SR 3 Freight Corridor
New Alignment Design

Submitted To: Washington Department of Transportation
Submitted By: Parsons Transportation Group Inc.
October 22, 2018
Scoring Criteria 1: Qualifications/Expertise of Firms on Team

1.a Proposed Team and Technical Expertise

Proposed Project Team, Engineering Discipline(s) and Technical Expertise

PARSONS Parsons Transportation Group Inc. (Parsons) has brought together a team of local experts who have a proven record of delivering the best quality products, on time and on budget. Our resources understand the practical solutions/design processes necessary to work with WSDOT and stakeholders to identify a preferred alternative that will be delivered through the ultimate procurement process. Our leadership in providing innovative and practical designs and program and project management is recognized throughout the industry. Parsons’ engineering staff has extensive experience working with the Washington State Department of Transportation (WSDOT), as well as with many local municipalities and counties. Our project team has experience with performing project administration, initial design, and project procurement associated with transportation projects.

The Parsons team has been assembled with the most qualified firms with the experience working on previous studies for the Belfair Bypass. Our team can provide WSDOT with services for all aspects of project development and delivery for preliminary engineering, procurement document development, and support continuity through the design and construction phases. The team has extensive experience working on WSDOT projects and fully understands the design-build and design-bid-build procurement processes and delivery methods. Having worked on the agency side (WSDOT), and on the contractor side as a designer and builder, the Parsons team can complement and successfully integrate with WSDOT to deliver the SR 3 Freight Corridor Project. Similar to the SR 3 Freight Corridor project, our scope of work on the WSDOT SR 9/204 Intersection Improvements project includes 30% preliminary engineering, RFQ and RFP design-build procurement document development, public involvement with multiple external stakeholders, and environmental assessment updates.

For the SR 3 Freight Corridor assignment, we have supplemented our experience by partnering with subconsultants to ensure that our team provides expertise, capacity and experience in all areas required for the updated traffic analysis, environmental assessment update, stakeholder outreach, and PS&E or a 30% design-build package. The Parsons' team has a distinct advantage over other teams in that we utilize our Construction Division (Parsons Construction Group) for constructability reviews, contractor level estimates, and review of the contract documents to minimize gaps in the contract which can lead to claims.

PRR has worked with WSDOT since the firm’s founding in 1981, facilitating partnerships between communities and public agencies and offering meaningful opportunities for public engagement to develop solutions. Most recently, PRR staff co-located at NW Region as part of Parsons' team, engaging the Lake Stevens and Snohomish County communities in the SR 9/SR 204 Intersection Improvement Project and the US-2 IJR Study. The firm has a strong understanding of WSDOT communications standards and procedures, having completed numerous WSDOT NEPA environmental studies. PRR offers a full range of communication capabilities and technical expertise in public-opinion research, NEPA public involvement, media relations, web content and design, video production, and facilitation to ensure effective and ongoing communications with the public.

SHANNON & WILSON Since 1954, Shannon & Wilson has developed effective solutions to complex site development problems. The firm’s focus has always been on challenging sites, high-profile projects, and serving clients, and, as a result, its experience base is worldwide and recognizable. Shannon & Wilson specializes in geotechnical engineering, earthquake engineering, tunneling, hydrogeology, instrumentation, geologic investigations, and environmental services. Shannon & Wilson has provided quality services to WSDOT for over 50 years on over 500 highway, bridges, and waterfront facility projects. Shannon & Wilson’s long history working with WSDOT has resulted in us having an intimate knowledge of WSDOT bridge and geotechnical manuals and specifications. Additionally, Shannon & Wilson staff are familiar with WSDOT construction planning, bidding, and execution for both Design-Bid-Build and Design-Build projects.
Skillings Connolly has provided engineering services to numerous local agencies for over 35 years, and their team is accustomed to preparing engineering plans consistent with all relevant codes and standards. Their staff is familiar with the design standards of neighboring cities and counties, AASHTO design guidelines, WSDOT's LAG Manual, and Standard Specifications for Road, Bridge, and Municipal Construction. The firm has accumulated a long list of public works transportation improvement projects, which includes over 2,500 individual projects completed throughout Western Washington. In addition to the numerous transportation projects successfully delivered by Skillings Connolly, several members of their staff have prior experience in senior roles as WSDOT employees. Their environmental services group brings an additional 32 years of experience working directly for WSDOT on transportation projects. In addition, their Senior Environmental Scientist is a WSDOT-certified Senior Author for development of Biological Assessments that can meet ESA consultation requirements for large infrastructure projects.

Transpo Group (Transpo) plans and designs transportation systems for people—not just drivers, but also the pedestrians, cyclists, and transit riders who share these systems. Transpo creates transportation solutions that enable a more sustainable tomorrow for communities, and still get everyone where they need to go today. Transpo is a leader in transportation analysis, particularly in analyzing network traffic operations and identifying safety issues. Their experts use a variety of specialized transportation planning and engineering tools to evaluate roadway and intersection issues and/or operating conditions. Transpo has built and applied operations models on a range of studies for WSDOT and local agencies. Transpo’s team members are well-versed in using the WSDOT LAG manual and FHWA design procedures, having worked with them for over 30 years. Figure 1 shows each firm on the team with their years in business, and number of local and national staff.

![Organizational Chart](image)

Figure 1: Proposed Project Team

<table>
<thead>
<tr>
<th>FIRM</th>
<th>ROLE</th>
<th>YRS EXP</th>
<th>WA & GREATER PORTLAND STAFF</th>
<th>NATIONAL STAFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsons</td>
<td>Project Management, Practical Design, Transportation, Air and Noise Analysis, Alternative Delivery Strategy, Procurement Materials, Risk Management, and Collaborate with WSDOT on Management of Solutions</td>
<td>74</td>
<td>145</td>
<td>14,000</td>
</tr>
<tr>
<td>PRR, Inc. (M/WBE)</td>
<td>Public Outreach, Research, Facilitation, Communications, Graphics</td>
<td>37</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>Shannon & Wilson, Inc.</td>
<td>Existing Site Conditions, Subsurface Explorations, Seismic Investigations, Slope Stability/Stabilization Studies, Site-Specific Response Spectrum, Materials Testing, Geomorphology, and Bridge/Structure Foundation Recommendations</td>
<td>64</td>
<td>168</td>
<td>315</td>
</tr>
<tr>
<td>Transpo Group</td>
<td>Traffic Analysis and Modeling, Traffic Operations, Traffic Engineering, ITS, Signal, and Roundabout Design</td>
<td>43</td>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>

Organizational Chart

Figure 2 presents our proposed team to deliver the SR 3 Freight Corridor – New Alignment Design project.
Figure 2: Organizational Chart
1b. Team Member Office Locations

As shown in Figure 3, the Parsons Team has a combined employee base of more than 425 in the state, with the required area of expertise in each office.

Figure 3: Parsons Team Member Office Locations

<table>
<thead>
<tr>
<th>FIRM</th>
<th>LOCATION (STAFF COUNT)</th>
<th>EXPERTISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsons</td>
<td>Seattle (85)</td>
<td>Project Management (PM); Environmental; Project Development & Engineering</td>
</tr>
<tr>
<td></td>
<td>Renton (13)</td>
<td>PM; Construction Management (CM); Commissioning; Project Development & Engineering</td>
</tr>
<tr>
<td></td>
<td>Sumner (26)</td>
<td>Construction Management (CM); Construction; Project Development & Engineering</td>
</tr>
<tr>
<td></td>
<td>Portland (Field) (11)</td>
<td>Project Development & Engineering</td>
</tr>
<tr>
<td>PRR, Inc. (M/WBE)</td>
<td>Seattle (74)</td>
<td>Public Involvement; Community Engagement; Social & Environmental Justice; Land Use Analysis</td>
</tr>
<tr>
<td></td>
<td>Portland (1) Bellevue (5)</td>
<td>Public Involvement; Community Engagement; Social and Environmental Justice; Land Use Analysis</td>
</tr>
<tr>
<td>Shannon & Wilson, Inc.</td>
<td>Seattle (133)</td>
<td>Geotechnical; Environmental; Cultural Resources</td>
</tr>
<tr>
<td></td>
<td>Pasco (5)</td>
<td>Geotechnical; Environmental</td>
</tr>
<tr>
<td></td>
<td>Portland (30)</td>
<td>Geotechnical; Environmental</td>
</tr>
<tr>
<td>Skillings Connolly, Inc. (S/VBE)</td>
<td>Lacey (44)</td>
<td>Civil Site & Design, Stormwater, Construction Management, Survey, Drinking Water, Transportation, Environmental Services, Utility Coordination, Marine, and Wastewater</td>
</tr>
<tr>
<td>Transpo Group</td>
<td>Kirkland (44)</td>
<td>Transportation Planning and Design</td>
</tr>
</tbody>
</table>

1c. Experience Working Together

We have selected our team based on each firm’s experience relevant to successfully delivering the project. Moreover, we have experience working together. The Parsons team has the experience to deliver the Traffic Analysis, Environmental Assessment, Stakeholder Outreach, Planning, Preliminary Engineering and Procurement Services to set the stage for the successful delivery of the SR 3 Freight Corridor.

Parsons has selected the most experienced team member firms with extensive work on the Belfair Corridor that will bring the highest value to WSDOT. Although Parsons has not worked directly with all of the sub-consultants within the last three years, our team is comprised of professional and personal relationships with each firm and history that is measured beyond three years. The relationships within our team are strong and they have a documented history of successfully delivering WSDOT projects. Each team member firm has ample WSDOT experience and are familiar with the design-build and design-bid-build delivery methods. We provide WSDOT with:

- Unmatched knowledge and project understanding. Our lead environmental and civil partner, Skillings Connolly, has provided survey and environmental analysis, and worked directly with Transpo Group to develop traffic forecasting on the SR 3 Freight Corridor, who has completed the majority of the traffic analysis for this proposed freight bypass. PRR has provided public involvement services throughout the Puget Sound area, working directly with both Parsons and Skillings Connolly on a wide range of projects.
- A proven background scoping and delivering complex, resource-constrained projects that require buy-in from multiple stakeholders. We will use the Practical Design process to optimize project scope and efficiently prepare the Basis of Design.
- Accelerated delivery of an updated traffic study for the 2040 design year that builds upon Transpo Group’s past participation in developing the 2035 design year analysis.
- Deep consideration of local stakeholder and agency interests including safety, access, regional mobility and congestion relief. Our key team members have worked directly with many of the stakeholders within Kitsap and Mason counties on the previous corridor studies.

Figure 4 describes our team’s experience working together on various projects over the last 3 years.

Figure 4: Experience Working Together

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>P</th>
<th>T</th>
<th>SC</th>
<th>SW</th>
<th>PRR</th>
<th>ROLE/DATE OF SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center City Connector Streetcar</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>Parsons: Prime, Engineer of Record. This project is being delivered by DBB. (2014-Present) SW: Geotechnical engineering (2014-2017) PRR: Preconstruction public involvement (2015-2018)</td>
</tr>
</tbody>
</table>

1d. Key Staff Availability

Parsons understands that WSDOT needs the right people at the right time to deliver this project. Figure 5 demonstrates the current estimated availability of our key staff. We believe that maintaining project resource consistency at all levels is important for project continuity and efficiency, so we have confirmed that our full team will be available to support the project needs for the full duration.

