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GLOSSARY 
 

The following is a list of all algebraic quantities and symbols used in this document. 

It is alphabetized first by the Greek alphabet, then by the English alphabet. The chapter that 

first uses the term is included in parentheses. 

 
α: angle between the v-axis and a line in an image (positive counter-clockwise) 

(Ch. 3). 

α0, α1, α2: intermediate quantities used in solving for f (Ch. 2). 

β:  angle representing the tilt of the road, i.e., whether a marble placed in the middle 
of the road will roll left (β > 0) or right (β < 0) (Ch. 2). 

γ: angle of the gradient direction for a given pixel (Ch. 3). 

||∇I||: magnitude of the gradient for an image defined as (Ix
2 +  Iy

2)-1/2 (Ch. 3). 

∆Φ: quantization stepsize for Φ (Ch. 3). 

∆t: time between image frames (Ch. 5). 

∆Y: distance between two points in the X-Y-Z coordinate system (Ch. 2). 

∆Y’: distance along the road (Yc’-axis) between two points in the Xc’-Y c’-Z c’ 
coordinate system (Ch. 2). 

δY’: smallest increment of Y’ represented by a pixel in the image (Ch. 3). 

ψ:  angle representing the slope of the road, i.e., whether it is going uphill (ψ < 0) or 
downhill (ψ > 0) relative to the earth (Ch. 2). 

η: fraction between 0 and 1 indicating the number of bootstrap samples used to 
estimate u1 from the full set of estimates (Ch. 3). 

λ: line parameter indicating the position along line Lx (Ch. 2). 

ρ: parameter for parameterizing a line for the Hough transform. It represents the 
minimum distance from the origin to the line (Ch. 3). 

ρcorr: correlation coefficient for locating a template in Atop’ (Ch. 3). 

ρmin: threshold below which we do not accept the hypothesis that the template T 
matches Atop’’ at the current offset (Ch. 3). 

Φ: line angle parameter for the Hough transform. It encodes the angle of the line 
relative to horizontal. The angle itself is measured between the u-axis and a line 
perpendicular to the line itself (Ch. 3). 

Φmax: threshold for the angles of lines used to estimate u1. If the median of the 
distribution exceeds this value we reject the hypothesis that we can estimate u1 
for the current scene (Ch. 3). 
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φ:  down angle of the camera with respect to horizontal (Ch. 2). 

φmax: maximum value for φ that satisfies noise and line visibility requirements (Ch. 2). 

θ:  pan angle of the camera with respect to the road boundaries (Ch. 2). 

θmax: maximum value for θ that satisfies noise and line visibility requirements (Ch. 2). 

τ: generic index into a cross-covariance or autocovariance sequence; see immediate 
context for clarification (Ch. 3). 

τ1: offset in the autocovariance function of Atop where the first peak is located 
(Ch. 3). 

τ12: distance between v1 and v2 after removing the effects of perspective projection; 
this quantity is proportional to the physical distance traveled (Ch. 3). 

τL: tip-to-tip distance of lane markers after removing the effects of perspective 
projection. This is a very important quantity for calibrating the camera since it is 
directly proportional to the known physical distance of 40 feet (Ch. 2). 

τlag: the location of the first significant peak in the autocovariance function R(τ) 
(Ch. 3). 

σ: standard deviation parameter for a gaussian distribution (Ch. 3). 

σa: standard deviation for average vehicle acceleration (Ch. 5). 

σAtop’: standard deviation for the samples in Atop’’ (Ch. 3). 

σb1: standard deviation for b1 (Ch. 2). 

σb1: standard deviation for b1 (Ch. 4). 

σb2: standard deviation for b2 (Ch. 2). 

σb2: standard deviation for b2 (Ch. 4). 

στL: standard deviation for τL (Ch. 2). 

σ∆Y’: standard deviation for ∆Y’ (Ch. 2). 

σd: standard deviation for d (Ch. 2). 

σL: standard deviation for L (Ch. 2). 

σm1: standard deviation for m1 (Ch. 4). 

σm2: standard deviation for m2 (Ch. 4). 

σrel: standard deviation of a normally distributed random variable relative to its mean 
value, i.e., σrel = σ/µ where µ and σ are the mean and standard deviation of the 
normal distribution, respectively (Ch. 3). 

σs: standard deviation for average vehicle speed (Ch. 5). 

σT: standard deviation for the samples in T (Ch. 3). 

σu0: standard deviation for u0 (Ch. 2). 
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σu1,η: population standard deviation for taking a fraction η of all the samples in the 
distribution of u1 estimates (Ch. 3). 

σv0: standard deviation for v0 (Ch. 2). 

σw: standard deviation for w (Ch. 2). 

φmin: minimum value for φ that satisfies noise and line visibility requirements (Ch. 2). 

θmin: minimum value for θ that satisfies noise and line visibility requirements (Ch. 2). 

 

 

a: direction cosine vector for line Lx (Ch. 2). 

A: generic activity map (Ch. 3). 

a: Kalman filter state representing average vehicle acceleration (Ch. 5). 

a1: direction cosine vector for line L1 (Ch. 2). 

a2: direction cosine vector for line L2 (Ch. 2). 

Abot’: a morphological bottom-hat transform of the Arel(u) signal found by using the 
same kernel as that used to find Atop’ (Ch. 3). 

Amax: 1-D signal in which each sample indicates the maximum of the activity map 
along one of the lines emanating from (u0,v0) and connecting to one of the pixels 
in the bottom row of the image (Ch. 3). 

 Amin: 1-D signal in which each sample indicates the minimum of the activity map 
along one of the lines emanating from (u0,v0) and connecting to one of the pixels 
in the bottom row of the image (Ch. 3). 

Arel(u): a 1-D sequence in which each sample is the average value of the activity map 
along a line connecting (u0,v0) and pixel uj on the bottom row of the image 
(Ch. 3). 

Atop: a morphological top-hat transform of the Arel(u) signal (Ch. 3). 

Atop’: a morphological top-hat transform of the Arel(u) signal found by using a kernel 
that may be more narrow than that used to find Atop (Ch. 3). 

Atop’’: subset of Atop’ in which the template currently overlaps Atop’ (Ch. 3). 

ax-ay-az: components of the vector a (Ch. 2). 

b(j): u-intercept parameter for jth line in the optimization to find (u0,v0) (Ch. 3). 

B: binary image generated by thresholding the gradient magnitude of an image 
(Ch. 3). 

b: intercept parameter for describing a line as u = mv + b (Ch. 3). 

b: vector for an arbitrary 3-D point contained by line Lx (Ch. 2). 

b1: 3-D coordinates of a point contained in line L1 (Ch. 2). 
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b1: u-axis intercept for the road boundary that is closest to the camera when using 
slope-intercept form (Ch. 2). 

b2: 3-D coordinates of a point contained in line L2 (Ch. 2). 

b2: u-axis intercept for the road boundary that is farthest from the camera when using 
the slope-intercept form (Ch. 2). 

BL1: 1-D signal sampled along the line connecting the vanishing point and uspike,left on 
the bottom row of the image. The samples are taken from a binary image 
obtained by thresholding Itop2 (Ch. 3). 

BL2: 1-D signal sampled along the line connecting the vanishing point and uspike,right on 
the bottom row of the image. The samples are taken from a binary image 
obtained by thresholding Itop2 (Ch. 3). 

bx-by-bz: components of the vector b (Ch. 2). 

c1, c2, c3, c4, c5: constants representing summation terms in the optimization to solve 
for (u0,v0) (Ch. 3). 

Cmax: maximum value for a given column of Css(u,τ) excluding the main lobe (Ch. 3). 

Cmin: minimum value for a given column of Css(u,τ) (Ch. 3). 

Css(u,τ): an image whose columns contain the autocovariance function for each of the 
columns in T2d(u,r) (Ch. 3). 

Ct,t+1(τ): noncircular cross-covariance function between S2(r,t) and S2(r,t + 1) (Ch. 5). 

Ctotal(τ): IIR-filtered cross-covariance function accumulated over the process of estimating 
vehicle speeds (Ch. 5). 

Cxx(τ): autocovariance function for a finite multi-cycle square wave (Ch. 3). 

d:  on the ground plane, the perpendicular distance between the camera and the 
nearest road boundary (Ch. 2). 

D: duty cycle of the lane markers, i.e., L2/Ltot (Ch. 3). 

Dimg: absolute value of the intensity difference between two images (Ch. 3). 

Dmax: the maximum distance allowed between adjacent peaks in Arel(u) (Ch. 3). 

dmin: the smallest distance from umax in Arel(u) where certain criteria are met (Ch. 3). 

E[⋅]: expectation operator (Ch. 3). 

E1: the full ensemble of autocovariance functions composed of all the columns of 
Css(u,τ) (Ch. 3). 

E2: a subset of E1 meeting certain criteria (Ch. 3). 

E3: a subset of E2 meeting certain criteria (Ch. 3). 

EE2(t): spatial variance of S2(r,t) (Ch. 5). 

Erel: error in the computer estimate of a parameter relative to a hand-based estimate 
(Ch. 4). 
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F:  the distance between the camera lens and the ground plane (Ch. 2). 

f: focal length of the camera (Ch. 2). 

F0: a non-negative functional containing the sum of the squared differences between 
points on all the lines and the vanishing point (u0,v0) (Ch. 3). 

F1: a non-negative functional indicating the square of the distance between (u0,v0) 
and (uc,vc) (Ch. 3). 

h:  camera height (Ch. 2). 

H: image height (Ch. 2). 

Hk: the 2-D perspective transformation between two images (Ch. 1). 

i: index variable (examine context) (Ch. 3). 

Ibg: background image for a scene (Ch. 3). 

II, Ii+1: image frames at two adjacent time steps (Ch. 3). 

Ii: ith image in the image sequence (Ch. 3). 

imax: index of the maximum peak in Arel(u) (Ch. 3). 

Ispike: the signal Ispike’ convolved with a low-pass kernel (Ch. 3). 

Ispike’: 1-D signal in which each sample represents the average value of Itop along a line 
emanating from the vanishing point and connecting with a pixel in the bottom 
row of the image (Ch. 3). 

Itop,new: top-hat image after normalization and gamma-correction (Ch. 3). 

Itop: top-hat image for a scene containing no vehicles (Ch. 3). 

Itop2: the bottom half of the Itop image (Ch. 3). 

Ix: horizontal gradient of an image (Ch. 3). 

Iy: vertical gradient of an image (Ch. 3). 

j: index variable (examine context) (Ch. 3). 

K1: derivative-of-gaussian convolution kernel (Ch. 3). 

K: Kalman gain (Ch. 5). 

K2: derivative-of-gaussian kernel used to detect horizontal image edges (Ch. 5). 

L: known distance along the road (Yc’-axis) used to calibrate the camera in 
Method 3 (Ch. 2). 

L1:  line defined in 3-D that represents the road boundary nearest to the camera 
(Ch. 2). 

L2: line defined in 3-D that represents the road boundary away from the camera 
(Ch. 2). 

L1,mark: length of the blank space between lane markers (Ch. 3). 

L2,mark: length of the lane marker (Ch. 3). 
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Ltot: total tip-to-tip distance defining the lane marker period. Ltot = L1,mark + L2,mark 
(Ch. 3). 

m(j): slope parameter for jth line in the optimization to find (u0,v0) (Ch. 3). 

M(k): measurement matrix for the Kalman filter at time step k (Ch. 5). 

m: slope parameter when describing a line as u = mv + b (Ch. 3). 

m1: slope in the image for the road boundary that is closest to the camera, when using 
the slope-intercept form (Ch. 2). 

m2: slope in the image for the road boundary that is farthest from the camera, when 
using the slope-intercept form (Ch. 2). 

mi
j: the homogeneous coordinates of the projection of the jth point onto the ith

 camera 

(Ch. 1). 

N(⋅,⋅): designation of a normally distributed random variable for which the first 
parameter indicates the mean and the second indicates the standard deviation of 
the distribution (Ch. 3). 

n: indices into a kernel sequence (Ch. 3). 

Nall: total number of lines found for estimating u1 (Ch. 3). 

Ncam: number of cameras used in a Euclidian reconstruction from multiple images 
(Ch. 1) (Ch. 3). 

Ndist: number of pairs of points clicked by the human observer in hand-calibrating a 
scene (Ch. 4). 

Nlength: number of samples for the signals used in a Monte-Carlo simulation of lane 
markers (Ch. 3). 

Npeak: number of peaks found in the Arel(u) signal (Ch. 3). 

Npulse: number of lane marker pulses used in the Monte-Carlo simulation of lane 
markers (Ch. 3). 

Nsamp,min: minimum number of samples to obtain linear sampling in the Y’ domain when 
finding T2(u,r) from T1(u,v) (Ch. 3). 

Nsamp: number of samples used in a calculation (Ch. 5). 

P-(k+1): covariance matrix for X-(k) in the Kalman filter at time step k (Ch. 5). 

P+(k): covariance matrix for X+(k) in the Kalman filter at time step k (Ch. 5). 

p0:  the homogeneous coordinates of a point in the reference image (Ch. 1). 

p1: arbitrary point on line L1 after applying rotation matrices for pan and tilt (Ch. 2). 

p1’: generic point on line L1 (Ch. 2). 

p2: arbitrary point on line L2 after applying rotation matrices for pan and tilt (Ch. 2). 

p2’: generic point on line L2 (Ch. 2). 

PI:  calibration matrix i (Ch. 1). 
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pk:  the homogeneous coordinates corresponding to p0 in image k, calculated from p0 
as pk = Hk p0 (Ch. 1). 

q11, q12, q21, q22 : Individual scalar components of Q in our two-state Kalman filter 
(Ch. 5). 

R(τ): autocovariance sequence for a column of T2(u,v) (Ch. 3). 

s: Kalman filter state representing average vehicle speed (Ch. 5). 

S: scale factor involving h, f, and φ, or w, θ, b1, and b2. Once the nonlinear effects of 
perspective projection have been removed, this value scales the result to 
complete the conversion of pixels in the image to real-world coordinates (e.g., 
feet) (Ch. 2). 

S’: scale factor that enables the conversion of vertical distances in the image to 
physical distances along the road. Related to scale factor S by S’ = S sec(θ) 
(Ch. 2). 

s+(k): Kalman-filtered speed estimate at time step k (Ch. 5). 

S1(v,t): 1-D signal at time sample t found by horizontally summing a feature image and 
normalizing each sample by the number of pixels in each row of the lane mask. 
The signal has nonlinear spatial sampling (Ch. 5). 

S2(r,t): S1(v,t) after linearly resampling in the spatial domain (Ch. 5). 

Savg: nominal average speed measured by the Kalman filter process (Ch. 5). 

su1,η: sample standard deviation estimated by repeatedly obtaining a fraction η of all 
the samples in the distribution of u1 estimates (Ch. 3). 

t: general variable indicating time (Ch. 5). 

T: template defining the prototypical peak in the Atop’ signal (Ch. 3). 

T: translation vector between the camera and its nearest road boundary (Ch. 2). 

T1(u,v): the image formed by sampling Itop2 along lines emanating from the vanishing 
point. This image is distorted by perspective projection (Ch. 3). 

T2(u,r): the image formed by linearly resampling T1(u,v) to compensate for perspective 
projection. There are Nsamp,min samples in the r-direction (Ch. 3). 

T2d(u,r): T2(u,v) after morphological dilation (Ch. 3). 

TCmin: threshold for Cmax below which we do not accept a given column of Css(u,τ) as 
containing lane markers (Ch. 3). 

Tmin: threshold for max(Atop’’)/max(T) below which we do not record a correlation 
coefficient because the signal amplitudes are too small (Ch. 3). 

U(⋅,⋅): designation of a uniformly distributed random variable for which the two 
parameters indicate the range of the distribution (Ch. 3). 
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u(k): zero-mean gaussian noise vector having covariance matrix Q; represents the 
difference between the current state X(k) and the state prediction A(k-1)X+(k-1) 
based on the previous state estimate X+(k-1) (Ch. 5). 

u: generic horizontal coordinate for a point in the image plane (Ch. 2). 

u0: horizontal coordinate in the image for the vanishing point of the lines that are 
parallel to the road boundaries (Ch. 2). 

u1: horizontal coordinate in the image for the vanishing point of the lines that are 
perpendicular to the road boundaries (Ch. 2). 

ubound: lane boundary positions along the bottom row of the image (Ch. 3). 

