ALASKAN WAY VIADUCT REPLACEMENT PROJECT
2010 Supplemental Draft Environmental Impact Statement and Draft Section 4(f) Evaluation

Submitted pursuant to:
The National Environmental Policy Act (42 U.S.C. 4321 et seq.)
and the State Environmental Policy Act (SEPA) (Ch. 43.21 C.R.W.)
and Section 6(f) of the Department of Transportation Act;
(49 U.S.C. 303(c))

by the
FEDERAL HIGHWAY ADMINISTRATION
and
WASHINGTON STATE DEPARTMENT OF TRANSPORTATION
and
CITY OF SEATTLE DEPARTMENT OF TRANSPORTATION

Abstract
The existing Alaskan Way Viaduct (State Route [SR] 99) was damaged in the 2001 Nisqually earthquake, is at the end of its useful life, and must be replaced. The Federal Highway Administration (FHWA), Washington State Department of Transportation (WSDOT), and City of Seattle plan to replace the existing facility to provide a structure capable of withstanding earthquakes and to ensure that people and goods can safely and efficiently travel within and through the project corridor. The SR 99 corridor provides vital transportation connections in to and through downtown Seattle, as well as between various other regional destinations. Failure of the viaduct would create severe hardships for the city and region and could possibly cause injury or death.

The March 2004 Draft Environmental Impact Statement (EIS) analyzed five Build Alternatives and a No Build Alternative for their potential effects on the human and natural environment. The five alternatives evaluated were called the Rebuild, Aerial, Tunnel, Bypass Tunnel, and Surface Alternatives. Based on information presented in the Draft EIS, public comments, and further study and design, the project partners reduced the number of alternatives from five to two in late 2004. The two alternatives, the Tunnel and Elevated Structure, were then evaluated in the 2006 Supplemental Draft EIS document.

This Supplemental Draft EIS provides additional information available since the 2004 Draft EIS and 2006 Supplemental Draft EIS were published and new information analyzing the Bored Tunnel Alternative.

OCTOBER 2010

Randy Everett
Major Project Oversight Manager
Federal Highways Administration
Lead for National Environmental Policy Act (NEPA)

September 24, 2010
Date of Approval

Megan White
Director of Environmental Services
Washington State Department of Transportation
Lead for State Environmental Policy Act (SEPA)

9/24/2010
Date of Approval

Richard Conlin
City Council President
for the City of Seattle

September 23, 2010
Date of Approval

Title VI
WSDOT ensures full compliance with Title VI of the Civil Rights Act of 1964 by prohibiting discrimination against any person on the basis of race, color, national origin or sex in the provision of benefits and services resulting from its federally assisted programs and activities. For questions regarding WSDOT’s Title VI Program, you may contact the Department’s Title VI Coordinator at (360) 705-7098.

Americans with Disabilities Act (ADA) Information
If you would like copies of this document in an alternative format—large print, Braille, cassette tape, or on computer disk, please call (360) 705-7097. Persons who are deaf or hard of hearing, please call the Washington State Telecommunications Relay Service, or Tele-Braille at 7-1-1, Voice 1-800-833-6384, and ask to be connected to (360) 705-7097.

A Federal agency may publish a notice in the Federal Register, pursuant to 23 USC §139(d), indicating that one or more federal agencies have taken final action on permits, licenses, or approvals for a transportation project. If such notice is published, claims seeking judicial review of those federal agency actions will be barred unless such claims are filed within 180 days after the date of publication of the notice, or within such shorter time period as is specified in the federal laws pursuant to which judicial review of the federal agency action is allowed. If no notice is published, then the periods of time that otherwise are provided by the federal laws governing such claims will apply.
FACT SHEET

Project Name: Alaskan Way Viaduct Replacement Project

Project Description: The Alaskan Way Viaduct Replacement Project proposes to replace SR 99 between S. Royal Brougham Way and Roy Street with a facility that has improved earthquake resistance. Damage sustained by the viaduct during the February 2001 Nisqually earthquake compromised its structural integrity. Adding to these concerns, the structure was originally designed and built to last approximately 50 years, and is now nearing the end of its serviceable life span. This past damage, along with the age, design, and location of the existing viaduct, makes it vulnerable to future strong earthquakes, and damage from these quakes could make the structure unusable.

The SR 99 Alaskan Way Viaduct and Interstate 5 are the primary north-south limited access routes through downtown Seattle, making the Alaskan Way Viaduct a vital link in the region’s highway and freight mobility system, and thus critical to the region’s economy. Together with the transit system, light rail and local streets, SR 99 serves regional and local needs.

This Supplemental Draft EIS analyzes the effects of a Bored Tunnel Alternative and compares the effects with the Cut-and-Cover Tunnel and Elevated Structure Alternatives. The No Build Alternative is evaluated to provide baseline information.

Proponent: Washington State Department of Transportation Alaskan Way Viaduct Replacement Project Office Wells Fargo Building 999 Third Avenue, Suite 2424 Seattle, WA 98104 - 4019

Joint Lead Agencies: City of Seattle 700 Fifth Avenue, Suite 3000 PO Box 34960 Seattle, WA 98124-3960

Federal Highway Administration Washington Division Evergreen Plaza 711 S. Capitol Way, Suite 501 Seattle, WA 98124 - 4016

SEPA Lead Agency The Washington State Department of Transportation is the lead agency for SEPA.

