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Introduction 
 
Study Objectives 
The Washington State Department of Transportation (WSDOT) commissioned this 
research, conducted by the Urban Ecology Research Laboratory (UERL) at the 
University of Washington, to assist in effectively designing and managing operational, 
maintenance, and improvement activities within the context of the many growth 
management and clean water regulations and ordinances in Washington State. The goals 
of this study were to 1) implement a classification scheme for mapping the percentage of 
total impervious surfaces due to different types of transportation infrastructure based on 
satellite imagery, 2) develop and assess a remote sensing methodology for detection of 
road impervious surface area (RISA) and the fraction of RISA compared to the total 
impervious surface area (TISA) and 3) make recommendations on the imagery best suited 
for identifying impervious surfaces related to transportation infrastructure. Specifically, 
the objectives of this project were as follows: 
 

1. Develop a typology of transportation infrastructure-related impervious surfaces 
based on a feasibility assessment of identifying transportation mode features from 
remote sensing data. 

2. Develop and implement rules for detection and classifying percent impervious 
surfaces specifically attributable to mode of transportation.  

3. Conduct classification accuracy assessment and sensitivity analysis of 
transportation infrastructure impervious surface classification.  

4. Provide WSDOT an initial dataset describing the contribution of transportation 
infrastructure to statewide total impervious surface area. 

 
To meet the study objectives, we developed a predictive model to determine the 
contribution of RISA for a given area using readily available data such as total 
impervious area and total road length. The model will enable WSDOT to estimate the 
amount of RISA for a given area without having to digitize or classify road footprints. 
Additionally, we devised a strategy for comparison of optimal data sources for extracting 
the impervious surface contribution to road infrastructure. 
 
Spatial Scale 
The spatial scale of this project was determined by the objective to identify transportation 
networks at a regional scale, which dictated that imagery used for classification must 
have a relatively large spatial extent. There is a significant trade-off between spatial 
extent and spatial resolution within remote sensing products. Spatial resolution dictates 
what objects can be resolved (seen) in the image and is a major limiting factor in the level 
of detail in any resulting classification. Imagery with very high spatial resolution 
typically has a fairly small spatial extent. For example, Ikonos imagery has a spatial 
resolution of 4 m with a spatial extent of only 7 km2. Imagery with a larger spatial 
footprint typically has lower spatial resolution. The trade-off between extent and 
resolution presents numerous challenges when trying to identify features, such as roads, 
which, because of their narrow width, can only be resolved with relatively high resolution 
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instruments. Lower resolution results in pixels that may be composed of several different 
types of material resulting in a spectral signature that is the composite of the different 
objects. For example, a 30 m Landsat pixel in a residential area might include part of a 
house, a driveway, and a backyard. This composite pixel is said to have a mixed spectral 
signature and adds to the difficulty when trying to classify discrete land cover types. 
Developing a spatiotemporally contiguous dataset for a region from such instruments 
presents numerous difficulties, including cost, temporal synchronicity, and computer 
processing capabilities. 
 
Road Impervious Surface Area (RISA) Classification 
The classification or extraction of road footprints from remotely sensed images, whether 
from satellite or air photos, is fraught with difficulties. Even with high resolution 
imagery, spectral similarities and spatial heterogeneity makes it impossible to completely 
separate roads from other urban surfaces using traditional classification techniques. Even 
newer algorithms that use textural information to extract linear features have trouble 
separating roads from sidewalks, driveways, and even houses. Recent progression in 
feature segmentation and extraction software, such as Feature Analyst® 4.0 and 
eCognition™, have enhanced remote sensing capabilities with the promise of being able 
to automate tasks that were once only possible using time consuming on-screen 
digitizing. While this latest generation of remote sensing software offers greater 
functionality, they are not a panacea for the automatic and accurate extraction of features 
from either high resolution air photos or medium resolution satellite imagery. Feature 
extraction algorithms work quite well in areas where features of interest are highly 
contrasted with the background landscape. For example, feature extraction applied to an 
aerial photo of a highway splitting a dense forest will work quite well. On the other hand, 
road extraction in a heavy or even medium density urban area will yield less than optimal 
results. In such cases, unwanted features such as driveways and even buildings are 
impossible to completely exclude during feature extraction. Therefore, in order to extract 
a specific type of feature, such as a road, ancillary data sources are needed to help remove 
unwanted features.  
 