(uc(j),vc(j)): the point on line j that is closest to (u0,v0) (Ch. 3). 

uint: parameter indicating the horizontal position of the intersection between any line 
and the line v = -H/2 in an image (Ch. 3). 

(uint(j),α(j)): pair of specific values for uint and α describing the jth line when finding 
(u0,v0) (Ch. 3). 

uj: horizontal coordinate in the image in the bottom row used to index the line 
samples from the activity map and top-hat image (Ch. 3). 

ulane(i): horizontal positions where lane markers are present in T1(u,v), T2(u,r), and 
T2d(u,r) (Ch. 3). 

uleft: leftmost coordinate along the bottom row of the image beyond which we do not 
expect to find any vehicle lanes (Ch. 3). 

umax: location of the maximum value of Arel(u) (Ch. 3). 

upeak(i): location of candidate activity map peaks along the bottom row of the image 
(Ch. 3). 

uright: rightmost coordinate along the bottom row of the image beyond which we do not 
expect to find any vehicle lanes (Ch. 3). 

uspike,left: location along the bottom row of the image in the left-hand half of Ispike where the 
largest value of Ispike is found (Ch. 3). 

uspike,right: location along the bottom row of the image in the right-hand half of Ispike where 
the largest value of Ispike is found (Ch. 3). 

U-V-W: coordinate system centered at the point where the camera gaze intersects the 
ground plane. U is contained by the ground plane, V is coincident with the 
camera gaze, and W is orthogonal to these two axes (Ch. 2). 

v:  generic vertical coordinate for a point in the image plane (Ch. 2). 

v0: vertical vanishing point coordinate for the lines parallel to the road boundaries in 
the image (Ch. 2). 

v1,v2: v-coordinates in the image defining the distance traversed by a vehicle between 
time samples (Ch. 3). 

va,vb: v-coordinates of the point pair separated by a distance L in 3-D (Ch. 3). 
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vtop: the uppermost v-coordinate that defines the subwindow of interest within the 
image (Ch. 3). 

w(k): zero-mean gaussian noise vector having covariance matrix R; represents the 
noise in the measurement process of Y(k) (Ch. 5). 

w: road width (distance between the two road boundaries, i.e., L1 and L2) (Ch. 2). 

wj:  world coordinates for point j (Ch. 1). 

Wtemp: template width for defining the template for locating peaks in Arel(u) (Ch. 3). 

X-(k): state prediction for the Kalman filter found by calculating A(k-1)X+(k-1) (Ch. 5). 

X(k): state vector for the Kalman filter at time step k (Ch. 5). 

X+(k): state vector estimate for the Kalman filter at time step k (Ch. 5). 

Xc’-Yc’-Zc’: 3-D earth coordinate system in which Zc’ is the height above the road, Xc’ is 
perpendicular to the road, and Yc’ is coincident with the road boundary nearest to 
the camera (Ch. 2). 

Xc-Yc-Zc: 3-D camera coordinate system in which Xc is positive to the left, Yc is positive 
upwards, and Zc is the negative of the depth of the object from the viewpoint of 
the camera (Ch. 2). 

X-Y-Z: 3-D earth coordinate system in which Z is the height above the road and X-Y 
represents the ground plane (Ch. 2). 

Y(k): measurements obtained by the Kalman filter at time step k (Ch. 5). 

Y’: designation of a coordinate domain axis parallel to the road (Ch. 3). 
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EXECUTIVE SUMMARY 

Overview 

This report documents the second project, in a series of three research projects 

funded by the Washington State Department of Transportation (WSDOT), that will enable 

already deployed, un-calibrated CCTV cameras to be used as traffic speed sensors.  The 

principle traffic speed sensors presently deployed by WSDOT are inductance loops; 

however, in some locations it is impractical or too expensive to install loops. In addition, a 

large number of un-calibrated cameras are already in place and being used by traffic 

management operators to qualitatively assess traffic both on the freeway and on arterials. 

These projects will leverage the existing cameras to provide a quantitative measurement of 

traffic speed similar to that which can be obtained using loops and suitable for use in the 

Traffic Management System (TMS) without installing loops in the roadway. The 

implementation of this research, which is funded and just beginning, will culminate with 

software that creates an automated system compatible with the existing TMS. This system 

will leverage the existing camera investment to create a new set of speed sensors that 

increases the geographic extent of the TMS’s quantitative surveillance capabilities. The 

usual operating condition of these cameras, focused a long way down the road, and the 

calibration variability, as a result of the operators moving and zooming the cameras, make 

this a challenging problem.  

In a previously funded and completed first phase of this project, algorithms were 

developed to perform a simplified camera calibration. This calibration depended on the 

vehicle length distribution of the vehicles traveling on the roadway and the time between 

image frames. Vehicle length was used to create a scale factor function that can be used to 

estimate speed. The algorithms first detect camera motion; then, if necessary, calibrate the 

camera; and, finally, estimate speed. However, these techniques require that individual 

vehicles can be automatically identified in the images. In very congested traffic conditions 

with the cameras in the default position, looking a long way down the roadway, it is difficult 

to guarantee that individual vehicles can be identified. In this case additional information is 

needed. Obtaining this additional information is the topic of the report (WA-RD 527.1). The 

algorithms from the first phase were reviewed and published in both the Transportation 
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Research Record, operated by the National Academy of Sciences, and the IEEE 

Transactions on Intelligent Transportation Systems.  Publication in these two peer review 

journals demonstrates that national and international experts have reviewed the work and 

determined that it was original and significant.  

In the second phase, reported here, other external features are used to augment the 

camera calibration. This overcomes the occlusion problem, or apparent blending together of 

small vehicles as seen in the far field of the camera images, that existed in the first phase. 

Activity maps, fog lines, and vanishing points are a few of the additional features used, and 

the details of these algorithms are described in this report.  These results have also been peer 

reviewed and published. 

The third phase will leverage the technical and mathematical results of the first two 

phases to automate this technology. This automation will take the form of software suitable 

for deployment into traffic management activities. It is expected that this software will 

expand the geographic coverage and measurement capabilities of the Traffic Management 

Systems in Washington State by allowing the quantitative use of the already deployed 

cameras. 

Phase 2 Activity 

This report presents a new set of algorithms to calibrate roadside traffic management 

cameras and process the images to estimate mean vehicle speed. Past work that has used 

cameras to estimate traffic conditions has generally postulated that either that the focal 

length or two-dimensional transformation are available a priori, or that a human operator 

can move the camera to an assigned and calibrated position. In the work presented here, a 

priori calibration information is not available. The equipment consists of monocular, single 

lens, roadside cameras controlled by traffic management center operators who can pan, tilt, 

and zoom them at will. The algorithm presented is in the role of a passive viewer of the 

available images, and it must calibrate the camera using only the information available in the 

scene.  

In general, an automated algorithm must analyze the scene by using a model to 

determine the regions of interest and then track the vehicles and estimate their speed even 

when the traffic volume, illumination, and weather conditions vary widely. Additional 

constraints include low-to-medium-quality JPEG compressed images at a low frame rate 



 

 

 

xxxi

(three to five frames/second). Thus, this problem presents major obstacles in both camera 

calibration and tracking. 

The report describes a simplified camera model designed to convert distance 

measurements in the image to estimates of distances along the road. This method is quite 

accurate even when the road slope or road tilt is not zero. The method requires only a 

reasonably accurate estimate of the vanishing point (i.e., ~5 pixels) and that the lane markers 

be uniformly spaced and visible in the image. These estimates from the image sequence are 

not error-prone and are straightforward to extract. In contrast, higher-order camera models 

typically depend on accurate estimates of quantities that are difficult to measure in sparse 

traffic scenes. 

We introduced the morphological top-hat operator, a well-known technique in the 

image-processing community, as an important technique to generate feature images with 

which to analyze traffic scenes. After manipulating the images appropriately, we were able 

to estimate the lane marker interval using the ensemble of auto-covariance sequences for the 

image. This method yielded an estimate of the lane marker interval that was nearly identical 

to the hand-calibrated result in a typical scene. 

The report also describes how to estimate the average spatial shift of the vehicles in a 

lane of traffic using the cross-covariance function. The estimated spatial shift perfectly 

complements the mean length parameter in the simplified camera model for estimating 

distance. Similarly, the cross-covariance method provides a satisfying corollary to the auto-

covariance method for estimating these parameters. Both of these methods are ingenious 

because they automatically incorporate all the information available in each image and do 

not require the identification of individual lane stripes or vehicles, which is the case for most 

other tracking approaches. In fact, because more features exist in the image, our algorithm 

works even better when the vehicles occlude one another than when traffic conditions are 

sparse. Furthermore, the method is computationally inexpensive and is suitable for 

implementation at high frame rates (e.g., 30 Hz). 

After a Kalman filter has been applied to the output of the spatial shift estimator, the 

mean speed estimation method presented in this report functions well, even with raindrops 

on the camera lens, under dark conditions, when traffic is sparse, or under very congested 

conditions. Specifically, the speed histograms from the computer vision sensor closely 
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matched those of inductance loops in free-flowing conditions for the very difficult scenes 

involving raindrops and darkness. Under dynamic traffic conditions, the mean speed sensor 

produced estimates at a rate of 5 Hz that closely matched subjective observations of the 

video sequence. In addition to providing both coarse and fine resolution estimates, our 

algorithm estimates space mean speed, which has better theoretical properties than the time 

mean speed estimated by inductance loops. 

We believe that if a human being can hand-calibrate the scene and draw lane masks, 

then we should be able to design an algorithm to perform the same task. This additional 

information increases the certainty of the speed estimates and expands the operating region 

for the algorithm.  

This report documents the detailed analysis necessary to implement an automated 

speed sensor based on un-calibrated cameras. The implementation of the algorithms in 

software is the goal of phase three. The third phase will use the technical and mathematical 

results from this report to create an automated speed sensor.  It is expected that this software 

will expand the geographic coverage and measurement capabilities of the Traffic 

Management  Systems in Washington State by allowing the quantitative use of the already 

deployed cameras. It is also expected that these data will be compatible with and available to 

the existing TMS in the Northwest Region. 
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1 BACKGROUND 

1.1 Introduction 

 As the population has increased in urban centers, so has vehicle traffic. According to 

the U.S. Department of Transportation [1], metropolitan traffic has grown by 30 percent in 

the last decade, and the number of cars and trucks on the road will increase by another 50 

percent in the next ten years. In a recent urban mobility study [2], researchers surveyed 68 

urban areas. They found that in 1997, traffic congestion cost travelers 4.3 billion hours of 

delay (approximately one work-week per person) and 6.6 billion gallons of wasted fuel, for 

an estimated total cost of $72 billion (p. xvii). The same study found that accidents and 

breakdowns caused 57 percent of the travel time delay; the remaining delay is due to 

crowded traffic conditions. A national effort to combat the traffic problems resulted in the 

Intelligent Transportation Systems initiative, which has explored and implemented a variety 

of solutions to these problems. One way transportation agencies have responded to freeway 

traffic congestion is by installing ramp meters, resulting in speed increases ranging from 8 

percent to 60 percent ([3], pp. ix-x). 

 In Seattle, the Washington State Department of Transportation (WSDOT) has 

created a traffic management center where operators can respond rapidly to highway 

incidents and control ramp meters. WSDOT effected this strategy by installing hundreds of 

cameras throughout the greater Seattle area to monitor key sections of freeway and major 

arterials. Operators may pan, tilt, and zoom the cameras remotely from the traffic 

management center to better view traffic incidents or congestion. Because the cameras are 

expensive to install, WSDOT has tried to leverage them for other uses, e.g., current Seattle 

traffic conditions are now viewable on the Web [4]. Figure 1 contains some typical images. 

Recently, researchers [5][6] have started to develop computer vision algorithms and tools 

that would enable a freeway traffic camera to serve as a speed sensor. In the past, traffic 

agencies have used two closely spaced inductance loops embedded in the pavement to form 

a speed sensor. Although the loops produce fairly accurate data, they are expensive and 

invasive to deploy, and an appreciable fraction requires replacement each year. In contrast, a 

camera sensor costs less or about the same amount of money, it is easier to deploy and 

replace, and problems are simple to detect by inspecting the output images. 
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Figure 1. Typical scenes viewed by traffic cameras in Seattle, Washington. 

 The task of estimating mean speed by using traffic monitoring cameras poses a 

difficult challenge in several respects. First of all, the computer must calibrate the camera in 

order to convert pixel distances to real-world measurements. However, the WSDOT 

operator needs to be able to pan, tilt, and zoom the camera at will. As soon as the camera 

stops moving, the system must detect this new state and automatically calibrate the camera. 

Second, the computer must analyze the scene to determine the regions of interest and then 

track the vehicles even when the traffic volume, illumination, and weather conditions vary 

widely. In some cases, the scene will not be tractable for computer vision techniques 

because too many roads are in the scene or the scene is too sparse to calibrate the camera. 

Technical considerations such as low-to-medium-quality JPEG compressed images at a low 

frame rate (three to five frames/second) also create constraints. Clearly, this problem 

presents major obstacles in both camera calibration and tracking.  

The challenge, then, is to create a set of algorithms that process video data from a 

pan-tilt-zoom camera to estimate the speed of traffic on a given section of freeway. The 



 3

algorithms must first identify the vehicles of interest in the scene and track their position in 

the image. Next, they must calculate the actual distance traveled using a nonlinear 

transformation and knowledge about the current parameters of the camera. Since the 

operator may move or zoom the camera at any time using a joystick, an algorithm must 

detect when the camera parameters change and recalibrate the camera automatically. To 

simplify the present research, we made a variety of assumptions, as follows.  

1. Vehicles that change lanes may be disregarded for the purposes of mean speed 

estimation. 

2. The road is approximately straight in the bottom one-third of the image. 

3. The road is planar with negligible tilt and slope. 

4. The parallel road boundary stripes are visible and can be reliably extracted from the 

image set. 

5. The distance between the road boundary stripes is known. 

6. The average distance between the tips of successive lane markers on the road is 

known. 

7. The bottom edges of the vehicles are perpendicular to the road boundary stripes. 

8. Shadows falsely detected as cars won’t noticeably affect the average speed 

calculations. 

9. Any water droplets detected on the camera lens or other barriers between the camera 

and the road disqualify a scene for processing. 

10. Mean speed estimation occurs during daytime or dusk light conditions. 

11. High- and low-resolution JPEG-compressed images of the roadway are available at 

2 Hz and 5 Hz, respectively. 

12. The option exists to have the operator orient and focus the camera one time so that 

the system can extract detailed structural information from the passing vehicles in 

order to estimate the camera position. 

Regardless of the assumptions, any system designed to estimate vehicle speeds from 

traffic video must contain several elements: (1) a way to obtain the region of interest in the 

scene; (2) a vehicle detection and tracking module to locate vehicles and track their position 

in time; (3) a theoretical model and methodology for transforming 2-D (2-Dimensional) 

image measurements into 3-D (3-Dimensional) distances; (4) a module to detect when the 
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camera requires recalibration; (5) a means of identifying which scenes can and cannot be 

used.  

In the present research, we analyzed the image time series to extract information 

about the scene, such as the region of interest, the lane masks, the road boundary stripes, and 

the interval between lane markers. To obtain 3-D distance measurements, we used a pan-tilt-

zoom model of the camera and extracted the position, orientation, and focal length 

information about the camera using our measurements from the image and our theoretical 

model. This information was adequate to convert image coordinates into real-world 

coordinates, using the assumption of road planarity. We used our knowledge about the lane 

boundaries to constrain the tracking process as the vehicles moved through the image. We 

estimated the average 3-D shift of the vehicles between image frames and used this to 

estimate the mean vehicle speed. While it is trivial to identify dark scenes via histogram 

analysis, we provided a new algorithm to detect conditions in which raindrops or other 

obstacles obscure the camera’s vision of the road. 

1.2 Literature review 

Algorithms for performing these tasks fall within the discipline of computer vision. 

This broad area undertakes the challenge of providing the computer with an intelligent way 

to automatically process images and extract useful information. These images may be 

computer-generated or captured by cameras from the real world. Although researchers 

currently pursue a variety of applications, ranging from providing quality control on parts in 

a manufacturing process to guiding robots, the ambitions of computer vision remain limited 

only by human imagination. Within this framework, surveillance applications have received 

much attention because of the computer’s potential to perform tasks that are either too large 

or too tedious for a team of humans to execute. These include the surveillance of banks, 

buildings, and parking lots for security purposes, as well as traffic at airports, subways, and 

freeways, the topic of the present research. 

