Evaluation of Portland Cement Concrete Pavement with High Slag Content Cement

WA-RD 728.1

Keith W. Anderson Jeff S. Uhlmeyer Kurt Williams Mark Russell Jim Weston June 2009

WSDOT Research Report

Post-Construction and Performance Report Experimental Feature 07-03

Evaluation of Portland Cement Concrete Pavement With High Slag Content Cement

Contract 7064 SR-543 I-5 To International Boundary Widening MP 0.20 to MP 1.09

^{1. REPORT NO.} WA-RD 728.1	2. GOVERNMENT ACCE	SSION NO.	3. RECIPIENT'S CATALOG NO.	
4. TITLE AND SUBTITLE			5. REPORT DATE	
Evaluation of Portland Cement C Slag Content Cement	oncrete Pavement	With High	June 2009	
Shug Content Centent			6. PERFORMING ORGANIZATI	ON CODE
7. AUTHOR(S)			WA 07-03 8. performing organizati	ON REPORT NO
Keith W. Anderson, Jeff S. Uhlm Russell, and Jim Weston	eyer, Kurt Willian	ns, Mark	6. FERFORMING ORGANIZAT	ON REPORT NO.
. PERFORMING ORGANIZATION NAME AND ADDRESS	—		10. WORK UNIT NO.	
Washington State Department of Transportation Materials Laboratory, MS-47365 Olympia, WA 98504-7365			11. CONTRACT OR GRANT NO	
12. SPONSORING AGENCY NAME AND ADDRESS			13. TYPE OF REPORT AND PER	
Washington State Department of Transportation Building, MS 473	_		Post-Construction Performance Rep	
Olympia, Washington 98504-73			14. SPONSORING AGENCY CO	
Project Manager: Kim Willought 15. SUPPLEMENTARY NOTES				
This study was conducted in coop Highway Administration.	peration with the U	J.S. Departmen	t of Transportation	, Federal
16. ABSTRACT				
The performance of a section of co Slag (GGBFS) is compared to a control if the higher slag content pavement construction of the pavement, constr smoothness results.	l section of concrete j is more resistant to	pavement built wir wear from studd	th 25 percent GGBFS ed tires. This repor	to determine t details the
17. KEY WORDS		18. DISTRIBUTION STAT		
Ground Granulated Blast Furnace Sl concrete performance, studded tires	ag, GGBFS,	to the public t	s. This document is hrough the Nationa ormation Service, A 22616	
19. SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF. (of this	page)	21. NO. OF PAGES	22. PRICE
None	Non	e	34	

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

TABLE OF CONTENTS

Introduction	1
Background	1
Properties of Concrete with Slag Cement	1
Project Description	2
Construction	
Construction Problems	
Test Section	5
Construction Test Results	7
Post-Construction Test Results	10
Evaluation Plan	11
Bibliography	11
Appendix A	
Appendix B	
Appendix C	
11	

LIST OF FIGURES

Figure 1.	Project vicinity map	2
Figure 2.	Project lane configuration and test section location.	6
Figure 3.	Strength versus time for 30 percent slag mix1	0

LIST OF TABLES

able 1. Mix design SS6012P25 with 25 percent slag cement	
able 2. Mix design SS6012P30 with 30 percent slag cement	
able 3. Mix design SSP012635 with 35 percent slag cement	4
able 4. Mix design SS80124P24, 24 hour mix.	4
able 5. Mix design SS7014P48, 48 hour mix	5
able 6. Compressive and flexural strengths for mix design SS6012P25 cylinders	7
able 7. Compressive and flexural strengths for mix design SS6012P30 cylinders	8
able 8. Compressive and flexural strengths for mix design SS80124P24 cylinders	8
able 9. Compressive and flexural strengths for mix design SS7014P48 cylinders	9
able 10. Compressive strengths for 30 percent slag mix design cylinders with time	9
able 11. Average wear, ride and friction results for April 2009	10

Introduction

This experimental feature will investigate the performance of high slag mixes and their affect on the pavements ability to resist studded tire wear. Concrete mixes with higher slag content produce higher strength pavements which may be more resistant to studded tire damage.

Class F fly ash has been used by WSDOT for many years in portland cement concrete pavement. WSDOT has experienced shortages of fly ash at various times when the main supplier in Washington State, the TransAlta coal fired power plant in Centralia, shuts down in the spring due to hydroelectric power being cheaper than power produced by coal. Ground Granulated Blast Furnace Slag (GGBFS) is being imported into Washington State and can be substitute for portland cement because it has cementitious properties just like fly ash.

Background

GGBFS is a by-product of iron manufacturing. Slag is what is left after the molten iron is poured out of a blast furnace. The slag is formed from a combination of the limestone and/or dolomite that is used as a flux in the making of iron, the siliceous and aluminous residues from the iron ore and the coke ash. Slag with cementitious properties is made by rapidly cooling the molten slag to produce granules with a high content of glass. These granules are dried and ground to produce a cementitious material.

Properties of Concrete with Slag Cement

Concrete with slag cement will have a slower rate of strength gain than concrete made with 100 percent portland cement; however, the later age strength of slag cement are comparable too or higher than same concrete with all hydraulic cement. The optimum amount of slag to achieve the highest strength development appears to be between 40 and 60 percent (Richardson, 2006). While other sources note the optimum blend of GGBFS and portland cement that produces the greatest 28 day compressive strength to be between 40 and 70 percent, this proportion is dependent on the grade of slag used (ACI 233R-03). As the replacement level of slag increases the 28 day compressive strength of concrete generally increases, up to approximately 50 percent slag as a percent of the cementitious materials (SCA No. 14, 2003). Scaling can be a problem when higher percentages of slag cement are used in paving concrete

mixes, however, at the 35 percent level used on this project, there are no problems reported in the literature.

