August 9, 2010

TO: Kevin Dayton Ron Paananen
 Lorena Eng Dan Sarles
 Bart Gernhart Don Wagner
 Julie Meredith Don Whitehouse
 Keith Metcalf Chris Christopher

FROM: J.C. Lenzi, Chief Engineer
 Assistant Secretary of Engineering & Regional Operations
 (360) 705-7032

SUBJECT: Project Delivery Memo #10-01, Geomorphic/Safety Guidance for the use of Large Woody Materials for Mitigation Applications in Bridge Scour Projects

Purpose and Direction

Background
To ensure proper design of Large Woody Material (LWM) structures and to address safety concerns associated with structures placed in water bodies, a steering committee was formed to look at use of LWM. The group completed a guidance document titled Geomorphic/Safety Guidance for the use of Large Woody Materials for Mitigation Applications in Bridge Scour Projects. This is the first of four large woody material guidance documents to be developed. Over the next year three additional documents will be completed. They are Large Woody Material for Bank Stabilization, Large Woody Material for Low Energy Systems, and Large Woody Material & Safety for Engineered Log Jams.

The purpose of this memo is to provide the technical guidance that will be followed by the agency when LWM is used in the vicinity of a bridge structure. This Guidance will be included in the Hydraulic Manual and will also be referenced in the Environmental Procedures Manual. The Geomorphic/Safety Guidance document will be presented in upcoming Project Development Engineer’s monthly conference calls, the upcoming Project Engineers Conference and the Statewide Environmental Managers Meeting. It will also be incorporated into appropriate classes.

Types of Projects Affected: All bridge scour repair projects that include the installation of LWM in the vicinity of the bridge structure or bridge projects that require the use of LWM for mitigation.
Action Requested

Project Design
Projects that include the use of Large Woody Material (LWM) as mitigation for bridge scour repair will follow the guidance outlined in *Geomorphic/Safety Guidance for the use of Large Woody Debris for Mitigation Applications in Bridge Scour Projects* document dated July 2010.

Contract Ad and Award
For projects currently being advertised for bids, no changes will be required.

Construction
For projects currently under construction, no changes will be made.

Maintenance
Maintenance or repair of structures using Large Woody Material (LWM) in the vicinity of bridges will follow the guidance outlined in *Geomorphic/Safety Guidance for the use of Large Woody Debris for Mitigation Applications in Bridge Scour Projects* document dated July 2010.

Attachment: *Geomorphic/Safety Guidance for the use of Large Woody Debris for Mitigation Applications in Bridge Scour Projects*

Cc/att: Tom Baker
Jugesh Kapur
Megan White
Jeff Carpenter
Assistant State Design Engineers
Design Guidance Memo

Geomorphic/Safety Guidance for the use of Large Woody Material for Mitigation Applications in Bridge Scour Projects.

WSDOT

July 2010

Bridge scour repair is one of the most important preservation functions that WSDOT performs. These activities preserve the infrastructure, protect the public investment, ensure that the bridge functions properly for its design life, and protect the safety of the traveling public. In the simplest of terms bridge scour consists of the undermining of bridge piers, abutments and other structural components by the erosive forces of rivers. As a result, bridge scour repairs and scour countermeasures inherently involve in-water work.

Because of the vulnerability of bridge infrastructure, the incorporation of large woody material (LWM) into projects as either mitigation or functional project elements can be very challenging. Public safety concerns for recreational users also pose additional challenges to the proper utilization of LWM. This is particularly true with regard to bridges for three basic reasons.

1. Loading of LWM on bridge piers can place immense forces against the structure that can increase the likelihood of damage or failure. If a bridge is also experiencing scour problems, then these risks can mutually reinforce each others effects, dramatically increasing threat to the structure and the safety of the traveling public.

2. Bridges often present preexisting obstructions to flow such as piers, abutments, etc., that affect various aspects of flow and sediment dynamics including velocity, flow directions, and backwater effects.

3. Bridges are located at the intersection of highways and rivers often presenting the easiest way for the public to access river points such as boat ramps, fishing and swimming access, trails, etc. The public is naturally drawn to these highway/river interfaces, thus public safety concerns are heightened.