Our PM, Jeff Lavinder, is fully committed and available to this project with no current conflicting responsibilities. Since each firm on our team possesses significant local resources, the team can distribute work to technical staff as needed, enabling key staff to remain focused on this project. All team members are committed to providing the actual staffing level required to successfully deliver the project.

Figure 5: Key Staff Availability (Hours)

<table>
<thead>
<tr>
<th>NAME</th>
<th>2019 AVAILABILITY</th>
<th>2019 ANTICIPATED COMMITMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff Lavinder, PE</td>
<td>Project Manager</td>
<td>J</td>
</tr>
<tr>
<td>Patrick Skillings, PMP</td>
<td>Environmental Lead</td>
<td>160</td>
</tr>
<tr>
<td>Mike Horton, PE</td>
<td>Civil Lead</td>
<td>160</td>
</tr>
<tr>
<td>Andrew Royer</td>
<td>Public Involvement Lead</td>
<td>160</td>
</tr>
<tr>
<td>Eric Kelley, PE, SE</td>
<td>Structures Lead</td>
<td>160</td>
</tr>
<tr>
<td>Cliff Mansfield</td>
<td>Project Procurement Lead</td>
<td>160</td>
</tr>
<tr>
<td>Jon Pascal</td>
<td>Traffic Studies Lead</td>
<td>160</td>
</tr>
</tbody>
</table>
1e. Relevant Project Experience

Figure 6: Similar projects completed within the last three (3) years

<table>
<thead>
<tr>
<th>FIRM</th>
<th>PROJECT DESCRIPTION</th>
<th>SERVICES AND REQUIRED EXPERTISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARSONS</td>
<td>**WSDOT</td>
<td>SR 9/SR 204 Intersection Improvements, Phase 1**
COMPLETED: 2018 FEE: $5.7 M</td>
</tr>
<tr>
<td>PARSONS</td>
<td>**Seattle Department of Transportation (SDOT)</td>
<td>Elliott Bay Seawall Project**
COMPLETED: 2018 FEE: $34.5 M</td>
</tr>
<tr>
<td>PARSONS</td>
<td>**San Bernardino County Transportation Authority (SBCTA)</td>
<td>I-10 Corridor**
COMPLETED: 2016 FEE: $27.5 M</td>
</tr>
</tbody>
</table>
SR 9/SR 204 Intersection Improvement

Description: To reduce commuter congestion and increase freight mobility and access to the local businesses, the Lake Stevens intersection of SR 9 and SR 204 was in need of improvement. Parsons and PRR are working together to provide intersection improvements and communications for this project. PRR developed a Community Engagement Plan, is currently coordinating stakeholder advisory group workshops, planning open houses, implementing door-to-door campaigns, identifying and presenting at community meetings and elected officials briefings; and helping manage the project website, social media, and the community database. Due to the amount of public interest in this project, it is critical that the team establishes a presence in the community early and often through effective communication tools and tactics. The project team quickly developed deliverables to expedite the implementation of a comprehensive community engagement strategy.

Services and Required Expertise: Public outreach, communications, stakeholder engagement, web, social media

Relevance to SR 3: PRR are experts in communicating WSDOT congestion and highway improvements to community members. Feedback from community members informs us on how to develop communication materials in plain talk to convey complex project concepts in a way the community can understand.

SR 16, TNB to SR3 Congestion Study

Description: The SR 16, Tacoma Narrows Bridge to SR 3, Congestion Study will develop and vet viable multimodal strategies to reduce the congestion and enhance performance along the SR 16 corridor. PRR has been tasked with developing a community engagement plan to support development of the study that addresses congestion in this vital transportation corridor, using the Practical Solutions process. This includes facilitating the Technical Advisory Committee, comprised of representatives from local jurisdictions, major employers, and community-based organizations, developing and implementing a public opinion survey, and developing materials and coordinating in-person and online open house logistics. Both the in-person and online open houses required use of user-friendly graphics, distilling technical traffic analysis and forecasting into digestible maps and graphics for the public. Additionally, the open houses were advertised through various channels, including WSDOT’s Facebook and Twitter. The Facebook post received over 390 shares, a WSDOT record for open houses.

Services and Required Expertise: Community engagement, web, virtual meetings

Relevance to SR 3: PRR brings experience providing community engagement to diverse communities, via flyers, online open houses, and in-person open houses.

WSDOT, SR 9/SR 204 Interchange

Description: The SR 9 and SR 204 intersection in Lake Stevens WA experiences congestion that affects Snohomish County commuters. To reduce the congestion at this key intersection, a 1,500-foot long section of SR 9 will be lowered and a bridge and several on-ramps constructed to allow SR 204 traffic to efficiently access SR 9. The project will include realignment and lane widening along SR 9 between mileposts 15.2 and 16.0, and improvements to the intersection of SR 9 with Market Place NE, south of the SR 204 intersection.

Services and Required Expertise: Shannon & Wilson completed preliminary engineering which included performing 14 field explorations which were up to 150 feet deep, a 24-hour-long pump test, preliminary engineering evaluations for retaining walls and deep foundations, geologic seismic hazard analysis including liquefaction, preparing geotechnical data and baseline reports, and geotechnical-related technical provisions that will be used for project design-build procurement.

Relevance to SR 3: The geotechnical engineering required for SR 3 is directly similar to that required for SR 9/204. We anticipate that the structures required for SR 3 will include new cuts and fills, retaining structures, new intersections and intersection modifications, and a bridge. Shannon & Wilson is providing preliminary geotechnical engineering for all the structures and earthwork improvements listed above on SR 9/204 as a member of the WSDOT/Parsons team.

WSDOT, SR 522 Snohomish River Bridge

Description: WSDOT added two lane along 4 miles of SR 522 between the Snohomish River Bridge to the US 2 interchange in Monroe, Washington. The bridge is 1,800 feet long and supported on nine piers and spans that are approximately 175- and 300-foot long over the floodplain and main river channel, respectively.

Services and Required Expertise: Shannon & Wilson provided design and construction recommendations for 9- and 10-foot diameter drilled shafts, 1,100 feet of structural earth retaining walls, stone column ground improvement beneath the structural earth retaining walls for the east approach, and lightweight expanded polystyrene foam (geofoam) fill above the natural gas pipeline on the west approach.

Relevance to SR 3: The geotechnical engineering required for SR 3 is related to that required for SR 522. The 4-mile-long SR 522 alignment is provided additional lanes parallel to the existing SR 522. Shannon & Wilson provided final design geotechnical engineering for new cuts and fills, retaining structures, ground improvement and a river crossing bridge for SR 522. We anticipate that these structures would also be required for SR 3; however, the bridge required for SR 3 would have a smaller span over the ravine as compared to SR 522 river crossing bridge.
<table>
<thead>
<tr>
<th>FIRM</th>
<th>PROJECT DESCRIPTION</th>
<th>SERVICES AND REQUIRED EXPERTISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKILLINGS CONNOLLY</td>
<td>I-5/Chamber Way Bridge – Emergency Repair and Replacement Project
COMPLETED: 2017 FEE: $89,000</td>
<td>Description: Skillings Connolly was a sub-consultant to David Evans and Associates (DEA) during the “Conceptual Design Stage” for the replacement of the I-5/Chamber Way Bridge, which was damaged by an oversize load. Skillings Connolly prepared the RFP for the drainage design for the project. As part of the RFP, a Conceptual Hydraulics Report was prepared per the WSDOT Highway Manual that was used as the basis for design of the drainage system to provide runoff treatment for the new impervious surfaces. The preliminary design included a conveyance system consisting of a series of catch basins and pipes which would collect the stormwater from Chamber Way between the on and off ramps and convey the stormwater to Type S Media Filter Drains. Services and Required Expertise: Skillings Connolly staff brought their knowledge of roadway and drainage design, their experience preparing Conceptual Level Drainage Reports, their knowledge of MicroStation, and their experience doing drainage design on State Highways. Deliverables included a Draft and Final Conceptual Level Drainage Report, Draft and Final Conceptual Drainage Plans, a DAT Memo, a Draft and Final RFQ, and a Technical Memorandum addressing water quality treatment. Relevance to SR 3: Preparation of the 30% design package, RFQ, and RFP for Design-Build. Knowledge of roadway and drainage design, experience preparing Conceptual Level Drainage Reports, knowledge of MicroStation, and experience doing drainage design on State Highways.</td>
</tr>
<tr>
<td>SKILLINGS CONNOLLY</td>
<td>I-5/510 Reconstruct Interchange
COMPLETED: 2017 FEE: $511,000</td>
<td>Description: This project reconstructs the existing interchange into the first Diverging Diamond interchange in the state of Washington. Skillings Connolly led the conflict analysis between discipline groups for all underground work. We created an underground 3D BIM model to resolve conflicts between drainage, structures, illumination, utilities, and traffic signals. We provided coordination between the design team and the Olympic Region as well as QA/QC to all deliverables ensuring that deliverables met Olympic Region standards. Skillings Connolly provided supplemental survey data to complete the base map, Right of Way plans, and Access Control plans. Skillings Connolly provided utility relocation survey and utility construction observation. Skillings Connolly also reviewed and assembled the specification package for all disciplines and submitted to WSDOT for approval. Services and Required Expertise: The scope of work included survey, utility relocation engineering and conflict analysis, modeling, specification development, construction estimation, and QA/QC. Utility engineering, survey, and CAD staff brought their expertise in utility relocation on large transportation projects, as well as their familiarity with WSDOT processes and requirements. Relevance to SR 3: Knowledge and familiarity with WSDOT Olympic Region processes and requirements to the consultant project team. This included reviewing and assembling the specification package for all disciplines and successful submittal to WSDOT for final approval.</td>
</tr>
<tr>
<td>TRANSPO GROUP</td>
<td>I-5 JBLM Vicinity Congestion Relief Study
COMPLETED: 2016 FEE: $845,239</td>
<td>Description: Transpo led the traffic forecasting and operations analysis of freeway, interchange, and local arterial improvement alternatives to relieve traffic congestion, improve safety, and increase transit and alternative commute opportunities on the I-5 corridor near Joint Base Lewis-McChord (JBLM). The study utilized practical design and least-cost planning strategies and included an assessment of more than 180 alternatives ranging from access to the interstate, local road connections, new connections, transit enhancements, and a wide array of TDM and least cost planning strategies. Many of the project elements advancing into the NEPA and IJR process provide for short-term implementation and long-term preservation and flexibility to achieve the ultimate solution. Services and Required Expertise: Transpo was responsible for transportation forecasting, modeling, and traffic operations and multimodal analysis. The work included the development of a suite of modeling tools. Relevance to SR 3: Working with Olympic Region staff to develop a traffic model and perform modeling and traffic analysis to evaluate alternative designs to support the SEPA/NEPA environmental documentation process.</td>
</tr>
<tr>
<td>TRANSPO GROUP</td>
<td>North Lewis County Industrial Access Road
COMPLETED: 2017 FEE: $120,000</td>
<td>Description: Transpo explored strategies to increase access to industrial properties and improve system-wide mobility of people and goods in North Lewis County. Transpo led the traffic analysis components of the study and evaluated route improvements that utilized existing interchanges, existing local roadway improvements, and explored the feasibility of a new interchange between Harrison Avenue (Exit 82) and Grand Mound (Exit 88) along I-5, as well as other potential new connections. The traffic study focused on improvements that increased connectivity, provided better industrial access, allowed for safer travel conditions on freight corridors, and resulted in smoother traffic flow. Services and Required Expertise: Transpo was responsible for data collection, modeling, traffic operations analysis, freight analysis, and safety analysis. The work included developing a mesoscopic model and traffic operations models. Relevance to SR 3: Working with WSDOT staff to perform modeling and traffic analysis to identify projects that improved freight access and safety, including the evaluation of new freight corridor alignments.</td>
</tr>
</tbody>
</table>
Scoring Criteria 2: Qualifications of Proposed Project Manager

2.a Similar Project Management Experience

Jeff Lavinder, PE, is a Parsons certified Principal Project Manager who has extensive experience as a Project Manager for local municipal, State, and Federal projects for design and construction. Jeff also serves the company as the Technical Lead for Structures in Alternative Project Delivery. Jeff has served as project manager or deputy project manager for various clients including WSDOT, Caltrans, developers, and contractors. In this role, his responsibilities included managing projects, client collaboration, budgets, scope of work, review and writing change orders, managing subconsultants and schedules, coordinating design and constructability reviews, developing project criteria, and preparing documents for review by clients.