Project Description

Contract 7064, SR 543, I-5 to International Boundary Widening and Border Crossing Improvements, is located at the northern limits of I-5 near the Canadian border as shown in Figure 1. The project converted the existing two lane facility into a four lane roadway to provide a separate truck route to address congestion and safety issues on SR 543. In addition, a new interchange at "D" Street was constructed. The total length of the project is 0.89 miles.

Figure 1. Project vicinity map.

Construction

Construction of the concrete pavement began on June 13 and was completed on October 19, 2007. Four mix designs were used, one with 25 percent slag cement, one with 30 percent

slag cement, one with 35 percent slag cement, and two with conventional Type I/II cement without slag. The later two mix designs were 24 hour and 48 hour mixes, indicating that they were for special situations that required quicker set times. The components for each mix design are summarized in Tables 1-5 and provided in greater detail in Appendix A.

Table 1. Mix design SS6012P25 with 25 percent slag cement.						
ltem	Source	Туре	Lbs/cy	Specific Gravity		
Cement	Lafarge	I-II	423	3.15		
Slag	Lafarge	NewCem	141	2.87		
Agg. Source 1	F-34	ASTM C33 No. 4	624	2.68		
Agg. Source 2	F-34	ASTM C33 No. 67	1014	2.68		
Agg. Source 3	F-34	ASTM C-33 No. 8	481	2.68		
Agg. Source 4	F-194	WSDOT Class II Sand	1,053	2.57		
Water			238	1.00		
W/C Ratio			0.42			
Air Entrainment	Master Builders	AE 90	5-10 oz/cy			
Water Reducer	Master Builders	Polyheed 997	23-30 oz/cy			

Table 2. Mix design SS6012P30 with 30 percent slag cement.						
Item Source		Туре	Lbs/cy	Specific Gravity		
Cement	Lafarge	I-II	395	3.15		
Slag	Lafarge	NewCem	169	2.87		
Agg. Source 1	F-34	ASTM C33 No. 4	624	2.68		
Agg. Source 2	F-34	ASTM C33 No. 67	1014	2.68		
Agg. Source 3	F-34	ASTM C-33 No. 8	481	2.68		
Agg. Source 4	F-194	WSDOT Class II Sand	1,050	2.57		
Water			217	1.00		
W/C Ratio			0.38			
Air Entrainment	Master Builders	AE 90	5-10 oz/cy			
Water Reducer	Master Builders	Polyheed 997	23-30 oz/cy			
High-Range Water Reducer	BASF/Master Builders	Delvo	20 oz/cy			

Table 3. Mix design SSP012635 with 35 percent slag cement.						
ltem	Source	Туре	Lbs/cy	Specific Gravity		
Cement	Lafarge	I-II	369	3.15		
Slag	Lafarge	NewCem	195	2.87		
Agg. Source 1	F-34	ASTM C33 No. 4	624	2.68		
Agg. Source 2	F-34	ASTM C33 No. 67	1014	2.68		
Agg. Source 3	F-34	ASTM C-33 No. 8	481	2.68		
Agg. Source 4	F-194	WSDOT Class II Sand	1,048	2.57		
Water			217	1.00		
W/C Ratio			0.38			
Air Entrainment	Master Builders	AE-90	5-10 oz/cy			
Water Reducer	Master Builders	Polyheed 997	23-30 oz/cy			

The 25, 30 and 35 percent slag mix designs were similar except for the higher quantities of slag and lower quantities of water and resultant lower water/cement ratios in the 30 and 35 percent mixes. The 30 percent mix also used a high-range water reducer not used in either of the 25 or 35 percent slag mixes.

Table 4. Mix design SS80124P24, 24 hour mix.						
ltem	Source	Туре	Lbs/cy	Specific Gravity		
Cement	Lafarge	I-II	752	3.15		
Agg. Source 1	F-34	ASTM C33 No. 4	588	2.68		
Agg. Source 2	F-34	ASTM C33 No. 67	1088	2.68		
Agg. Source 3	F-34	ASTM C-33 No. 8	294	2.68		
Agg. Source 4	F-194	WSDOT Class II Sand	1088	2.57		
Water			263	1.00		
W/C Ratio			0.35			
Air Entrainment	Master Builders	AE 90	5-10 oz/cy			
High-Range Water Reducer	Master Builders	Glenuim 3030 NS	15-60 oz/cy			

Table 5. Mix design SS7014P48, 48 hour mix.						
ltem	Source	Туре	Lbs/cy	Specific Gravity		
Cement	Lafarge	I-II	658	3.15		
Agg. Source 1	F-34	ASTM C33 No. 4	588	2.68		
Agg. Source 2	F-34	ASTM C33 No. 67	1088	2.68		
Agg. Source 3	F-34	ASTM C-33 No. 8	294	2.68		
Agg. Source 4	F-194	WSDOT Class II Sand	1088	2.57		
Water			238	1.00		
W/C Ratio			0.36			
Air Entrainment	Master Builders	AE 90	5-10 oz/cy			
High-Range Water Reducer	Master Builders	Glenuim 3030 NS	13-60 oz/cy			

The two fast setting mix designs were also very similar with the only differences in the quantity of cement and the water/cement ratio.

Construction Problems

There were significant problems with the mix delivered to the job site to the extent that the project engineer recommended that the planned use of 35 percent slag content cement be abandoned (see Appendix B). The problems with the concrete mix delivered appear to be most attributed to the contractors delivery method of utilizing an off site concrete batch plant with concrete mixer trucks with a one way delivery time of approximately one hour. As a result the there were several instances when the concrete began to take a set prior to being processed through the paver. The variability of the compressive strength test results for the 25 percent slag mix design noted in the section that follows corroborates this observation.

Test Section

The test section of 30 % slag runs from Milepost 0.57 to Milepost 0.77 in the northbound outside lane and truck lane as shown on the map in Figure 2. The truck lane is the outside lane that exits to the right after the D Street Overcrossing. The remainder of the mainline paving used the 25% slag mix design.