1.2.1 Camera calibration 

Researchers have made significant progress in a variety of areas that contribute to the 

solution of the current traffic monitoring problem. For example, in order to make 

measurements from images, the computer must obtain a calibrated model of the camera. 
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Over the past ten years, self-calibration of cameras has become a very active topic for 

researchers in computer vision. Self-calibration falls within the more general problem of 

reconstruction [7]. That is, consider a set of 3-D points viewed by Ncam cameras with 

calibration matrices Pi, i = 1, …, Ncam. Let mi
j = Pi wj be the homogeneous coordinates of the 

projection of the jth point onto the ith
 camera. The reconstruction problem is then to find the 

set of camera matrices Pi and scene structure (world coordinates) wj such that mi
j = Pi wj. 

Depending on the assumptions and restrictions placed on Pi, the scene may be recovered to 

varying degrees of reality. For example, an affine reconstruction “provides a good 

approximation to the perspective projection model when the depth of the object is small 

compared to the viewing distance” [7]. The affine camera model provides notions of 

parallelism, “betweenness,” and “at infinity,” but no notion of rigidity, angle, or absolute 

length. A Euclidean reconstruction, however, preserves the notion of rigidity, and enough 

information is present to recover all the information about the 3-D world from the image, up 

to a scale factor [8]. In the past, researchers satisfied themselves with self-calibration to the 

point of an affine reconstruction. However, the groundbreaking paper by Maybank and 

Faugeras in 1992 [9] offered a way to obtain a Euclidean reconstruction, assuming the 

internal camera parameters (e.g., focal length) were constant. This research paved the way 

for later work [7], which placed no constraints on the internal camera parameters. Since the 

present research focuses on the determination of absolute length under conditions of varying 

focal length and camera orientation, it falls within this realm of Euclidean reconstruction. 

The current problem provides more constraints than are typically assumed in the 

general Euclidean reconstruction problem. In fact, a body of literature [10][11] addresses the 

self-calibration of motionless cameras that only pan, tilt, and zoom. The skew, aspect ratio, 

and principal point are assumed to be ideal, which are good approximations in practice. 

These approaches obtain the absolute focal length and relative pan and tilt angles between 

images by calculating the 2-D perspective transformation, Hk, between images. That is, 

suppose p0 is the homogeneous coordinates of a point in the reference image. Then the 

coordinates of the matching point pk in image k are calculated from p0 as pk = Hk p0. Given 

Hk, the desired parameters may be obtained algebraically. 

Such an approach is remarkably clever and attractive to the current problem of 

estimating the camera parameters on the basis of transition images as the user operates the 
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camera. However, reliably calculating the image homography between two images requires 

the extraction of many matching points. Typical approaches automatically extract corners in 

both images as features [12], associate the corners together, and obtain the image 

homography by the Levenberg-Marquardt algorithm  [13], a multi-dimensional variant on 

Newton’s method. The strength of this search algorithm is the robust estimation of the 

homography matrices, Hk. However, despite its attractiveness, traffic images present a large 

obstacle to the use of pan-tilt-zoom self-calibration methods, i.e., the dearth of stable image 

features. For example, trees may occupy the non-highway portions of the image, creating 

large areas where no features exist. In addition, the classical algorithms don’t prescribe how 

to handle objects that move (e.g., vehicles) during the calibration. Widely varying weather 

and lighting conditions also make point-feature extraction very difficult. Furthermore, small 

features do not manifest themselves in the images because of the large depth of field. 

Without numerous and good features, the image homographies cannot be computed 

consistently nor accurately, and the self-calibration will not succeed. 

Work in panoramic image generation stemming from Szeliski [14] offers additional 

possibilities for camera calibration. In this framework, once a system has extracted the 

panoramic image describing its environment, it can register any image to the panorama and 

thereby extract the camera’s orientation and focal length. To measure distances properly, the 

system would require the user to drive a marked car at a known speed in each lane of the 

freeway, defining the image to a real-world conversion function. Although one could 

develop a system to automatically generate the panorama and register the current image, the 

calibration procedure remains untenable given the effort that would be required to calibrate  

scores of cameras. 

Given the difficulties of fully self-calibrating traffic monitoring cameras, researchers 

have typically assumed some knowledge about the internal and external parameters of the 

camera. For example, Chausse et al. [15] assumed that the focal length of the camera and 

width of the road are known and that the user has identified points in the image that define a 

line perpendicular to the road. Armed with this information, their method can reconstruct a 

Euclidean model of the roadway. Yang and Ozawa [16] only assumed knowledge of the 

focal length of the camera and width of the roadway. They then used the parallel and 

perpendicular structure of the road in the image to reconstruct a Euclidean model. In 
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contrast, a Japanese group [17] assumed knowledge of the camera’s position and orientation 

relative to the road and used this information to obtain absolute distance measurements. 

 Other researchers have created systems that use information available in the image to 

calibrate the camera. Jung and Ho [18] greatly simplified the calibration problem by 

manually placing four poles in the image from which the camera parameters were easily 

extracted. Zhu et al. [19] calibrated their camera by sending a box-like vehicle of known 

length, width, and height through the image, which was a step toward self-calibration. Their 

camera, however, was set up in an orientation and position very favorable to the application: 

the down-angle was very large (nearly a top-down view), the cars occupied a large portion 

of the image (small focal length), and the camera was positioned so that the line of sight was 

aligned with the middle of the road (i.e., zero pan angle). 

Of the remaining approaches, most systems (e.g., [18][19]) have made assumptions 

typical for the state-of-the-art in traffic monitoring research, i.e., cameras with fixed position 

and orientation. The single line of research that deviated from this norm was done at the 

University of Washington by Dailey and Pumrin [5][6], who shared some of our same 

assumptions, i.e., the camera is uncalibrated and can pan, tilt, and zoom at any time. Instead 

of directly calibrating the camera, they used the average car length to establish a calibration 

function that can directly convert pixel distances in the front region of the image into real-

world distances. Disadvantages inherent to this approach include the need to know the 

distribution of vehicle lengths and the system’s sensitivity to the orientation of the camera, 

which affects the apparent length of the vehicles when they are projected onto the 2-D 

image. Because it relies on the vehicles themselves, this approach also encounters problems 

when traffic is very sparse (long calibration time) or extremely dense (the vehicles occlude 

one another to become one big blob). 

 Many researchers in the area of traffic monitoring have obviated the calibration 

problem by providing the system with a 2-D to 3-D homography created manually from 

known distances on the roadway. Algorithms developed by Yu et al. [20] and Bouzar et al. 

[21] that simulate speed traps are examples. The work of Gupte et al. [22] describes a 

calibration tool operated by the user that enables the vehicle classification system to work 

properly. Similarly, work at U. C. Berkeley [23] assumes a user-provided camera calibration 

in order to focus on the tracking aspects of the traffic monitoring problem.  
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1.2.2 Vehicle tracking 

A wide range of methods exists for tracking vehicles to estimate traffic speed. The 

tracking approaches in the aforementioned research of Yu et al. [20] and Bouzar et al. 

Bouzar et al. [21] amounts to background subtraction, which fails under occlusion. In 

contrast to this simple scheme, the state-of-the-art approach by Beymer et al. [23] extracts 

vehicle corner features from traffic images, tracks the features through the image sequence, 

and groups the features into vehicle tracks using spatial and velocity constraints. This 

approach is more robust than  tracking the entire object when a portion of the vehicle is 

occluded. It also seems to offer reasonable performance at night when only the headlights 

and taillights of vehicles are visible. The main disadvantage to this method is the problem 

common to all point-feature trackers: features become difficult to find when the object 

moves a large distance between frames, which is certainly the case in free-flowing traffic at 

the low frame rates available to our system. Another drawback to the work at U.C. Berkeley 

is the high computational expense associated with grouping and tracking the features. 

 As one would expect from the plethora of object tracking methods found in the 

general computer vision literature, a variety of less successful methods exist for tracking 

vehicles. Examples include vehicle tracking based on neural network recognition of wavelet 

features [24] as well as optical flow-based trackers [25]. Several researchers [26][27] have 

employed active contours, but a comparison of the approaches and results of Byemer et al.  

[23] and Koller et al. [26] shows that the performance ceiling is usually higher for the 

feature-based approach. Recently, the snake-based approach has been revived by applying 

the Kalman filter at various stages in the tracking process [28]. One snake-based approach 

that employs the Kalman filter also attempts to use regional information to develop the 

contour [29]. Rigid deformable templates have also been used to detect, classify, and track 

the position and orientation of vehicles ([30][31][32]). Although deformable templates offer 

many possibilities for classification, they are not particularly well suited for vehicle tracking 

because the system must identify the proper template and orient it for every vehicle blob 

before it can track the vehicle. Region-based trackers (e.g., [33]) or blob detectors with 

background subtraction [34] and frame-differencing have proved to be the most popular 

techniques for rapidly developing a working system. All of these approaches have their 

relative merits and work properly in some situations. However, because each approach 
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attempts to track individual vehicles, they are all fundamentally challenged by vehicle 

occlusion, i.e., when two vehicles overlap or merge in the image. 

Kato et al. [35] went to great lengths to classify all pixels as background, shadow, or 

vehicle for robust segmentation using Hidden Markov Models. This enabled the researchers 

to identify vehicle pixels with surprising accuracy. However, such an approach is more 

appropriate for vehicle counting and classification where pixel-accurate vehicle masks 

become important. Furthermore, their approach has yet to be proven in realistic traffic 

situations that involve occlusion. 

Perhaps most intriguing are the systems based on extracting information 

accumulated from a spatiotemporal image ([19][36][37]). Although this approach remains 

unproven for dense traffic situations, the data are amenable to regression techniques, and 

hence this work provides a detailed error analysis [19], which is extremely rare in the 

vehicle tracking literature. 

1.2.3 Systems that estimate vehicle speeds 

 As described inn the literature thus far, only a few researchers have created systems 

designed to estimate traffic speeds in realistic situations. Garibotte et al. [38] estimated 

individual vehicle speeds and read license plates for the purpose of automatic traffic tickets. 

To solve this particular problem, they placed the camera at a specific position and 

orientation to track and read the license plates as they passed by. They employed a binocular 

approach and obtained impressively low errors in their speed estimates, i.e., 4 percent or 

less. However, although their solution may seem attractive, we note that the constraints and 

assumptions used by our algorithms are vastly different because of the positioning of our 

cameras. 

 Another recent attempt at estimating vehicle speeds is the work of Pae et al. [39]. 

These researchers applied a block-matching algorithm to low-resolution images (320 X 240 

pixels) captured at a high frame rate (15 Hz). They assumed that the camera position and 

orientation were fixed and known. In one sense, their sample images were very unrealistic, 

i.e., one or two vehicles on the road, but they successfully eliminated a very busy 

background on the sides of the road. Although it performs in real-time, this system has a 

long way to go before it can be applied to the wide variety of conditions we expect from our 

image sequences. 
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 The simple scene analysis of Pai et al. [39] is typical for the state-of-the-art. The 

tools available for analyzing a complex traffic scene are fairly rudimentary. Most 

researchers employ a variation on background subtraction, and they typically assume that 

the traffic scene is relatively simple. To our knowledge, only two sets of researchers have 

even attacked the problem of extracting the traffic lanes from a scene [40] [41]. The first 

approach [40] applies morphology to a binary mask that indicates where image pixels are 

changing in order to extract very rough lane boundaries. Because this approach works only 

in scenes where the pan angle is nearly zero, it is irrelevant to the current traffic monitoring 

problem where the pan angle often exceeds 5 degrees. The latter approach [41] relies on 

static line features on the road, which may vary considerably from road to road. 

Furthermore, the method will probably produce mixed results when more than one set of 

traffic lanes are within the image. We also note that an edge-based approach is likely to 

regularly fail under some of the more extreme lighting and weather conditions in the real 

world. Thus, although the systems we present below have produced some encouraging 

results, we recognize that the research in traffic scene analysis must mature before we can 

expect to automatically process complex scenes involving more than one set of lanes. Given 

this state of affairs, it is also not surprising that researchers have yet to attempt to calibrate 

the camera from knowledge about the lines painted on the road. 

The VISATRAM system [19] estimates the largest number of traffic parameters of 

any approach in the literature, ranging from individual vehicle dimensions and speeds to 

headway, occupancy, volume, and mean vehicle speed. To achieve this objective, the 

authors highly constrained the camera position and orientation. The system uses high-

resolution images (768 X 576) taken at a high frame rate (25 Hz) from a camera mounted on 

an overpass with the optical axis aligned with the center of the road. The camera’s down 

angle is quite large, and the road below the camera occupies most of the image. The authors 

calibrated the system by sending a vehicle of known dimensions through the scene. As 

mentioned previously, the tracker obtains vehicle information with a spatiotemporal image 

generated from the well-sampled image sequence. Though the tracker cannot handle 

occlusion or congestion, its measurements are quite accurate (within 5 percent) for the 

situations studied, and the system is well-characterized. The system can cope with shadows 

and dim conditions, though it remains unproven in rainy or night-time conditions. The 
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authors claim hours of lane observation with nearly a 100 percent vehicle detection rate, 

though it appears that the road did not suffer from any congestion problems. In the present 

context, the greatest shortcomings of VISATRAM include the requirements of a fixed and 

well-positioned camera, high bandwidth connection, and a camera calibration procedure that 

involves multiple people.  

 In contrast to the VISATRAM system, researchers of the RoadWatch program at 

U.C. Berkeley [23] did not constrain the camera position and orientation to such a high 

degree. However, they did assume that these parameters were fixed, that the user would 

provide the camera calibration, and that the user would identify the individual traffic lanes 

of interest. They also assumed a medium bandwidth connection, using uncompressed low-

resolution images (320 X 240) sampled at 10 Hz. The strength of their approach is that the 

point feature tracker described above can handle partial occlusion, stop-and-go traffic, lane 

changes, and night-time conditions. However, the tracker performance decreases as the 

frame rate drops since the Kalman filter-based tracker cannot track position jumps of more 

than about 15 pixels. The tracker is also very computationally expensive. Although the 

RoadWatch system requires human calibration and does not allow a roving camera, the 

tracking results are very promising, particularly over a medium to high bandwidth network 

connection. 

 The present research shares many of the same assumptions as other work at the 

University of Washington [5], since both aim to extract speed estimates with uncalibrated, 

roving cameras over a low-bandwidth network connection. However, the work begun by 

Dailey et al. [5] and continued by Pumrin [6] varies from the current research in several 

respects. First, Pumrin relied on information contained in the length of the vehicles to 

calibrate the camera. As a consequence, the camera had to be within a fairly narrow range of 

positions and orientations such that the perspective projection of the vehicle was 

approximately proportional to the vehicle length. Meeting this requirement had the side 

effect that 3-D roadway distances at the same depth in different lanes had approximately the 

same lengths in the image. Our calibration approach does not enforce such stringent 

requirements of the camera orientation. Second, Pumrin assumed that the computer can 

isolate the vehicles to perform the calibration, i.e., the roadway was assumed to be 

uncongested, with favorable weather and lighting conditions. We make no assumptions 
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about the weather or traffic conditions. Thirdly, Pumrin assumed that the distribution of 

vehicle lengths was known and time-invariant during calibration. The suitability of this 

approximation will certainly vary with the scene in question and with the time of day. 

Fourth, Pumrin [6] assumed a known camera height, which required field work or estimation 

by another algorithm. Lastly, we note that the camera calibration is only as good as the 

vehicle detection and tracking module; this coupling could prove undesirable at some point. 

In all, previous University of Washington work made many of the same challenging 

assumptions described above while adding several more that would be likely to severely 

limit the applicability of their solution. 

 To summarize the current state-of-the-art, no system has successfully solved a 

generic camera geometry similar to the cameras producing the WSDOT images, though 

Dailey et al. [5] and Pumrin [6] provide a step forward when assumptions about the camera 

position are met. Though the research of Zhu et al. [19] and Beymer et al. [23] holds some 

promise for vehicle tracking, these solutions are not directly applicable because neither has 

been tested at low frame rates or under adverse weather conditions, and that of Zhu et al. Is  

unproven in highly congested traffic. Despite its success and intriguing possibilities, the 

license plate tracking approach of Garibotte et al. [38] cannot be applied to the problem at 

hand. Approaches such as that of Pai et al. [39] still require major development and are 

mentioned only to offer perspective on the range of maturity and realism that is present in 

the current literature. 