Jeff has built relationships in many of the WSDOT regions and departments. Starting in 1993, he worked for WSDOT on a survey crew out of the North Central Region. After receiving his degrees, he has worked almost his entire career in Washington on many WSDOT projects from procurement to construction. He has experience on the owner’s side and contractor’s side as a designer and constructor.

Relevant Project Experience

Deputy Project Manager | Washington State Department of Transportation (WSDOT) | Interstate 405 General Engineering Consultant (GEC) Contract | Puget Sound, WA | 2008–2011. Jeff served as the WSDOT assistant project engineer (deputy project manager) for the I-405, I-5 to SR 169 Stage 2 Widening (Renton Stage 2) Design-Build project. During the initial phase, he assisted with developing the final RFP and 15 percent initial design documents. After the project was awarded, Jeff helped set up the project office, staffing, and resource allocation with the WSDOT project engineer. His responsibilities also included participating in the management team; reviewing the design and construction schedule; reviewing plans and specifications, which included shop drawings for compliance with contract documents; reviewing the contractor’s monthly invoices; writing and reviewing change orders; and coordinating construction work with the contractor and WSDOT inspectors.

Project Manager | Seattle Department of Transportation (SDOT) | Elliott Bay Seawall Replacement Project | Seattle, WA | 2016–2018. Jeff was the Project Manager for the design and construction of the new Elliott Bay Seawall Replacement project (EBSP). Jeff’s responsibilities included management of the plans, specifications, and estimates (PS&E) package, management of 29 subconsultant firms, coordination with the City of Seattle, Waterfront Seattle Team and other stakeholders, review of all drawings, calculations, technical reports, memorandums and all other submittals prior to submission. The EBSP was procured under the alternative project delivery method of General Contractor/Construction Manager (GC/CM). Parsons was responsible for development of the RFQ and RFP and assisted SDOT in selection of the most qualified contractor. As part of Parsons contract, smaller separate projects were split off the GC/CM contract for the Pergola – Washington Boat Landing and the Box 1 construction. Parsons developed RFQ/RFP documents for the Pergola work before SDOT ultimately decided to deliver the project under the design-bid-build method.

Project Manager | Encore McKinley Village, LLC | Encore McKinley Village | Sacramento, CA | 2014–2017. Parsons provided professional engineering services to develop plans, specifications, and estimates (PS&E) for the 40th Street Underpass. Services included agency coordination, quality control, railroad coordination, utility coordination, and bidding and construction support. Jeff was responsible
for the delivery of the final design documents including drawings, specifications, and estimates for the project. Coordination of the design was required with UPRR, the City of Sacramento, and multiple utility companies. Jeff was responsible for the budget, schedule, and coordination of all submittals. His additional responsibilities included constructability reviews, coordination of construction submittals, RFI’s, shop drawings, and the engineering support during construction budget.

2.b Familiarity with Relevant State and Federal Regulations and/or Procedures

Jeff has more than 23 years of project delivery experience of major complex programs for WSDOT and other public transportation owners and is very knowledgeable of the manuals developed by WSDOT for use in the design of modifications to the interstate highway system. He has familiarity with relevant State and Federal regulations and procedures from projects like the Elliott Bay Seawall Replacement Project, which required preliminary and final design to WSDOT and SDOT standards, and extensive State and Federal environmental requirements; managing the WSDOT Cascades High Speed Rail Program and coordinating multiagency reviews by the Federal Railroad Administration, Amtrak, Sound Transit, City of Tacoma, Tacoma Rail, BNSF, Washington Department of Ecology, and WSDOT; and being co-located at the WSDOT Rail and Freight office on the $990 million ARRA grant for rail improvements.

2.c Three Project Manager Examples

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>SCOPE OF WORK/SCOPE CREEP</th>
<th>BUDGET ISSUES</th>
<th>LIFE CYCLE CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliott Bay Seawall Project</td>
<td>Jeff managed the project team over the last 2 years. He ensured the design team met the set contractual milestones as well as the 13 signed and 2 in-progress contract amendments. The City utilized Parsons’ design contract to provide services for the Waterfront project in addition to the Seawall. The project team delivered designs for the pergola restoration as well as the separate design-bid-build package for the Box 1 construction. The implantation of these smaller projects into the overall schedule of deliverables was monitored and administered by Jeff and his team.</td>
<td>Jeff managed 29 subconsultants during the last few years of the project and minimized the scope creep that had been on-going for the previous 4 years. Jeff conducted an internal review with each active sub-consultant on the work they were performing and had performed to date to determine potential scope creep. Although the Seattle Department of Transportation (SDOT) was aware of the majority of extra scope that was performed, they were unaware of the additional costs to the contract the additional scope caused. Since Jeff took over as Project Manager, all additional scope has been documented and budgets adjusted as necessary to facilitate the work needed to be performed. Jeff instituted a policy for the subconsultants that they were to inform Parsons of any work considered out of scope or risk delay in payment of invoices for any added work not pre-approved.</td>
<td>Jeff reviewed, with the project team, changes initiated by the contractor to determine if the change met the required life cycle as well as any additional life cycle costs. Jeff used his experience in life cycle analysis to make sure SDOT was aware of any additional maintenance costs for product substitutions.</td>
</tr>
</tbody>
</table>
Scoring Criteria 3: Key Team Member Qualifications

3.a Key Team Member Roles and Responsibilities

Each member of the Parsons team brings specialized experience and skills to the SR 3 Freight Corridor – New Alignment Design. Key team members were chosen because of their proven ability to deliver similar projects, their in-depth understanding of WSDOT and public agency procedures, and relevant state and federal regulations. Figure 9 presents our key team members roles and responsibilities are for the project.

Figure 9: Proposed Project Team

<table>
<thead>
<tr>
<th>KEY STAFF AND ROLE</th>
<th>RESPONSIBILITY</th>
</tr>
</thead>
</table>
| Patrick Skillings, PMP (SC) Environmental Lead | • Leads the environmental process.
• Collaborates with Transportation and Design Leads to document impacts
• Advise WSDOT on strategic environmental decisions for the project. |
| Mike Horton, PE (SC) Civil Lead | • Provide daily management of design activities In support of Environmental and Transportation Planning efforts
• Ensure that quality processes are in place and are being implemented by all disciplines. |
| Eric Kelley, PE, SE (P) Structures Lead | • Provide structural design for bridges, walls, and other ancillary structures |

2.d State of Washington Professional Licenses/Accreditations

Jeff is a Washington Professional Engineer and a Parsons Certified Project Management professional with more than 23 years of design, construction, and managerial experience.

Figure 8: Project Manager’s Professional Licenses

<table>
<thead>
<tr>
<th>LICENSE TYPE</th>
<th>STATE</th>
<th>LICENSE NO.</th>
<th>YEAR RECEIVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Engineer</td>
<td>Washington</td>
<td>26455</td>
<td>1/26/2000</td>
</tr>
</tbody>
</table>
STATEMENT OF QUALIFICATIONS

SR 3 Freight Corridor – New Alignment Design

Scoring Criteria 3: Key Team Member Qualifications

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Qualifications</th>
</tr>
</thead>
</table>
| Andrew Royer (PRR) | Public Involvement Lead | • Provide strategy and management of regular communications and outreach efforts.
 | | • Support outreach for NEPA/SEPA and tolling.
 | | • Lead stakeholder coordination and cross agency collaboration including public open houses and one-on-one meetings. |
| Cliff Mansfield, PE (SC) | Project Procurement Lead | • Procurement strategy and Contractor evaluation
 | | • Develop Ad ready documents |
| Jon Pascal, PE, PTOE (T) | Traffic Studies Lead | • Utilize the region traffic model to evaluate forecast conditions
 | | • Prepare an updated Transportation Discipline Report to support SEPA/NEPA documentation |

Project Examples and Understanding of WSDOT Regulations/Procedures

PATRICK SKILLINGS, PMP | ENVIRONMENTAL LEAD

<table>
<thead>
<tr>
<th>EDUCATION/REGISTRATIONS</th>
<th>YEARS OF EXPERIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS, Environmental Science</td>
<td>Total: 17</td>
</tr>
<tr>
<td>Project Management Professional</td>
<td></td>
</tr>
</tbody>
</table>

Patrick has over 17 years of experience in the environmental field. He specializes in the NEPA process, with a focus on transportation projects. Patrick’s comprehensive experience adhering to WSDOT and federal funding requirements, as well has his experience coordinating with WSDOT staff and utilizing the Environmental Procedures Manual, will be a benefit to this project as he is able to communicate environmental review requirements and restrictions to engineering design staff. The following descriptions illustrate Patrick’s experience and unique understanding of managing environmental impacts of infrastructure projects.

Relevant Project Experience

WSDOT—SR 167 Extension Tier II EIS. Skillings Connolly provided input and technical evaluation for potential impacts to Hylebos Creek and associated wetlands associated with extending SR 167 from Puyallup to the Port of Tacoma. Patrick completed the 404(b)(1) evaluation, based on existing documentation to identify the Least Environmentally Damaging Practicable Alternative (LEDPA). This was a critical step in the EIS process, allowing the EIS process to proceed. Patrick’s ability to utilize existing documentation and evaluate potential impacts was a key element to this project and was required for approval of the Clean Water Act’s Section 404 permit and was completed for agency concurrence under the 404/NEPA merger process.

City of Lynnwood—204th Street Extension and Improvements. Patrick was responsible for completing NEPA and Endangered Species Act (ESA) for extension of 204th Street in Lynnwood, WA. The NEPA evaluation also included completion of Traffic Noise Modeling and an evaluation of potential noise abatement. The NEPA evaluation also included completion of an Air Quality analysis to evaluate potential impacts to the National Ambient Air Quality Standards. The City included Community Development Block Grant (CDBG) funding from the US Department of HUD. As a federal agency, HUD declared NEPA Lead Agency status, as did FHWA. As such, Patrick completed NEPA applications under both FHWA standards and HUD standards; receiving NEPA approval for the project from both agencies. Subsequent to NEPA approval, the City elected to return the CDBG funding to HUD.