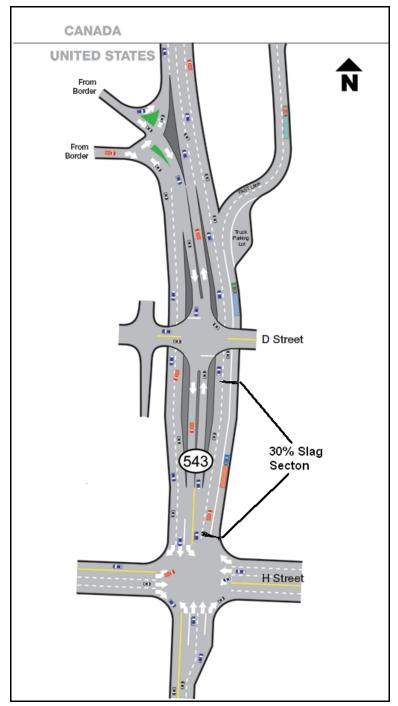


Figure 2. Project lane configuration and test section location.

Construction Test Results

The compressive and flexural strength results from the cylinders cast on the project are listed in Tables 6 through 9 for each of the four mix designs. The 25 percent slag mix design had a wide variation in strengths throughout the course of the paving. The compressive strengths ranged from a low of 3,800 psi to a high of 5,590 psi, with an average compressive strength of 4,737 psi. The 1,790 psi range in the individual cylinder results and a standard deviation of 437 psi supports the probability that there was either a large variation in the proportioning of the mix at the concrete plant or in the mixer trucks on the way to the job site.

Table 6. Compressive and flexural strengths for mix design SS6012P25 cylinders.					
Date	Starting Station	Ending Station	Concrete (cy)	Compressive Strength (psi)	Flexural Strength (psi)
6/15/07	L 1+268.43	L 1+286.44	77	5,310	837
6/20/07	LR 1+656.00	LR 1+876.00	517	4,310	754
6/22/07	T 1+876.00	T 2+034.00	427	3,800	708
6/26/07	T 1+926.00	T 2+045.00	346	4,640	782
9/5/07	T 2+051.20	T 2+214.94	249	4,150	740
9/6/07	T 2+051.20	T 2+213.80	212	4,220	746
9/10/07	LL 1+945.00	LL 2+025.00	213	4,770	793
9/11/07	LL 1+970.10	LL 1+993.20	570	4,580	777
9/19/07	LL 1+777.40	LL 1+945.50	395	5,250	832
9/21/07	LL 1+518.20	LL 1+700.20	457	4,560	776
9/22/07	L 1+325.20	L 1+478.60	508	5,590	859
9/25/07	L 1+286.44	L 1+326.84	97	4,810	797
10/1/07	L 1+287.80	L 1+478.60	310	5,230	831
10/2/07	L 1+510.00	L 1+611.99	148	4,700	788
10/3/07	L 1+286.44	L 1+486.60	236	4,570	777
10/8/07	L 1+839.89	L 1+910.02	224	4,470	768
10/9/07	L 1+837.70	L 1+990.00	313	4,680	786
10/15/07	L 1+510.12	L 1+546.98	205	5,030	815
10/17/07	L 1+541.01	L 1+559.98	355	5,140	824
10/18/07	L 1+949.10	L 1+995.32	68	4,570	777
10/19/07	L 1+802.15	L 1+860.63	147	5,100	820
		Total	6074		
			AVE	4,737	790
			STD DEV	437	37

The 30 percent slag mix had a 240 psi range in compressive strength values with a low of 4,910 psi and a high of 5,150 psi and an average of 5,040 psi. The standard deviation of 110 psi was the lowest of the four mix designs used and indicates that the concrete supplier may have been more careful with this mix because of its experimental nature.

Table 7. Compressive and flexural strengths for mix design SS6012P30 cylinders.							
Date	Starting Station	Ending Station	Concrete (cy)	Compressive Strength (psi)	Flexural Strength (psi)		
6/19/07	L 1+286.44	L 1+406.00		4,990	741		
6/19/07	LR 1+406.00	LR 1+538.00		5,150	753		
6/19/07	LR 1+538.00	LR 1+ 656.00	873	4,910	735		
6/19/07				5,110	750		
		Total	873				
			AVE	5,040	745		
			STD DEV	110	8		

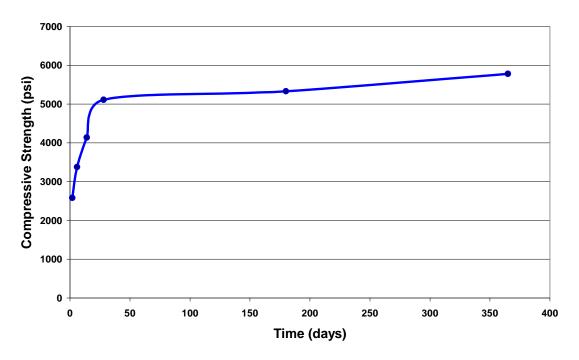

The 24 and 48 hour mixes followed the pattern of the 25 percent slag mix with a lot of variability in the compressive strengths and moderate to high standard deviations.

