



CHAPTER V
SUGGESTED USE AND APPLICATIONS

Appropriate utilization and recognition of the limiting factors in
this study are very important. The user must realize that comparisons
among the variables considered are only relative and should not be used
for actual pavement 1ife predictions, for example. This approach is
predicated on the fact that computed data are based on hypothetical
pavements, although they are reasonable approximations of typical pave-
ments constructed in Washington.

Using the key relationships developed herein, Figs. 10, 11, 12
and 13 can be used to determine a wide range of egquivalencies. This is

illustrated in the form of examples or typical situations.

Example 1

Problem
Compare the relative pavement fatigue life expectancy of a
3-inch asphalt pavement when subjected to an 18-kip axle load with

10-inch dual tires and 18.5-inch single flotation tires.

Solution
From Fig. 10, the relative life for the single and dual cases

are 250 x 10'3 and 1000 x ]0'3, respectively. Therefore, the
(1000 x 1073

3
250 x 10
i.e., the single tire would be four times more damaging in terms

equivalency of these two are about four to one = 4.0},

of fatigue, or, conversely, the pavement will last four times

longer under the dual tires.

One should note that these equivalencies are compared for conditions

that are all constant except for those being compared,
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Example 2

Problem
Determine the equivalency for the same loads as in Example 1,

but in terms of rutting distress.

Solution
From Fig. 11, for 3-inch asphalt concrete, the dual tire

N =32 x 10_3 and the single N = 14 x 10-3. The equivalency would

-3
§g~5—19:§- = 2.3 for rutting.
14 x 10

then be
Comparing the values from Examples 1 and 2, the fatigue mode of
distress would control since the relative difference {equivalency) is

greater between the two cases,

Example 3

Problem

Using the results from Example 1, what difference will it make
for summer and winter conditions?
Solution

From Example 1, the equivalency was equal to 4, and this can be
considered the "average" condition in Fig. 12.  The actual equiva-
lency between 10-inch dual and 18.5-inch single would remain about
the same, but actual life to failure (for a particular case)} would
need to be adjusted. From Fig. 12, summer, average, and winter
applications for 3-inch asphalt concrete would be 7.4 x 103,
3.3 x 104 and 2.7 X ]05, respectively. Therefore, pavement life

could be expected to be increased by:
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5
E;Z_E_lga. = 8.2 times in winter, and decreased by
3.3 x 10
4
i;lii;ﬂ%g = 4.5 times in summer.
7.4 x 10

One must realize, however, that the actual range of winter to summer
temperatures are distributed throughout the year, month by month, and a
weighted average would be more realistic. The data in Fig. 12 are
primarily for illustrative purposes only and show that due to higher
stiffness of asphalt concrete in winter, it is more resistant to fatigque

cracking.

Example 4

Problem

Again using Example 1 results, what is the effect of reducing

average truck speed from 70 mph to 55 mph?

Solution

The curve in Fig. 13, although developed for the "standard" load,
can be used for general speed comparisons. At 70 mph, load applica-
tions to fatigue cracking is 1.25 x 106. At 55 mph, this value is

1.15 x 106. Therefore, pavement 1ife is reduced by a factor of

6
LI x 100 - 0.92 or 8%,
1.25 x 10
Example 5
Problem

A special highway user requested permission to use a 3-mile
segment of highway for trucks having average single axle loads of
24-kips and 18.5-inch single flotation tires. The existing pave-

ment is 3 inches of asphalt concrete with other conditions similar
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Example 5

Problem (cont.)

similar to those developed in this report. What changes in pavement
would be required to provide equivalent pavement 1ife compared to
the standard 10-inch dual, 18-kip axle load?
Solution

Provide asphalt concrete overlay. Locate the given conditions
on Fig. 10. (22-kip axle load, 18.5-inch single tire, 3-inch AC
pavement). This point is approximately 82 x 10'3 on the vertical
equivalency scale. Next, locate the "standard" condition (18-kip,
10-inch dual, 3-inch AC) which is approximately 300 x 10'3. Pavement
thickness must be increased sufficiently to increase the 82 x 10'3
to 300 x 10'3. Interpolation of the asphalt concrete thickness
curves (vertically on the 22-kip axle line) shows that 6.2 inches
of pavement is required. Therefore, an overlay of 3.2 inches would
provide equal life to the highway section in question for this
special loading.