City of Hoquiam—John Gable Park Culvert and Trails. Patrick served as Environmental Manager and Senior Project Scientist for this project. The goal of the project was to correct the current road hazard ditch along SR 109. Safety was enhanced by adding traversable ditch in-slopes. Because the ditch met the requirements to be considered a Jurisdictional Ditch, Patrick prepared a Jurisdictional Ditch Memo and Mitigation Memo to address the impacts to the ditch. As a federally-funded project, Endangered Species Act (ESA) compliance was required; therefore, Patrick prepared a Biological Assessment (BA). The Jurisdictional Ditch Memo, Section 106 Cultural Resource Exemption, and No Effect Letter were used to support approval of a Documented Categorical Exclusion under NEPA, completing federal permitting requirements.
Understanding of WSDOT and/or Public Agencies Regulations/Procedures

Patrick has over 17 years’ experience working with WSDOT and Local Agencies. **Patrick was involved with the initial stages of the NEPA EA re-evaluation for the Belfair Bypass as it transitioned from a Mason County project to a State project.** With experience ranging from completing straight-forward programmatic CE’s documentation to NEPA EA’s and EIS’s, Patrick has a successful track-record of working with the Olympic Region Environmental Office and Jeff Sawyer’s team and Headquarters environmental group. Patrick has in-depth experience with the Environmental Procedures Manual and preparation of environmental documentation ranging from wetlands and aquatic areas, to environmental justice and noise analysis. His experience with WSDOT procedures extends to Endangered Species Act compliance, having been a certified senior Biological Assessment author for WSDOT. He understands the intricacies of the process and leads a team that includes currently certified BA authors.

MIKE HORTON, PE | CIVIL LEAD

EDUCATION

BS, Civil Engineering
Professional Engineer: WA

YEARS OF EXPERIENCE

Total: 40

Mike has over 40 years of experience as a transportation engineer, which includes 30 years with WSDOT and more than 30 years as a design and construction project manager with over 25 years leading public involvement efforts. Mike has delivered over two-hundred PS&Es for WSDOT. During Mike’s time as WSDOT Olympic Region Local Programs Engineer, **Mike was an active member of the Belfair Bypass project team** and served a duo role as both the Olympic Region representative to the team as well as the Local Programs oversight role of Mason County’s federal funds for the project. Mike attended Open Houses, provided guidance on the federal right of way process, and met regularly with Mason County Engineer (Jerry Hauth), State Senator Tim Sheldon, and WSDOT’s Executive Team.

Relevant Project Experience

WSDOT—Corridor Improvements to I-5 Steilacoom-DuPont Road to Thorne Lane. Mike was the Project Manager for the Skilling Connolly elements of work, which included all permanent signing for the project, water and sewer relocations, and utility coordination. The major work includes widening of I-5 and upgrading of two interchanges (Berkley and Thorne). The elements of work include surveying, geotechnical investigation, environmental documentation and permits, design of two interchanges, roundabouts, paving, sidewalks, bridges, retaining walls, noise walls, utility relocations, traffic control plans, hydraulic report and drainage plans (ponds, vaults, culverts), TESC plans, signals, illumination, permanent signing, ITS, and other associated work.

WSDOT—I-405/NE 6th St. to I-5 Widening and Express Toll Lanes DB Project. This project adds additional traffic capacity between Kirkland and Bothell, and combines it with the existing carpool lane to create a dual express toll lane system in both directions. This project complements the Kirkland Nickel Stage 1 project in relieving congestion on I-405 in the north end of the corridor. Mike took over as the Project Manager halfway through this project. At the time, the project was six months behind schedule. Mike’s first priority was to review the status of the project, which included determining the design project schedule, identifying outstanding issues, defining previous or current scope creep, apprising the budget status, and engaging all team members (internal and subs, and meeting with our client (Flatiron). Mike led the internal design staff and subconsultant teams to modify and finalize the design during the construction phase.

The Confederated Tribes of the Chehalis—Sickman Ford Overflow Bridge Design Build Project. Mike was the Design Project Manager for this project to improve flood control in the Chehalis River Basin by removing a portion of the roadway embankment and constructing a bridge. The project included horizontal and vertical alignment revisions, bridge construction, roadway widening, MoT, coordination with various Departments of The Confederated Tribes of the Chehalis Reservation, Thurston County, Grays Harbor County, emergency responders, school districts, and residents. The Confederated Tribes of the Chehalis design-build process,
Mike worked closely with his design team and the contractor to develop a schedule to complete all deliverables and meet the physical completion date. The structural design team was physically located in four different states.

Understanding of WSDOT and/or Public Agencies Regulations/Procedures

Mike is an experienced facilitator of multi-discipline, multi-jurisdictional coordination involving state, local, and federal agencies through all project phases: planning, environmental alternative analysis, right-of-way, design, and construction. Mike has prepared environmental documents such as Categorical Exclusions (CE) and Environmental Impact Statement (EIS), and also included collaboration with the Olympic Region Environmental Group and of the Local Programs Environmental Staff. As Engineering Services Manager, Mike successfully negotiated permit conditions with FHWA, US Fish and Wildlife and National Marine Fisheries Services on behalf of local agencies throughout the state.

ANDREW ROYER | PUBLIC INVOLVEMENT LEAD

EDUCATION

- MA, Public Administration, Seattle University, 2012
- BA, Political Science, Colorado State University, 2005

YEARS OF EXPERIENCE

Total: 10

Andrew brings project management, client relations, and stakeholder engagement skills to PRR, along with nearly a decade of experience in communications. He excels at building relationships with stakeholders and communities, and translating challenging subjects for diverse audiences. Andrew supports a number of projects in Kitsap County including Kitsap Transit’s SR 305 Corridor Improvement project and public outreach support for the Wheaton Way Transit Center project. Having led community outreach in the Kitsap County area, Andrew is familiar with local stakeholders and community members. His local knowledge allows him to have open and honest communication with the public, and the ability to anticipate and mitigate community concerns. With a background in strategic planning, policy development, and project management, Andrew is known for his dedication to client service, environmental justice, and social equity.

Relevant Project Experience

SR 305 Corridor Improvement Project, Kitsap County, WA. Project manager. Andrew supports the prime contractor and Kitsap Transit in gathering communities to learn more and provide feedback on SR 305 corridor improvements. He provides logistics for community events and supports the team during community open houses and online open house.

Wheaton Way Transit Center, Kitsap County, WA. Deputy project manager. Andrew supported the client and Kitsap Transit during public outreach. He also assisted the client in developing project materials and coordinating efforts to generate awareness about this project to businesses and residents near Wheaton Way in Bremerton.

Rail, Freight & Ports Division Communications (Amtrak Cascades), Washington State. Communications outreach specialist. Andrew develops materials and provides outreach to communities in Pierce County for the Rail Safety Campaign. He also organizes and manages logistics during photo shoots for marketing events.

Understanding of WSDOT and/or Public Agencies Regulations/Procedures

Andrew has worked closely with WSDOT communications staff for more than three years on numerous WSDOT projects, including the Mukilteo Multimodal Project, Amtrak Cascades Rail Safety Campaign, and the SR 305 Corridor Improvement Project. He has a strong understanding of the WSDOT communications, standards/guidelines, and regulations/procedures through his work on these projects. Developing reader-friendly materials for public consumption has familiarized him with WSDOT’s Style Guide and the use of their Practical Design guidelines during community engagement.
Eric Kelley is a principal engineer with more than 14 years of experience as a structural engineer and project manager. He has extensive experience in design and delivery of bridge projects including highways and rail structures. His experience has included bridge design, retrofit, structural analysis and retained-earth structures. Structural design experience includes viaducts, moveable bascule bridges, aerial light-rail stations, heavy-rail commuter bridges and tunnel portals.

Relevant Project Experience

Principal Engineer. Honolulu Authority for Rapid Transportation, Honolulu Rail Transit Airport Guideway and Stations Design-Build, Honolulu, Hawaii, United States. 02/2017-09/2018. The project includes design and construction of 5.2 miles of elevated double-track guideway, four elevated stations, and associated elements necessary for a rail transit system. Parsons is serving as lead designer and quality assurance provider. Eric was task leader for substructure design of Reaches C and D of the aerial guideway.

Principal Structural Engineer. California High-Speed Rail Authority, California High-Speed Rail Construction Package 1, Madera to Fresno, California, United States. 09/2014-08/2018. This design-build project includes the first section of a new, ultimately 800-mile-long high-speed rail system that will accommodate trains running between San Diego and Sacramento at speeds of more than 200 miles per hour. Parsons served as lead designer for the initial 29-mile alignment in the Central Valley that begins in Madera and ends just south of Fresno. Eric was the lead engineer responsible for designing the West McKinley Avenue overcrossing.

Structural Lead. Washington State Department of Transportation, SR 202 to SR 520 Flyover Ramp, Redmond, Washington. 01/2006-01/2008. The project widened a 2-mile section of SR 520, built a flyover ramp and made changes to three connected ramp junctions in a heavily congested urban area. Eric was the task leader for the structural portion of this project, and is responsible for the design of seven retaining walls, totaling approximately 960 feet in length, associated with this new flyover ramp project.

Understanding of WSDOT and/or Public Agencies Regulations/Procedures

Eric has 14 years of bridge experience using the WSDOT Bridge Design Manual and AASHTO Bridge Design Manual. He has designed numerous retaining walls on projects using WSDOT guidelines and is familiar with WSDOT drawing and specification standards. Eric understands WSDOT project delivery requirements and expectations for project work plans, including scope, schedule, budget and quality.

Cliff has over 45 years of experience in roads, highways, transit and light rail planning, design, construction, and traffic design, analysis and operations. This includes 33 years of successively responsible professional engineering experience in public transportation for the Washington State Department of Transportation. In addition, Cliff has 12 years of experience in senior level management and engineering design guidance, direction, training, and oversight of multi-million-dollar projects.
Relevant Project Experience

WSDOT—Alaska Way Viaduct and Seawall Replacement Program (AWV). Cliff was the civil engineering project manager for the Project Management Assistance Consultant (PMAC) Team for WSDOT. AWV is a multi-billion-dollar program of projects to replace the aging SR 99 Alaskan Way Viaduct highway structure along the waterfront of downtown Seattle, WA. Cliff supported detail project management of the design of the removal and replacement of a significant portion of the Viaduct, including an elevated interchange and intermodal freight routing facility.

WSDOT—Tacoma Narrows Bridge Design-Build. Cliff provided civil engineering services for the design and construction of a new suspension bridge, over a mile in length with a main span of 2800 feet. This was the first major suspension bridge to be built in North America since the 1960’s and one of the first to be constructed under a design-build contract. Cliff was responsible for the civil design of the 3.4-mile project including multiple freeway lanes, High Occupancy Vehicle facilities, a new major interchange revisions, and upgrade of two additional interchanges, a toll plaza facility, local street relocation and revisions and all major utilities modifications including drainage, power, sewer, water, and communications.