Responsible SEPA Official Megan White, Director Environmental Services Office Washington State Department of Transportation PO Box 47331 Olympia, WA 98504

NEPA Lead Agency Randy Everett, Major Projects Oversight Manager Federal Highway Administration Washington Division 935 Second Avenue, Room 3142 Seattle, WA 98174

Comment Period A comment period will begin on the date the notice is published in the Federal Register. Notice is anticipated to take place on October 29, 2010, and the comment period is expected to run through December 13, 2010.

Review Comments and Contact Information All written comments should be sent to:

In Writing: Angela Freudenstein, AWV Environmental Manager AWV Project Office (Wells Fargo Building) 999 Third Avenue, Suite 2424 Seattle, WA 98104 - 4019

E-mail: awv2010SDEIScomments@wsdot.wa.gov

Public Hearings Public hearings to provide information and accept comments on the 2010 Supplemental Draft EIS will be held on:

November 16, 2010: West Seattle Madison Middle School 5429 45th Avenue NW Seattle, WA 98116 6:00 - 8:00 p.m.

November 17, 2010: Ballard Ballard High School 1410 NW 65th Street Seattle, WA 98107 6:00 - 8:00 p.m.

November 18, 2010: Downtown Plymouth Church 1217 Sixth Avenue Seattle, WA 98101 5:00 - 7:00 p.m.

Document Availability The 2010 Supplemental Draft EIS is available online at: http://www.wsdot.wa.gov/Projects/Viaduct/ It is also available on CD-ROM by contacting the AWV Office at:

Angela Freudenstein, AWV Environmental Manager AWV Project Office (Wells Fargo Building) 999 Third Avenue, Suite 2424 Seattle, WA 98104 - 4019

Printed copies of this Supplemental Draft EIS and related appendices (discipline reports) are available at City of Seattle public libraries and Neighborhood Service Centers (see the Distribution List on page 254). These documents are also available for purchase at the:

Alaskan Way Viaduct Replacement Project Office 999 Third Avenue, Reception desk on the 22nd Floor Seattle, WA 98104 - 4019

CDs and Executive Summaries are available at no charge. Prices for printed volumes are as follows:

2010 Supplemental Draft EIS (17 x 11) $25

Technical Memorandum and Discipline Report Appendix volumes $75

Complete document set $100
Permits, Approvals, and Consultations

Federal
• National Marine Fisheries Service and U.S. Fish and Wildlife Service – Section 7 Endangered Species Act (ESA) Consultation and Marine Mammal Protection Act Consultation
• National Marine Fisheries Service – Magnuson-Stevens Fishery Conservation and Management Act Consultation
• Federal Highway Administration, with concurrence from the Washington Department of Archaeological and Historic Preservation – National Historic Preservation Act Consultation (Section 106)

State
• Washington State Department of Archaeology and Historic Preservation – National Historic Preservation Act, Section 106 Historic Preservation Consultation
• Washington State Department of Ecology – Model Toxics Control Act, Removal of Underground Storage Tanks
• Washington State Department of Ecology – National Pollutant Discharge Elimination System (NPDES), Construction Stormwater General Permit
• Washington State Department of Ecology – Coastal Zone Management Act (CZMA), Consistency Certification
• Washington State Department of Ecology – Underground Injection Control Registration
• Washington State Department of Ecology – Notice of Intent for Installing, Modifying, or Removing Piezometers
• Washington State Department of Ecology – Notice of Intent for Installing, Modifying, or Removing Wells

Local
• Washington State Department of Ecology – Chemical Treatment Letter of Approval
• King County – Industrial Wastewater Discharge Approval
• Seattle City Light – Clearance Permits
• Seattle Department of Planning and Development – Master Use Permit
• Seattle Department of Planning and Development – Shoreline Substantial Development Permit/Conditional Use Permit and/or Variance
• Seattle Department of Planning and Development – Grading Permit
• Seattle Department of Planning and Development – Building Permit
• Seattle Department of Planning and Development – Demolition Permit
• Seattle Department of Planning and Development – Sewer Permit
• Seattle Department of Transportation – Street Use Permit
• Seattle Department of Neighborhoods and Pioneer Square Preservation Board – Pioneer Square Historic District Approval
• Seattle Department of Neighborhoods and Pike Place Market Historic District Commission – Pike Place Market Historic District Approval
• Seattle Department of Planning and Development – Major Public Project Construction Variance/Temporary Variance
• Seattle Department of Planning and Development – Removal or Abandonment of Underground Storage Tanks

Other Seattle Permits/Approvals
• Mechanical Permit
• Electrical Permit
• Sign Permit
• Elevator Permit
• Fire Alarm Permit

Other Permits/Approvals
• Puget Sound Clean Air Agency – Clean Air Act, Air Quality Conformity Review
• Puget Sound Clean Air Agency – Notice of Intent for demolition activities and Notice of Construction for Constructing a Concrete Batch Plant
• Puget Sound Energy (Bonneville Power Administration) – Electrical Transmission Outage Request
• Burlington Northern Santa Fe (BNSF) – Construction and Maintenance Agreement

Authors and Principal Contributors
Please see the List of Preparers on pages 251.

Date of Issue of 2010 Supplemental Draft EIS
October 29, 2010

Subsequent Environmental Review
The public comment period for this 2010 Supplemental Draft EIS will end on December 13, 2010. The lead agencies will respond to comments on the 2004 Draft EIS, 2006 Supplemental Draft EIS, and this 2010 document in the Final EIS. Publication of a Final EIS is expected in 2011. Following publication of the Final EIS, a Record of Decision will be issued by the Federal Highway Administration.