In order to ensure stability and safety of engineered log jams and other LWM structures, WSDOT has developed the following parameters for design and permitting of complex in-stream structures incorporating LWM. While their primary intent is as guidelines for siting and structure design they also help define parameters for permit conditions, and for carrying out due diligence with regard to public safety concerns expressed by some recreational river users.
General Guidance

Reach assessments are highly encouraged to identify preferred locations for LWM placement.

At minimum, the following locations and conditions should be discouraged or avoided:

- Channels that have a history and/or a near-future likelihood of material torrents and other mass wasting activity.
- Locations immediately above permanent culverts or bridges unless LWM is incorporated and designed as a protective project element.
- Locations within or under culverts or bridges.
- Confined channels where the valley floor width is less than twice the bankfull width.
- Alluvial; streams with a gradient of more than 2 %
- Non-alluvial streams with a gradient of more than 4%
- Apex Bar log jams should not be constructed in proximity to bridges, particularly upstream of bridges.

LWM structures should be designed within the following parameters.

Design Life

Because LWM and ELJ structures are intended to function over a long project life, design flows equivalent to the 100-year recurrence flood are recommended.

Stability and Anchoring

Structures should be designed with limited flow-through characteristics by including an impermeable core to prevent “straining”. Straining is a phenomenon by which swift water flowing through a LWM structure tends to draw floating objects toward and into it. The more dense the core of the structure the less this tends to occur.

Protrusion of LWM structures should not exceed 25 percent of the channel cross section.
In bank-based placements, at least 2/3 of the stem length shall be keyed into the bank to resist rotation, with adequate overburden and anchoring to overcome buoyancy and drag. LWM structures are subjected to a combination of hydrodynamic, frictional and gravitational forces that act either on the LWM or on its anchors. The principle forces acting on the structure and its anchors are:

- Vertical buoyancy force acting on the LWM and transferred to its anchors.
- Horizontal fluid drag force acting on the LWM and transferred to the anchors
- Horizontal fluid drag force acting directly on the anchors.
- Vertical lift force acting directly on the anchors.
- Immersed weight of the anchor (if boulders are used as anchors).
- Frictional forces at the base of the anchor which resist sliding (if boulders are used as anchors) or being pulled out (if pilings are used as anchors).

Where possible, redundant anchoring systems should be used. Examples of this include combining pilings or anchors with bank overburden partially burying the LWM in the bank. Regardless of the type of anchoring systems used, woody material should be designed with safety factor of at least 2, where the safety factor is defined as the ratio of the resisting forces divided by the driving forces (itemized above).

There are numerous guidance documents dealing with the stability analysis equations for estimating these forces. A succinct description of applicable equations and their use can be found in Doust, S.G. and Millar, R.G, 1999. Large Woody Debris Fish Habitat Structure Performance and Ballasting Requirements.

Other useful guidance documents are listed in the Appendix A of this memorandum.

For waters known to be used by recreational boaters or swimmers:

- LWM structures should not be constructed in confined channels.
- LWM structures should be placed where there is good visibility of the structure from upstream.
- LWM structures should not be constructed in channels that do not allow for circumnavigation or locations such as gravel bars to allow landing to avoid the structures.
- Larger LWM structures should not be placed on the outside of a meander bend where the tortuosity of the bend is less than 3 (Rc/W<3), where Rc is the radius of curvature of the meander and W is the upstream channel top width.
- Larger LWM structures should not be constructed in close proximity to boat ramps

For Jurisdictional Floodways
Because of their size and strong hydraulic effects, large LWM structures (such as ELJ's) should not be placed in "Zero Rise" jurisdictional floodways in such a manner as to violate local floodplain ordinances. These floodways are chiefly located in urban areas. If it is not practicable to obtain variances from Zero Rise stipulations, smaller structures that have less backwater effect (such as log toes, crib walls etc.) should be considered in lieu of larger ones in these areas.
Appendix A: Design Guidance References

tion, 1999.