WSDOT—I-405 Congestion Relief and Bus Rapid Transit Program. Cliff was Director of Engineering, providing senior level project management and civil engineering design guidance and direction for a multi-billion-dollar multi-modal freeway expansion, capacity improvement, and Bus Rapid Transit program. The project added general purpose and high capacity transit lanes, revision, reconstruction, and increased connectivity of major interchanges, alignment revisions, and other safety improvements to Interstate 405, a high-volume Interstate Urban Freeway in the greater Seattle-Bellevue area of Washington’s Puget Sound Region. Provision was also included for incorporation of a Bus Rapid Transit system with multiple inter-modal connections.

Understanding of WSDOT and/or Public Agencies Regulations/Procedures

Cliff has 44 years of experience with WSDOT, including 33 years as a WSDOT employee. He is thoroughly familiar with all WSDOT processes, procedures and the requirements for using federal, state, and specific grants funds including Transportation Improvement Board (TIB) funds. Cliff is also the roundabout design expert that wrote WSDOT’s Design Manual’s roundabout design criteria.

JON PASCAL | TRAFFIC STUDIES LEAD

EDUCATION

- MS, Civil Engineering, University of Washington
- BS, Forestry, University of Washington
- Professional Engineer: WA, 40876
- PTOE: WA

YEARS OF EXPERIENCE

Total: 20

Jon specializes in leading corridor studies for agencies throughout the Northwest, including numerous WSDOT projects. He has a solid understanding of the key components of any corridor traffic study and the necessary tasks required to identify feasible solutions that can be implemented. WSDOT has relied on Jon’s expertise to develop traffic models and traffic studies in support of freeways, interchanges, local highways, ferry terminals, and transit strategies throughout the state. **He assisted in the earlier phases of the Belfair Bypass project** and was involved in the modeling and traffic analysis. He also successfully worked with both FHWA and WSDOT Headquarters to complete the traffic study components to address the IJR and NEPA process approval for the I-5 JBLM Area Improvements.

Relevant Project Experience

SR 164 East Auburn Access Study. Jon is leading the modeling, alternatives analysis, and transportation discipline report in support of improving access the East Auburn. He is utilizing practical design and least-cost planning strategies as part of the alternatives evaluation. The traffic study is evaluating a long-list of corridor alternatives ranging from corridor enhancements, local arterial improvements, new interchanges, and new local road connections.
I-5 JBLM Stage 3 Dupont-Steilacoom Interchange Improvements. Jon led the traffic forecasting of freeway, interchange, and local arterial improvements to the Dupont-Steilacoom Interchange along I-5 near Joint Base Lewis-McChord (JBLM). He worked closely with the GEC project team to evaluate alternative interchange design concepts, and work to prepare short-term and long-term traffic forecasts in support of the Transportation Discipline Report. The effort included the update of the corridor operations model, and close coordination with WSDOT staff.

I-5 Tumwater to JBLM Model Development. Jon was the modeling lead for the I-5 Tumwater to JBLM Modeling Project which evaluated practical design solutions for an 18-mile segment of I-5. The project included the development of a Dynamic Traffic Assignment Model to better evaluate lower cost operational improvements along I-5, such as hard shoulder running, ramp metering, and additional HOV facilities.

Understanding of WSDOT and/or Public Agencies Regulations/Procedures
Jon regularly works in accordance with the most recent WSDOT Design Manual, Standard Plans, Traffic Manual, and Standard Specifications to conduct studies and prepare designs for highway projects. His corridor studies incorporate activities identified in WSDOT’s Corridor Sketch Initiative and the latest guidelines from WSDOT Headquarters. He also utilizes national standards such as the MUTCD and NCHRP reports on modeling best practices. In his career working for local agencies, he has helped them in developing roadway design standards and traffic study standards to support the design and permitting of public and private projects in the public right-of-way.

Scoring Criteria 4: Firm’s Project Management System

4. a Project Management System

Quality Assurance/Quality Control Process
Parsons is committed to providing quality services and products. Quality begins at the start of the project, with the preparation of the quality management plan (QMP). Our QA program, combined with our QC requirements, processes, and practices, fosters technical excellence and ensures the quality of our work products and services. Our work will be reviewed in accordance with the project-specific QMP that is developed for each project. The framework for the QMP comes from our corporate quality policy, outlined in our Plan, Act, Check, and Excel (PACE) Quality Management Guide. These procedures establish a methodology for the preparation, review, and check of all documents necessary for the overall management of the project. Our quality practices have resulted in more efficient and effective cost management, improved risk management, and enhanced customer satisfaction. To ensure QC on this project, all final study and design documents that we prepare will be checked in detail before formal submittal. Project Manager Jeff Lavinder will collaborate with WSDOT team leaders and project development staff to define the appropriate level of shared quality management for each work assignment. As appropriate, our QA manager, Doug Chappell, will serve as an extension of WSDOT’s technical staff to ensure that the team understands and implements the QMP processes and procedures.

Document Reviews: A feature of the Parsons quality processes and procedures is a technical edit and independent check of written documents, such as reports, presentations, graphics, and specifications. Our lead technical writers/editors will be engaged throughout the project to ensure that our deliverables are written for the appropriate audience. Some documents will be written for the design file and will be highly technical in nature, while others will be in accordance with WSDOT’s reader-friendly standards and consistent with the governor’s Executive Order 05-03, which refers to plain talk. In the case of specifications or other technical documents, the technical writers/editors ensure that clear and concise language, appropriate grammar, and correct spelling are used.

Design Checks: Although design personnel perform self-checks of their work, our QC procedures require a second, formally documented check of all drawings, calculations, computer files, computer-aided design and drafting (CADD) files, quantity computations, estimates, and reports. Parsons is proud that its standard
procedures were implemented on WSDOT’s I-405 Corridor program and became the standard by which all submittals for the program were audited.

Senior Technical Review: Parsons’ QMP requires internal technical reviews of deliverables. The purpose of the senior technical review is to ensure that standard engineering practices are being met, design criteria are followed, and the design incorporates good engineering judgment. These reviews are performed for each discipline within a design package.

Interdisciplinary Reviews: Interdisciplinary reviews (IDRs) are a vital component of Parsons’ QMP. IDRs provide the opportunity for the various disciplines to review the other elements of design and planning. For example, wetlands identification and needed mitigation are coordinated with stormwater requirements. These reviews are a conflict-analysis and coordination element, ensuring that the disciplines have integrated the analysis and accounted for the planning of stormwater improvements near wetlands.

Constructability Reviews: Finally, a constructability review will be performed early during the practical solutions alternatives analysis phase. All too often, owners deal with claims from contractors that encounter challenges during construction. Parsons is uniquely qualified to support constructability reviews by engaging its Construction Division personnel. For the SR 9/SR 204 Intersection Improvements project, we conducted a joint constructability review with WSDOT and Parsons staff that included Tom Zamzow, a respected heavy/civil construction professional. By drawing on the experience of construction personnel who are in the field every day building transportation projects, we ensure that our concepts and designs are sound from an engineering perspective, and, early in the concept development phase, we determine that they can be constructed cost effectively. The joint key findings of the review of five potential design options were (a) no extraordinary construction techniques; and (b) no extraordinary MOT issues.

Safety, Health, and Environment (SH&E): Safety is more than a priority at Parsons – it is one of our core values. Parsons is committed to maintaining a safe and healthy working environment for our employees, clients, subcontractors and the general public and achieving our goal of zero accidents and zero injuries.

Parsons strives to promote a health and safety culture, led by CEO Charles Harrington, and a well-defined safety management structure that emphasizes leadership and accountability throughout all levels of the organization. We recognize that a strong safety program reduces costs and minimizes lost work time on projects. The Parsons SH&E management system provides the minimum standards for managing SH&E hazards and risks associated with Parsons’ activities and operations and can be used as a reference document for:

- Learning and understanding Parsons SH&E systems
- Planning for SH&E requirements
- Control of hazards and management of risk
- Activity planning
- SH&E audits
- Incident reporting and investigations
- Increasing safety awareness for existing staff
- Competence setting
- Review and improvement of SH&E systems

Tracking Systems

Parsons is recognized for success in managing scope, schedule, and budget on Washington projects such as the I-405 GEC program, the EBSP in Seattle, and the SeaTac Airport Program Management project.

Budget: Our success in scheduling and completing projects is based in part on our use of a web-based, integrated cost and schedule control tool, PWORKS® for the management of all projects based on comprehensive work planning. A key feature of our PWORKS® program is ready access to real-time data through our intranet system. All aspects of budget and cost control are accessed through this system, including timesheet approvals, assessing estimates to complete data, and evaluating earned value. Jeff will use PWORKS® to help keep the project on track. During the project’s practical-solutions phase, a key characteristic of the Parsons team’s success is its ability to adjust and realign technical work tasks and products to support the needs of the fluid stakeholder decision-facilitation process.

Scope: Parsons is vigilant in monitoring and managing project scope and budget. We are committed to assisting WSDOT in adhering to the stringent project scope, schedule, and budget requirements that it previously established. Jeff and his team will work directly with WSDOT to manage and monitor work execution, confirm changes in scope of work, and agree to the best approach to managing potentially adverse schedule or project cost impacts.
Accurate budget and scope data is critical for the success of the project and Jeff’s background in all project delivery methods allows him to manage each to the most appropriate level to ensure project success and avoid surprises by all interested parties (WSDOT and contracting community). For example, if the project delivery method is determined to be design-build-build, Jeff’s understanding of WSDOT unit bid item measurement and payment is critical to development of the Summary of Quantities and the Engineer’s Estimate. Quantifying the bid items knowing how they are measured and paid in the field provides more accurate estimates and avoids change orders in construction. If the project delivery is determined to be Design-Build, Parsons construction experience allows us to estimate using materials, equipment, and personnel just as a Design-Builder will do to provide an estimate and upset price for the project.

Document Control and Management Process

Parsons understands the need to communicate with multiple entities and offices to meet the project needs and schedule. Parsons routinely uses ProjectWise and SharePoint project collaboration software. These tools facilitate seamless and remote communication, connectivity, and coordination. Our use of ProjectWise or SharePoint allows all Parsons team members and WSDOT to access all technical work products and in-progress deliverables and other documents. It is our experience that to successfully close a project out, it has to be set up the right way at the start. We will set up the file structure for the project at the start which will be organized and easy to find files and information.

Parsons brings innovative solutions and cutting-edge technology to successfully deliver challenging, complex infrastructure projects that meet existing and future needs. PAR-PRO® is a project oversight system, encompassing project start through O&M, as well as a 5-phase service offering to optimize project delivery. The software is configurable and customizable, with mix and match individual modules which can be modified to meet unique local requirements; can choose multilingual and local language support. We have successfully implemented PAR-PRO® as a service offering on $60 billion worth of programs and projects throughout North America. Benefits of Parsons PAR-PRO® Quality Oversight approach include:

- **Proactive**
 - Increases the focus of the oversight on the areas identified with greater risk;
 - Uses performance measurements and trend analysis to adjust the focus; and
 - Identifies systemic issues to enable continuous improvements to a project.

- **Cost Efficient and Effective**
 - Improves scope management through clearly developed and communicated requirements;
 - Uses a planned and systematic approach aligned with ISO 19011, that objectively, accurately and consistently assesses performance against the requirements;
 - Focuses limited resources on areas of greater risk and poor performance; and
 - Uses advanced web-accessed database applications for increasing the process and communications efficiency and effectiveness of all project participants.