Table 8. (Table 8. Compressive and flexural strengths for mix design SS80124P24 cylinders.						
Date	Starting Station	Ending Station	Concrete (cy)	Compressive Strength (psi)	Flexural Strength (psi)		
9/12/07	L 1+255+80	L 1+275.64	51	6,680	991		
9/13/07	L 1+ 255.80	L1+261.40	67	6,610	986		
9/14/07	L 1+264.80	L 1+291.80	80	7,680	1062		
10/4/07	I/S H Stree	et & SR 543	149	7,870	1075		
10/5/07	L 1+247.83	L 1+250.21	48	7,550	1053		
10/12/07	L 1+231.12	L 1+247.09	42	6,920	1008		
		Total	437				
			Average	7,218	1029		
			STD DEV	547	39		

Table 9. C	Table 9. Compressive and flexural strengths for mix design SS7014P48 cylinders.										
Date	Starting Station	Ending Station	Concrete (cy)	Compressive Strength (psi)	Flexural Strength (psi)						
9/20/07	LL 1+692.10	LL 1+778.90	289	6,470	943						
10/10/07			50	6,640	956						
10/11/07	H 1+232.55	H 1+245.90	143	7,050	985						
		Total	482								
			Average	6,720	961						
			STD DEV	298	22						

Additional cylinders were cast and broken at 2, 5, 14, 28, 180 and 365 days to provide an idea of the progressive strength gain of the 30 percent slag mix (Table 10). The strength versus time graph (Figure 3) shows that the mix gains most of its strength by 28 days. The same test series was not done for the 25 percent mix, therefore, the difference in strength gain for the two mixes could be not observed.

Table 10. Compressive strengths for 30percent slag mix design cylinders with time.								
Test Date	Compressive Strength (psi)							
2 day	2580							
6 day	3380							
14 days	4140							
28 days	5110							
180 days	5330							
1 year	5780							

Strength Versus Time for 30 Percent Slag Mix

Figure 3. Strength versus time for 30 percent slag mix.

Post-Construction Test Results

Wear and ride measurements on the 30 percent slag and control sections were conducted on April 21, 2009 with results summarized in Table 11. Friction measurements made on April 22, 2009 are also summarized in Table 11.

Table 11. Ave	Table 11. Average wear, ride and friction results for April 2009.										
Section	Direction	Lane	Wear (mm)	Ride (IRI)	Friction (FN)						
30% Slag	NB	1	2.4	93	50.5						
Control	NB	1	2.5	180	53.8						
Control	NB	2	3.0	148	52.9						
Control	SB	1	2.7	106	50.5						
Control	SB	2	3.0	117	41.5						

The wear measurements seem a bit high for a new pavement and the ride measurements are definitely high, especially Lanes 1 and 2 of the northbound control section. The high ride measurements correlate with the problems cited during construction with the consistency and workability of the mix. The friction measurements are excellent with only the SB Lane 2 being slightly on the low side for a new pavement.

Evaluation Plan

The experimental feature work plan (Appendix C) for this project calls for wear, ride, and friction testing for five years on a twice yearly basis in the spring and fall to bracket the season when studded tires are legal. Pavement condition will be monitored on a yearly basis using data from the Washington State Pavement Management System (WSPMS). The lane configuration of the finished project is shown in Figure 2.

Bibliography

- Richardson, David N, "Strength and Durability Characteristics of a 70% Ground Granulated Blast Furnace Slag (GGBFS) Concrete Mix," Missouri Transportation Institute and Missouri Department of Transportation, Report No. OR06-008, February 2006. <u>http://168.166.124.22/RDT/reports/Ri99035/or06008.pdf</u>
- American Concrete Pavement Association (ACPA), (2003), *R&T Update Concrete pavement Research & Technology – Slag Cement and Concrete Pavements*, American Concrete Pavement Association, 5420 Old Orchard Rd. Suite A100, Skokie, IL 60077 Website: www.pavement.com Retrieved on October 11, 2007, from <u>http://www.pavement.com/Downloads/RT/RT4.03.pdf</u>

Slag Cement Association (SCA No. 14), (2003), COMPRESSIVE AND FLEXURAL STRENGTH – Slag Cement in Concrete No. 14, Slag Cement Association 14090 Southwest Freeway Suite 300, Sugar Land, TX 77478, Retrieved September 27, 2007, from <u>http://www.slagcement.org/image/123800_c_sU128801_s_i185541/No14_Compress_Str</u> ength.pdf

Appendix A

Mix Designs

Experimental Feature Report

Contractor				Submitted By			
Acme Concrete			Ch	ris Papich		12/13	/2006
Concrete Supplie Cowden Grave		lix		Plant Location Blain, Wa	*		
Contract Number		Contract Nar		Boundary Widening	ат.		
C 7064						254	
oncrete Class:	(check one on	lv)		Concrete Overla			d vement
emarks:				(
			Cow	den id:	556012	LP25	
		Mix Desig	n No	7084-25SLAG			- 1
Cementitious Materials	-	Source		Type or	Class	Sp. Gr.	Lbs/cy
Cement	Lafarge			TYPE I/II		3.15	423
Fly Ash ^a						6	
Microsilica							
Latex						2.87	141
Slag	Lafarge			NewCem	2.07		
Concr Admixt		Manı	ufacturer	Produ	ct	Туре	Est. Range (oz/cy)
Air Entrainmen	t	Master Buil	der	AE-90			5-10
Water Reducer	•	Master Buil	der	Polyheed 997		-	25-30
High-Range W	ater Reducer						
Set Retarder						, ,	
Other							
Water (Maximum Water Cementitio		(lbs/c mum) (lbs/c	y) Recla 42 X	imed/Recycled Wate	e rr (Maximum)		(lbs/cy)
Design Perfor	mance	1	2	3	4	5	Average
28 Day Compr Strength (cylin	essive	4,850	4,810	4,820	4,800	4,960	4,850
14 Day Flexura Strength (bear		810	790	800	795	800	800
Reviewed B: K (115)90 N		PE Signe	ture, 4.107, (rdded (-3 Turcens	-28-07 TD NO	e