1 The City and WSDOT are exempt from certain permits under some conditions. Even though this grading work would be exempt, the City would still perform a project review to ensure that the project meets City requirements for grading activities.
ALASKAN WAY VIADUCT REPLACEMENT PROJECT
2010 Supplemental Draft Environmental Impact Statement and Draft Section 4(f)

CONTENTS

Cover Sheet i
Fact Sheets ii
In Memoriam xii

CHAPTERS

1 INTRODUCTION 1

What’s in Chapter 1? 1
1 What is the Alaskan Way Viaduct Replacement Project? 1
2 What are the project limits and why were they selected? 1
3 Who is leading this project? 1
4 What is the history of this project? 2
5 Why are the lead agencies preparing this Supplemental Draft EIS? 3
6 What is the purpose of the Alaskan Way Viaduct Replacement Project and why is it needed? 4

2 SUMMARY 11

What’s in Chapter 2? 11
1 What alternatives are considered in this Supplemental Draft EIS? 11
2 How have the alternatives changed since the 2006 Supplemental Draft EIS? 11
3 How was the Bored Tunnel Alternative developed? 12
4 How would the Bored Tunnel Alternative replace the existing viaduct? 12
5 How much would the Bored Tunnel Alternative cost? 15
6 Permanent Traffic Effects of the Bored Tunnel Alternative 15
7 How would SR 99 access change? 15
8 How would regional traffic patterns change? 15
9 How would conditions for SR 99 traffic change? 16
10 Would conditions on I-5 change? 18
11 Would conditions on area streets change? 18
12 Other Permanent Effects of the Bored Tunnel Alternative 21
13 Would noise levels permanently change? 21
14 Would properties or land uses be permanently affected? 21
15 Would the economy be permanently affected? 22
16 Would views permanently change? 22
17 Would historic and archaeological resources be permanently affected? 23
18 What other permanent effects would the Bored Tunnel Alternative have? 23
19 Mitigation for Permanent Effects 26
20 How would permanent effects be mitigated? 26
21 What permanent adverse effects of the project would not be mitigated? 27

Temporary Construction Effects for the Bored Tunnel Alternative
10 How would SR 99 and surrounding streets be restricted during construction? 28
11 How would SR 99 and local street traffic be affected by construction? 29
12 How would specific SR 99 users be affected during construction? 30
13 How would area noise levels change during construction? 31
14 How would historic resources be affected during construction? 31
15 How would archaeological and cultural resources be affected during construction? 35
16 How would the economy be affected during construction? 35
17 What other effects would there be during construction? 34

Mitigation for Temporary Construction Effects
18 How would construction effects be mitigated? 35
19 How would this project, the Alaskan Way Viaduct and Seawall Replacement Program, and other downtown projects affect Seattle and surrounding areas? 36
20 How do the effects of the Bored Tunnel and other alternatives compare? 37
21 What effects would be expected if the build alternatives were tolled? 39
CONTENTS (continued)

31 What opportunities have we provided for people, agencies, and tribes to be engaged in the project since the 2006 Supplemental Draft EIS? 66
32 What issues are controversial? 66
33 What issues need to be resolved? 66
34 What are the next steps? 66

3 ALTERNATIVES DEVELOPMENT

What’s in Chapter 3? 45

Alternatives Development
1 How did the project begin? 45
2 What alternatives were evaluated in the 2004 Draft EIS? 45
3 Why were the 2004 Draft EIS alternatives narrowed from five to two? 45
4 What alternatives were evaluated in the 2006 Supplemental Draft EIS? 46
5 What’s happened since the 2006 Supplemental Draft EIS? 48
6 What happened after the bored tunnel was recommended? 52
7 How have the Cut-and-Cover Tunnel and Elevated Structure Alternatives changed since the 2006 Supplemental Draft EIS? 59
8 What is the preferred alternative? 59
9 What is the Bored Tunnel Alternative? 59
10 What is the Cut-and-Cover Tunnel Alternative? 62
11 What is the Elevated Structure Alternative? 62
12 What is the Viaduct Closed (No Build) Alternative? 63

Public Involvement
13 What opportunities have we provided for people to be engaged in the project since the 2006 Supplemental Draft EIS? 64
14 How have we engaged businesses and residents located adjacent to the project since the 2006 Supplemental Draft EIS? 65
15 How have we engaged minorities, low-income people, and social service providers since the 2006 Supplemental Draft EIS? 65
16 How have we been coordinating with agencies since the 2006 Supplemental Draft EIS? 65
17 How have we engaged the tribes since the 2006 Supplemental Draft EIS? 66
18 When will we respond to comments received on the 2004 Draft, 2006 Supplemental Draft, and 2010 Supplemental Draft EIS? 66

4 THE PROJECT AREA

What’s in Chapter 4? 69
1 What is the elevated structure? 69
2 What elements of Seattle’s history have shaped the project area? 69
3 What is the viaduct’s condition today? 71
4 What are key features of Seattle’s downtown roadway network? 72
5 How much traffic travels on the viaduct and through the transportation study area each day? 73
6 Where are the people using the viaduct coming from and going to? 73
7 What are typical travel conditions on SR 99? 74
8 What are the existing conditions for specific types of users? 75
9 How many parking spaces exist in the project area? 79
10 How noisy is it in the project area? 79
11 How is the project area affected by vibration from traffic traveling on the viaduct? 80
12 How do visual features are located in the project area? 80
13 What are some of the positive and negative visual conditions created by the viaduct? 81
14 What is the character of and land use in the project area? 81
15 What historic and archaeological resources are located in the project area? 81
16 What parks and recreational facilities are located in the project area? 82
17 Who lives in the neighborhoods located in the project area? 83
18 What community and social services serve these neighborhoods? 84
19 What is the regional and local economy like now? 84
20 What public services and utilities are located in the project area? 85
21 Is air quality a concern in the project area? 85
22 Are greenhouse gas emissions a concern in the region? 86
23 How much energy does the region use? 86
24 What are water-quality conditions in the Duwamish River, Elliott Bay, and Lake Union? 86
25 How is stormwater from the viaduct and Alaskan Way currently managed? 87
26 What fish and wildlife species are in the project area, and what is their habitat like? 88
27 What are the groundwater conditions in the project area? 89
28 Are there any potentially contaminated sites in the project area? 89