Requirements Based Performance Measurement while Managing Risks

Parsons manages and implements oversight programs to objectively measure owner-contracted management, design, construction, maintenance and operations performance against the criteria and contractual requirements. The process uses customized web-accessed database technology for all participants involved in the oversight process activities. The key attributes of the oversight approach are:

- System Engineering processes of requirements management, verification and final acceptance
- Clearly developed and communicated requirements for the RFP documents that can be easily verified
- Performance measurement against requirements, instead of focusing only on progress
- Management of risks through risk profiling of activities to prioritize the focus on higher risk areas
- Sampling methods that align to the required level of confidence that the work conforms
- Tailored to project delivery methods (DBB, DB, CMGC, Procurement – supply/install, and P3)
- Applications for mobile handset access to the software to increase field staff productivity
Schedule Process

Parsons recognizes the importance of an integrated schedule and cost system to the success of a project. We use different scheduling software programs to meet client needs; however, we typically use Primavera because of its ability to handle large, complex projects and to integrate with PWORKS. Ed Masterson is a Primavera-trained cost scheduler who will develop the overall project schedule for the project. Ed will work directly with WSDOT to develop and baseline the project schedule and to manage monthly schedule updates. When changes to the schedule are considered, Jeff and Ed will prepare scenarios for consideration by WSDOT, outlining which deliverables are impacted and where opportunities to regain schedule exist. Because work assignments could vary from initial planning and environmental approvals to on-site CM, a comprehensive understanding of WSDOT’s complete project delivery life cycle is critical to understand the appropriate level of scheduling necessary to manage and monitor the work.

Internal Project Team Collaboration

Scheduled meetings that are well organized, define a purpose, invite appropriate attendees, establish clear outcomes, and follow an agenda with defined timelines are an important communication tool. The Project Management Plan (PMP) will establish the guidelines for these meetings. Brief meeting summaries and action-item lists document the Parsons team’s decisions and track agreed-on tasks. As PM, Jeff Lavinder fosters open communication among technical leads, promoting coordination, cooperation, and collaboration to address project challenges. We recognize that the exchange of ideas among all team members will best ensure the achievement of WSDOT’s project goals. In addition, Parsons routinely uses ProjectWise and SharePoint project collaboration software. Our use of ProjectWise or SharePoint allows all Parsons team members and WSDOT to access all technical work products and in-progress deliverables and other documents.

Frequent and effective communication among parties—WSDOT and other affected stakeholders—is necessary to maintain the project schedule and forward momentum. As demonstrated on the Cascades High Speed Rail and Elliott Bay Seawall projects, Jeff has demonstrated that he is an effective communicator and skilled at building productive, trusting professional relationships with project team members and key stakeholders. In addition, over the past two decades, he has engaged and interacted with key staff throughout WSDOT’s Olympia Service Center, and Northwest, Olympic, and Southwest regions.

Our team is flexible in how it interacts with third-party stakeholders. We have the resources and ability to adjust to WSDOT’s specific needs. In some cases, WSDOT may prefer that only WSDOT staff interact with stakeholders and that Parsons act in a supporting role, providing material to enhance WSDOT’s direct communication with agencies and the public. Under this agreement, assisting and interacting with the project’s external stakeholders is possible; however, it is typical for WSDOT to assume a “strong owner” role and lead these efforts. If requested, we are prepared to help design a stakeholder decision-facilitation process unique to specific projects and based on established goals. By using a stakeholder interview process at the very beginning of a project to identify expectations and needs, WSDOT and the team can identify the best approach to stakeholder interaction. Throughout the process, we have found that the integration of individual stakeholder briefings (before formal workshops) to share work accomplished and the meaning of findings ensured that technical materials were presented clearly. Our Project Manager, Jeff Lavinder, has designed and led many external stakeholder processes to successful, consensus outcomes.

Client/Stakeholder Interaction

The Parsons’ collaboration tools are founded on concepts that allow projects to be completed on time and on budget while working in an environment of teamwork and partnering. The following tools are utilized to meet these goals and examples of how these tools have led to successful projects are described in this section.

- **Partnering:** Establish a common vision and follow up
- **Co-Locating:** Facilitate teamwork and working together
- **Over-the-Shoulder Reviews:** Engage all parties throughout the design process
- **Task Forces:** Meet weekly and collaborate on project challenges
- **Technical Workshops:** Focus on specific issues or challenges
- **Weekly Management Meetings:** Ensure communication and progress are understood and acceptable

Team collaboration starts by integrating the Parsons and WSDOT teams together. Our approach to co-location is to provide the right people at the right place at the right time. We recognize that it is not necessary or
beneficial to WSDOT to locate the entire team at the WSDOT Olympic Region Headquarters or WSDOT Project Office for the duration of the project. The initial startup team will reassess the Environmental Assessment (EA), traffic analysis and modeling, and public outreach. After the early stage work is complete, the project team will develop the RFQ and RFP procurement documents from offices in Seattle, Sumner, and Olympia. Depending on the preferred delivery method, the Project Team can transition to full design for bid-build delivery, or an oversight team for design-build delivery. The Parsons’ staff needed to augment the WSDOT staff to administer the design-build contract can be transitioned to the project office, or WSDOT Olympic Region office as needed. It is our intent to co-locate consultant key personnel at the appropriate WSDOT office. Parsons has the capability to use conference calling, webex, and a ‘smart board’ to allow meetings with attendees at remote locations.

Scoring Criteria 5: Project Delivery Approach

5.a Work Plan Development

WORK PLAN DEVELOPMENT AND DECISION-MAKING PROCESS

The best roadmap to successful project delivery is a well-defined, calendar-based work plan with distinct task and activities linked to established milestones. Each work assignment under this contract will likely be different, but all will require the adoption of a work plan with established delivery or completion dates. The development of a work plan begins with the scope of work, the deliverables, and the desired delivery dates. From the scope of work, the Work Breakdown Structure (WBS) is created. The WBS is a detailed breakdown of tasks and activities necessary to advance work elements, facilitate decision making, and produce the desired deliverables. For each work assignment, the preliminary WBS will be developed and discussed in detail with WSDOT for review, comment, and refinements. Durations of task and activities, staff resources required, key decisions needed, and delivery dates will be considered in refining the WBS.

Once WSDOT's comments and refinements are incorporated and accepted, a project delivery schedule based on the work plan WBS will be developed for WSDOT's review, approval, and final direction to establish the work plan baseline schedule. The work plan is monitored continuously throughout project execution. The project manager monitors the progression of the work against the calendar-based work plan to ensure the delivery is on track. When necessary, Jeff will recommend adjustments to the work plan to ensure that the team is on track or to adjust the work plan to accommodate WSDOT-approved adjustments to the work plan. Adjustments to the work plan often result from changes in the character or nature of the work. Therefore, each work assignment should have some form of a risk management and change management plan regardless of how simple or complex the work. Maintaining risk and change logs and monitoring potential occurrences of events can proactively identify potential changes to the work plan that can be discussed well in advance with WSDOT team leaders to mitigate adverse effects.

Work Plan Primary Elements

At the onset, Parsons will collaboratively develop a PMP with WSDOT. The PMP will, at a minimum, outline the project performance baseline, the communication plan, the change management plan, the risk management plan, the quality plan, and the closure plan. The PMP will be used as a framework for handling issue resolution with project team members, the client, and stakeholders. Our work plan is designed to get the project started with the right controls in place and to map stakeholder coordination, decision milestones, and deliverables on a clear work plan; work plan elements include a 90-day plan, practical design/preliminary engineering, NEPA/SEPA, final design/design-build documents, and design support during construction.

90 Day Plan

In collaboration with WSDOT, the 90-Day plan will achieve the following:

- Finalization of the PMP and quality management plan
- Confirm a strategy for co-location
Baseline the project schedule for general initial scope elements (as described in the RFQ)
Document least-cost planning
Establish and launch tools for issues tracking, risk management, cost control, and change management
Identify key decisions and a decision framework that is integrated into the project schedule
Finalize the community engagement approach and plan
Update the Environmental Assessment
Update the traffic modeling and analysis

During this stage, we will also work with WSDOT to identify the approach and needs for the team co-location. A consideration for this will include the types and frequency of meetings. An important task will be to review the planning efforts conducted to date for the SR 3 Freight Corridor. In reviewing the work completed to date, the Parsons team will determine the level of stakeholder collaboration that has already occurred, identify corridor performance targets that have been established, verify transportation deficiencies and needs, and find out what programmatic or system level strategies have been deemed warranted. The goal in this review will be to determine what least cost solutions have been made and to identify whether there are any gaps in the prior processes to circle back on. Results will be documented in a preliminary least-cost summary document that provides a recap of the prior community engagement efforts, identifies what is known about the community and corridor vision, and establishes necessary next steps for starting a practical design work element. Figure 10 illustrates the work plan element activities and shows the milestones for key project decisions.

Practical Design & Preliminary Design

The Practical Design and Preliminary Engineering work element includes all of the steps necessary to develop conceptual designs and cost estimates for alternatives that satisfy the needs of WSDOT and the community.

During this stage, a multiagency and interdisciplinary advisory (MAIA) team will be convened. This team will become the advisory body that works to develop recommendations to WSDOT on project need, context, design controls, alternatives, performance, and impact trade-off preferences. This team will meet regularly until decisions on these items are made. Parsons will work with WSDOT to identify whom to invite to participate on the MAIA team. It is critical that the WSDOT project manager participate on the MAIA team. The Parsons team will provide the necessary meeting preparation, materials, facilitation, documentation of meeting outcomes, and follow-up. The initial MAIA team meeting will be to review the least-cost planning work conducted to date, as well as the plan for wrapping up and documenting the least cost planning effort. The least-cost planning process will conclude once WSDOT and the MAIA team has a good understanding of the performance gaps along the corridor, the system-level deficiencies and needs, and a recommended set of multimodal, cost-effective strategies for addressing the deficiencies and needs.

The MAIA team will continue to meet at key points in the practical design process leading up to the development of the basis of design (BOD) documentation. Perhaps the most important deliverable during this stage is preparing the BOD form, which will be used to document that decisions made are consistent with WSDOT’s practical design and least-cost planning requirements. The Parsons team will obtain MAIA input and prepare the components of the BOD in stages for review and approval by the WSDOT project manager. The approach for developing the components of the BOD will be consistent with the methodologies provided in WSDOT’s design manual and supporting guidance documents. The BOD includes the following elements.

General Project Information: If it has not been prepared already, Parsons will complete the WSDOT project summary form and incorporate its information into the BOD.

Project Need: Parsons will identify the root cause of the transportation problem, using a contributing factors analysis and describe the primary reason the project is being proposed. This information will be used to help verify that the solution only addresses the baseline need. Parsons will also identify the contextual needs that warrant consideration. Parsons will develop performance metrics for use in evaluating whether alternatives satisfy the baseline and contextual needs and establish target values for each.

Context: Parsons will assess the project area to identify the environmental, social, and transportation characteristics influencing the activities, functions, and performance expected to occur there. Parsons will describe the existing and future land use adjacent to and surrounding the corridor and perform a transportation analysis to understand how the corridor is used for regional and local trips.
Design Controls: Once the project need and context are understood, the Parsons team will identify the design year, design users, compatible modes, modal priorities and necessary access control, target speed, and intersection design vehicle best suited for meeting those needs.