1.3 Overview of our work 

To this point, no one has undertaken the challenge of solving the camera calibration, 

vehicle tracking, and speed estimation problems to the degree required by a real system. 

Such a system should be able to estimate the mean vehicle speed for a section of freeway 

under a wide variety of traffic conditions, weather conditions, scene geometries, and camera 

parameters. We offer our work with the belief that these algorithms can form the basis for a 

fully functional system during daylight to dusk light conditions when rain is not on the 

camera lens. 

We begin by introducing our camera and scene model in Chapter 2. This chapter also 

derives and analyzes three methods of calibrating the camera for speed estimation, of which 

one is shown to be clearly superior in its sensitivity to measurement errors and errors in the 
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camera model. In Chapter 3 we explain the bulk of the image processing algorithms 

designed to enhance image features and perform measurements on the images. We also 

detail algorithms that will analyze the scene by obtaining lane masks and detecting rain or 

obstacles. Chapter 4 contains results for our camera calibration procedures for real scenes. 

We compare the results to hand-calibrated results and analyze the errors. It is here that the 

same calibration method emerges as a clear winner for calibrating the camera in real scenes. 

In Chapter 5 we explain the details of our mean speed estimation algorithm. Not only does it 

fit the camera calibration method very naturally, but it automatically averages the vehicle 

speeds during the mean speed estimation process without estimating the actual vehicle 

positions. We conclude in Chapter 6 by summarizing our work, its significance, and its 

implementation. We also offer directions for future research. 
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2 CAMERA AND SCENE MODEL 

2.1 Fundamental Model and Assumptions 

To provide a context for our vehicle speed estimation algorithm, we present 

analytical models of the camera and the scene. We work primarily with a set of simplified 

models that ignore camera roll and road slope and tilt. We develop multiple methods of 

calibrating the camera in terms of features that are available for measurement in the images, 

together with information about the scene known a priori. We present results from a Monte-

Carlo simulation of errors for each calibration method. We then present the operational 

limits for each calibration method and describe the effects of a sloped or tilted road. Finally, 

we compare all of the camera calibration methods and recommend how they can be used. 
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Figure 2. Camera and roadway geometry. 

 The geometry of the camera and roadway are shown in Figure 2. We model the 

scene as two parallel lines L1 and L2 viewed through a pinhole camera, assuming that the 

camera is located at a height h above the ground plane and a perpendicular distance d from 

the edge of the roadway. The camera is oriented at a pan angle θ with respect to the road and 

tilt (down) angle φ such that a point in the earth system (X, Y, Z) is transformed into the 

camera coordinate system (Xc, Yc, Zc) by only a translation and a rotation. The camera is 
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oriented along the negative Zc axis (which requires us to associate a negative sign with the 

focal length), and its line of sight intersects the ground plane a distance F = h⋅csc(φ) away. 

We also offer side views of the scene in figures 3 and 4 to describe the orientation of the 

road relative to the camera in real scenes. 
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Figure 3. Head-on view of camera and roadway geometry emphasizing the nonzero road 
tilt β. 
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Figure 4. Side view of camera and roadway geometry emphasizing the nonzero road slope ψ. 
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2.1.1 Perspective projection of the scene geometry 

The following derivations assume that the angles ψ (road slope) and ` (road tilt) are 

zero and that the camera roll angle about the Zc-axis is also zero. In this case, the following 

equations describe the perspective projection of points in the pinhole camera’s coordinate 

system onto the image, given a focal length f > 0: 

 

c

c

c

c

Z
Y

fv

Z
X

fu

−=

−=

  (1) 

Starting with the X-Y-Z coordinate system, we develop expressions for points on the ground 

plane in terms of the Xc-Yc-Zc coordinate system. First, we obtain the U-V-W system by 

rotating an angle φ around the X-axis: 
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These expressions are further simplified because objects are assumed to lie on the ground 

plane where Z = 0. Note that θ does not enter the derivation because we assume ψ = 0, and 

because we have chosen not to align the U-axis perpendicular to L1 and L2. Next, we apply a 

displacement F = h⋅csc(φ) to obtain the camera-centered coordinates Xc-Yc-Zc. 
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Applying Equation 1 yields 
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Because we assumed the vehicles lie on a flat plane when developing our camera model, we 

can transform the image coordinates into their 3-D coordinates (X,Y,0) using the camera 
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calibration, similar to the result of Lai and Yung [41]. Referring to Equations (4) and (5), we 

solve for X and Y, using the fact that F = h⋅csc(φ), yielding 
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where ( )φcsc
f
h

f
FS ==  meters/pixel is a scale factor that extends Lai and Yung’s result for 

real-world coordinates, and v0 = f⋅tan(φ) is the vertical vanishing point coordinate (see 

Figure 5 below). 

 We now analyze the transformation of lines L1 and L2 on the ground plane into lines 

in the image in the slope-intercept form u = m1v+b1 and u = m2v+b2. Choosing this form, 

rather than v in terms of u, has important advantages later in the derivation. Suppose a 3-D 

line Lx contains a point b = [bx by bz]T and has a direction cosine vector a = [ax ay az]T, i.e., 

points on Lx satisfy λa + b, where λ is arbitrary. If a point λa + b on the line is projected 

from 3-D to 2-D according to Equation (1), we obtain 
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Using Equation (9), we obtain an expression for λ, which enables us to find u in terms of v 
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where the coefficient of v is the slope of the line, and the constant term is the u-intercept. 

 Returning to the model in Figure 2, we derive the necessary transformations to 

express lines L1 and L2 in terms of the Xc-Yc-Zc coordinate system. We start from the 

Xc’-Yc’-Zc’ system located near the base of the camera ,with Xc’ perpendicular to the road 
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lines, Yc’ coincident with L1, and Zc’ perpendicular to the ground plane. The following 

derivation translates and rotates L1 and L2 from the perspective of the camera, which is held 

still. In the Xc’-Yc’-Zc’ system, the line parameters for L1 and L2 would be 

a = a1 = a2 = [0 0 1]T and b1 = [0 0 0]T and b2 = [w 0 0]T, respectively. First, we translate L1 

and L2 below and to the right of the camera by adding T = [d –h 0]T to points b1 and b2. We 

then tilt the road by an angle θ about the Yc’-axis and by an angle φ about the Xc’-axis, 

yielding the camera pose of Figure 2. The following matrices encode this rotation: 
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Applying these transformations to arbitrary points p1’ = λa + b1 lying on L1 and 

p2’ = λa + b2 lying on L2 in the Xc’-Yc’-Zc’ coordinate system yields the new vectors 

describing the lines in the current camera reference frame Xc-Yc-Zc: 
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Applying Equation (11) to p1 and p2, we obtain  
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Manipulating these four nonlinear equations to isolate the camera parameters is 

nontrivial, and we leave it for a later derivation. However, we note that we can solve for the 

coordinates of the intersection of L1 and L2. In general, under the perspective projection 

geometry defined by Equation (1), any set of lines that are parallel in 3-D will converge to a 
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single point in the image as they extend toward infinity. This is shown pictorially in Figure 

5, where the road lines are dark and the lines perpendicular to them are lighter. We can solve 

the following set of equations: 
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and obtain u0 and v0 
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Substituting Equation (14), we obtain 
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Figure 5. Road geometry in the image showing the vanishing points for lines parallel and 
perpendicular to the road. 

However, this approach leaves us without a value for u1, the coordinate for the 

vanishing point of the lines perpendicular to the road. In general, we can obtain all vanishing 

point coordinates by taking the limits of Equations (4)-(5) as X and Y on the ground plane 

tend toward infinity away from the camera 
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To obtain the final result, we use the fact that X/Y = -tan(θ) for lines parallel to the road, as 

shown in Figure 7. 

The 2-D-to-3-D relationships of Equations (6) and (7), the expressions for the road 

boundary line parameters in terms of the camera parameters and scene geometry, and the 

vanishing point coordinates in terms of the camera parameters will prove very useful in the 

remainder of our analysis. 

2.2 Methods of camera calibration 

We now derive three methods of calibrating the camera with different tradeoffs 

between known information about the scene and quantities estimated from the image 

sequence. As described above, we anticipate that we can estimate m1, b1, m2, and b2 (the 

parameters for L1 and L2 in the image), and u0, v0, and u1 (the vanishing point coordinates in 

the image). We also note that the lanes of all freeways in the United States are required to 

have lane separators longitudinally spaced at a fixed distance L [42], as shown in Figure 6. If 

we assume knowledge of L and can estimate the corresponding interval, τL, in the image, 

then this will also prove useful in calibrating the cameras. Our final assumption is that the 

width, w, of the road is known. Table 1 describes how the three methods convert 

assumptions about the camera geometry and measurements from the images into estimates 

of the camera calibration parameters. The output parameter S’ is a scale factor encoding the 

fact that we have sufficient knowledge to measure distances along the road. The appropriate 

method for a given situation is determined by what information is available. For example, 

Method 1 is appropriate only when we can measure u1. Similarly, Method 3 is only 

appropriate if lane markers are visible on the road. Our sensitivity analysis in a future 

section will provide additional guidance for choosing the best method for a given situation. 
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Figure 6. Periodic lane markers with distance definitions. 

 

Table 1. Assumptions and outputs of various camera calibration methods (* denotes optional 
parameters) 

 Method 1 
(vanishing 

points) 

Method 2 
(known camera 

position) 

Method 3 
(known distance) 

Camera parameters known 
a priori 

None None None 

Assumed values of scene 
geometry 

w d, w L, w 

Quantities estimated from 
the image sequence 

u0, v0, u1,  
b1, b2 

u0, v0,  
b1, b2 

u0, v0,  
b1*, b2* 

τL 
Parameters of the scene 
geometry estimated by the 
method 

d None d* 

Camera parameters 
estimated 

f, φ, θ 
S’ 

f, φ, θ 
S’ 

f*, φ*, θ* 
S’ 

2.2.1 Method 1 (vanishing points) 

In this camera calibration method, we assume that we can estimate the coordinates 

for the vanishing point of the lines parallel to the road and the vanishing point of lines 

perpendicular to the road. Using these quantities, knowledge of the road width w, and 

measurement of b1 and b2 (see Equation (14)), we can estimate all of the camera and scene 

parameters in Figure 2. Applying the trigonometric identity tan2(φ) = sec2(φ) - 1 to 

Equations (19)-(21) we obtain 
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We obtain φ  and θ from Equations (20) and (19) by substituting the values for f and v0. Of 

the parameters necessary for the transformation of Equations (6)-(7), only h is yet to be 

found. Using the measured horizontal distance b2 – b1 in the image, we get the following 

result from Equation (14): 

 ( ) ( )θφ secsin
12 bb
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−

=  (23) 

Interestingly, we can arrange Equation (23) to develop two expressions for the scale factor S 

used in the transformation of Equations (6)-(7). 
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Thus, we see that for the purposes of calculating S, knowledge of h, f, and φ is equivalent to 

knowledge of w, θ, b1, and b2.  

We introduce an overhead view of the roadway scene in Figure 7 to assist in the 

calculation of d from the parameters already estimated. Inserting the measurement u = b1 

into Equation (6) gives X1. Then the intercept coordinate Y1 = X1/tan(θ). Finally, we have 

 ( )( ) ( )θφ sincot( 1 hYd −−=  (25) 
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Figure 7. Road geometry from a bird’s-eye view with relevant X- and Y-axis intercepts. 

2.2.2 Method 2 (known camera position) 

If we know the scene geometry, i.e., parameters d and w, we can estimate the camera 

parameters by obtaining estimates of the line parameters b1 and b2 and vanishing point 

coordinates u0 and v0 from the digital images. Using Equation (14), 
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Dividing both sides by u0 from Equation (19) yields 
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Equations (19)-(20) may be used to estimate f and θ. It is interesting to note that a priori 

knowledge of h is not needed to solve for the three camera parameters. As pointed out in 

Equation (24), knowledge of w, θ, b1, and b2 is sufficient for calculating the scale factor 

without h. 

2.2.3 Method 3 (known distance) 

One way of viewing the camera calibration problem is that we need to measure two 

types of scaling information: parallel to the road and perpendicular to it, i.e., the Y’ and X’ 

axes in Figure 7, respectively. As described in Section 2.2.2, we can measure the distance 

along the X-axis (which isn’t necessarily perpendicular to the road) to within a scale factor 

using Equation (6) when v = 0, i.e., X⏐v=0 = S⋅u. If at least one additional distance is known 

that is somewhat independent from b2 - b1, then we can derive the remaining scene and 

calibration information that we lack.  

In the image, we traverse from va to vb, which corresponds to a known distance L 

along the road. Transforming these points into 3-D using Equation (7), this distance is 
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Referring to Figure 7, we can see that 

 ( ) ( )
( )

( )
( )( )⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−
=∆=

ab

ab

vvvv
vvvSv

YL
00

00

sin
sec

sec
φ

θ
θ  (29) 

For ease of derivation, we define 
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Squaring both sides and performing some algebra, we have 
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As an aside, we use Equation (23) and the fact that S ≡ h/f csc(φ) to obtain 
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Inserting Equation (32) into Equation (31), we have 
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Applying the trigonometric identity sec2(⋅) = 1 + tan2(⋅) several times yields 
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Applying the identities in Equation (19)-(20) for u0 and v0 gives us 
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along with a new identity 
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Noting that 
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we finally obtain 
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Equation (38) represents an expression involving only a single unknown parameter (f), the 

known road width w, and the measured quantities u0, v0, v1, v2, b1, and b2 from the image. To 

solve the polynomial for f, we first define 
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Expanding Equation (38) results in 
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We define 
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We can now solve for f, taking the positive root for a real-valued solution 
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The remaining parameters θ, φ, h, and d can now be found, as described previously in 

Equations (19), (20), (23), and (25).  

Because we assumed that the road has no slope or tilt to it, we note that the 2-D to 

3-D transformation in Equation (7) only involves the vanishing point coordinate v0 and a 

scaling factor h csc2(φ)/f that is constant for a given scene. Referring to Figure 7, we see that 

multiplying the 3-D position Y by sec(θ) yields the position Y’ along the road itself. Thus, 

we can express the position of a vehicle along the road in terms of a single scale factor 
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Thus, if we know that two points (ua,va) and (ub,vb) in the image are separated by a known 

distance L (as projected onto the Zc’-axis parallel to the road) and we have an estimate of v0, 

then we can use this information to obtain the scaling factor S’ as follows by manipulating 

Equation (29). 
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In this way, we can transform the vertical position of a vehicle in the image into its position 

in 3-D with minimal knowledge of the scene geometry and no knowledge of the camera 
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parameters. In other words, as far as measuring distances along the road is concerned, we 

need not calculate the camera parameters as above unless we wish to estimate d or h 

(see Table 1). 

 In conclusion, it is interesting to note that, regardless of the camera calibration 

method, we are simply estimating S’ in order to estimate distances along the road. 

Equation (44) shows that our various approaches are just ways of manipulating the multiple 

equalities between S’ and the various camera, image, and scene parameters. Thus, it is very 

appropriate to use S’ as a means of comparing the accuracy of the three approaches to 

calibration, since the only other unknown in Equation (43) is v0, to which all three have 

equal access via the same algorithm. 

2.3 Sensitivity analysis via Monte-Carlo simulation 

An algorithm that processes images from traffic monitoring cameras in Seattle 

usually encounters three types of scenes: 1) a side view where the camera is a moderate 

distance from the road and looks out at the road with moderate values for φ and θ; 2) a view 

where the camera looks down on the road with large values for φ and θ; 3) a view where the 

camera is located on an overpass above the road and looks straight down the road. Figure 8 

contains three images representing these types of scenes. 
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Figure 8. Typical scenes viewed by a traffic camera in Seattle, Washington and their 
computer simulation (from top-to-bottom). a) Camera on the side of the road 
(moderate values for φ and θ). b) Camera looking down on the traffic (large values 
for φ and θ). c) Camera located on an overpass (small θ). 

We designed a Monte-Carlo simulation to determine the sensitivity of the various 

camera calibration methods when viewing the different scenes. Table 2 contains the 

geometrical and camera parameters used. Note that the traffic image and simulated versions 
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of scene 3 are mirror images of one another because the simulated version has a much more 

negative value for d than the traffic image. 