Given the issues stated in the preceding paragraphs, it quickly became apparent that 
classifying regional road footprints, let alone transportation typologies, from imagery 
alone was not feasible. Instead, we focused on methods that combined readily available 
vector datasets, such as county parcel and street data, with medium resolution satellite 
imagery to determine the impervious surface contribution of roads for a given area. In 
addition, we estimated a predictive model that may be utilized in areas where vector data 
is not existent or inadequate. With just two inputs, total impervious surface and total road 
length, the impervious surface contribution from roads may be estimated quickly and 
accurately for a given area.    
 
Methodology 
 
Spatial Scale 
After researching image availability from various sensors, we chose the Seattle and 
Yakima metropolitan areas as the test sites. These sites were representative of the two 
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main eco-regions in Washington: Pacific Lowland Mixed Forest on the west side of the 
Cascades range and Intermountain Semi-desert on the east side. A strategy to extract 
transportation networks for these areas will be transferable to the majority of landscapes 
found in Washington State.  
 
The conflict between spatial extent and resolution was a key factor in determining the 
direction of the analysis. In order to maximize spatial extent and resolution, we used 
SPOT imagery as the regional data source with the finest resolution at 10m, while still 
maintaining a relatively large spatial extent. We also used Landsat imagery for both the 
Yakima and Seattle test sites. The analysis comparing SPOT and Landsat classifications 
provided information as to the net benefits of higher resolution imagery such as SPOT. 
The increased spatial resolution of commercial satellites such as SPOT comes with a cost, 
both financially and functionally (SPOT is significantly more expensive and has a lower 
spectral resolution and lower spatial extent compared to Landsat). The results of this 
analysis provided valuable information as to the type of imagery that is best suited for 
road extraction at regional scales.  
 
Total Impervious Surface Area (TISA) Classification 
The first step in our classification was to create an impervious surface data set that could 
be used to determine TISA. We used a hybrid approach that combined sub-pixel 
classification techniques, such as linear spectral unmixing, with an object oriented 
classification approach using the software eCognition™ (4.0). The goal of using object 
oriented classification was to delineate objects and then classify them as urban or non-
urban. eCognition™ segmented images using a region growing type algorithm (clusters 
of contiguous pixels were grouped together based upon a spectral heterogeneity). The 
resulting segments or objects (polygons) were based upon band values (spectra) and a 
user-defined scale parameter that dictated the size of the objects. The user may create 
several levels of segmentation in which finer-level objects are nested within larger-level 
objects, creating a hierarchy of image objects. For example, a given object in Level C can 
be related not only to its immediate neighbors within Level C, but also to the superior 
object(s) that it belongs to (e.g., Levels A and B), as well as the subordinate objects that it 
is composed of (e.g., Levels D, E, F, etc.). This object-oriented approach allowed for the 
development of a knowledge base whereby semantic rules may be used, in addition to the 
traditional classification techniques, to classify remotely sensed images.   
 
Sub-pixel analysis is any technique used to determine the relative portions of different 
materials within a pixel. In this study, we used linear spectral unmixing and matched 
tuned filtering to determine the amounts of impervious surface in pixels that have been 
identified as containing ‘urban” materials. .Sub-pixel techniques cannot always 
accurately differentiate between impervious surfaces and soil so it was essential that 
urban pixels were identified before sub-pixel impervious surface estimates were 
associated with those pixels. Non-urban pixels were assigned the value of zero percent 
impervious surface while urban pixels were given the value of the percent impervious 
surface derived from sub-pixel unmixing. While non-urban surfaces may behave like an 
impervious surface, this behavior was not able to be determined from these digital 
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images. In this capacity, we were limited to determining the amount of impervious cover 
for a particular pixel and could not determine the level of porosity for a given material.  
 

 
Figure 1. Example of how Landsat classification and sub-pixel impervious surface 
estimates are combined to produce a final impervious surface grid.  
 