5 BORED TUNNEL ALTERNATIVE

What’s in Chapter 5? 93
1 How would the Bored Tunnel Alternative replace SR 99 and the viaduct? 93
2 How would the SR 99 lane configuration and access points change? 96
3 What conditions were modeled and what assumptions were made for the traffic analysis? 97
4 Would regional travel patterns change? 97
5 How would traffic conditions on SR 99 change? 99
6 Where would SR 99 traffic go? 105
7 Would traffic conditions on I 5 change? 105
8 How would traffic volumes on area streets change? 106
9 How would conditions change for drivers, bicyclists, and pedestrians? 108
10 What are the tradeoffs between the south portal options? 111
11 What are the tradeoffs between the north portal options? 112
12 How would noise levels change? 112
13 How would views be affected? 114
14 How would properties be affected? 117
15 How would land use be affected? 118
16 How would the local and regional economy be affected? 119
17 How would historic and archaeological resources be affected? 120
18 How would neighborhoods be affected? 121
19 How would community and social services be affected? 122
20 How would low-income or minority populations be affected? 122
CONTENTS (continued)

21 How would parks, recreation, and open space be affected? 122
22 How would public services (such as police and fire) and utilities be affected? 123
23 How would air quality be affected? 124
24 How would greenhouse gas emissions be affected? 124
25 Would energy consumption be affected? 124
26 How would water resources be affected? 125
27 How would fish, aquatic, and wildlife habitat be affected? 125
28 How would soil conditions and groundwater be affected? 126
29 What are indirect effects and would the Bored Tunnel Alternative have any? 127
30 What irreversible decisions or irretrievable resources would be committed to building the Bored Tunnel Alternative? 127
31 How would air quality be affected during construction? 152
32 How would greenhouse gas emissions be affected during construction? 152
33 What effects would not be mitigated? 129
34 How would water resources be affected during construction? 155
35 How would fish, aquatic, and wildlife species and habitat be affected during construction? 154
36 Would construction have indirect effects? 154
37 What construction mitigation plans and measures are proposed for this project? 154
38 How will the lead agencies involve people in mitigation planning and implementation? 159
39 What temporary construction effects will not be mitigated? 159

6 CONSTRUCTION

What’s in Chapter 5?

Construction Methods
1 What would construction begin and how might construction activities be sequenced? 151
2 How would construction of the S. Holgate Street to S. King Street Viaduct Replacement Project and construction of the Bored Tunnel Alternative overlap? 151
3 What must happen before construction can begin? 151
4 How would the Bored Tunnel Alternative be built at the south portal? 151
5 How would the bored tunnel section be built? 153
6 How would the Bored Tunnel Alternative be built at the north portal? 154
7 Where would tunnel operations buildings be built? 154
8 How would the viaduct be removed? 155
9 What would happen to the Battery Street Tunnel? 155
10 What construction shifts are proposed? 155
11 Where would construction staging areas be located? 155
12 How would SR 99 be restricted during construction? 136
13 How would SR 99 traffic be affected by lane restrictions? 137
14 How would local streets be restricted during construction? 138
15 How would traffic on local streets be affected? 138
16 How would specific SR 99 users be affected during construction? 139

Traffic Effects during Construction
18 Would settlement during construction affect surrounding areas? 141
19 How would construction affect noise levels? 142
20 Would vibration during construction affect surrounding areas? 143
21 How would views be affected during construction? 144
22 Would temporary construction easements or relocations be needed during construction? 144
23 How would the local and regional economy be affected during construction? 144
24 How would historic resources be affected during construction? 148
25 How would construction affect archaeological resources? 149
26 How would neighborhoods be affected during construction? 149
27 How would community and social services be affected during construction? 150
28 How would low-income and minority populations be affected during construction? 150
29 How would parks, recreation, and open space be affected during construction? 150
30 How would public services and utilities be affected during construction? 151
31 How would air quality be affected during construction? 151
32 How would greenhouse gas emissions be affected during construction? 152
33 What irreversible decisions or irretrievable resources would the Bored Tunnel Alternative have any? 127
34 How would water resources be affected during construction? 155
35 How would fish, aquatic, and wildlife species and habitat be affected during construction? 154
36 Would construction have indirect effects? 154
37 What construction mitigation plans and measures are proposed for this project? 154
38 How will the lead agencies involve people in mitigation planning and implementation? 159
39 What temporary construction effects will not be mitigated? 159

7 CUMULATIVE EFFECTS

What’s in Chapter 7?