Table 2. Exact geometrical and camera parameters used in the simulation. 

 Scene 1 Scene 2 Scene 3 

Width of road w (feet) 44 44 44 

Lane stripe distance (feet) 40 40 40 

Camera-to-road distance d (feet) 28.3 28.3 -25 

Camera height h (feet) 63.5 63.5 50 

Lane stripe distance (feet) 40 40 40 

Focal length f (pixels) 1600 1600 1600 

Down angle φ (deg.) 9.2 18 8 

Pan angle θ (deg.) 9.6 20 2 

 

On the basis of these parameters, we generated nominal measurements for u0, v0, u1, b1, and 

b2 for each scene using Equations (14), (19), (20), and(21). These values are detailed in 

Table 3. 

Table 3. Image measurements calculated from the parameters of Table 2. 

Measurement Scene 1 Scene 2 Scene 3 

u0 (pixels) -274.1463 -612.3215 -56.4223 

v0 (pixels) 259.1435 519.8715 224.8653 

u1 (pixels) 9583.04 4622.19 46268.3 

b1 (pixels) -151.5127 -319.3574 -166.7358 

b2 (pixels) 28.2589 45.2248 29.3393 

 
We designed the Monte-Carlo simulation to test the sensitivity of each of the outputs 

for each camera calibration method to each of its inputs. Table 4 contains the details of the 

inputs and outputs for each method. We emphasize that ∆Y’ denotes the primary quantity of 

interest, i.e., the distance measured along the road. In addition to determining the sensitivity 

of individual output variables to variations in individual input variables (one-to-one), we 

also tested the cumulative effects of variation in all the inputs on each of the individual 
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outputs (many-to-one) for each calibration method. Furthermore, we exhaustively performed 

these two types of sensitivity analyses for each of the three scenes in combination with each 

of the three calibration methods. Table 5 contains a matrix summarizing the complete 

results. 

Table 4. Inputs and outputs for each calibration method. 

 Method 1 Method 2 Method 3 

Inputs 
Perturbed 

w 
u0, v0, u1 

b1, b2 

w, d 
u0, v0 
b1, b2 

w, L 
u0, v0 
b1, b2 

τL 

Outputs 
Perturbed 

d 
f, φ, θ, ∆Y’ 

 
f, φ, θ, ∆Y’ 

d 
f, φ, θ, ∆Y’ 

 

Table 5. Sensitivity of the calibration methods to input errors when applied to different types of 
scenes. 

 Method 1 Method 2 Method 3 

Scene 1 Low High Low 

Scene 2 Medium Medium Medium 

Scene 3 Low High Low 

 
 To determine the approximate sensitivity of each calibration method, we 

systematically added gaussian noise to each of the input parameters appropriate for each 

method, as outlined in Table 4. The standard deviation σ of the additive noise was chosen to 

be 1 percent of the value of the parameter itself, e.g., σu0 = |-274.1463| / 100 = 2.741463 for 

Scene 1. Of course, the actual noise levels for each parameter will probably exceed this 

level, but these will indicate how much each of the methods magnifies noise in its inputs. 

We obtained 105 samples of each input for each scene (see Table 2 and Table 3) with 

the appropriate noise level. For each combination of the three calibration methods and three 

scenes, we calculated 105 samples of each of the tested outputs listed in Table 4. We 

generated multiple sets of 105 samples for each outputs, by varying the inputs one at a time, 
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and then all together. For example, we applied Method 1 to Scene 1 and calculated 105 

samples of d for seven cases: six in which all inputs were perfect except for one changed 

parameter, and one case in which all the inputs were varied by adding gaussian noise with a 

standard deviation of 1 percent relative to the nominal value. Method 1 yielded 315 sets, 

Method 2 totaled 252 sets, and Method 3 gave 360 sets of 105 samples. After generating all 

the sets of data, we calculated the standard deviation of each set of samples and normalized 

each value by the nominal value from Table 2 and Table 3. Figures 9 through 14 contain bar 

graphs illustrating the results for all the combinations. 
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Figure 9. Relative contributions to the errors in road distance ∆Y’ and d measured via 
Method 1 for individual input errors, where each input i has value Qi and noise 
σi/Qi = 0.01. 
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Figure 10. Relative contributions to the errors in camera parameters f, φ, and θ measured via 
Method 1 for individual input errors, where each input i has value Qi and noise 
σi/Qi = 0.01. 
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Figure 11. Relative contributions to the errors in road distance ∆Y’ measured via Method 2 for 
individual input errors, where each input i has value Qi and noise σi/Qi = 0.01. 
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Figure 12. Relative contributions to the errors in camera parameters f, φ, and θ measured via 
Method 2 for individual input errors, where each input i has value Qi and noise 
σi/Qi = 0.01. 
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Figure 13. Relative contributions to the errors in road distance ∆Y’ and d measured via 
Method 3 for individual input errors, where each input i has value Qi and noise 
σi/Qi = 0.01. 
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Figure 14. Relative contributions to the errors in camera parameters f, φ, and θ measured via 
Method 3 for individual input errors, where each input i has value Qi and noise 
σi/Qi = 0.01. 
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 As one would expect, the case in which all inputs are varied results in the greatest 

effect on the output. Even in this case, the outputs of Method 1 typically have fairly tight 

distributions about their nominal values, as illustrated in the results for Scene 1 in Figure 15 

(the nominal value is indicated by a vertical line). The histograms for Method 3 have a 

similar shape. This indicates that these methods are fairly insensitive to small errors in the 

input parameters. However, Method 2 is quite sensitive to variations in its inputs, and the 

output distributions are typically broad and skewed, as shown in Figure 16.  

 We now examine figures 9 through 14 in detail to identify the parameters to which 

each method is most sensitive. The results of Method 1 in figures 9 and 10 show that both d 

and ∆Y’ depend linearly on w because the output deviation is 0.01 when w deviates by 0.01. 

This is consistent with the proportionality between w and the scale factor S in Equation (24). 

Overall, the parameters b1 and w are the largest contributors of error to ∆Y’. Examining the 

results for the camera parameters f, φ, and θ in Figure 10 shows that they depend only on the 

measured vanishing point coordinates, as expected from Equations (19)-(20). As a corollary, 

we observe that the patterns of relative error are consistent for each of the five output 

parameters, regardless of the scene, but that each output is uniquely sensitive to the different 

input variations. 

 Figures 11 and 12 contain the results for Method 2. Unlike Method 1, Method 2 

responds very differently to each of the three scenes. Each of the four output parameter 

variation patterns is consistent for a given scene, but very different between scenes. Based 

on the relative error values, Scene 2 is the only scene that is amenable to calibration via 

Method 2. Scene 1 is too sensitive to small errors in u0 and b1 to be useful. Similarly, 

Scene 3 is hypersensitive to u0, b1, d and w. All four of these parameters appear in the 

solution for φ in Equation (27) and contribute different levels of error, depending on the 

camera parameters.  

 As shown in Figure 13, the distance ∆Y’ computed by Method 3 depends only on v0, 

τL, and L, as predicted by Equations (43)-(44). Of these, L and τL are equally quite 

significant. We note from Figure 13 that the variation of ∆Y’ is completely independent of 

the type of scene. The calculations for d and the camera parameters f, φ, and θ involve all of 

the inputs to some degree, as shown in figures 13 and 14. The parameter d depends most on 

u0 and b1, which is not surprising since all three have to do with scaling perpendicular to the 
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road, whereas v0, τL, and L all serve to provide scaling along the road in the 2-D-to-3-D 

coordinate conversion. The camera parameters f, φ, and θ are generally most sensitive to L 

and w, though they are also sensitive to b1 (and u0 in the case of θ). 

 When comparing the values on the abscissa for the figures associated with the three 

methods, we can see that the estimates of f, φ, and θ by Method 1 are least sensitive to input 

variations. On the other hand, Method 3 generally owns the same distinction for the outputs 

∆Y’ and d. Method 2 is clearly hypersensitive because it typically amplifies the input 

variations in the output rather than attenuating them. Of course, the actual relative noise 

levels for the input parameters will exceed 0.01, but these simulation results help us 

understand how much each method magnifies the noise in its inputs. 
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Figure 15. Distribution of output parameters for Method 1 (Scene 2), where each input i has 
value Qi and additive gaussian noise σi/Qi = 0.01. 
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Figure 16. Distribution of output parameters for Method 2 (Scene 1), where each input i has 
value Qi and noise σi/Qi = 0.01. 
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2.4 Range of operation 

As seen in Section 2.3, the sensitivity of the camera calibration method can limit its 

usefulness in certain situations. For example, for a relative noise level of about 1 percent in 

its input parameters, Method 2 should only be used for situations similar to Scene 2, where 

the tilt angle φ is large. We now offer a more well-defined description of the range of 

operation in which we can expect the different calibration methods to work properly under 

reasonable levels of noise in their inputs. In essence, we are attempting to define a region or 

regions in a multivariable space involving w, d, h, f, φ, and θ. Because the space has six 

dimensions, defining and visualizing it to determine the behavior of each method is a 

daunting task. 

We begin by acknowledging our assumption that the road boundary lines do not enter 

or exit the bottom half of the image, i.e., they are fully present in this subimage. This 

restriction ensures that our image processing algorithms have the best chance of success, 

though they will likely function properly even if it is relaxed slightly. Specifically, suppose 

we fix the parameters w, d, h, and f, and find the valid range of φ and θ. We do this by 

requiring the road lines in the bottom half of the image to enter through the bottom of the 

image at v = -H/2 and remain within the image at least up to the middle of the image v = 0. 

For example, in the simulated scenes in Figure 8, we see that the bottom halves of the 

window of scenes 1 and 3 completely contain the road boundary lines. However, the right 

boundary of Scene 2 exits the side of the image rather than the bottom, and the position at 

which the left boundary exits the side of the image may be too low. 

We use the following inequalities involving the slopes m1 and m2 and u-intercepts b1 

and b2 from the road boundary lines described by Equation (14). The inequalities are applied 

at the top and bottom of the half-image, i.e., v = 0 and v = -H/2: 
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 In order for us to apply either Method 1 or Method 2 to calibrate the camera, we 

must be able to estimate the parameters of the road boundary lines. Thus, we can examine 

the φ-θ plane to determine which values of φ and θ satisfy Equation (45). We illustrate the 

accumulation of the constraints of Equation (45) for the geometry of Scene 1 in Figure 17. 

The gray areas indicate values of φ and θ that satisfy one or more of the inequalities in 

Equation (45), and the dark area indicates the values of φ and θ that satisfy all the constraints 

in Equation (45). In this particular example, we see that the constraints on b1 at v = 0 and 

one of the constraints at v = -H/2 determine the region. We note that the requirement of 

keeping the road in full view of the camera is surprisingly restrictive, i.e., the shaded area is 

relatively small. From Equation (14), we note that f is directly proportional to b1 and b2. 

Thus, using a smaller value for f will enlarge the useable area, whereas raising f will shrink 

the shaded regions. In other words, zooming the camera (increasing  f) will eventually make 

it impossible for the bottom half of the image to fully contain both road boundary lines. 

 When determining the useable region in the six-dimensional space, the constraints of 

Equation (45) give us a maximum size for the φ-θ subspace, assuming w, d, h, and f are 

already fixed. If we add noise to the inputs and require the output noise levels to remain 

below a threshold, we expect the acceptable region to shrink even further. Our strategy, 

then, is to vary w, d, h, and f in a systematic fashion and examine the limits of the camera 

angles φ and θ. 
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Figure 17. Valid range of pan and tilt angles to keep both road lines in view in scenes 1 and 2. 
The dark region indicates the intersection of all the constraints. a) Constraints from 
b1. b) Constraints from b2. c) Constraints from the horizontal road line coordinates 
on the bottom row of the image. 
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2.4.1 Limits of operation for Method 1 

 In addition to the road line constraints above, Method 1 requires that the lines 

perpendicular to the road have a sufficiently large slope (∆v/∆u in Figure 5) so they can be 

measured in the image. We assume that the slope of the line must exceed 1/15 in order to be 

measured in the digital image. Vehicle lanes are typically at least 45 pixels wide, so this 

ensures that we have a reasonable amount of angular resolution. In order to collect an 

adequate sample size, we require that (at a minimum) the lower third of the image contain 

lines with a slope of greater than 1/15. We note from Figure 5 that as the perpendicular line 

moves toward the bottom of the image, its slope |∆v/∆u| increases. Thus, its behavior at the 

top of the image window is our restriction, which we state as follows: 
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If we add this restriction to the example of Scene 1 in Figure 17, it noticeably decreases the 

allowable range of camera pan and tilt, as shown in Figure 18 below. 

 

Figure 18. Valid range of pan and tilt angles to keep both road lines in view in Scene 1, where 
the perpendicular lines have a slope of greater than 1/15. The dark region indicates 
the intersection of all the constraints, and the lighter region shows the constraints 
found in  Figure 17 as specified by Equation (45). 

 Note that the results of figures 17 and 18 were obtained for single, fixed values of f, 

h, d, and w. We built on this framework and developed a simulation to determine the effects 

of varying the scene geometry on the allowable ranges for f, φ, and θ, which are under 

operator control. Our goal is to identify the regions where Method 1 is usable, assuming 
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ideal measurements. Such results will enable engineers to select appropriate lenses for a 

given scene geometry. In our simulation, we varied h and d in increments of 5 feet and 

varied w to simulate two to five lanes of traffic. For the ranges of φ and θ like the plot of 

Figure 18, we determined the minimum and maximum focal length for which there were any 

values of φ and θ that met the requirements of Equations (45) and (46). We did not record 

the actual range of φ and θ, since we assumed the operator can guide the camera to an 

appropriate orientation for a given focal length. 

We found that the minimum focal length was (at the most) 800 pixels for a 

640 X 480 image when h < 75 feet and d < 80 feet. Values of h and d outside this range had 

a much larger minimum focal length when the road was very narrow. The cameras used by 

WSDOT have a minimum focal length ranging between 1000 and 1600 pixels for a 

640 X 480 image, so the minimum focal length requirements of Method 1 should not 

prohibit its use. 

Figures 19 and 20 provide output curves for the maximum allowable focal length. 

WSDOT cameras are equipped with a 10x zoom lens, so they can easily achieve focal 

lengths in excess of the largest values in figures 19 and 20. The curves in these figures 

should enable an engineer to design a system that would use Method 1 to calibrate the 

camera. For example, suppose the road is known to be 44 feet wide (i.e., four lanes), and the 

engineer has the choice of placing the camera atop a 40-foot pole on an overpass above the 

freeway or to the side of the road. Using Figure 20(a) as an approximation, the engineer can 

weigh the relative benefits of two options. First, if the camera is on top of the overpass over 

the traffic (h ≈ 70 feet, d < 0), it can view both sides of the freeway. However, the slope of 

the perpendicular lines is generally small because the camera is close to the center of the 

road. In the second option, the camera can be placed to the side of the freeway (i.e., d > 0) at 

a shorter height (h ≈ 40 feet), where it can view only one direction because of the 

obstruction of the overpass. Somewhat surprisingly, the greater value of h actually allows 

more flexibility in d, with f ∈ (0,1500) for a wide range of d. In contrast, h = 40 implies that 

f must probably range somewhere between 600 and 1000 pixels, and the camera must be 

placed somewhere fairly near the left road boundary (while maintaining d > 0). 

The white boundary lines for typical Seattle freeways contain four or fewer lanes 

between them. From Figure 20(a), we can see that a camera with the focal length minimum 
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stated above must be at least 40 feet above the traffic in order to maintain these lines within 

the image. Fortunately, the WSDOT cameras are specified to be placed atop 40-foot poles. 

We also note that for smaller values of h, the camera must be positioned fairly close to the 

left boundary of the freeway. Thus, Method 1 is theoretically applicable to reasonably wide 

freeways using the standard WSDOT specifications, as long as the camera is positioned near 

one of the road boundary lines.  

 Even though these plots provide ranges for f, they do not identify the specific values 

of φ and θ necessary to satisfy the constraints of Equations (45) and (46). A general 

procedure to satisfy these constraints is the following: tilt the camera as far down as possible 

(maximize φ) while adjusting θ to keep the road lines within the bottom half of the image. 