Alternatives: Parsons will utilize the prior elements to propose alternative solutions that address the baseline need while balancing the performance trade-offs identified in the process. The Parsons team will utilize an alternatives comparison table for documenting how well the alternatives meet the performance metrics.

Design Elements: Finally, the Parsons team will identify the lowest cost design elements suited to meet the need and provide the desired project performance. We expect that implementing the practical...
solutions process, will result in identifying operational strategies, demand management strategies, and various capital investments. Parsons will help WSDOT identify which low-cost operational and demand management strategies should be considered first, before making a large capital investment. Additionally, Parsons will recommend operational improvements, demand management strategies, and capital investment packages that could be phased initially or over time for achieving the needed performance in the area. Once the WSDOT project team identifies the preferred investment packages to implement, Parsons will complete the BOD document and will assist the WSDOT PM in obtaining WSDOT executive review and early design approval. The BOD will allow the preliminary engineering to advance one or more alternatives. Further development of alternatives will inform discussions and decisions for project delivery method, including design-bid-build, design-build, and GC/CM. Preliminary engineering plans and cost estimates will be prepared.

NEPA/SEPA, Final Design/DB Documents, Design Support During Construction

Early in the NEPA/SEPA work element, the environmental strategy will be developed to confirm the level of documentation necessary and overall environmental milestones. The approach and timing for the selection of a preferred alternative will be included in the environmental strategy. Once the preferred alternative is selected, the Parsons team will work with WSDOT to develop an additional scope of work necessary for completing the project. That scope will depend on the type of construction method selected but will likely include the critical tasks listed on Figure 10. The Parsons team will provide the necessary environmental analysis and obtain ROW certification and the level of design appropriate to the procurement method for WSDOT’s review and approval. WSDOT will perform the tasks related to selecting the contractor and securing the final construction or DB construction contract. Parsons can provide WSDOT with design support during construction, regardless of which procurement method is chosen.

WORK PLAN CONTINGENCIES

Parsons will develop and manage a decision tool that will be mapped to the risk register and issue log. In doing so, we will be able to track decisions, understand their impact on future risks and issues, and clearly identify new risk levels. The risk levels will be used to set contingencies during all project phases. Contingencies are critical for aligning project risks to budget so that the project can be successfully managed to budget and schedule. With recent escalation in construction materials and limited contractor resources for transportation projects, right-sizing the solution to a fixed Connecting Washington budget will be a key to project success and must be managed from the onset. Parsons will work closely with WSDOT to fully document risks and issues that have been noted during the previous project outreach and evaluation phase. We will define each risk and assign a probability of occurrence and a likely outcome (cost or schedule growth or reduction). As the practical-solutions process proceeds, we will maintain, understand, and manage the project risk register to identify events that could occur that would require contingency plans to minimize negative effects. We will also look for clear opportunities that can be leveraged for the project’s benefit. An example of a risk and contingency could involve a stakeholder disagreement regarding the preferred alternative selection. The risk of a stakeholder disagreement could result in delay to the environmental process, permitting, and final approvals. A mitigation plan that includes contingency would involve collaboration with stakeholders early in the practical design process to identify project goals, measures, and success definition, as well and continued involvement through the alternative development and evaluation process. This would also include a clear description of potential long-term phasing of solutions. This process would involve regular check-in with the stakeholders to confirm their concurrence with the process and outcomes. Throughout the project development and delivery process, Jeff Lavinder will keep a running list of potential issues, risks, and related contingencies (likely known changes) to permit ongoing scenario planning and design. Resolving Issues Parsons recognizes that the key to a successful project is to ensure proactive communication with the design team, the client, and stakeholders.

Incorporating Practical Design/Least-Cost Solutions

Our work plan will incorporate practical design directly as a key work element. Our work plan approach to incorporating practical design/least-cost solutions is to start the development of the basis of design and the basis of estimate early in the practical design process. This provides two immediate benefits:
1. Concurrent with alternatives being developed, we are vetting and developing basis of design parameters for later approval.

2. We are confirming a consistent approach to estimating alternatives and ensuring cost is a consideration early and throughout the project development process, so that the least-cost solution is identified. Early concurrence on basis of design from stakeholders helps to provide clarity during the alternative development and evaluation process. This also improves the team’s confidence that the right solutions were developed for the project needs. Parsons is also experienced using an early definition of cost parameters to help estimate and track alternative cost elements. We have developed and used a project decision tool that allows us to track various project element costs and clearly identify the least-cost solutions that meet the project needs.

Parsons will approach this project using the practical solutions guidelines outlined in the WSDOT Design Manual so that we can achieve the most cost-effective solution for meeting the project need. We will work with WSDOT to design a public outreach strategy to clearly define in collaboration with the stakeholders the root cause of the problem we are trying to solve or the opportunity we need to address. We’ll frame the project need, context, and design criteria during the initial, least-cost planning phase of the project. To complete this effort, we anticipate setting up the MAIA process so that we can ensure stakeholder involvement through this critical phase of work. We will also identify any key periods when the project will benefit from community engagement. Our approach to defining solutions that will meet the need will begin with the lowest cost solutions. Examples of these solutions might include signal timing, traffic demand management, roadside improvements, and minor roadway adjustments. Many of these solutions could be bundled together to provide the lowest cost solution.

5.b Issue Resolution

Project teams are made up of people with different ideas and experiences, which could result in conflicts or challenges when developing solutions through the design process. Parsons’ approach for resolving issues within the project team involves a combination of frequent, open, and proactive communication; a structured team organization (with clearly defined roles and responsibilities); and an escalation process.

Proactive Communication: Jeff Lavinder will hold frequent team meetings to review progress, schedule, performance, quality, and technical issues across discipline and functional lines. All significant decisions will be vetted with WSDOT leveraging the advantages of co-location through informal conferences and formal biweekly joint project management team (PMT) meetings. Jeff practices a “walk around” management style to reach out to team leaders to continually touch base on work status, approach, and alignment with the adopted stakeholder and project delivery strategy. These mini check-ins permit in-progress review of intermediate findings, refinements to technical approaches, and potential course corrections to respond to a fluid stakeholder facilitation process. He also works closely with team leaders to identify issues and challenges and jointly develop potential contingency plans. In addition, Jeff maintains an open-door policy, giving team members an opportunity to express their ideas, concerns, and issues and to design a shared path to early resolution. Proactive communication is the key to identifying challenges and opportunities, incorporating feedback from stakeholders, and reaching consensus in a timely manner within large multidisciplinary teams.

Structured Team Organization with Clear Accountability: All major discipline leads will report directly to the Parsons project manager. Each discipline lead will have a clearly defined role within the project team. This level of definition is important so that all team members understand who they need to talk with to complete their respective tasks or to discuss any issues.

The PMP will include a section that clearly outlines how team members can work at the lowest level, within the organization, to resolve conflict or to elevate the conflict to the level of resolution when stuck. Each team member will be expected to attempt to resolve conflicts at the peer-to-peer level first before elevating issues to the next level. Early communication and clarity are essential in resolving challenges, leading to the successful delivery of the project.

Empowered Decision-Making and Escalation Process: Our team will make all decisions in the best interest of meeting project goals and resolving issues at the lowest organizational level at the earliest
possible time, allowing work to proceed with minimal delay. The key to an effective escalation process is to organize it by project team structure, not by corporate organization, and to empower those individuals with the appropriate decision-making authority. When issues or decisions are expected to have implications beyond the immediately affected design team, they are quickly escalated to the lowest level that includes all affected groups. Ultimately, the project manager will be the final decision maker on issues that do not require escalation beyond the project team.

CLIENT ISSUES

Within an integrated team approach where the team is developing project alternatives to meet the needs of a project with many moving parts, difficult technical issues may arise through the course of a project, requiring resolution with the client. The approach to issue resolution with the client is through proactive communication. Parsons will do the following with the WSDOT project manager:

- Hold regularly scheduled, integrated team meetings to discuss project progress, identify issues, and discuss project decisions. This provides value to the team and ensures all team members understand the project progress.
- Identify, manage, and communicate issues on a frequent basis through regularly scheduled project management meetings. Frequent, regular 1:1 meetings ensure open and productive communication.
- Develop and implement recovery strategies for any identified issues. This could be as simple as increased communication or as complex as resource changes.

STAKEHOLDER ISSUES

The public, stakeholders, adjacent property owners, and transportation users likely have an interest in any transportation improvement project. Past project experience tells us, however, that the interests of these different groups often vary. This variability creates a challenge when communicating with the public on how one design alternative may have greater benefits over another or how funding gets applied for project features that have conflicting interests among stakeholders.

Our approach to issue resolution with stakeholders is a multistep process that uses the least-cost benefit and practical design method of project delivery. The goal of the process is to draw consensus and test any issue or conflict with an agreed-on set of parameters. We will take the following steps to bring together stakeholders, collaborate, and solve issues efficiently:

- Through collaboration with WSDOT, we will identify and assemble key stakeholders into a Stakeholder Advisory Group (SAG).
- Through collaboration with the SAG, we will identify performance gap, and define the project needs, context, and alternatives.
- When the SAG is formed, we will develop a SAG charter that presents the project team’s expectations of SAG members, outlines their roles and responsibilities within the practical-solutions process, and shares a process for resolving conflicts that may arise.
- Any challenges or conflicts that arise with the stakeholders will be resolved through the SAG.

5.c Work Breakdown Structure (WBS) Assumptions

The project will be broken down into two main work stages. The first stage will be the early work stage which will be started at NTP and progress into the design and procurement stage. The early work stage will consist of four work elements. Each work element will transition into the second stage seamlessly. The second stage will be the design and procurement stage and will be performed from June 2019 until a future date which will be dependent on the preferred
procurement determined by WSDOT for project delivery. The level of the design will be dependent on the how project is delivered.

The Parsons team is poised to work collaboratively with WSDOT to advance the project through the environmental and engineering phases and into construction. The table below provides an example set of deliverables that illustrates our experience working with WSDOT in the past. This list of deliverables is based on the assumption that the project presents a “high” level of complexity per the practical design process. Upon final scoping of the project, this list will be expanded upon and finalized for assignment of roles and responsibilities. At the very minimum, we anticipate WSDOT being involved in a review capacity for all major design deliverables, involved in all stakeholder outreach meetings, and serve as signatory for agreement documents (permits, MOUs, MOAs, utility franchise agreements, etc.). We also anticipate providing supporting documents for WSDOT internal processes as needed (access hearings, utilities coordination, etc.).