1 What are cumulative effects, and why do we study them? 161
2 How were cumulative effects assessed? 161
3 How were study areas and timeframes determined for this cumulative effects analysis? 161
4 How was the baseline condition established for each resource? 162
5 What current and future actions were identified and considered? 162
6 How were cumulative effects of the Project, the Program, and other projects evaluated? 165
7 Cumulative Effects of the Project When Combined with the Program
8 How would regional traffic conditions change when the Project and the Program are combined? 164
9 How would traffic conditions on SR 99 change? 165
10 How would traffic conditions on I-5 change? 165
11 How would traffic conditions on area streets change? 167
12 How would intersection operations change? 168
13 How would conditions change for specific transportation modes? 168
14 What are the other long-term cumulative benefits of the Project when combined with the Program? 168
CONTENTS (continued)

15 What are the temporary adverse effects of the Project when combined with the Program? 169
Cumulative Effects of the Project When Combined with the Program and Other Planned Projects

16 What are the cumulative effects by resource? 170
Mitigation

17 What mitigation is proposed? 174
18 How would effects to air quality compare? 193
19 How would effects to water resources compare? 193
20 How would effects to fish and aquatic habitat compare? 195
21 How do construction effects compare? 195
22 How do other construction effects compare? 197
23 How do costs compare? 200
24 How do cumulative effects compare? 200
25 How do indirect effects compare? 200
26 Do the alternatives vary in the irreversible decisions or irreversible resources that would be required? 200
27 How do tradeoffs between short-term uses of environmental resources and long-term gains (or productivity) compare? 201
28 How do these alternatives meet the revised purpose and need? 201
29 TOLLING 205
What’s in Chapter 9? 205
1 Does the Bored Tunnel Alternative include tolls? 205
2 Is it possible that tolls will be implemented on the SR 99 replacement facility sometime in the future? 205
5 If tolling is a possible option for the SR 99 replacement facility, why doesn’t this Supplemental Draft EIS evaluate a tolled Bored Tunnel Alternative? 205
4 Who is tolling evaluated in this Supplemental Draft EIS? 205
5 Have tolls been used on other highways in Washington? 206
6 What are some possible tolling options for the Bored Tunnel Alternative? 207
7 Before tolling would be implemented on the SR 99 replacement facility, what work would be done to optimize the selected toll scenario? 208
8 How would Toll Scenarios A, C, and E affect regional travel? 208
9 How would Toll Scenarios A, C, and E affect SR 99 traffic conditions? 209
10 How would Toll Scenarios A, C, and E affect adjacent roadways such as I-5 and city streets? 209
11 How would Toll Scenarios A, C, and E affect transit? 215
12 How would Toll Scenarios A, C, and E affect traffic conditions in 2030? 215
13 How would tolls work on the Cut-and-Cover Tunnel and Elevated Structure Alternatives? 216
14 How would tolls work on the Cut-and-Cover Tunnel and Elevated Structure Alternatives? 216
15 What types of other environmental effects would tolling have for the Cut-and-Cover Tunnel and Elevated Structure Alternatives? 223
DRAFT SECTION 4(f) EVALUATION 225
Background
1 What is Section 4(f)? 225
2 What is a “Section 4(f) resource”? 226
3 What is a “use” of a Section 4(f) resource? 226
4 How can FHWA approve an alternative that uses a Section 4(f) resource? 226
5 What factors must FHWA consider when determining whether an avoidance alternative is “feasible and prudent”? 227
6 What factors must FHWA consider when determining which alternative causes “least overall harm”? 227
7 What does Section 106 consultation involve, and how does it relate to this Section 4(f) evaluation? 227
Draft Section 4(f) Evaluation
1 Agencies Involved in Developing This Section 4(f) Evaluation 229
2 Purpose and Need of the Proposed Action 229
3 Alternatives Considered 230
4 Section 4(f) Resources 231
5 The Bored Tunnel Alternative 232
6 The Cut-and-Cover Tunnel Alternative 234
7 The Elevated Structure Alternative 234
8 Other Alternatives Considered to Avoid and Minimize Harm 241
9 Overall Comparison of Alternatives 242
10 Conclusions 244
REFERENCE PAGES 245
ACRONYMS 246
INDEX 246
LIST OF APPENDICES 247
REFERENCES 248
LIST OF PREPARERS 251
DISTRIBUTION LIST 254
TECHNICAL INDEX 256
COMMENT FORM 256
LAST PAGE
LIST OF EXHIBITS