This corresponds to locating the tip of the dark regions of the examples in figures 17 and 18. 

The simulation results in the figures below guarantee that the camera operator can find at 

least one orientation for the camera to satisfy the constraints of Equations (45) and (46), 

assuming that the focal length is in the appropriate range specified by the figures below for 

the chosen values of w, h, and d. 
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Figure 19. Maximum focal length allowed for different camera geometries in order to utilize 
camera calibration Method 1. a) Two lanes of traffic. b) Three lanes of traffic. 
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Figure 20. Maximum focal length allowed for different camera geometries in order to utilize 
camera calibration Method 1. a) Four lanes of traffic. b) Five lanes of traffic. 
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Once we specified the theoretical limits for f given h, d, and w, we fixed f at a 

nominal value of 1000 pixels. We developed a Monte-Carlo simulation to test the sensitivity 

of Method 1 to variations in its inputs. Our goal was to determine the limits of φ and θ that 

had an acceptable level of output variation, given fixed values for f, h, d, and w. We allowed 

h and d to vary in increments of 5 feet over a reasonable range. The road width w was tested 

for two lanes and four lanes, where each lane was 12 feet wide. For every combination of f, 

w, h, and d, we determined the valid values of φ and θ (each in increments of 0.5 degrees) 

for which the theoretical constraints of Equations (45) and (46) hold. The ideal range for 

each parameter is described graphically in figures 21and 22 for the case of two lanes, and in 

figures 23 and 24 for the case of four lanes. We limited the parameters to φ ∈ [0,30°] and 

θ ∈ [-30°,30°], and many of the curves reached these extrema.  

For each of these valid (φ, θ) pairs, we conducted a separate Monte-Carlo simulation 

of 1,000 runs and examined the relative variability in the measurements of ∆Y’, the distance 

along the road. These measurements of ∆Y’ were randomly selected throughout the lower 

one-third of the image. Gaussian noise was simultaneously added to all input parameters at 

an appropriate level, given the anticipated measurement accuracy of the system, i.e., 

σu0 = 2 pixels, σv0 = 2 pixels, σb1 = 2 pixels, σb2 = 2 pixels, σw = 0.5 feet, and σd = 0.03d 

feet. Finally, on the basis of the Monte-Carlo simulation, we obtained maximum and 

minimum values for φ and θ where the relative length variability in the output was 

reasonable, i.e., σ∆Y’/∆Y’ < 0.05. Although this did not completely specify the shape of the 

valid region in the φ-θ plane for the given f, w, h, and d, it provided a rough idea of the 

utility of Method 1 under realistic conditions. Interestingly enough, we found that our 

calibration method produced curves under noisy conditions that were very close, if not equal 

to, the ideal ones in figures 21 through 24. Hence, we omit the plots of these results that are 

essentially identical to theory.  

The simulation results in figures 21 through 24 show several trends that characterize 

Method 1. The curve families have roughly the same shape regardless of the number of 

lanes. The case of two lanes is somewhat different than the other cases in that the range of φ 

is noticeable restricted, even for greater values of h. However, for the four-lane case, we 

note that φmin is approximately the same for all values of h. φmax is approximately linear in d. 
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At a certain point, φmax = φmin, and there are no valid (φ,θ) pairs beyond this value of d, e.g., 

d must be less than 60 feet when h = 40 feet and w = 24 feet, as shown in Figure 21. This 

break-off phenomenon is also evident in the plots for θmin and θmax in Figure 22. 

We note a range in the curves of θmin in Figure 22, where θmin is constant at zero. 

This is due to the constraint that the slope of the perpendicular lines exceed 0.15. This 

requires that θ must be at least 7° or more. This restriction will cause the down angle to be 

quite large to achieve this goal when d is near zero. Thus, we arrive at the same conclusion 

as our analysis of the range for f, i.e., the operator should use the largest down angle possible 

and adjust the pan angle to get the lines within an appropriate range in the image.  

The maximum angle to which the operator can physically tilt the camera is about 

20°, so we require that φmin < 20°. We can see from the φmin curves in figures 21 and 23 that 

achieving a down angle of 20° is generally adequate to place the camera in an orientation 

where Method 1 can be used. The exceptions occur when h > 90 feet and the road is narrow, 

e.g., Figure 21. In this case, it becomes impossible to get sufficiently sloped perpendicular 

lines without increasing the focal length (camera zoom) or increasing the down angle 

further. 



 53

 

Figure 21. Theoretical range for the tilt angle φ for a two-lane road (w = 24 feet) when f = 1000 
pixels to keep the road lines within the image and ensure sufficiently sloped 
perpendicular lines. 
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Figure 22. Theoretical range for the pan angle θ for a two-lane road (w = 24 feet) when 
f = 1000 pixels to keep the road lines within the image and ensure sufficiently 
sloped perpendicular lines. 
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Figure 23. Theoretical range for the tilt angle φ for a four-lane road (w = 48 feet) when 
f = 1000 pixels to keep the road lines within the image and ensure sufficiently 
sloped perpendicular lines. 
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Figure 24. Theoretical range for the pan angle θ for a four-lane road (w = 48 feet) when 
f = 1000 pixels to keep the road lines within the image and ensure sufficiently 
sloped perpendicular lines. 
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2.4.2 Limits of operation for Method 2 

As we found in Section 2.3 in the discussion of figures 11 and12, Method 2 is very 

sensitive to variations in its input parameters. We developed a Monte-Carlo simulation to 

model the behavior of this calibration method under noisy conditions across a wide variety 

of scene geometries and for a fixed focal length. Specifically, we allowed h and d to vary in 

increments of 5 feet over a reasonable range. The road width w was tested for the cases of 

two and four lanes, where each lane was 12 feet wide. The focal length f was fixed at 1,000 

pixels, which is a lower bound anticipated for the real system. For every combination of f, w, 

h, and d, we determined the valid values of φ and θ (each in increments of 0.5 degrees) for 

which the constraints of Equation (45) held. These best-case theoretical limits are described 

graphically in figures 25 and 26 for the case of two lanes and in figures 27 and 28 for the 

case of four lanes. We limited the parameters to φ ∈ [0,30°] and θ ∈ [-30°,30°], and some of 

the curves reached these extrema.  

For each of the (φ, θ) pairs satisfying the constraints of Equation (45), we performed 

1,000 runs using noisy inputs and examined the relative variability in the length 

measurements. These measurements were randomly selected throughout the lower one-third 

of the image. Gaussian noise was simultaneously added to all input parameters at an 

appropriate level, given the anticipated measurement accuracy of the system, i.e., 

σu0 = 2 pixels, σv0 = 2 pixels, σb1 = 2 pixels, σb2 = 2 pixels, σw = 0.5 feet, and σd = 0.03d 

feet. These values assumed that we were 95 percent confident that the vanishing point could 

be located in an 8 X 8 pixel block, that b1 and b2 had an error of two pixels or less, that the 

road width w was within 1 foot of its true value, and that our estimate of d was within 6 

percent of its true value. Finally, on the basis of the Monte-Carlo simulation, we obtained 

maximum and minimum values for φ and θ, where the relative length variability was 

reasonable, i.e., σ∆Y’/∆Y’ < 0.05. Although this did not completely specify the shape of the 

valid region in the φ-θ plane for the given f, w, h, and d, it provided a rough idea of the 

utility of Method 2 under realistic conditions. 

The simulation results in figures 29 through 32 reveal several trends that characterize 

Method 2 under the realistic error conditions in comparison to the theoretical results of 

figures 25 through 28. First of all, the minimum down angles φmin from the noisy data in 
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figures 25 and 27 are much larger than the values from theory in figures 29 and 31. This is 

particularly true as the camera moves farther from the left road boundary (i.e., d increases). 

The oscillatory behavior of some of the curves is due to certain areas in the φ-θ plane being 

cut off, depending on the outcome of the particular experiment of 1,000 runs. Secondly, 

comparing the curves for θmin from the noisy inputs in figures 30 and 32 with the theoretical 

curves in figures 26 and 28 shows that the curves from the noisy inputs end prematurely, 

i.e., input noise reduces the range for which Method 2 is applicable. For example, in Figure 

30, the curve for h = 40 feet ends at d = 30 feet, whereas the theoretical curve doesn’t end 

until d = 70 feet. Thus, it is conceivable that under certain real-world conditions, some 

cameras might be located too far from the road or that the camera height might be too small 

for us to be able to use Method 2. Thirdly, we note from the φmin curves in Figure 31 that the 

limits for the wider road are noticeably closer to the theoretical value than those in Figure 

29. The values of φmin for Method 2 for the narrow road in Figure 29 are much too high for 

day-to-day use where the camera needs to view the far-field, i.e., φ is less than about 10°. 

Lastly, the θmin curves in Figure 32 generally do not reach below 0°, with a few exceptions. 

It is quite possible that the operator could orient the camera with θ < 0° and then Method 2 

would not be able to calibrate the camera under real-world conditions. In sum, there are 

noticeable differences between the theoretical limits for φ and θ and their limits under 

realistic conditions. Method 2 is probably not appropriate for two-lane roads when real-

world levels of noise are present, but it could be used in fairly a limited fashion, e.g., for 

four-lane roads when 50 < h < 70 feet. 
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Figure 25. Theoretical range for the tilt angle φ for a two-lane road (w = 24 feet) when f = 1000 
pixels to keep the road lines within the image. 



 60

 

Figure 26. Theoretical range for the pan angle θ for a two-lane road (w = 24 feet) when 
f = 1000 pixels to keep the road lines within the image. 
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Figure 27. Theoretical range for the tilt angle φ for a four-lane road (w = 48 feet) when 
f = 1000 pixels to keep the road lines within the image. 
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Figure 28. Theoretical range for the pan angle θ for a four-lane road (w = 48 feet) when 
f = 1000 pixels to keep the road lines within the image. 
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Figure 29. Valid range for the tilt angle φ for a two-lane road (w = 24 feet) when using 
Method 2 to calibrate the camera when f = 1000 pixels and to maintain 
σ∆Y’/∆Y’ < 0.05. 
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Figure 30. Valid range for the pan angle θ for a two-lane road (w = 24 feet) when using 
Method 2 to calibrate the camera when f = 1000 pixels and to maintain 
σ∆Y’/∆Y’ < 0.05. 
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Figure 31. Valid range for the tilt angle φ for a four-lane road (w = 48 feet) when using 
Method 2 to calibrate the camera when f = 1000 pixels and to maintain 
σ∆Y’/∆Y’ < 0.05. 
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Figure 32. Valid range for the pan angle θ for a four-lane road (w = 48 feet) when using 
Method 2 to calibrate the camera when f = 1000 pixels and to maintain 
σ∆Y’/∆Y’ < 0.05. 
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2.4.3 Limits of operation for Method 3 

In determining the limits of operation for Method 3, we recall that the calibration for 

the distance along the road ∆Y’ is only affected by knowledge or measurements of L, v0, and 

τL. The method is therefore independent of the road geometry, i.e, w, so we anticipate that 

we may apply it to a wide variety of situations. Despite the simplicity of the formulation for 

Method 3, it is difficult to devise a realistic Monte-Carlo simulation for it. As Chapter 3 will 

show, the computer can estimate τL very accurately (στL/τL ≤ 0.005) under noisy image 

conditions. Chapter 3 also demonstrates that the measurement process for τL in the image 

actually mitigates the effects of the variation in L, reducing the output variability by 50 

percent or more relative to the input variability of L. Thus, even though σL/L may reach 0.1, 

the relative variability in the distance measurements in the output, i.e., σ∆Y’/∆Y’, is about 

0.05 or even smaller, regardless of the camera angle. Thus, the ranges for φ and θ are 

identical to the theoretical ranges in figures 25 through 28. However, the actual range for 

which we may apply Method 3 to speed estimation exceeds these limits because Method 3 

does not enforce any constraints on the road boundary lines. Instead, it merely requires that 

at least two consecutive road markers be visible in the scene. 

2.5 Limitations of the reduced parameter camera model 

As noted above in Section 2.1, we assumed that the road slope angle ψ = 0 and the 

tilt angle β = 0. However, as illustrated by figures 3 and 4, we can easily imagine that this is 

not necessarily the case for most scenes. Thus, we study the effects of nonzero road slope or 

road tilt on the three proposed methods of camera calibration that were originally derived 

under the assumptions that ψ = 0 and β = 0. Parenthetically, we note that studying the effect 

of camera roll is unnecessary because it can be completely modeled using the two rotations 

of the road. 

We designed a computer simulation for the three scenes whose parameters are 

contained in Table 2. We created vectors of points in the Xc’-Yc’-Zc’ coordinate system of 

Figure 2. We then applied rotations in the following order to fully simulate the effects of 

road slope and road tilt: β, ψ, θ, and φ. After we projected the points into the image 

according to Equation (1), we obtained measurements for u0, v0, b1, b2, and u1. We also 
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measured τL by averaging the values of τ for five pairs of points known to be separated by 

40 feet in the bottom half of the image (scenes 1 and 3) or the full image (Scene 2). All of 

these measurements were performed with double floating-point accuracy, i.e., they were 

perfect for all practical purposes. Because the distance ∆Y’ measured along the road using 

the reduced-order models will vary with the position of the points in the image, we projected 

1000 pairs of randomly generated points, each separated by 10 feet, into the lower half of 

the image. We then calculated the average distortion for all the pairs of points to obtain the 

average bias in ∆Y’ for a given level of road tilt or road slope. 

We performed 12 different simulations as outlined in Table 6; six examined the 

effect of nonzero road slope and six examined nonzero road tilt. We only analyzed scenes 

for which the calibration method was appropriate. Table 6 also contains a list of the output 

parameters that were calculated for each simulation. The table below summarizes our 

general findings for the effects of nonzero road slope and tilt on the different methods. 

Table 6. Matrix of calibration methods, scenes, and output parameters analyzed for the  
effects of nonzero road tilt and road slope. 

 Method 1 Method 2 Method 3 

Output 
parameters 

d 
f, φ, θ, ∆Y’ 

 
f, φ, θ, ∆Y’ 

d 
f, φ, θ, ∆Y’ 

Scenes analyzed 2 1,3 1,2,3 

Effect of nonzero 
road slope on d Moderate n/a  Moderate 

Effect of nonzero 
road slope on ∆Y’ Moderate Moderate to 

High Low 

Effect of nonzero 
road tilt on d Moderate n/a Moderate 

Effect of nonzero 
road tilt on ∆Y’ High High Low 
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2.5.1 Effects of nonzero road slope 

Figures 33 through 38 contain the curves indicating the relative errors in f, φ, θ, d, 

and ∆Y’ due to the effect of nonzero road slope. We only studied Scene 2 for Method 1 

because a real-world system would probably only use Method 1 on close-up scenes to 

estimate d as an input to Method 2. In Figure 33, we note that the relative error in d due to 

road slope does not exceed 5 percent, even though the errors in the other parameters are 

much larger, relatively speaking. However, we recall from Section 2.3 that Method 2 is very 

sensitive to errors in d of even 1 percent. In fact, from Figure 11 we can see that calibrating 

Scene 3 using Method 2 is impossible with even small errors in d. Method 2 is less sensitive 

to errors in d when Scene 1 is calibrated. At the very least, we must conclude that a small 

amount of road slope could noticeably constrain our error budget for applying the 

combination of methods 1 and 2. 

As far as the direct effects of nonzero road slope on Method 2 are concerned, we 

note from figures 34 and 35 that the relative errors in ∆Y’ track the relative error in f exactly. 

This error remains below 5 percent for ψ ∈ [-1.6°,2°] and below 10 percent for 

ψ ∈ [-3°,4.2°]. These are road slopes of 2.8 percent at the 1.6° level and 7.3 percent at the 

4.2° level. Thus, if the bias due to other input parameters was fairly low, the error budget of 

Method 2 could withstand a reasonable road slope. However, this is unlikely, given its 

sensitivity to errors in d. Again, we see that road slope could sabotage our efforts to use 

Method 2 to calibrate a scene. 

Figures 36, 37, and 38 contain the results for simulating the effects of nonzero road 

slope on calibration Method 3. From Figure 37, we see that Method 3 provides  

approximately the same or slightly worse level of accuracy as Method 1 for estimating d. On  

the basis of the previous discussion, we would therefore not recommend Method 3 as a 

means of estimating d for use by Method 2 in the presence of nonzero road slope. 