An additional solution(s) may be more appropriate depending on

the conditions:

(1) Add axles to reduce average axle weight.

(2) Change tires to duals (Fig. 1 does not include Jarge
enough duals--11- or 12-inch would be required by
extrapolation, but may not be practicable).

(3) A combination of the above.

Also note that, for larger special loading, the speed may be reduced
considerably and this should be considered in the equivalency
evaluation. Further, the time of year may be a factor--special
hauling may be seasonal and compensation for temperature correction

may increase or decrease the equivalency.



CHAPTER VI
CONCLUDING DISCUSSION AND SUMMARY

This research project was initiated in an attempt to examine relative
destructive effects on the pavements of the wide single-tire and conventional
dual tires. Basic variables are wheel load, tire width and different
thicknesses of asphalt concrete. Based on available laboratory and
field data, asphalt concrete surface, untreated aggregate base and clay
subgrade were selected as the materials for this study. The Chevron 5-L
program was used to compute deflections and critical strains. Prior to
determining the fatigue and rutting equivalencies, maximum computed
deflections and critical strains were compared with other sources such
as the San Diego Test Track. These experimental data seem to agree
reasonably well. By using known fatigue and failure design curves,
maximum allowable numbers of various axle load applications were determined.
Fatigue and rutting equivalencies for various axle loads are established
by dividing the maximum number of various axle load applications by the
maximum appiications of 18-kip axle loads on an asphalt concrete thickness
of 6" and the dual 5" tires. These equivalencies, shown in Figures 10
and 11, can be used to compare the destructive effects of various sizes
of single and dual tires and axle loads as illustrated in Chapter V.
According to these examples, it can be concluded that higher equivalency
tends to cause less destructive effect, i.e., Tonger pavement life.

The effects of variation in temperature between summer and winter
are also examined. It can be said that as the temperature is decreased,
as in winter, the rigidity of the pavement structure is increased, thus
resulting in a decrease of vertical stress and thereby permitting a
greater number of load applications. As can be seen in Fig. 12, the

destructive effect of a vehicle on the pavement during the summer period
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is much greater than in winter, exclusive of spring frost break-up
conditions.

The effect of variation in vehicle speed on the pavements was also
considered in this study. In general, slower speed tends to cause
longer load duration, thus resulting in an increase in vertical stress
and thereby permitting fewer load applications to failure as can be seen
in Fig. 13. This figure can be used to compare the destructive effect
of various speeds as illustrated in Example 4, Ch. V. According to this
example, it can be concluded that slower speed tends to cause more
destructive effect.

The general nature of Figs. 10-13 provides a wide range of conditions
for comparison on a relative basis. Within reason, interpolation is
valid. One must keep firmly in mind, however, the fact that thgse
relationships are for assumed conditions {(although reasonable) and do

not represent actual pavements,
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TABLE 1

CATEGORIES OF PAVEMENT DISTRESS FOR ASPHALT PAVEMENTS (10)
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TABLE 2

OF ASPHALT CONCRETE MIXTURES (10)

Effcct of Change in Factor

On Fatigue Life|On Fatigue Life

in Controlled=-

in Controlled-

On - tress Mode train Mode
Factor Change in Factor Stiffness of Test of Test
Asphalt d : . ) :
. : a : ease -decrease
Penetration ecrease increase ’,1n?f -d S
sphalt . . . 2
Asy N inerease 1ncrease(1) 1ncrease(1) increase( )
.Content _ .4
jAggregate | increase roughness increase increase decrease
Type and angularity ¢ nex L
Aggregate open to dense (&)
X . a ea decreas
Gradation ~gradation increase increase e ?
Air Void ' (4>
ease e
Content decregse iner increase incr!asc
' fem 3) |
Temperature decrease increase increase decrease
(1)

(2)

Reaches optimum at level above that required by stability comsideration:

No significant amount of data; conflicting conditions of increzse

in stiffness and reduction of straim in asphalt make this speculative.

(3

(4

No significant amount of data.