Chapter 1
Exhibit 1-1 Project Limits 1
Exhibit 1-2 Proposed Construction Staging Areas 2
Exhibit 1-3 Project Timeline 3
Exhibit 1-4 Projects Included in the Alaskan Way Viaduct and Seawall Replacement Program 6
Exhibit 1-5 Alaskan Way Viaduct and Seawall Replacement Program Elements 6
Chapter 2
Exhibit 2-1 Bored Tunnel Alternative 10
Exhibit 2-2 Cut-and-Cover Tunnel and Elevated Structure Alternatives 11
Exhibit 2-3 South Portal Options 13
Exhibit 2-4 North Portal Options 14
Exhibit 2-5 Bored Tunnel Alternative Costs 15
Exhibit 2-6 WSDOT Alaskan Way Viaduct and Seawall Replacement Program Cost Estimate 15
Exhibit 2-7 Travel Speeds – PM Peak 16
Exhibit 2-8 Travel Speeds – PM Peak 17
Exhibit 2-9 2015 Daily SR 99 Volumes 18
Exhibit 2-10 Increase in Daily Vehicle Volumes on I-5 in 2015 18
Exhibit 2-11 Comparison of Vehicle Volumes on City Streets 19
Exhibit 2-12 2015 Comparison of Congested Intersections 20
Exhibit 2-13 Travel Time Comparison on Second & Fourth Avenues in the AM Peak Hour 19
Exhibit 2-14 Travel Time Comparison on Second & Fourth Avenues in the PM Peak Hour 19
Exhibit 2-15 Change in Noise Levels for the Bored Tunnel Alternative 21
Exhibit 2-16 Acquired Property Effects 22
Exhibit 2-17 Parking Spaces Removed by the Bored Tunnel Alternative 22
Exhibit 2-18 South Portal Affected Parking Spaces 22
Exhibit 2-19 North Portal Affected Parking Spaces 23
Exhibit 2-20 Visual Simulation Looking North towards the South Portal 24
Exhibit 2-21 Visual Simulation Looking South on Alaskan Way S. at Union Street 24
Exhibit 2-22 Visual Simulation Looking at the North Portal 25
Exhibit 2-23 Construction Activities Chart 26
Exhibit 2-24 Construction Roadway Closures, Restrictions, and Detour 27
Exhibit 2-25 WOSCA Detour 27
Exhibit 2-26 Typical Sound Levels 31
Exhibit 2-27 Parking Affected during Construction 32
Exhibit 2-28 Construction Parking Effects During Stages 1 Through 7 33
Exhibit 2-29 Construction Parking Effects During Stage 8 33
Exhibit 2-30 2015 Tunnel Time Comparison 58
Exhibit 2-31 General Purpose & Transit Travel Times on Second & Fourth Avenues 59
Exhibit 2-32 Travel Time Comparison with Toll Scenarios 40
Chapter 3
Exhibit 3-1 Bored Tunnel Alternative 60
Exhibit 3-2 Alternatives Evaluated in the 2004 Draft EIS 44
Exhibit 3-3 2004 Draft EIS Alternatives and Options Chart 46
Exhibit 3-4 2006 Supplemental Draft EIS Alternatives 47
Exhibit 3-5 2006 Supplemental Draft EIS Alternatives & Options Chart 48
Exhibit 3-6 2008 Updated Project Costs 49
Exhibit 3-7 Partnership Process Leadership Chart 49
Exhibit 3-8 Partnership Process Study Area 50
Exhibit 3-9 Screening Results Summary Table 54
Exhibit 3-10 2010 Tunnel Time Comparison AM Peak Hour – 8:00-9:00 a.m. 57
Exhibit 3-11 2010 Tunnel Time Comparison PM Peak Hour – 5:00-6:00 p.m. 57
Exhibit 3-12 Comparison of SR 99 Vehicle Volumes 56
Exhibit 3-13 Comparison of I-5 Vehicle Volumes in 2010 57
Exhibit 3-14 Comparison of Alaskan Way Vehicle Volumes in 2010 58
Exhibit 3-15 2010 Supplemental Draft EIS Alternatives and Options Chart 58
Exhibit 3-16 Bored Tunnel Alternative 60
Exhibit 3-17 Cut-and-Cover Tunnel Alternative 61
Chapter 4
Exhibit 4-1 Cascadia Subduction Zone and the Juan de Fuca Plate 69
Exhibit 4-2 Seattle Fault & Lithosphere Areas 69
Exhibit 4-3 Regional Roadway Network 72
Exhibit 4-4 SR 99 Existing Lane Configuration 73
Exhibit 4-5 2005 Estimated Daily Person Throughput on SR 99, I-5, and City Streets at Selected Locations 73
Exhibit 4-6 2005 VMT, VHT, and VHD for Downtown and Region 73
Exhibit 4-7 2005 SR 99 Existing Daily Traffic and Traffic Volumes 74
Exhibit 4-8 Existing Connections Provided To and From SR 99 74
Exhibit 4-9 Average Traffic Speeds on SR 99 During Peak Hours 74
Exhibit 4-10 Downtown and RMN MC Industrial Areas 75
Exhibit 4-11 2005 Existing Daily Truck Volumes 76
Exhibit 4-12 SR 99 Existing Bus Routes 77
Exhibit 4-13 Bike Routes (City of Seattle) 78
Exhibit 4-14 Existing Public Parking Spaces Near Portals 79
Exhibit 4-15 Typical Sound Levels 79
Exhibit 4-16 Existing Noise Levels 79
Exhibit 4-17 Historic District Boundaries & Buildings 82
Exhibit 4-18 Park and Recreation Facilities 83
Exhibit 4-19 Population Characteristics in 2000 84
Exhibit 4-20 Combined Sewer and Stormwater Outfalls 87
Exhibit 4-21 Groundwater Movement in the Project Area 89
Chapter 5
Exhibit 5-1 Bored Tunnel Alternative 92
Exhibit 5-2 South Portal Options 94
Exhibit 5-3 Visual Simulation of SR 99 Small Bridges 94
Exhibit 5-4 Tunnel Operations Building 94
Exhibit 5-5 North Portal Options 95
Exhibit 5-6 SR 99 Lane Configuration 96
Exhibit 5-7 SR 99 Lane and Ramp Connections 97
Exhibit 5-8 Person Throughput at Screenlines 98
Exhibit 5-9 Vehicle Volumes at Screenlines 98
Exhibit 5-10 VMT, VHT, and VHD for Downtown and Region 98
Exhibit 5-11 2005 VMT, VHT, and VHD for Downtown and Region 98
Exhibit 5-12 Comparison of 2005 I-5 North Vehicle Volumes 98
Exhibit 5-13 Comparison of Existing SR 99 Vehicle Volumes 99
Exhibit 5-14 Comparison of SR 99 Existing Daily Person Throughput 99
Exhibit 5-15 Comparison of SR 99 Existing Daily Traffic and Traffic Volumes 99
Exhibit 5-16 Existing Connections Provided To and From SR 99 99
Exhibit 5-17 Average Traffic Speeds on SR 99 During Peak Hours 99
Exhibit 5-18 Elevated Structure Alternative 62
Exhibit 5-19 Scoping Meeting Dates, Location, & Attendance 64
Exhibit 5-20 Summary of Public Comments Received at Scoping Meetings 64
Chapter 6
Exhibit 6-1 Alaskan Way Viaduct Replacement Project 2010 Supplemental Draft EIS
CONTENTS (continued)