Landsat & SPOT Object Oriented Classification 
A rules-based classification was developed using the object oriented classification 
software eCognition™ using SPOT and Landsat spectral bands and calculations from 
these bands such as NDVI and texture. Image segmentation was performed using a scale 
parameter of eight, which yielded small image objects. These objects were then classified 
using a set of hierarchical rules derived from the various data layers. The final result was 
a binary image representing urban and non-urban objects. This was exported as a grid and 
used to mask the impervious surface data so that only urban pixels received impervious 
surface values.   
 
For Landsat imagery, a pixel-based classification was performed using Erdas Imagine 
software using the same rule set as described above, once the class rules were fine-tuned 
and produced a robust classification. The object based classification using Landsat 
imagery resulted in objects that over-generalized the imagery and which may have lost 
important detail. A pixel based classification was needed to preserve the already low 
level of detail that was inherent in the 30 m Landsat pixel. This step was unnecessary for 
the SPOT imagery where the higher resolution made it a better candidate for a truly 
object oriented classification. It should be noted that eCogntion™ was a great tool to 
facilitate the development of classification rules because it was so easy to develop, run, 
evaluate, and modify a hierarchical rules-based classification.  
 
Impervious surface data were developed using linear spectral unmixing applied to 
Landsat imagery that were normalized for brightness. This brightness normalization 
method, proposed by Wu (2004), helped to reduce the within-band spectral variability of 
similar land cover types. The brightness normalization process reduced variability while 
preserving the spectral shape of similar land cover types and provided more consistent 
results when used for both end member selection (pure pixels whose spectral values are 
used in the unmixing models) and the unmixing process itself.  
 
For the Puget Sound region, a two-end member model was developed using urban and 
vegetation spectral end-members. The unmixing process produced a fraction image for 
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each end-member indicating the relative percent of each end-member in each pixel. A 
percent impervious layer was created by dividing the urban end-member layer from the 
sum of the urban and vegetation end-members.  
 
The arid Yakima landscape had far greater amounts of exposed soil than the Puget Sound 
region and presented an important consideration for spectral unmixing. In previous work 
in the Puget Sound, it was found that urban and soil end-members were not particularly 
unique and could not be included within the same mixing models. This was acceptable 
since bare soil exists mostly as large homogenous patches and could be classified as such 
using other techniques. Except for sites in the process of being developed, soil was not a 
dominant sub-pixel component in the urban fabric in the Puget Sound area. This was not 
the case for the Yakima area and exposed soil was a dominant land cover type even in 
urban areas. Fortunately, it was found that the spectral signature for soil in Yakima is 
fairly unique and represented a distinct end-member in mixing space. Not only did this 
model yield accurate impervious surface amounts, but the soil fraction images were used 
as a layer in the object oriented classification to help separate urban from non-urban (e.g. 
soil) objects. Final impervious surface layers derived from spectral unmixing were 
masked using the urban/non-urban classification created during the TISA classification.  
 
Road Impervious Surface Area (RISA) Classification 
Vector data for roads offered little assistance in terms of determining the actual physical 
footprint of a road. Most often, roads were depicted in GIS using polylines to represent 
road centerlines. Moreover, the width of the road segments was often unavailable in the 
attribute tables for most road data, at least in Washington. Thus, it was impossible to 
extrapolate road footprints based upon road attribute data. One way to derive the road 
footprint from road center-lines was to buffer the data by assigning a particular road type 
a certain buffer width. The results of this method were greatly generalized and inaccurate.  
 
County-wide parcel datasets offered a great deal of potential to increase the accuracy of 
road extraction. Parcel datasets typically included polygons for areas allocated to 
transportation right-of-ways, if not the road themselves. Using this data to mask or limit 
the area that can be considered “road” was very helpful for both road extractions from 
high resolution air photos and to determine road impervious surface area from 
classifications from medium resolution satellite imagery.  
 