Approaches upper limit at teﬁberature below freezing.
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TABLE 3

SUGGESTED MATRIX FOR WHEEL LOADS AND TIRE WIDTHS BY
THE WASHINGTON STATE DEPARTMENT OF HIGHWAYS

STATIC LOAD DYNAMIC LOAD
NCHINAL TIRE WIDTH g" 10" 15" 18.5" 8" 10" 15" 18.5"
TOAD XIPS
SINGIE WHESL
4 X X X X
6 C XX X X X X X X
8 X 'x X X X X X X
10 X X X X X )4
i2 X X X X
'DUAL ViIFEL '
& X X X X
& X X X X
8 X X X X
10 X X -

e
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TABLE 4
CALCULATED TIRE CONTACT PRESSURES

Tire Width Contactz Wheel Contact
(in.) Area (in.") Load (1b.) Pressure (psi)

8 50.27 4,000 79.58
6,000 119.37

3,000 159.15

10 78.54 4,000 50.93
6,000 76.40

8,000 101.86

10,000 127.32

15 176.71 6,000 33.95
8,000 45.27

10,000 56.59

12,000 67.59

18.5 268.80 6,000 22.32
8,000 29.76

10,000 37.20

12,000 44 .64
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APPENDIX A
SUMMARY OF PAVEMENT RESPONSE FOR RANGE OF:
WHEEL LOAD
TIRE WIDTH
SINGLE AND DUAL TIRES
PAVEMENT THICKNESS
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Surface Deflection - in. x 1073
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FIGURE A7 - MAXIMUM SURFACE DEFLECTION VS. ASPHALT CONCRETE

THICKNESS FOR VARIOUS WHEEL LOADS
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Surface Deflection - in. x 10'3
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FIGURE A11 - MAXIMUM SURFACE DEFLECTION VS. ASPHALT CONCRETE
THICKNESS RELATIONSHIPS FOR VARIOUS WHEEL LOADS
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FIGURE A14 - MAXIMUM SUBGRADE DEFLECTION VS. ASPHALT CONCRETE

THICKNESS RELATIONSHIPS FOR VARIOUS WHEEL LOADS
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FIGURE A15 - MAXIMUM SUBGRADE DEFLECTION VS. ASPHALT CONCRETE
THICKNESS RELATIONSHIPS FOR VARIOUS WHEEL LOADS
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FIGURE A16 - MAXIMUM SUBGRADE DEFLECTION VS. ASPHALT CONCRETE
THICKNESS RELATIONSHIPS FOR VARIOUS WHEEL LOADS
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FIGURE A17 - MAXIMUM SUBGRADE DEFLECTION VS. ASPHALT
CONCRETE THICKNESS RELATIONSHIPS FOR VARIOUS
WHEEL LOADS
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FIGURE A19 - MAXIMUM HORIZONTAL TENSILE STRAIN AT BOTTOM OF
ASPHALT CONCRETE LAYER VS. ASPHALT CONCRETE
THICKNESS RELATIONSHIPS FOR VARIQUS WHEEL LOADS
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FIGURE A21 - MAXIMUM HORIZONTAL TENSILE STRAIN AT BOTTOM OF

ASPHALT CONCRETE LAYER VS. ASPHALT CONCRETE
THICKNESS RELATIONSHIPS FOR VARIOUS WHEEL LOADS
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FIGURE A2Z - MAXIMUM HORIZONTAL TENSILE STRAIN AT BOTTOM OF
ASPHALT CONCRETE LAYER VS. ASPHALT CONCRETE
THICKNESS RELATIONSHIPS FOR VARIQUS WHEEL LOADS
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FIGURE A23 - MAXIMUM HORIZONTAL TENSILE STRAIN AT BOTTOM OF
ASPHALT CONCRETE LAYER VS. ASPHALT CONCRETE
THICKNESS RELATIONSHIPS FOR VARIOUS WHEEL LOADS
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FIGURE A24 - MAXIMUM HORIZONTAL TENSILE STRAIN AT BOTTOM OF
ASPHALT CONCRETE LAYER VS. ASPHALT CONCRETE
THICKNESS RELATIONSHIPS FOR VARIQUS WHEEL LOADS




APPENDIX B
MAXIMUM HORIZONTAL TENSILE STRAINS AND
MAXIMUM VERTICAL COMPRESSIVE STRAINS FOR
18, 20, 22 and 24-Kip AXLE LOADS
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APPENDIX €
LABORATORY FATIGUE DATA FOR ASPHALT CONCRETE
AND
COMPUTED APPLICATIONS OF LOADS TO FAILURE

IN FATIGUE FOR VARIOUS TIRE SIZES,
LOADS, AND PAVEMENT THICKNESSES
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FAtigue in Terms of Load Applications
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Asphalt Concrete Thickness - Inches