mbined Gradation Chart

Concrete Aggregates	Component 1	Component 2	Component 3	Component 4	Component 5	Combined Gradation
WSDOT Pit No.	F-34	F-34	F-34	F-194		
ASR Mitigation Required? ^b	Yes 🗋 No	🛛 Yes 🗌 No	🛛 Yes 🗌 No	🛛 Yes 🗌 No	🗌 Yes 🔲 No	
Grading ^c	ASTM C33 NO. 4/67	ASTM C33 NO.67.4467	ASTM C-33 NO. 8	WSDOT Class II Sand		
Percent of Total Aggregate	19.7	32	15.16	33.13		100%
Specific Gravity	2.68	2.68	2.68	2.57		
Lbs/cy (ssd)	624	1014	481	1053		
		Per	cent Passing	_		
2 inch	100	100	100	100		
1-1/2 inch	91	100	100	100		98.1
1 inch	15	100	100	100	•	83.3
3/4 inch	.4 :	94	100	100		78.6 61.5
1/2 inch	0	41	100	100		49
3/8 inch	0.02	8	88	100		37.3
No. 4	0	0.69	26	96		32.4
No. 8	0	0.1	4	73		24.2
No. 16	0	0	0	44		14.4
No. 30	0	0	0	17		5.5
No. 50	0	0	0	7		2.3
No. 100	0	0	0	4		1.1
No. 200	U					<u> </u>

(Required for Class 2 Sand) Fineness Modulus: 2.64 Aggregate Correction Factor:

Notes:

a Required for Class 4000D and 4000P mixes.

b If Alkali Silica Reactivity Mitigation is required per WSDOT ASA Database - Attach evidence that mitigating measure controls expansion in the form of ASTM C 1260 / AASHTO T303, ASTM C 1293, or ASTM C 295 test results

- C AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1
- d Required for Cement Concrete Pavements
- e Attach test results indicating conformance to Standard Specification 9-25.1

DOT Form 350-040 EF Revised 5/2003

WY TAN
* <i>I (D</i>)

Washington State Department of Transportation

Concrete Mix Design

Contractor			1	ibmitted By		Date				
Acme Concret		•	C	hris Papich		12/13	3/2006			
Concrete Supplie Cowden Grave		Mix		Plant Location Blain, Wa						
Contract Number		Contract Na	me							
C 7064		SR 543-15	International	Boundary Widenin	ng	10				
This mix is to be	used in the f	ollowing Bid Ite	m No(s):		81,237,247	7,254				
Concrete Class:	(check one c 000	niy) _a DD ∐ 4000P	a 14000W	Concrete Over			d			
Remarks:							• •			
		Mix Desig	n No	7084-30SLAG	5560	NZP30				
Cementitious Materials		Source		Type or	Class	Sp. Gr.	Lbs/cy			
Cement	Lafarge			TYPE I/II		, 3.15	395			
Fly Ash ^a										
Microsilica										
Latex										
Slag	Slag Lafarge				NewCem 2					
Concr Admixt		Manu	Ifacturer	Produ	ıct	Туре	Est. Range (oz/cy)			
Air Entrainment		Master Buil	der	AE-90			5-10			
Water Reducer		Master Buil	faster Builer Polyheed 997				25-30			
High-Range Wa	ater Reducer					4				
Set Retarder										
Other	····									
Water (Maximum) Water Cementition	<u> </u>	(lbs/cy mum) .38	/) Recla	imed/Recycled Wate	e r (Maximum)		(lbs/cy)			
Design Perfor	mance	1	2	3	4	5	Average			
28 Day Compre Strength (cylind		5,040	5,050	5,030	5,020	5,080	5,040			
14 Day Flexural Strength (beam	d s) psi	750	740	760	740	740	745			
	0		λ	I						
Reviewed By:	()	h Da	X		(-	13-07				
		PE Signat	ure			Date)			
	Distribu	tion: Original - (Contractor							
DOT Form 350-040 EI Revised 5/2003	-			b-General Materials Er	ng. ; Regional Ma	terials Lab; Proje	ct Inspector			

Combined Gradation Chart

.

,

Concrete Aggregates	Component 1	Component 2	Component 3	Component 4	Component 5	Combined Gradation
WSDOT Pit No.	F-34	F-34	F-34	F-194		
ASR Mitigation Required? ^b	🛛 Yes 🗌 No	🛛 Yes 🔲 No	🛛 Yes 🗌 No	🛛 Yes 🗌 No	Yes No	
Grading ^C	ASTM C33 NO. 4	ASTM C33 NO.67	ASTM C-33 NO. 8	WSDOT Class II Sand		
Percent of Total Aggregate	19.69	32	15.18	33.13		100%
Specific Gravity	2.68	2.68	2.68	2.57		
Lbs/cy (ssd)	624	1014	481	1050		
		Per	cent Passing			T
2 inch	100	100	100	100		
1-1/2 inch	91	100	100	100		98.1 83.3
1 inch	15	100	100	100		83.3 78.6
3/4 inch	.4	94	100	100		61.5
1/2 inch	0	41	100	100		49
3/8 inch	0.02	8	88	100		37.3
No. 4	0	0.69	4	96		32.4
No. 8	0	0.1	4	73	_	*24.2
No. 16	0	0	0	44		← 14.4
No. 30	0	0	0	17		5.5
No. 50	0	0	0	7		2.3
No. 100	0	0	0	4		1.1
No. 200	0	0				

Aggregate Correction Factor; ______ Fineness Modulus: 2.64 (Required for Class 2 Sand)

Notes:

- a Required for Class 4000D and 4000P mixes.
- b If Alkali Silica Reactivity Mitigation is required per WSDOT ASA Database Attach evidence that mitigating measure controls expansion in the form of ASTM C 1260 / AASHTO T303, ASTM C 1293, or ASTM C 295 test results

.

- C AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1
- d Required for Cement Concrete Pavements
- e Attach test results indicating conformance to Standard Specification 9-25.1

DOT Form 350-040 EF Revised 5/2003

Vergeneration

....