Deliverables by Phase

Figure 12: Deliverables by Phase

<table>
<thead>
<tr>
<th>PHASE</th>
<th>WSDOT DELIVERABLES</th>
<th>PARSONS DELIVERABLES</th>
</tr>
</thead>
</table>
| **Practical Design/ Least Cost Planning** | • Existing conditions ROW maps
• Previous planning studies and community engagement minutes
• Traffic counts | • Meeting agendas, minutes, materials
• Basis of Design document
• Least Cost Planning Summary report
• Needs definition |
| **Public Outreach** | • Public Outreach materials
• Open house materials (graphics, mailer, boards, factsheet) | • Stakeholder meeting materials
• Blog posts
• Correspondence database |
| **Preliminary Engineering** | • Pavement design report
• Existing utility agreements | • Pavement design report
• Existing utility agreements
• Plans, Specifications
• Estimates
• Associated reports, calculations
• Design documentation package |
| **Environmental Documentation** | • Environmental review summary
• Regulatory agency coordination | • Technical analysis and environmental documentation (NEPA, SEPA, ESA, 106)
• Updated EA
• Permit applications |
| **Right-of-Way** | • Title reports
• Appraisals | • Proposed right-of-way plans
• Access hearing materials
• 30% design documents |
| **Design-Build Procurement** | • Design-Build RFQ/RFP templates
• Critical design and policy decision items relating to RFQ/RFP specs | • RFQ/RFP document
• Supporting information
• Mitigation and agreement tracking matrix |
| **Environmental Permitting** | • Tribal coordination | • Supporting information for permit submittals |

5.d Key Issues and Critical Milestones

In the experience the Parsons team has earned through other projects, we have identified some key issues, challenges, and constraints for the procurement phase of the project. The procurement phase includes development of the RFQ, RFP, and preliminary design (30%). The construction phase includes selection of the contractor, design, construction, and closeout.

PROCUREMENT PHASE

The Parsons team has reviewed the scope of work and the project site and has come up with the following key issues, challenges and constraints.

Geometric Plans

The Parsons team will work with WSDOT and project Stakeholders to review the previous alignment and determine a preferred alignment. Since the last alignment was determined, there has been significant commercial and residential development on the alignment path. On the northern tie in intersection with Lake Flora Road, the land is zoned for a marijuana grow operation and there is an adjacent garden shed business which would be impacted. On the southern tie in, the alignment currently goes through the North Mason High School softball field, septic field, and entrance to their stadium. The tie-in also impacts the Girl Scouts of America (GSA) property, which is not preferred by the GSA. In addition to the conflicts with the
northern and southern tie in points, the alignment goes through the Alta neighborhood which will result in removal of multiple houses. The Parsons team will investigate alternative alignments to minimize impacts to the public, North Mason High School, and local businesses. In addition, Parsons will review the site with our construction division to determine any other possible alignments that may come from the design/build proposers. We will share the findings with WSDOT to lay out the optimum alignment.

Stakeholder Outreach

The Parsons team will reach out to the multiple external stakeholders to gain consensus on the preferred alignment and determine what their needs/wants are for the project. Figure 13 shows our identified external stakeholders with the key issue.

Figure 13: Stakeholders and Key Issues

<table>
<thead>
<tr>
<th>STAKEHOLDER</th>
<th>KEY ISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mason Transit Authority (MTA)</td>
<td>New park and ride at Log Yard Road and SR 3 tie in with the new alignment</td>
</tr>
<tr>
<td>City of Belfair</td>
<td>Impacts to local businesses, neighborhoods</td>
</tr>
<tr>
<td>Tribes</td>
<td>Six identified in the current EA</td>
</tr>
<tr>
<td>Alta Neighborhood</td>
<td>Impacts to the neighborhood including access to the new freeway (roundabout vs signed intersection)</td>
</tr>
<tr>
<td>Girl Scouts of America</td>
<td>Opposed to the project due to land takeover</td>
</tr>
<tr>
<td>North Mason High School</td>
<td>Current alignment goes through their softball field, septic field, and entrance to the stadium and parking lot</td>
</tr>
<tr>
<td>Mason County Sewer</td>
<td>Alignment is adjacent to the sewer plant – access point to new freeway</td>
</tr>
<tr>
<td>Port of Bremerton (POB)</td>
<td>Wants to expand the industrial park at the Bremerton National Airport and extend a new sewer line from the airport to the Mason County Sewer facility</td>
</tr>
<tr>
<td>Mason County</td>
<td>Project is contained ~85% within the county</td>
</tr>
<tr>
<td>Kitsap County</td>
<td>Project is contained ~15% within the county</td>
</tr>
<tr>
<td>Women's League of Voters</td>
<td>Previously against the project with concerns of impacts to local businesses</td>
</tr>
<tr>
<td>Bonneville Power Administration (BPA)</td>
<td>Project goes under BPA high voltage power lines and will need a temporary construction easement and permanent easement.</td>
</tr>
</tbody>
</table>

Coordination with WSDOT

The Parsons team has worked on many projects that required coordination with various entities within WSDOT. Working with the various WSDOT groups, such as the bridge, geotechnical, real estate, HQ, and project office, will require coordination and over the shoulder reviews to make sure the preliminary design is constructible. The design team will set up a bi-weekly task force with the appropriate WSDOT group(s) to coordinate the preliminary design and resolve conflicts before they become constraints.

Coordination with BPA

Once a preliminary alignment and profile are developed, the team will submit to BPA for review. BPA calculates the maximum sag in the lines based on their prescribed environmental conditions and then checks for necessary clearance. The two agencies work together to develop a draft land use agreement and the crossing cannot occur until the agreement is signed by both parties. From our discussion with BPA about the project, if the roadway alignment and design do not require adjustment to the lines, the process typically takes about 6 months. If the alignment and design requires adjustment to the lines, the process takes about 18 months. Parsons will deploy the survey team immediately upon NTP to determine if the power lines meet the minimum vertical clearance.

Constructability

The Parsons team can utilize the construction division within Parsons to make sure the preliminary design as identified by the design team is feasible and constructible. We want to make sure the preliminary design is buildable, while at the same time allowing the design/builder opportunity for innovation. The RFP documents will be prescriptive, but flexible to the design/build teams to submit Alternative Technical Concepts (ATC) for WSDOT review.

Change Management

One of the keys to a successful project is change management. Our Project Manager, Jeff Lavinder, has extensive experience in change management and mitigation of potential changes. For the Renton Stage 2
project, Jeff worked on the WSDOT management team and evaluated all potential differing site condition claims submitted by the contractor. He reviewed and documented all contract documents and requirements and wrote the Interpretive Engineering Decision for each of the claims and determined if there was merit for WSDOT management to consider. During the Tacoma Narrows Bridge project, Jeff was responsible for claim defense against the contractor for Parsons. Jeff was successful in defending all claims submitted by the Contractor against the design team by his attention to detail and proper documentation.

Document Control

Another key to a successful project is proper document control. Parsons routinely uses ProjectWise and SharePoint project collaboration software. These tools facilitate seamless and remote communication, connectivity, and coordination. Our use of ProjectWise or SharePoint allows all Parsons team members and WSDOT to access all technical work products and in-progress deliverables and other documents.

Securing Environmental Permits

The schedule risk of securing permits is mitigated by engagement of the regulatory stakeholders early in the project to determine environmental commitments that will apply to the project, WAC design requirements, and adhering to established WSDOT environmental procedures. Mitigation in the form of avoidance and reduction of impacts will facilitate timely permit issuance. Skillings Connolly’s environmental lead has direct experience evaluating environmental conditions within the SR 3 Freight Corridor. Skillings Connolly provided WSDOT guidance on necessary revisions to the NEPA early on, as the project transitioned from a local County project to WSDOT. This experience will benefit WSDOT as it gives the project team an increased familiarity with project constraints, potential impacts, and regulatory requirements.

The Parsons team has evaluated the current preferred alignment and reviewed potential conflicts that have surfaced since the alignment was determined. The team will hold a workshop and review alternative alignments to minimize environmental impacts and evaluate and measure against manageable risks. Through innovation, design, and open collaboration, we will eliminate the most risk and environmental impacts. We will coordinate these details with WSDOT and external stakeholders throughout the initial design process.

Multiple Agency Coordination

Environmental review and permitting coordination with multiple agencies has the potential to extend the schedule. Early coordination with the agencies will be needed to discuss the elements and staging of the project. The following agencies, in addition to WSDOT, will be included: Washington Department of Fish and Wildlife (WDFW), Washington Department of Ecology (Ecology), Tribes identified in the EA, Kitsap County, and Mason County.

Tribal Coordination

The Parsons team will work with WSDOT to coordinate the proposed alignment with the Tribes identified in the EA. We will take a proactive and collaborative approach to minimize risk associated with the Tribes approval of the initial design by reviewing and resolving any concerns raised.

The Parsons team will fully integrate and collaborate with the Tribes, WSDOT’s Tribal Liaison, WDFW, and all relevant permit agencies during the initial design process to ensure that all relevant concerns are incorporated into the final configuration.
Safety

Delivering a project that provides a safe permanent facility for users and during construction is the highest priority of the design team. The Parsons team will provide optimized design to minimize conflicts and provide safe construction zones for the public as well as the contractor.

CRITICAL MILESTONES

Having experience as the designer, contractor, and owner’s representative on many WSDOT projects, the Parsons team understands what it takes to get a project from concept to completion. We will make sure the RFQ and RFP have been thoroughly reviewed for ambiguities and minimize the potential for claims and assure WSDOT that the RFP will be ready by June 1, 2019 by having the critical milestones identified to get and keep the project on schedule.

![Figure 15: Key Issues/Challenges Overview](image)

<table>
<thead>
<tr>
<th>PROJECT STAGE</th>
<th>MILESTONE</th>
<th>CHALLENGES</th>
</tr>
</thead>
</table>
| Project Initiation | Project Management Plan | • Confirm final scope expectations
• Completion of the project schedule to match funding, cash-flow projection, and external milestones that could influence project progression |
| Define with Stakeholders the Project Need | | • Reach stakeholder agreement about the project need within WSDOT's ownership
• Reach agreement on the defining criteria |
| RFQ Issue Date | | • Coordination with WSDOT Bridge, Geotechnical, and Environmental |
| SOQ Due Date | | • Coordination with interested submitters/proposers |
| Notification of Short-listed Submitters | | • Qualified bidders |
| RFP Issue Date | | • Geotechnical investigations |
| ATC Submittal Deadline | | • No associated challenges |
| Proposal Due Date | | • No associated challenges |
| Announce Best Value | | • Non-competitive bids |
| Define Project Basis of Design | | • Develop stakeholder agreement regarding practical solutions process
• Develop clear understanding that practical design solutions within the right context are safe and reliable
• Reach agreement on a phased implementation approach that includes long term monitoring and evaluation |
| Select Preferred Alternative | | • Consensus on the project limits for providing local improvements independent of the project
• Ensure all reasonable and feasible time sensitive alternatives are considered |
| Develop 30% Preliminary Engineering | | • Coordination with transit providers, emergency services, freight, and stakeholders as design modification are identified |
| Environmental Documentation | | • Adequate documentation of project process, public outreach, and reasonable and feasible alternatives to ensure a defensible environmental process |
| Develop Procurement Process and Documents | | • Incorporation of practical design criteria as defined in the BOD without constraining innovation opportunities |
| Final PS&E, Ad and Award | | • Incentive for design innovation |
| Design-Build ITP and RFP | | • Change management
• Schedule |
| Proposal Evaluation | | • Bids far below engineers estimate
• Too much variation in a single low bid |
| Contract Award | | • Construction management resources for duration of project |

Parsons will develop a detailed resource loaded schedule with internal/external decision points to properly identify critical path tasks and milestones.