In this study, polygon right-of-ways from parcel data were used successfully in both 
Seattle and Yakima to isolate roads from other urban surfaces. It was best to use this in 
conjunction with remote sensing as opposed to assuming the right-of-ways themselves 
represented RISA because parcel right-of ways can contain areas that are not impervious, 
such as grassy medians.  
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Reference Site Development 
 
In order to test the accuracy of our SPOT and Landsat classifications, sample sites for 
both the Puget Sound and Yakima regions were digitized from high resolution aerial 
photos. As mentioned earlier, more homogenous landscapes were, in general, easier to 
classify. In order to prevent any biases associated with heterogeneity within our sample 
sites, we used a stratified random sample to sample the accuracy of sites from a series of 
different types of backgrounds or dominant land cover types as described in Table 1. This 
stratification ensured that the dominant landscapes in each region were represented in our 
samples. These samples served two main purposes: 1) to create a series of reference sites 
to test the accuracy of our regional, lower resolution classification and 2) to test the 
effectiveness of the feature extraction software called Feature Analyst® 4.0 for extracting 
roads using high resolution color imagery. Figure 2 shows a series of maps of one test 
site depicting the overall methodology.   
 
Table 1: Reference sites selection results in Seattle and Yakima 

Land Cover # of sites in Seattle  # of sites in Yakima Total 
High Urban 5 5 10 

Forest 5 5 10 
Low Urban 5 6 11 

Grassland and Non-forest Wetland 5 0 5 
Forest 5 0 5 

Agriculture 5 6 5 
Water 4 1 5 

Bare Soil 0 2 2 
Forest Wetland 0 2 2 

 
Site Selection 
A 1x1km vector grid was overlaid on the roads layer for both the Seattle and Yakima 
sites. Cells with no roads present were flagged and excluded from the selection process. 
Next, land cover data was used to assign the dominant land cover for each 1km grid cell. 
Nine land cover types (Figure 2) were examined in this project and five sites were 
selected for each land cover type. The selection was based on the major land cover 
percentile and the number of road types contained per study site. Priority was given to 
those sites with a majority of a specific land cover type and second priority was given to 
the sites containing a variety of road types. A visual evaluation followed to confirm site 
selection. The results from the above steps are represented in Table 1, which shows the 
number of sites being selected for each land cover category. A total of 64 reference sites 
were selected and used to test the accuracy of the regional Landsat and SPOT 
TISA/RISA classifications (Figure 3). 
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Figure 2. Example images of the land cover categories for the reference sites. 
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Figure 2. con’t. Example images of the land cover categories for the reference sites 
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Figure 3. Reference sites distributions in Seattle and Yakima

 



Road Extraction in Reference Sites 
Reference data for road area was extracted from 2 sq ft USGS aerial photos of the test 
sites to evaluate the accuracy of road extraction from the Landsat and SPOT 
classifications. Instead of hand-digitizing road footprints, Feature Analyst® 4.0 for 
ArcGIS® was employed to automate road extraction from aerial photos of the test sites. 
The initial attempt to use this software to extract just roads from the aerial photos had 
mixed results. For example, results were good in areas where roads have strong spectral 
contrast with a homogenous background such as water scene (Figure 4). Extraction 
quality was quite poor in heavy urban areas, where the building, parking, drive ways and 
roads were highly interconnected and all gave similar spectral information (Figure 5). 
These results did not match our expectations so we used Feature Analyst® 4.0 primarily 
to digitize impervious surfaces in the photos and then used the parcel right of ways to 
extract the roads from the impervious surface.  
 
Water

   

Roads in Water

 
Figure 4. Road extraction from aerial photo using Feature Analyst® 4.0 in a water scene. 
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High Urban

   

Roads in high urban

 
Figure 5. Roads extraction from aerial photo using Feature Analyst® 4.0 in a urban scene. 
 