Exhibit 5-10 Vehicle Miles Traveled 98
Exhibit 5-10 Vehicle Hours Traveled 98
Exhibit 5-11 Vehicle Hours of Delay 99
Exhibit 5-12 SR 99 Access to Northwest Seattle 99
Exhibit 5-13 Travel Speeds – AM Peak 100
Exhibit 5-14 Travel Speeds – PM Peak 101
Exhibit 5-15 Bored Tunnel Alternative Travel Time Comparison 102
Exhibit 5-16 SR 99 Daily Vehicle Volumes 103
Exhibit 5-17 SR 99 Daily Ramp Volumes 104
Exhibit 5-18 Comparison of E5 Vehicle Volumes 105
Exhibit 5-19 Increase in Daily Vehicle Volumes on I-5 in 2015 105
Exhibit 5-20 Comparison of Vehicle Volumes on I-5 106
Exhibit 5-21 Comparison of Vehicle Volumes on City Streets 105
Exhibit 5-22 Comparison of Vehicle Volumes on Alaskan Way 106
Exhibit 5-23 Comparison of Vehicle Volumes at Screenlines 106
Exhibit 5-24 Congested Intersections – AM Peak 106
Exhibit 5-25 Congested Intersections – PM Peak 107
Exhibit 5-26 Travel Time Comparison on Second & Fourth Avenues in the AM Peak Hour 108
Exhibit 5-27 Travel Time Comparison on Second & Fourth Avenues in the PM Peak Hour 108
Exhibit 5-28 Estimated Daily Transit Riders 109
Exhibit 5-29 Daily Transit Mode Share To and From Seattle’s Center City 110
Exhibit 5-30 2015 Transit Travel Time Comparison 110
Exhibit 5-31 Noise Levels and Change in Noise Levels, 2030 Bored Tunnel Alternative 113
Exhibit 5-32 Visual Simulation Looking North Towards the South Portal 114
Exhibit 5-33 Visual Simulation Looking North at the First Avenue S. Ramps 114
Exhibit 5-34 Visual Simulation Inside the Bored Tunnel (Northbound) 115
Exhibit 5-35 Visual Simulation Looking South on Alaskan Way S. at Union Street 115
Exhibit 5-36 Visual Simulation Looking at the North Portal 116
Exhibit 5-37 Visual Simulation Looking at Aurora Avenue From Denny Way 116
Exhibit 5-38 Parcels Needed for the Bored Tunnel Alternative 117
Exhibit 5-39 Map of Parcels Needed for the Bored Tunnel 117
Exhibit 5-40 Acquired Property Effects 119
Exhibit 5-41 Parking Spaces Removed by the Bored Tunnel Alternative 119
Exhibit 5-42 South Portal Affected Parking Spaces 120
Exhibit 5-43 North Portal Affected Parking Spaces 121
Exhibit 5-44 Maximum Predicted CO and PM₂.₅ Concentrations Near the Tunnel Portal 124
Exhibit 5-45 Daily Greenhouse Gas (CO₂ equivalent) Roadway Emissions Estimates 124
Exhibit 5-46 Daily Roadway Vehicular Energy Consumption 124
Exhibit 5-47 Generalized Subsurface Profile Along Bored Tunnel Alternative 126
Chapter 6 126
Exhibit 6-1 Construction Activities Chart 130
Exhibit 6-2 Tunnel Boring Machine 133
Exhibit 6-3 Proposed Construction Staging Areas 135
Exhibit 6-4 Construction Roadway Closures, Restrictions, and Detour 137
Exhibit 6-5 WOSCA Detour 137
Exhibit 6-6 Estimated CO2e Emissions Estimates 141
Exhibit 6-7 Typical Construction Equipment Noise Levels 143
Exhibit 6-8 Demolition of an Elevated Roadway Section 144
Exhibit 6-9 Construction Parking Effects during Stages 1 Through 7 145
Exhibit 6-10 Construction Parking Effects during Stage 8 145
Exhibit 6-11 Parking Affected during Construction 146
Exhibit 6-12 Daily CO₂e Emissions Estimates 152
Exhibit 6-13 Construction Energy Consumption 153
Exhibit 6-14 Potential Settlement Mitigation 157
Chapter 7 157
Exhibit 7-1 WSDOT’s Approach for Assessing Cumulative Effects 161
Exhibit 7-2 Study Areas for Cumulative Effects 162
Exhibit 7-3 Alaskan Way Viaduct to Seawall Replacement Program Elements 162
Exhibit 7-4 Conditions Modeled for the Project & Program 164
Exhibit 7-5 Vehicle Volumes at Screenlines 164
Chapter 8 164
Exhibit 8-1 2010 Supplemental Draft EIS Alternatives & Options Chart 177
Exhibit 8-2 Alternatives Comparison – SR 99 Ramp Connections 178
Exhibit 8-3 Comparison of 2030 Vehicle Volumes at Screenlines 179
Exhibit 8-4 Comparison of 2030 Transit Riders at Screenlines 179
Exhibit 8-5 Comparison of 2030 Vehicle Miles Traveled 179
Exhibit 8-6 Comparison of 2030 Vehicle Home Traveled 179
Exhibit 8-7 Comparison of 2030 Vehicle Hours Delay 179
Exhibit 8-8 Comparison of SR 99 Speeds AM Peak Hour 180
Exhibit 8-9 Comparison of SR 99 Speeds PM Peak Hour 181
Exhibit 8-10 2030 Travel Time Comparison 185
Exhibit 8-11 Comparison of SR 99 Volumes 185
Exhibit 8-12 Percentage Change in SR 99 Traffic Volumes as Compared to the 2030 Bored Tunnel 184
Exhibit 8-13 Comparison of SR 99 Ramp Volumes 186
Exhibit 8-14 Comparison of E5 Vehicle Volumes in 2030 184
Exhibit 8-15 Comparison of Vehicle Volumes on Alaskan Way in 2030 184
Exhibit 8-16 Comparison of Congested Intersections AM Peak Hour 187
Exhibit 8-17 Comparison of Congested Intersections PM Peak Hour 188
Exhibit 8-18 Screenline Locations 189
Exhibit 8-19 Comparison of Vehicle Volumes in 2030 for Screenlines South of S. King Street 187
Exhibit 8-20 Comparison of Vehicle Volumes in 2030 for Screenlines North of Seneca Street 187
Exhibit 8-21 Comparison of Vehicle Volumes in 2030 for Screenlines North of Thomas Street 188
CONTENTS (continued)