FIGURE C2 - MAXIMUM NUMBER OF 18 KIP AXLE LOAD APPLICATIONS ON ASPHALT
CONCRETE VS. ASPHALT CONCRETE THICKNESS RELATIONSHIPS FOR
VARIOUS TIRE SIZES, SHOWN IN RADIUS, OF SINGLE AND DUAL TIRES
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Asphalt Concrete Thickness - Inches
FIGURE C3 - MAXIMUM NUMBER OF 20 KIP AXLE LOAD APPLICATIONS ON ASPHALT

CONCRETE VS. ASPHALT CONCRETE THICKNESS RELATIONSHIPS FOR

VARIQUS TIRE SIZES, SHOWN IN RADIUS, OF SINGLE AND DUAL TIRES
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Asphalt Concrete Thickness - Inches
FIGURE C4 - MAXIMUM NUMBER OF 22 KIP AXLE LOAD APPLICATIONS ON ASPHALT

» SHOWN IN RADIUS, OF SINGLE AND DUAL TIRES

CONCRETE VS. ASPHALT CONCRETE THICKNESS RELATIONSHIPS FOR

VARIQUS TIRE SIZES
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FIGURE C5 - MAXIMUM NUMBER OF 24 AXLE LOAD APPLICATIONS ON ASPHALT CONCRETE

ASPHALT CONCRETE THICKNESS RELATIONSHIPS FOR VARIOUS TIRE

SIZES, SHOWN IN RADIUS, OF SINGLE AND DUAL TIRES
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APPENDIX D
STRAIN-LOAD APPLICATION RELATIONSHIP FOR ASPHALT PAVEMENTS
AND
COMPUTED APPLICATIONS OF LOADS TO FAILURE

IN PERMANENT DEFORMATION FOR VARIOQUS
TIRE SIZES, LOADS, AND PAVEMENT THICKNESSES
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Rutting in Terms of Load Applications

10

10

10

10

Asphalt Concrete Thickness - Inches

FIGURE DZ - MAXIMUM NUMBER OF 18 KIP AXLE LOAD APPLICATIONS ON
SUBGRADE VS. ASPHALT CONCRETE THICKNESS RELATIONSHIPS
FOR VARIOUS TIRE SIZES, SHOWN IN RADIUS, OF SINGLE AND
DUAL TIRES



Rutting in Terms of Load Applications
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FIGURE D3 -

Asphalt Concrete Thickness - Inches

MAXIMUM NUMBER OF 20 KIP AXLE LOAD APPLICATIONS IN
SUBGRADE VS. ASPHALT CONCRETE THICKNESS RELATIONSHIPS
FOR VARIOUS TIRE SIZES, SHOWN IN RADIUS, OF SINGLE AND
DUAL TIRES




Rutting in Terms of Load Applications

Asphalt Concrete Thickness - Inches

FIGURE D4 - MAXIMUM NUMBER OF 22 KIP AXLE LOAD APPLICATIONS ON SUBGRADE
VS. ASPHALT CONCRETE THICKNESS RELATIONSHIPS FOR VARIOUS SIZES,
SHOWN IN RADIUS, OF SINGLE AND DUAL TIRES
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Asphalt Concrete Thickness - Inches
FIGURE B5 - MAXIMUM NUMBER OF 24 KIP AXLE LOAD APPLICATIONS ON SUBGRADE VS.

ASPHALT CONCRETE THICKNESS RELATIONSHIPS FOR VARIQUS TIRE SIZES,

SHOWN IN RADIUS, OF SINGLE AND DUAL TIRES



APPENDIX E
DEVELOPMENT OF DATA AND COMPUTATIONS FOR EFFECT OF
TEMPERATURE CHANGE (CLIMATE) ON EQUIVALENCIES
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Rutting in Terms of Load Applications
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Asphalt Concrete Thickness - Inches

FIGURE E7 - MAXIMUM NUMBER OF 18K AXLE LOAD APPLICATIONS ON SUBGRADE VS.
ASPHALT CONCRETE THICKNESS RELATIONSHIPS FOR SUMMER, AVERAGE

AND WINTER TEMPERATURES



APPENDIX F
DEVELOPMENT OF DATA AND COMPUTATIONS FOR EFFECT
OF VEHICLE SPEED ON EQUIVALENCIES
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