A large body of literature provided methods on automatic road extraction from high 
resolution images (Dell’Acqua and Gamba 2001a 2001b, Hinz and Baumgartner 2003, 
Mena 2003, He et al. 2004, Stoica et al. 2004, Mena and Malpica. 2005). Most of these 
methods are applied to extract roads from rural or low density urban areas within a 
simple image scene, while road extraction in dense urban areas with complicated image 
scenes are rarely documented and no published papers have provided a creditable road 
extraction method for multiple types of image scenes. In response to the universally 
unresolved obstacles for automatic road extraction, we integrated image processing and 
GIS data for road extraction. The process is illustrated in Figure 6 using a medium urban 
site in Bellevue, WA as an example. First, the 1 x 1km aerial photo (Figure 6a) was 
digitized into two classes, impervious surface (Figure 6b) and vegetation, using Feature 
Analyst R 4.0. Parcel right-of-way was then used to extract roads from impervious 
surfaces (Figure 6c). There were two obstacles associated with parcel right of ways that 
could lead to inaccurate extraction results. First, the parcel right-of-ways include highway 
medians. In our method, highway medians do not cause errors because highway medians, 
as non-impervious surface, are not included in the classified impervious surface. Second, 
parcel right-of-ways are usually wider than the actual roads,  so the extracted roads 
(Figure 6d) may still contain a small portion of drive way, but for the scale, 1 x 1km, that 
we are looking at this type of error was considered acceptable.  
 
The thresholds of TISA and RISA in each land cover category were derived using the 
extraction results of impervious surface and roads in the 64 reference sites (Figures 7-8). 
The three urban classes (high urban, medium urban and low urban) had a higher 
percentage of TISA and RISA than the five non-urban classes (agriculture, forest, forest 
wetland, bare soil and water). This was consistent with our empirical knowledge. Grass 
was the only land cover category whose TISA and RISA threshold was confusing as it 
may include both urban parks and rural pastures. In contrast, the ratios of RISA to TISA 
in the three urban classes were lower than those in the five non-urban classes (Figure 9).  
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                                   (a)                                                                 (b) 

 

    
(c)                                                                    (d)                              

Figure 6. Roads extraction from aerial photo using Feature Analyst® 4.0 and right-of-
ways.   
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Figure 10. The process of creating reference sites, establishing TISA, and modeling RISA 
 



Results 
 
RISA & TISA Analysis 
TISA and RISA were calculated from SPOT and Landsat for each study site. RISA was 
extracted from TISA using the parcel right-of-ways. The amount of TISA and RISA from 
both Landsat and SPOT was then compared to the test sites to assess agreement. We 
compared each to the reference data using scatter plots and the r2 statistic to assess 
agreement. The r2 statistic is a good tool to measure the degree of variability that may be 
explained by one or more independent variables. For example, as Figures 12 and 13 
indicate, 95.9 percent of the variance of the reference data in the Puget Sound TISA may 
be explained by the Landsat TISA while 89.3 percent of its variance may be explained by 
SPOT TISA. For RISA in the Puget Sound region, Landsat has an r2 of 0.967 and SPOT 
has an r2 of 0.9561. These results were very good and indicate that both Spot and Landsat 
may be used to estimate TISA and RISA with high a degree of confidence.  
 
While the Yakima test sites showed strong agreement, the results were not as good as the 
Puget Sound Region test sites. Landsat data performed as well, if not better, in all cases. 
Except for the detailed visual characteristics of SPOT imagery due to its higher spatial 
resolution, there was not a distinct advantage of SPOT data over Landsat for regional 
impervious surface analysis.   
 

  (a)         (b)     (c) 
Figure 11. RISA extracted from SPOT TISA using parcel right-of-ways: a) aerial photo; 
b) SPOT with right-of-ways; c) SPOT RISA.. 
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Figure 12. Puget Sound Landsat TISA versus reference site TISA 
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Figure 13. Puget Sound SPOT TISA versus reference site TISA 
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Figure 14. Puget Sound Landsat RISA versus reference site RISA 
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Figure 15. Puget Sound SPOT RISA versus reference site RISA 
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Figure 16. Yakima Landsat TISA versus reference site TISA 
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Figure 17. Yakima SPOT TISA versus reference site TISA 
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Figure 18. Yakima Landsat RISA versus reference site RISA 
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Figure 19. Yakima SPOT RISA versus reference site RISA 
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RISA Predictive Model 
A simple predictive RISA model was developed using a combination of data developed 
and gathered for this project. Linear regression was used to build the model and RISA 
extracted from our test sites was used as the independent, or predicted, variable. The 
predictors, or independent variables, used in the model were total impervious surface (as 
measured by Landsat or SPOT) and total road length measured using readily available 
GIS transportation data. Sixty percent of the test sites were used to estimate the model 
and the remaining sites were used as hold out data to test the validity of the model.  
 