The errors due to nonzero road slope in the remaining parameters f, φ, θ, and ∆Y’ are 

also below 4 percent, and often lower in some of the scenes. We note that because we only 

obtained five different estimates of τL sampled randomly throughout the appropriate portion 

of the image, the relative error in ∆Y’ has more random character to it (due to the sampling 

process of τL) than it does a pattern. The plots of the error in ∆Y’ show that it is unbiased by 

ψ with greater noise amplification for larger magnitudes of ψ. We note that in all three 
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scenes, the relative error in ∆Y’ due to road slope is essentially negligible, i.e., less than 0.5 

percent. On the other hand, we note that the relative error in φ is quite large, and we can see 

that the relationship between v0, φ, and f in Equation (20) must not hold when the road slope 

is nonzero, since the relative error in f is small and we measured v0 exactly. It is fortuitous 

that the output parameter that matters most for speed estimation, i.e., ∆Y’, is relatively 

unaffected by road slope. We conclude that in the presence of nonzero road slope without 

regard for other factors, Method 3 is clearly preferable to the other methods for the purposes 

of measuring road distances, though it is very slightly inferior to Method 2 when estimating 

d. 
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Figure 33. Effects of nonzero road slope angle ψ on camera calibration Method 1 and its 
output parameters when processing Scene 2. 
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Figure 34. Effects of nonzero road slope angle ψ on camera calibration Method 2 and its 
output parameters when processing Scene 1. 
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Figure 35. Effects of nonzero road slope angle ψ on camera calibration Method 2 and its 
output parameters when processing Scene 3. 
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Figure 36. Effects of nonzero road slope angle ψ on camera calibration Method 3 and its 
output parameters when processing Scene 1. 
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Figure 37. Effects of nonzero road slope angle ψ on camera calibration Method 3 and its 
output parameters when processing Scene 2. 
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Figure 38. Effects of nonzero road slope angle ψ on camera calibration Method 3 and its 
output parameters when processing Scene 3. 
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2.5.2 Effects of nonzero road tilt 

We also examined the effects of the road tilt angle β on the different calibration 

methods. Starting with Method 1, Figure 39 shows that a nonzero road tilt has about twice as 

much of an effect on estimates of d as does a nonzero road slope, i.e., less than 10 percent 

for |β| < 4°. Although we expect the road tilt to be less than the road slope, the same 

arguments from the previous section apply again to methods 1 and 2. Thus, we advise 

caution when applying the combination of methods 1 and 2 in the presence of nonzero road 

tilt because of the sensitivity of Method 2 to variations in d  when it is estimated by 

Method 1. 

Method 2 is much more heavily affected by nonzero road tilt than Method 1. 

Maintaining a relative error for ∆Y’ of less than 5 percent requires a range of less than ±0.3° 

for Scene 1, and ±0.03° for Scene 3, which are simply intolerably small values. For side 

shots like Scene 1, we could imagine the possibility of using Method 2, but we can see that 

the least amount of road tilt in straight-on shots like Scene 3 will get magnified into large 

errors in ∆Y’. Thus, in order to use Method 2 to accurately calibrate the camera, we must 

ensure that the road is not tilted. 

Coming to Method 3, we see from figures 42, 43, and 44 that the errors in ∆Y’ are 

pleasingly small, with a maximum relative error of about 1 percent for even the most 

extreme road tilt values. As in the case for nonzero road slope, Method 1 is slightly more 

accurate in estimating an unbiased value for d in Scene 2 when the road tilt is nonzero. 

Given the sensitivity of Method 2 to errors in d, we would therefore not recommend 

Method 3 as a means to estimate d in the presence of nonzero road tilt. We also note that the 

output parameters f, φ, and θ for Method 3 are approximately equally affected by nonzero 

road tilt, unlike the case of nonzero road slope, in which the bias was primarily bound up in 

φ. As in the case of nonzero road slope, we also conclude that Method 3 is the only realistic 

option for calibrating the camera in the presence of non-negligible amounts of road tilt. 
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Figure 39. Effects of nonzero road slope angle β on camera calibration Method 1 and its output 
parameters when processing Scene 2. 



 79

 

Figure 40. Effects of nonzero road slope angle β on camera calibration Method 2 and its output 
parameters when processing Scene 1. 
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Figure 41. Effects of nonzero road slope angle β on camera calibration Method 2 and its output 
parameters when processing Scene 3. 
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Figure 42.  Effects of nonzero road slope angle β on camera calibration Method 3 and its output 
parameters when processing Scene 1. 
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Figure 43.  Effects of nonzero road slope angle β on camera calibration Method 3 and its output 
parameters when processing Scene 2. 
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Figure 44.  Effects of nonzero road slope angle β on camera calibration Method 3 and its output 
parameters when processing Scene 3. 
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2.6 Comparison of the camera calibration methods 

The camera calibration methods described above share only two major assumptions 

in common: 1) the computer can use the image sequence to estimate v0, the coordinate of the 

vanishing line, and 2) the focal length and camera angles are all unknown. The first two 

methods assume that the road is fully visible, whereas the third method only requires that it 

be able to measure the longitudinal spacing between features parallel to the road. The first 

two methods also require the computer to estimate the slope-intercept parameters (in image 

coordinates) for the road boundaries in order to estimate 3-D distances ∆Y’ (assuming the 

camera height is unknown). The third method only requires these measurements when 

estimating the camera parameters f, φ, and θ. Each method makes different assumptions 

about the availability of a priori knowledge about parameters of the scene geometry, and 

these assumptions determine the type of information that must be extracted from the image 

sequence. 

Our analysis of the limits of operation and sensitivity of Method 1 to input errors, 

nonzero road slope, and nonzero road tilt reveals that the following criteria must be met for 

it to serve as a stand-alone means of calibrating the camera for speed estimation: 1) No road 

tilt. 2) Road slope of less than 1°. 3) Camera down angle φ of at least 7°. 4) Camera pan 

angle θ of at least 10°. 5) Road boundaries that are fully visible in the lower half of the 

image with a known road width w. Alternately, if the camera height h is known, the image 

need not contain the road boundaries. All of these criteria require the camera operator to 

take special care in orientating and focusing the camera. In general, Method 1 is not directly 

applicable to the problem posed in Chapter 1, in which the WSDOT cameras typically focus 

on the far field. Improving the camera resolution by several multiples could lessen the 

restrictions of criteria 3 and 4, but this would not change the sensitivity of Method 1 to road 

tilt or slope. However, when the road slope and road tilt are truly negligible and when the 

camera is properly oriented, Method 1 can provide a good estimate of d, which is necessary 

for Method 2 to succeed. 

Method 2 has multiple areas of weakness that reduce its usefulness in the real world 

to a very narrow range. First of all, this method is very sensitive to errors in d, which is 

assumed to be known. For example, Figure 11 shows that in situations where the camera is 
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focused on the far-field (e.g., scenes 1 and 3), a 1 percent error in d resulted in at least a 10 

percent error in the road distance estimate ∆Y’. Although methods 1 and 3 can both estimate 

d, any nonzero road slope or tilt combined with the other estimation errors could easily add 

up to errors in the 3-5 percent range, requiring us to look elsewhere for a more accurate 

estimate of d. In a related issue, if Method 2 is to be used, the road must be perfectly straight 

because any road curvature will result in a slightly different estimate of d, depending on 

which portion of the road the camera is viewing. In addition, even a small amount of road 

slope or tilt can easily impose a bias of 5 percent or more on measurements of road distance, 

as seen in figures 34, 35, 40, and 41. Lastly, figures 32 and 32 show that for typical four-

lane roads, Method 2 is reasonably accurate only when 50 < h < 70 feet and -

20 < d < 40 feet. 

Thus, although it is correct under our original assumptions, we can recommend 

Method 2 for calibrating the camera under real world conditions only if the following 

requirements are met. 1) Perfectly straight road. 2) Road slope of less than 0.5°. 3) No road 

tilt. 4) Estimate for d with better than 0.5 percent accuracy. 5) Camera positioned such that 

50 < h < 70 feet and -20 < d < 30 feet. 

Method 3 offers several unique and desirable advantages over the other calibration 

approaches. First of all, it does not require that the road lie entirely within the bottom half of 

the image. Instead, it only requires the availability of features parallel to the road separated 

by a known distance. This expands the range of camera views well beyond the requirements 

of Equations (45) and (46). Second, we found in Section 2.4.3 that Method 3 can estimate 

road distances under realistically noisy conditions over a wide range of φ and θ. 

Furthermore, the distance estimates provided by the camera calibration of Method 3 deviate 

less than 1 percent from the true value even when the road orientation clearly violates our 

assumptions of zero road slope and tilt. On the basis of our sensitivity analysis, assuming 

that lane marker features are present in the image, we are able to recommend Method 3 as a 

sound approach for calibrating the camera under a wide variety of focal lengths and 

orientations, including those typically applied to the WSDOT traffic cameras. 
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3 IMAGE FEATURE EXTRACTION FOR AUTOMATIC SCENE ANALYSIS 

Chapter 2 provided a fundamental model for the camera and road scene. It also 

described how to use measurements of the line parameters from the road boundary to 

calibrate the camera for measuring distances along the road. However, these measurements 

must be extracted automatically from digital images by a computer when the camera may 

move at any time. To make the task even more difficult, the algorithm must perform this 

task under the wide variety of lighting and weather conditions described in Chapter 1.  

Figure 45 contains a high-level block diagram that describes our framework for 

achieving the tasks and obtaining the measurements required by a system for estimating 

mean vehicle speed from an uncalibrated traffic monitoring camera. Working at the highest 

resolution possible, we generate two feature images using 1,000 images from the image 

sequence that enable us to characterize the scene: the activity map and the top-hat image. 

From these feature images alone, we can estimate u0, v0, b1, b2, and τab. We can also extract 

lane masks using this information. By re-processing the 1,000 images (or a new set of 

images) together with the feature images, we are also able to estimate u1. The following 

sections describe how to generate the feature images. They also expand each of the blocks in 

Figure 45 to provide the exact details of how to perform the tasks described using image and 

signal processing techniques.  

We note that when discussing image limits in this chapter, we will often alternate 

between image-centered and non-image centered coordinates; the convention should be 

clear from the context. We afford ourselves this convenience because the images are 

represented in the computer with non-image centered coordinates. 
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Figure 45. Framework for performing the computer vision tasks necessary to calibrate  
the camera and prepare for the tracking algorithm. 

3.1 The activity map 

From only a single image, it is generally difficult for the computer to distinguish the 

roadway from the background. Color clustering might be effective in some cases, but the 

large variety in roadway scenes would probably make such an approach ineffective in 

general. Attempting to locate road boundary lines in the image is another possibility, but 

many distracters exist with no good way to distinguish the correct lines from the incorrect 

ones. However, the computer can easily recognize the roadway as the portion of the image 
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where the pixels change over time as the vehicles travel through the scene. We now describe 

how to generate an activity map to identify both the location and intensity of vehicular 

motion [40]. Inactive lanes are thus excluded from the scene analysis and, therefore, 

ultimately, from the speed estimation.  

We assume that pixel values change over time as vehicles pass through the image 

and that the only significant motion in the image is due to the vehicles. We generate the 

activity map, A, by calculating the expected value of the absolute intensity difference, Dimg, 

between two frames, Ii and Ii+1. Each image frame is smoothed with a 3 X 3 boxcar kernel to 

remove JPEG artifacts prior to the calculation of E[Dimg]. 
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Such a summation of an image sequence resembles a concept presented by Stewart et al.  

[40]  for generating an activity map with binary images obtained by thresholding. They use 

the map to obtain very rough lane masks from morphological operators. Our method does 

not require us to choose a threshold to binarize the image and is more appropriate for the 

task of extracting the traffic lanes. For example, the sample activity map for a normal traffic 

scene in Figure 46 shows horizontal gray-scale variations, indicating the middle of the lanes 

and their boundaries. The small circular imperfections on the right and top of the image are 

due to raindrops on the camera lens. 

 
 

Figure 46. Extracted activity map from 1,000 roadway images 
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 The following sections will demonstrate the great utility of the activity map in 

estimating the vanishing point (u0,v0) and the lane boundaries, which form the basis for 

performing other key tasks in the process of Figure 45. 

3.2 Estimating (u0, v0) from the activity map 

The vanishing point (u0,v0) is essential for all three calibration methods derived in 

Chapter 2, as well as several of the blocks in Figure 45. We use the line structure present in 

the activity map to estimate the vanishing point for the lines parallel to the roadway using 

the Hough transform. The next section contains our theoretical justification for doing so, 

even though our original assumption of zero vehicle height has been violated. We obtain the 

line structure from the activity map using Canny’s edge detector  [43] with σ = 3 (for 

320 X 240 images) and an edge sensitivity threshold of 0.01. The wide kernel and small 

edge sensitivity ensure that all possible edges are detected. We use only the bottom one-third 

of the image as a compromise between distortion due to road curvature and vanishing point 

accuracy. 

Once a binary edge image is available, we employ the Hough transform  [44] to 

detect the lines that intersect at the vanishing point (u0,v0). Because we require the road to 

exit the bottom of the image, we parameterize the lines by their angle α to the v-axis 

(positive counter-clockwise) and their intersection uint with the line v = -H/2 in the image as 

follows: 

 ( ) ( )
2

cotint
Huuv −−= α  (48) 

This formulation assumes image-centered coordinates. We quantize uint in single-pixel 

intervals and α such that the transform can distinguish lines at the extremes of the bottom 

half of the image: 
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After generating the Hough transform, we accept lines that occupy at least 40 percent of the 

bottom window, i.e., the Hough accumulators that exceed 0.4⋅H/2. Figure 47 contains a 

sample Hough transform image in which the dark spots indicate the (uint,α) pairs 

corresponding to lines found in the activity map. 
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Figure 47. Hough transform in uint-α space with superimposed best-fit curve for Equation (48). 

Once we have detected the lines, we find the point (u0,v0) that minimizes the distance 

between the point and each line defined by the (uint(j),α(j)) pairs. Suppose that (uc(j),vc(j)) is 

the point on line j that is closest to (u0,v0). Then (u0,v0) is the point that minimizes the 

functional F0 as follows: 

 ( )( ) ( )( )( )∑ −+−≡
j

cc vjvujuF 2
0

2
00  (50) 

The least-squares solution is available analytically. First, however, we must solve for uc(j) 

and vc(j) in terms of u0, v0, uint(j), and α(j). We will then substitute these expressions into 

Eq. (50), differentiate F0, and solve for u0 and v0. 

Suppose we use the traditional slope-intercept form in terms of the slope m and 

u-intercept b to describe the line of Equation (48): 
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For convenience, we drop the index notation for the following portion of the derivation. 

Next, suppose that u0 and v0 are known and we wish to solve for the unknown values of uc 

and vc that satisfy Equation (51) and minimize the functional 

 ( ) ( )2
0

2
01 vvuuF cc −+−≡  (52) 

That is, (uc,vc) is the closest point on the line u = mv + b to (u0,v0). Substituting 

Equation (51) into Equation (52) with u = uc and v = vc yields F1 with only vc unknown. 
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We then differentiate F1 with respect to vc and set the expression equal to zero to determine 

the value of vc that minimizes F1. This yields 
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We now have the values for the point (uc(j),vc(j)), the closest point on line j to the vanishing 

point (u0,v0). 

Next, we add the index notation and substitute the values of uc(j) and vc(j) in 

Equation (54) into the original functional F0 in Equation (50) and simplify:   
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Differentiating F0 with respect to u0 yields the following equation: 
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For convenience, we define c1, c2, and c3 as the coefficients of the u0, constant, and v0 terms 

of the equation. Differentiating F0 with respect to u0 yields the following equation: 
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For convenience, we define c4 and c5 as the coefficients of the constant and v0 terms of the 

equation. From here we have  
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where the constants are defined in terms of m(j) and b(j), which in turn are calculated from 

uint(j) and α(j). Substituting these values of u0 and v0 for u and v in Equation (48) completely 

specifies the best-fit relationship between the set of lines in terms of a curve in the α-uint 

plane (see Figure 47). 

If there are only a few lines, e.g., less than five, then the algorithm should either 

display a warning or failure message. Otherwise, we can estimate the standard deviation of 

u0 and v0 simply by estimating the standard deviation of the uc and vc data. Figure 48 

illustrates one distribution of the (uc(j),vc(j)) pairs and their associated lines surrounding the 

estimate of (u0,v0). We can see that uc and vc are strongly correlated. Figure 49 contains 

histograms of the uc and vc data, which, though not necessarily normal, are centroidal 

enough that the standard deviation is a reasonable way to estimate their error and the spread 

of the data. 