Contractor				Submitted By		Date	
Acme Concret		•	(Chris Papich		12/1	3/2006
Concrete Supplie Cowden Grave		Mix		Plant Locatio Blain, Wa	n		
Contract Number		Contract Na	me				
C 7064		SR 543-I5	International	l Boundary Wide	ning		
Concrete Class:	(check one o	(nhv)		Concrete Ov			d avement
Remarks:	.*		*,			P-12/2	
Cementitious		Mix Desig Source	n No	7084-35SLA	or Class	901263. Sp. Gr.	Lbs/cy
Materials Cement	Lafarge	Source		TYPE I/II	01 01035	3.15	369
Fly Ash ^a					· · · · · · · · · · · · · · · · · · ·		
Microsilica							
Latex							
Slag	Lafarge			NewCem		2.87	195
Concr Admixt		Manu	ufacturer	Product		Туре	Est. Range (oz/cy)
Air Entrainmen	t	Master Buil	der	AE-90			5-10
Water Reducer		Master Buil	er	Polyheed 997	7		25-30
High-Range W	ater Reducer					4	
Set Retarder							
Other							
Water (Maximum Water Cementitic		(lbs/c imum) .38	y) Rec	aimed/Recycled Wa	e ater (Maximum)		(lbs/cy)
Design Perfor	mance	1	2	3	4	5	Average
28 Day Compre Strength (cyline	ders) psi	5,540	5,550	5,530	5,520	5,600	5,550
14 Day Flexura Strength (beam	l d Is)psi	810	800	800	805	810	, 805
Reviewed By		\mathcal{C}	onver	1 5 to	7 36	18 ps	L
		PE Signat	ture			Dat	9

Experimental Feature Report

Combined Gradation Chart

Concrete Aggregates	Component 1	Component 2	Component 3	Component 4	Component 5	Combined Gradation
WSDOT Pit No.	F-34	F-34	F-34	F-194		
ASR Mitigation Required? ^b	🛛 Yes 🔲 No	🛛 Yes 🗋 No	🛛 Yes 🔲 No	🛛 Yes 🔲 No	Yes No	
Grading ^C	ASTM C33 NO. 4	ASTM C33 NO.67	ASTM C-33 NO. 8	WSDOT Class II Sand		
Percent of Total Aggregate	19.7	32.02	15.19	33.09		100%
Specific Gravity	2.68	2.68	2.68	2.57		
Lbs/cy (ssd)	624	1014	481	1048		
		Per	cent Passing		·	
2 inch	100	100	100	100		
1-1/2 inch	91	100	100	100		98.1
1 inch	15	100	100	100	£	83.3
3/4 inch	.4	94	100	100		78.6
1/2 inch	0	41	100	100		61.5
3/8 inch	0.02	8	88	100		49
No. 4	0	0.69	26	100		37.3
No. 8	0	0.1	4	96		32.4
No. 16	0	0	0	73		24.2
No. 30	0	0	0	44	47	14.4
No. 50	0	0	0	17		5.5
No. 100	0	0	0	7		2.3
No. 200	0	0	0	4		1.1

104

Aggregate Correction Factor: _____ Fineness Modulus: 2.64 (Required for Class 2 Sand)

Notes:

^a Required for Class 4000D and 4000P mixes.

b If Alkali Silica Reactivity Mitigation is required per WSDOT ASA Database - Attach evidence that mitigating measure controls expansion in the form of ASTM C 1260 / AASHTO T303, ASTM C 1293, or ASTM C 295 test results

- ^c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1
- d Required for Cement Concrete Pavements
- e Attach test results indicating conformance to Standard Specification 9-25.1

DOT Form 350-040 EF Revised 5/2003

Washington State Department of Transportation

Concrete Mix Design

Contractor			Submitted By				Date		
Acme Concrete	Paving, Inc			Chris	Papich			12/13/2006	
Concrete Supplie	r				Plant Locatio	n			
Cowden Grave					Blain, Wa				
Contract Number		Contract Na		10					
C 7064		SR 543-I5	Internation	al Bou	ndary Wider	ning]
This mix is to be	used in the f	ollowing Bid Ite	em No(s):			81,237,247	7,254		
Concrete Class: 3000 140 Other	(check one d 000 🔲 4000	only) _a DD	a 4000\	N 🗆 (Concrete Ov	erlay 🛛 Cemer	nt Concr	ete Pav	d vement
Remarks:									
		Mix Desig			7084-24HR	± 55801	24	PZL	1
Cementitious Materials		Source			Туре	or Class	Sp	o. Gr.	Lbs/cy
Cement	Lafarge			TY	PE I/II		3.15		752
Fly Ash ^a							\$		
Microsilica						· · · · · ·			
Latex					·	*******			
Slag									+
Concre	ato			l			1		
Admixtu		Man	ufacturer		Product		Тур	e	Est. Range (oz/cy)
Air Entrainment		Master Bui	lder	A	AE-90				5-10
Water Reducer									
High-Range Wa	ter Reducer	Master Bui	lder	G	lenuim 303) NS	F		13=0 RM
Set Retarder					added by WSDO				
Other								7	
Water (Maximum) Water Cementitiou		(lbs/c imum) .35	y) Re	claimed	I/Recycled Wa	e ater (Maximum)			(lbs/cy)
Design Perform		1	2		3	4	5		Average
28 Day Compre Strength (cylind	ers) psi	6,600	6,68	0	6,630	6,700	6	,740	6,670
14 Day Flexural Strength (beams	d s) psi	980	1,00	0	970	1,010		980	990
Reviewed By:	OL	- Jew	ł.			5	-16-	- /	
NIX der DOT Form 350-040 El Revised 5/2003	XIII	3	Contractor	s Lab-Ge	eneral Materials Oldedee	Eng. ; Regional Ma	terials [`] Lat	Date b: Project	