Several tests and diagnostics were used to evaluate the model during its estimation. 
Although both road length and total percent impervious were strong linear predictors of 
RISA, it was determined from the scatter plots that the relationship of these independent 
variables to the dependent variable could be better represented in a non-linear fashion. 
Several types of curves were estimated for both road length and total impervious surface 
and it was determined that both were better represented as polynomial curves. To do this, 
these two terms were squared as shown in the following equation: 
 

)__(025.02)_(*00002.0)2__(*174.0022.0 backroundurbanislenghtroadareaimpervioustotal +++=Υ
 
As indicated in Table 2, the model showed strong predicative power with an adjusted rP

2
P 

of 0.897. All three independent variables were significant with a 95% confidence interval 
and the model as a whole was significant at the 99% level.  
 
Table 2. Model Summary  
 
 Model Summary 
 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 
1 .952(a) .905 .897 .02678901

a  Predictors: (Constant), dum_urban, sqrd_km, sq_spot 
 
 
Table 3. Model Coefficients  
 Coefficients(a) 
 

Model   
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

    B Std. Error Beta     
1 (Constant) .022 .007  3.403 .002 
  sq_spot .174 .031 .489 5.587 .000 
  sqrd_km .00002 .000 .441 6.084 .000 
  dum_urban .025 .012 .151 2.149 .039 

a  Dependent Variable: rd_p_imp 
 
 
 



The model was applied to the 21 test sites that were left out during model estimation to 
see how well the model worked as a predictive tool. Figure 20 shows the predicted values 
of the hold out data against their observed values. The model does a good job at  
predicting RISA for the hold out as indicated by the r2 of 0.827 for the observed versus 
predicted values. The model may be used to calculate RISA for a given area with just a 
few input variables that are easy to calculate with readily available data. 
 

y = 0.8049x + 0.0186
R2 = 0.8271
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Figure 20. Predicted RISA vs. observed RISA 
 
Discussion 
 
The results of this analysis have important implications regarding the use of remote 
sensing to determine the contribution of impervious surface from transportation 
infrastructure at regional scales. Higher resolution satellites, while more visually 
appealing, do not necessarily provide a net benefit in terms of accuracy that may justify 
their added expense. Our results indicate that, in most cases, Landsat performed as well if 
not better than the higher resolution SPOT imagery for determining regional scale RISA . 
At any spatial scale, neither 10m nor 30m pixel resolution may be used by itself to extract 
road footprints as the pixel size is too big to capture the narrow width associated with 
transportation infrastructure. The problem with using high resolution data for extracting 
road footprints at regional scales lies in the difficulty and cost of gathering a 
comprehensive set of imagery for the entire area of interest. Furthermore, extracting road 
footprints from high resolution imagery is a difficult proposition. On-screen digitizing of 
a small geographic region such as a city is a timely and costly process, let alone for an 

 24



entire region (i.e. several counties). Feature extraction software provides an attractive 
alternative to on-screen digitizing, but at the present time these tools are not sophisticated 
enough to provide a completely seamless, automated extraction.  
 
Since extracting RISA from satellite or aerial imagery alone is difficult, our findings 
recommend using digital imagery with other GIS data that can serve as a proxy for road 
footprints. Transportation rights-of-ways taken from vector parcel data were highly 
effective at limiting the area that could be considered as road. Using this in combination 
with Landsat impervious surface data proved to be an accurate and relatively simple way 
to estimate RISA. We recognize that not all areas are covered by the detailed parcel 
datasets used in this analysis. For those areas we recommend using the predictive model 
as outlined in this paper. RISA may be easily estimated by calculating the total 
impervious surface and the total length of roads for a given area. Since these two inputs 
exist for the entire State of Washington, a rapid estimate of RISA using the predictive 
model should be very straightforward.  
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