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhibit 8-22</td>
<td>Comparison of Noise Effects</td>
<td>191</td>
</tr>
<tr>
<td>Exhibit 8-23</td>
<td>Comparison of Parcels Acquired for the Alternatives</td>
<td>194</td>
</tr>
<tr>
<td>Exhibit 8-24</td>
<td>Acquired Property Effects</td>
<td>192</td>
</tr>
<tr>
<td>Exhibit 8-25</td>
<td>Parking Spaces Removed</td>
<td>192</td>
</tr>
<tr>
<td>Exhibit 8-26</td>
<td>Construction Activities Chart</td>
<td>194</td>
</tr>
<tr>
<td>Exhibit 8-27</td>
<td>Construction Activities Chart</td>
<td>195</td>
</tr>
<tr>
<td>Exhibit 8-28</td>
<td>Construction Roadway Closures, Restrictions, and Detours</td>
<td>196</td>
</tr>
<tr>
<td>Exhibit 8-29</td>
<td>Construction Roadway Closures, Restrictions, and Detour</td>
<td>197</td>
</tr>
<tr>
<td>Exhibit 8-30</td>
<td>Costs of the Alternatives</td>
<td>200</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Exhibit 9-1 Toll Scenario Segments</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-2 Range of Toll Rates Evaluated per Scenario</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-3 2015 Vehicle Miles Travelled</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-4 2015 Vehicle Hours Travelled</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-5 2015 Vehicle Hours of Delay</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-6 2015 Bored Tunnel Travel Speeds for the Toll Scenarios - AM Peak Hour</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-7 2015 Bored Tunnel Travel Speeds for the Toll Scenarios - PM Peak Hour</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-8 Bored Tunnel Travel Time Comparison</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-9 2015 Daily SR 99 Volumes</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-10 Screenline Locations</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-11 Comparison of 2015 Daily Vehicle Volumes at Screenlines</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-12 Comparison of 2015 Daily Vehicle Volumes at Screenlines on Alaskan Way</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-13 Comparison of 2015 Vehicle Volumes at Screenlines on I-5</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-14 2015 AM Peak Hour Volumes on Second & Fourth Avenues north of Seneca Street</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-15 2015 PM Peak Hour Volumes on Second & Fourth Avenues north of Seneca Street</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-16 2015 Average Weekday Volumes on Second & Fourth Avenues north of Seneca Street</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-17 GeneralPurpose & Transit Travel Times on Second & Fourth Avenues for the 2015 Bored Tunnel & Bored Tunnel Toll Scenarios</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-18 Congested Intersections AM Peak</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-19 Congested Intersections PM Peak</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-20 Comparison of Model-Estimated Transit Riders</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>(Person-Trips) at Selected Screenlines for the 2015 Bored Tunnel & 2015 Bored Tunnel Toll Scenarios</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-21 Comparison of Model-Estimated 2015 Daily Transit Mode Shares To and From Seattle’s Center for the Bored Tunnel Toll Scenarios</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-22 2015 Daily SR 99 Volumes</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-23 Comparison of 2015 Daily Vehicle Volumes at Screenlines</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-25 Comparison of 2015 Daily Vehicle Volumes at Screenlines on I-5</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Exhibit 9-26 2015 Bored Tunnel Travelshed Poverty Levels</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Draft Section 4(f) Evaluation</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Exhibit 4(f)-1 Section 4(f) Resources Subject to Use</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Exhibit 4(f)-2 Resources Subject to Use Under Section 4(f)</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Exhibit 4(f)-3 Resources Evaluated for Potential Constructive Use</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>Exhibit 4(f)-4 Resources Evaluated for Use and found to be Not Subject to Use under Section 4(f)</td>
<td>239</td>
</tr>
</tbody>
</table>
IN MEMORIAM…

This document is dedicated to the memories of Maureen Sullivan (WSDOT), Roland Benito (WSDOT), and James Leonard (FHWA). Their legacy of dedication and contributions to the delivery of the Alaskan Way Viaduct and Seawall Replacement Program is immeasurable. We will carry forward their spirit and commitment towards delivery of this public safety project in their memories.