Combined Gradation Chart

Concrete Aggregates	Component 1	Component 2	Component 3	Component 4	Component 5	Combined Gradation
WSDOT Pit No.	F-34	F-34	F-34	F-194		
ASR Mitigation Required? ^b	X Yes 🗌 No	🛛 Yes 🗌 No	🛛 Yes 🗆 No	🛛 Yes 🗌 No	□Yes □No	
Grading ^C	ASTM C33 NO. 4	ASTM C33 NO.67	ASTM C-33 NO. 8	WSDOT Class II Sand		
Percent of Total Aggregate	20	37	10	33		100%
Specific Gravity	2.68	2.68	2.68	2.57		
Lbs/cy (ssd)	588	1088	294	1088		
		Per	cent Passing			
2 inch	100	100	100	100	· · · · ·	
1-1/2 inch	91	100	100	100		98.1
1 inch	15	100	100	100	e.	83.0
3/4 inch	.4	94	100	100		77.9
1/2 inch	0	41	100	100		58.2
3/8 inch	0.02	8	88	100		44.8
No. 4	0	0.69	26	100		35.9
No. 8	0	0.1	4	96		32.1
No. 16	0	0	0	73		24.1
No. 30	0	0	0	44		14.5
No. 50	0	0 -	0	17		5.6
No. 100	0	0	0	7		2.3
No. 200	0	0	0.	4		1.3

Aggregate Correction Factor: _____ Fineness Modulus: 2.64 (Required for Class 2 Sand)

Notes:

a Required for Class 4000D and 4000P mixes.

b If Alkali Silica Reactivity Mitigation is required per WSDOT ASA Database - Attach evidence that mitigating measure controls expansion in the form of ASTM C 1260 / AASHTO T303, ASTM C 1293, or ASTM C 295 test results

^c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1

d Required for Cement Concrete Pavements

e Attach test results indicating conformance to Standard Specification 9-25.1

DOT Form 350-040 EF Revised 5/2003

Experimental Feature Report

ntractor				Submitted By		Date			
Acme Concrete Paving, Inc.				Chris Papich		12/13/2006			
Concrete Supplier				Plant Location					
Cowden Grave				Blain, Wa					
Contract Number Contract Name C 7064 SR 543-I5 Internati				onal Boundary Widening					
This mix is to be	used in the	following Bid Ite	em No(s):		81,237,247	.254			
Concrete Class: 3000 4 Other	(check one	only)		Concrete Ov		t Concrete Pa	d vement		
Remarks:					. / il				
		Mix Desig	jn No	Caude 7084-48HF	n id# s	57014	F48		
Cementitious Materials	Source			Туре	or Class	Sp. Gr.	Lbs/cy		
Cement	Lafarge			TYPE I/II		3.15	658		
Fly Ash ^a						¢			
Microsilica									
Latex									
Slag									
Concrete Admixtures Air Entrainment		Man	Manufacturer		Product		Est. Range (oz/cy)		
		Master Bui	Master Builder		AE-90		5-10		
Water Reducer									
High-Range Water Reducer		r Master Bui	Master Builder		Glenuim 3030 NS		59-60/3-6		
Set Retarder					add		USAD		
Other							00 11-0		
Water (Maximum	238	(lbs/c	cv) Rec	laimed/Recycled W	e ater (Maximum)		(ibs/cy)		
Water Cementitio							(156/09)		
Design Perfor		1	2	3	4	5	Average		
28 Day Compre Strength (cyline	ders) psi	6,800	6,870	6,790	6,820	6,900	6,840		
14 Day Flexura Strength (beam	l d is) psi	950	970	970	1,000	960	. 970		
Reviewed By	n No. V	EV PE Signa OV PE Signa oution: Original -	ature W/4-/0 Contractor	07, adde	rd Cowdo	16:07 215 Date 215 J	DNO.		

/

Combined Gradation Chart

Concrete Aggregates	Component 1	Component 2	Component 3	Component 4	Component 5	Combined Gradation
WSDOT Pit No.	F-34	F-34	F-34	F-194		Chadation
ASR Mitigation Required? ^b	🛛 Yes 🗀 No	🛛 Yes 📋 No	Yes 🗋 No	🛛 Yes 🗌 No	Yes No	
Grading ^C	ASTM C33 NO. 4	ASTM C33 NO.67	ASTM C-33 NO. 8	WSDOT Class II Sand		
Percent of Total Aggregate	20	37	10	33		100%
Specific Gravity	2.68	2.68	2.68	2.57		
Lbs/cy (ssd)	588	1088	294	1088		
		Pero	cent Passing			
2 inch	100	100	100	100		
1-1/2 inch	91	100	100	100		98.1
1 inch	15	100	100	100	+	83.0
3/4 inch	.4	94	100	100		77.9
1/2 inch	0	41	100	100		58.2
3/8 inch	0.02	8	88	100		44.8
No. 4	0	0.69	26	100		35.9
No. 8	0	0.1	4	96		32.1
No. 16	0	0	0	73		24.1
No. 30	0	0	0	44		14.5
No. 50	0	0	0	17		5.6
No. 100	0	0	0	7		2.3
No. 200	0	0	0	4		1.3

Aggregate Correction Factor: _____ Fineness Modulus: 2.64 (Required for Class 2 Sand)

Notes:

- a Required for Class 4000D and 4000P mixes.
- b If Alkali Silica Reactivity Mitigation is required per WSDOT ASA Database Attach evidence that mitigating measure controls expansion in the form of ASTM C 1260 / AASHTO T303, ASTM C 1293, or ASTM C 295 test results
- C AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1
- d Required for Cement Concrete Pavements
- e Attach test results indicating conformance to Standard Specification 9-25.1

Appendix B

Project Engineer E-Mail

E-mail was reproduced exactly from the original.

Damitio, Chris

From: Damitio, Chris
Sent: Thursday, June 21, 2007 1:33 PM
To: Williams, Kurt R; Foster, Marco
Cc: Fuller, Patrick
Subject: Slag-SR543

Kurt,

We got the ride numbers back on the sections we paved the first couple of days and they are horrible. We haven't run the \$'s yet but one section was at 3" per .1 mile with .7 being the standard.

