Public safety is a top priority in the SR 99 tunnel

The SR 99 tunnel will be a safe place for travelers. Engineers have designed the tunnel to withstand an earthquake, flooding or other disaster. The tunnel will also include state-of-the-art ventilation, fire detection and suppression, security and lighting systems.

SR 99 tunnel safety features

Safe travel lanes
Two 11-foot travel lanes with an eight-foot safety shoulder and a two-foot shoulder in each direction will ensure enough space for all vehicles and legal size trucks. Long, gentle curves will allow for safe sight distances.

Tunnel control center
The tunnel will have a 24-hour control center that allows quick response to changing travel conditions and emergencies. State-of-the-art control systems will provide real-time information to WSDOT’s tunnel operators. The control center will have direct lines to the Seattle Fire Department, Police Department and other emergency responders.

Fire
If a fire were to occur in the tunnel, sprinklers would help the fire department fight the fire and keep the temperature down, while ventilation systems removed smoke. The tunnel will be equipped with cameras that can be used to verify the location of fires should they occur. Fire extinguishers will be located throughout the tunnel.

Incident response
Real-time traffic technology will minimize delays caused by collisions, stalled vehicles or other disruptions in the tunnel. Following a collision, incident detection systems will allow tunnel operators to identify and respond to incidents. If an incident were to block one lane of the tunnel, overhead electronic signs would quickly close the lane to travelers, and variable speed limit signs would maximize traffic flow through the open lanes. Emergency vehicles would then enter the tunnel and remove the disabled vehicles.

Emergency exits and refuge areas
Safe and effective evacuation routes will be provided for motorists. Enclosed evacuation walkways, which will have independent ventilation and fire control systems, will run parallel to both traffic levels in the tunnel. The walkways will be separated from the tunnel’s roadways by concrete walls and fire-resistant doors.

Access to the walkways will be provided about every 650 feet. In an emergency, travelers would walk along the shoulders to reach an emergency doorway and the emergency exit walkway to the non-affected level of the tunnel.
Travelers unable to evacuate using the stairs would be protected by staying in the safe refuge areas. These areas will be monitored by cameras, provided with an emergency phone, and will be large enough to accommodate several people, including those with wheelchairs. Fire, police or WSDOT incident response vehicles would be dispatched to help those waiting in the refuge areas.

Additional tunnel safety systems

- **Air monitoring and ventilation:** The ventilation system will measure and reduce the levels of harmful vehicle emissions in the tunnel.
- **Emergency power:** Two independent power sources will ensure a reliable source of electricity. Generator systems will be provided for safe tunnel closure and the maintenance of critical systems during a regional power failure.
- **Emergency notification:** In the event of an emergency, electronic signs, public address and AM/FM rebroadcast systems will provide advisory messages.

Earthquakes

Geotechnical and structural engineers agree that tunnels can be designed as one of the safest places to be during an earthquake.

The SR 99 tunnel is being designed to withstand an earthquake that only happens every 2,500 years on average (in the range of a 9.0 magnitude without collapsing).

Rising sea levels and tsunamis

The Seattle Department of Transportation has designed the Elliott Bay seawall replacement to protect waterfront facilities, such as the SR 99 tunnel, against sea level rise and moderate storm surges.

In the event of a tsunami, it is highly unlikely that a wave would overtop the seawall and reach the tunnel. WSDOT and the City of Seattle found this could only happen during a very high tide - a combination of events estimated to occur only once every 6,000 to 24,000 years. Washington’s early warning system and the tunnel’s real-time traffic technology would allow us to restrict traffic from entering the tunnel during a tsunami. If necessary, drains and pump systems would help to quickly remove any water from the tunnel.