Overall I found he mud to be extremely stiff and at the slower production rates we were seeing I think it was setting up prior to going through the paver. Granted I think we had the "B" team and equipment from Acme here it was a common observation from both the Acme and DOT team that the mud was "hot". I think another factor may be Cowden as the supplier. In my view they have shown a lack of detail in QC and this may have lead to inconsistencies or properties that were unexpected.

Appearance wise the pavement looks good and the only cracking evident at this time is at the joints but the workability is a big question in my mind.

I would like to recommend we skip the 35% test section unless Acme can show us how the ride is going to improve. I am concerned that the added slag may be creating a workability challenge that is difficult to react to unless all suppliers, pavers, personnel and equipment are at the top of their game.

CHRIS 788-7403

Appendix C

Experimental Feature Work Plan

Washington State Department of Transportation

WORK PLAN

Use of Higher Slag Content in Concrete Pavements

SR-543, I-5 to International Boundary Widening Contract 7064 Milepost 0.20 to Milepost 1.09

Prepared by

Kurt Williams, P.E. Assistant Construction Engineer, Roadway Washington State Department of Transportation

Jeff Uhlmeyer, P.E. Pavement Design Engineer Washington State Department of Transportation

Introduction

Washington State Department of Transportation's (WSDOT) Portland Cement Concrete Pavement (PCCP) construction program has been relatively small since the construction of the Interstate system in the 1960's and early 70's. As many of these early pavements deteriorate and require reconstruction, the best possible construction practices will be essential in order to provide pavements that will last 40 years or longer.

One of the challenges facing WSDOT is the availability of fly ash for use in concrete pavements. Class F fly ash has been used by WSDOT for many years because of the local availability of this material from the Centralia Power Plant. Recently this facility has changed the type of coal it is burning to a lower grade variety and as a result will be producing only Class C fly ash. As a substitute for fly ash and a portion of the cement, Ground Granulated Blast Furnace Slag (GGBFS) can be added. This project will utilize up to 25 percent of the slag in the mix, but WSDOT would like to experiment with high slag content mixes (30 to 35 percent slag). One benefit of switching to high slag content mixes may be a reduction in studded tire wear because high slag content mixes produce higher strengths. This experimental feature will investigate the performance of high slag mixes and the possible reductions in wear from studded tires.

Plan of Study

Contract 7064, I-5 to International Boundary Widening, places approximately 11,500 cubic yards of portland cement concrete pavement (PCCP) on SR 543. Under this proposal two approximately 650-foot test sections (approximately 435 cubic yards each) will be placed, the first incorporating 30 percent slag and the second incorporating 35 percent slag. The existing 3,000 psi compressive strength mix design, which will utilize about 23 percent slag, will be modified for the two test sections by adjusting the proportions. The adjusted proportions using the 30 percent slag equates to 169 pounds of slag and 395 pounds of cement and for the 35 percent slag equates to 197 pounds of slag and 367 pounds of cement.

Layout

The two 650-foot test sections will be placed in the northbound lanes between approximately MP 0.34 to 0.92 (metric Station 1+286 and 1+900) for a total length of 0.58 miles (2,014 feet). A change order will be processed to include the two test sections in the contract. The exact location will be determined by the Project Engineer in consultation with the Contractor.

Control Section

The remainder of the project paved with the standard 3,000 psi compressive strength mix with 23 percent slag will be the control section for the higher slag content test sections.

Testing Plan

Pavement wear and smoothness measurements will be made on a twice yearly basis, in the spring, after studded tires are no longer legal, and again in the fall prior to the use of studs. The sections will also be monitored for friction resistance on a yearly basis. These tests will measure any changes in performance of the pavement with time as a result of studded tire wear. Pavement condition survey results will be collected on an annual basis as part of the normal Washington State Pavement Management System (WSPMS) survey routine.

Reporting

An "End of Construction" report will be written following completion of the test sections. This report will include construction details, construction test results, and other details concerning the overall process. Annual summary reports will also be issued over the next five years. At the end of the period, a final report will be written which summarizes performance characteristics and future recommendations for use of high slag content mixes.

Staffing

The Region Project office will coordinate and manage all construction aspects. Representatives from HQ Materials Laboratory and HQ Construction Office will also be involved with documenting the construction and performance.

Experimental Feature Report

Contacts and Report Author

Kurt Williams Assistant Construction Engineer, Roadway Washington State DOT (360) 705-7830 <u>Willikr@wsdot.wa.gov</u> Jeff Uhlmeyer Pavement Design Engineer Washington State DOT (360) 709-5485 <u>Uhlmeyj@wsdot.wa.gov</u>

Cost Estimate

Construction Costs

There is no additional cost for using the 30 and 35 percent slag for the two 650-foot test section. The cement supplier, Lafarge, is absorbing the cost for the extra slag and mix design modifications and ACME is placing the PCCP at the original contract bid price.

Testing Costs

Condition Survey – will be conducted as part of statewide annual survey, no cost Rut Measurements – 10- surveys (2 hours each) requires traffic control = \$12,000 Friction Measurements – 6 surveys (2 hours each) 6,000

Report Writing Costs

Initial Report – 20 hours = \$1,500Annual Report – 5 hours (1 hour each) = \$500Final Report – 10 hours = \$1,000**Total Cost = \$21,000**

Schedule

The construction is scheduled for the summer of 2007. The testing schedule is therefore summarized in the following table.

Date	Condition Survey (Annual)	Wear and Smoothness Measurements	Friction Measurements	End of Const. Report	Annual Report	Final Report
Oct 2007		Х	Х	Х		
Spring 2008	Х	Х				
Fall 2008		Х	Х		Х	
Spring 2009	Х	Х				
Fall 2009		Х	Х		Х	
Spring 2010	Х	Х				
Fall 2010		Х	Х		Х	
Spring 2011	Х	Х				
Fall 2011		Х	Х		Х	
Spring 2012	Х	Х				
Fall 2012		Х	Х			Х