 After obtaining an initial estimate of (u0,v0), we eliminate outliers and re-estimate the 

vanishing point. Specifically, we remove lines whose closest point (uc(j),vc(j)) lies more than 
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twice the sample standard deviation (estimated above) away from the estimate of (u0,v0). We 

re-estimate the vanishing point and repeat this procedure until no more points are 

eliminated. This rough estimate for (u0,v0) provides us with a critical component necessary 

for several of the important steps in Figure 45, as well as the three camera calibration 

methods themselves. 

 

 

Figure 48. Close-up view of a vanishing point estimate, one-third of the lines used to estimate 
it, and the (uc(j),vc(j)) pairs closest to (u0,v0) on each line.  
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Figure 49. Histograms of the values of uc and vc used in estimating u0 and v0.  

3.2.1 Theoretical effects of nonzero vehicle height on (u0,v0) 

In our derivation of the simplified camera model presented in Chapter 2, we assumed 

a flat plane on which the vehicles traveled, as illustrated in Figure 2. Furthermore, we tacitly 

assumed that all moving vehicle features were positioned completely within the plane, i.e., 

Z = 0. Clearly, this is not the case in reality. Semi-trucks often appear to completely occupy 

two lanes within the image, e.g., Figure 51. We now expand the derivation and examine 

what happens when we do not assume that Z = 0. 
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Figure 50.  Camera and roadway geometry. 

 

Figure 51. Traffic image that illustrates the effects of nonzero vehicle height. 

We begin by finding the U-V-W system by rotating an angle φ around the X-axis: 
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Here is where the current derivation departs from the previous approach, i.e., we include Z 

in the remainder of our derivation rather than assuming Z = 0 in Equation (2). We now apply 

a displacement F = h⋅csc(φ) to obtain the camera-centered coordinates Xc-Yc-Zc. 
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Taking the perspective projection yields 
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 Next, we determine the coordinates of the vanishing point by calculating the limit as 

Y → ∞. We evaluate the terms of the limit by obtaining constant terms in the ratio as well as 

terms that go to zero as Y → ∞, since Y is in the denominator. 
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Thus, we obtain the same result as in Chapter 2, demonstrating that the vanishing point 

coordinates are not biased by nonzero vehicle heights. This fully justifies our use of the 

activity map to estimate (u0,v0). 

3.3 Estimating the lane boundaries and lane masks 

As shown in Figure 45, once we have obtained the activity map and estimated the 

vanishing point (u0,v0), we can extract the position of the boundaries for the vehicle lanes. 

Obtaining these positions enables us to greatly simplify the task of tracking vehicles since 

their motion is constrained by the known boundaries. We begin the lane boundary 

estimation process by sampling the activity map along the lines connecting the vanishing 
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point (u0,v0) and pixel uj in the bottom row of the image. Averaging the activity value along 

each line creates a one-dimensional signal Arel(u), as shown in Figure 52. The peaks indicate 

strong traffic activity (middle of the lane), and the valleys indicate the absence of vehicle 

activity (lane boundaries). We smooth the signal with a low-pass filter with a cutoff 

frequency of 1/(20 pixels) based on the assumption that each lane is at least 20 pixels wide 

on the bottom of the image. In most of the examples presented, we have chosen to sample 

uj ∈ [-0.15W, 1.15W] to detect road lanes that are generally within the image but lie outside 

the image on the bottom row (using non-image centered coordinates). 
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Figure 52. Average relative activity across the lower third of the activity map in  
Fgiure 46 at the orientations specified by the vanishing point. 

 The data in figures 46 and 52 actually represent a nearly ideal case. All of the 

freeway lane peaks are obvious, and there is no ambiguity about which group of lanes to 

identify. However, we desire an algorithm that can robustly identify the lane boundaries 

even when Arel(u) remains noisy after the low-pass filtering or when two or more sets of 

lanes are present. Figures 53 and 54 contain activity maps and Arel(u) signals that illustrate 

these problems. 
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Figure 53. a) Activity map containing multiple sets of lanes for a scene with shadows on the 
road. b) Arel(u) signal for the activity map. 
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Figure 54. a) Noisy activity map due to wide lanes and raindrops.  
b) Arel(u) signal for the activity map. 
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 Our process for extracting the lane boundaries is quite complex, but it can be 

summarized in three major steps: 1) find a template T of the best peak in Arel(u); 2) locate all 

other instances of T in Arel(u); 3) remove the bad peaks. On the basis of the peak locations, 

we interpolate to find the lane boundaries on either side of each peak. For Npeak peaks we 

expect to locate Npeak+1 lane boundaries. 

3.3.1 Finding the peak template 

We start our search for the exemplary peak template, T, by taking the morphological 

top-hat transform Atop of the Arel(u) signal [45]. We use a kernel width equal to one-third the 

length of the signal. This size is narrow enough to expose the peaks without shortening them 

too much, which could happen if the kernel was too narrow. Figure 55 contains the top-hat 

transform of the signal in Figure 54(b), normalized by the peak value of Arel(u). The image 

width is 320 pixels. 

 

Figure 55. Top-hat transform Atop of the Arel(u) signal of Figure 54(b). 

 Now that we have exposed the periodic structure of the signal, we calculate the 

autocovariance signal to estimate the distance between repetitions of the template. Recall 
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that the autocovariance sequence is the autocorrelation sequence of the signal after removing 

the mean of the signal. Before doing so, however, we first threshold to zero any residual 

values that are less than 0.05 (relative to the maximum value of Arel(u)) and shorten the 

signal by removing the zero values on either end. Figure 56 contains the autocovariance 

signal for our example. 

 

Figure 56. Autocovariance sequence of the signal in Figure 55 after thresholding  
and shortening it. 

 Having calculated the autocovariance sequence, we identify the distance between 

templates by finding the lag τ1 of the first peak of the sequence away from zero, e.g., 53 for 

the example of Figure 56.  We require the peak to have a minimum value of 0.2 with a lag 

value of less than 0.4W. These requirements ensure that the peak is reasonably strong and 

that there is room for at least two-and-a-half lanes within the width of the image. If these 

requirements are not met, we assign τ1 a value of one-third of the Arel(u) sequence length. 

 We note that some lanes have dual peaks in Figure 55. This is due to the grooves in 

the pavement left by the vehicles. They cause a greater average frame difference because of 
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the higher contrast. On occasion, these can become so extreme that our algorithm can 

introduce a false autocovariance peak that can be quite significant. If this occurs, the true 

peak in the autocovariance is often stronger than usual because the extra valleys in the signal 

make each period more distinctive. We also expect the true peak to be greater than the false 

peak because the pavement groove signatures are not as uniformly periodic as are the lane 

signatures. Thus, if the maximum autocovariance peak within the first 40 percent of the 

signal exceeds 0.35, then we use it instead of the first peak. 

 We then use the lag value to define the width of the kernel for a second, more 

restrictive top-hat transform Atop’ of Arel(u) to obtain the peaks. We also calculate the 

bottom-hat transform Abot’ [45], which has large values where the valleys of Arel(u) occur. 

Thus, even if we used the default autocovariance lag, we can still proceed because 

Atop’ = Atop. These signals are all contained for our example in Figure 57. We locate the peak 

template by finding the location umax of the maximum value of Arel(u), e.g., u = 205 in this 

case. We then search Atop’ and Abot’ to the left and to the right of umax. We record the 

smallest distance dmin from umax such that Atop’ < 0.1 or Abot’ > 0.2. If we find an 

autocovariance peak, then we are assured that there is some strong periodicity present in 

Atop’, and we want to use the largest template in case there are some false little peaks. In this 

case, we set the template width Wtemp to 2⋅max(dmin, τ1/2)+1. If we do not find an 

autocovariance peak, then the template size depends nearly entirely on the searching 

algorithm just described. We therefore set the template width Wtemp to 

2⋅min(dmin, length(Atop’)/3)+1. Thus, we define the template as the subset of Atop’ located at 

u ∈ [umax - (Wtemp - 1)/2, umax + (Wtemp - 1)/2]. The Atop’ template located for our example is 

highlighted in bold in Figure 57. We note that good peak is found in the autocovariance 

function, which indicates periodicity in Arel(u). Thus, we use the largest template possible, 

based on the location of the autocovariance peak, even though the template includes a 

portion of another peak. 
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Figure 57. Arel(u) signal and its top-hat Atop’ and bottom-hat Abot’ signals used to  
extract the peak template in bold. 

3.3.2 Locating activity peaks 

Once the template is identified, we search Atop’ for other instances. We search by 

shifting the template T along Atop’ and calculating the correlation coefficient for the subset 

Atop’’ of Atop’ where the two signals overlap. We define the correlation coefficient ρcorr as 
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where σAtop’ and σT are the standard deviations of the overlapping portions of the signals, 

and E[⋅] denotes the expectation operator. This method is a powerful one because it 

normalizes for the signal amplitude and focuses primarily on detecting similarly shaped 

signals. However, to avoid responding to noise, we require max(Atop’’)/max(T) to exceed a 

threshold Tmin, which we choose to be 0.2 on the basis of experience, where Atop’’ is the 
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subsignal of Atop’ at a given lag value. This value for Tmin is low enough that we can respond 

to weak peaks when the template is a strong peak while eliminating the response to much of 

the signal noise. We also require the relative energy (variance) of the subsignal Atop’’, i.e., 

E[(Atop’’ - E[Atop’’])2]/E[(Atop’’ - E[Atop’’])2], to exceed Tmin
2. Calculating ρcorr as a function 

of u with these restrictions yields a result similar to that in Figure 58. We see that the 

correlation coefficient method is selective in that its peaks correspond only to portions of 

Atop’ that are similar to the template. The method is also sensitive because it produces a 

strong response even when the amplitude of Atop’ is small, e.g., the leftmost peak. The 

correlation coefficient method is a very satisfying approach to use because its properties are 

well-founded theoretically in statistics, and choosing a minimum match value is intuitive. 

 

Figure 58. Locating the peaks of Atop’ from the maxima of the correlation coefficient  
signal ρcorr (u) found by matching the template with Atop’. 

3.3.3 Removing bad peaks 

As previously mentioned, the selectivity and sensitivity of the template correlation 

method are useful properties. However, we must occasionally remove false maxima of the 
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correlation coefficient sequence. As a first criterion, we require the maxima to exceed a 

threshold ρmin. We chose ρmin = 0.7, which requires a reasonably strong match, but it can 

occasionally allow false peaks to pass, e.g., the leftmost peak in Figure 58. 

Another observation we can use to eliminate peaks is the uniformity of the peak-to-

peak distance. If one peak (e.g., the leftmost one above) is too far from its neighbor, then it 

should be eliminated. Suppose we label the location of each candidate peak as upeak(i), where 

1 ≤ i ≤ Npeak. We let imax denote the value of i corresponding to the maximum peak in Arel(u). 

In the example of Figure 58, upeak(imax) = 205. Now let Dmax = 1.3⋅max(upeak(imax) - upeak(imax 

-1), and  upeak(imax+1) - upeak(imax)) be the maximum distance allowed between adjacent 

peaks, i.e., 30 percent more distance than the largest peak-to-peak distance surrounding the 

maximum of Arel(u). Next, if upeak(i) - upeak(i-1) < Dmax, then we remove all peak indices less 

than i if i < imax, or we remove all peak indices greater than i – 1 if i - 1 > imax. This strategy 

enables us to not only eliminate false isolated peaks but to remove whole sections of the 

freeway that might be traveling in a different direction, e.g., the left set of peaks in Figure 

53. 

3.3.4 Estimating the lane boundaries 

It is straightforward to interpolate the lane boundaries from the activity peaks. 

However, it is more accurate to locate the valleys in the Arel(u) signal, if possible. To do this, 

we first select a template from the Abot’ signal centered about the maximum of Abot’ with 

width Wtemp as found above. Next, we apply the same correlation coefficient template 

matching procedure described above in Section 3.3.2 to estimate the valley locations from 

the signal Abot’. We use a slightly lower matching threshold of 0.6 because Abot’ is less 

uniform than Atop’, and we now have the peak locations for Atop’, which we use to guide our 

search as follows. We keep only valleys that are found in the range u ∈ [upeak(1), 

upeak(Npeak)], where Npeak is the number of peaks previously found. We also retain only the 

largest peak of Abot’ if multiple Abot’ peaks lie between peaks of Atop’. We interpolate the 

valley locations using the Atop’ peaks for any valleys that are missing. Finally, we interpolate 

the rightmost and leftmost lane boundaries using the two rightmost and leftmost peaks of 

Atop’, respectively. The result is the lane boundary estimates ubound(i), i ∈ {1, 2, …, 

Npeak + 1}. These are illustrated in figures 59 and 60 for the example scene. 
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One should note that we have just described how to estimate the location of the 

boundaries that separate the different regions of activity in the activity map. In a sense, the 

outside lane boundary lines can provide a rough estimate of b1 and b2, the intersection of the 

road boundaries with the u-axis. Figure 60 shows that the estimated lane boundaries happen 

to be reasonably close to the true values of b1 and b2 in this particular case. In general, 

however, these boundary locations are different than the location of the lane markers on the 

road because the vehicles have a nonzero height. For example, note that the bus in Figure 60 

will contribute more pixels of activity to the rightmost lane than to its own, illustrating the 

rightward bias present in this particular image. As we will show later, this bias makes the 

locations unusable for camera calibration, but the vanishing point estimate remains 

unaffected by the finite vehicle height. 

Now that we have estimates of the road boundaries, it is convenient to record the left 

and right boundaries, uleft and uright, on the bottom row of the image outside of which we do 

not expect to find any features for that section of the road. Later on, these boundaries will 

serve to constrain our search for the precise locations of the boundary lines painted on the 

road. If the initial estimates of the left and right road boundary positions are ubound(1) and 

ubound(Npeak+1), respectively, then we assign uleft and uright with a full or half-lane margin of 

safety as follows, depending on the vanishing point coordinate u0:  
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In other words, if u0 < 0, then we expect the activity map to be biased to the right, and 

therefore we need to compensate u1 more than ubound(Npeak+1), with the opposite logic when 

u0 > 0. Estimating uleft and uright can noticeably reduce the search space when locating the 

road boundary lines while increasing the accuracy of the estimates by eliminating distracting 

image features outside the active portion of the road. 
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Figure 59. Lane boundaries found with the proposed algorithm superimposed on the activity 
map. 
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Figure 60. Lane boundaries found with the proposed algorithm superimposed  
on an image of the scene. 

3.3.5 Estimating the lane masks 

We use the procedure described in Sections 3.3.1-3.3.4 to estimate the boundaries of 

the activity along the bottom row of the image. The lane masks are generated simply by 

forming a triangle by connecting the points (ubound(i),-H/2), (u0,v0), and (ubound(i + 1),-H/2) 

and filling in the pixels within the triangle. 

We note that because the algorithm selects the highest peak in Arel(u), it 

automatically picks the set of traffic lanes with the most activity. On the other hand, it is 

certainly possible that lanes with traffic in opposite directions could lie so close together that 

the algorithm would consider them to be part of the same set of lanes. However, our tracking 

results will easily allow us to discriminate the different traffic directions as long as we 

properly extract the lane mask. We also note that, as we shall see later on, the object tracker 

does not require highly accurate lane masks, so we need not perform an error analysis. 
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3.3.6 Performance and limitations 

Our algorithm for lane segmentation was designed in anticipation of the worst 

possible conditions. We have tested it on over 20 sequences and have found it to perform 

well even in dark or rainy conditions, as long as no raindrops are on the camera lens. It also 

works fine at night as long as traffic is reasonably dense and there are lampposts to help 

illuminate the scene. It is certainly not a limiting factor in the system; the camera calibration 

procedures own this distinction. In fact, if we simply require the average speed for the road, 

then even one lane of data can potentially provide a reasonable estimate of the average 

speed. However, if we desire individual estimates for each lane of traffic, then we must note 

that the carpool lane may not be detected by our algorithm because of the low level of traffic 

activity. 

The one limitation of the algorithm is that it performs best when the traffic flows 

toward or away from the camera. As the pan angle θ increases beyond about 20° while 

φ remains less than about 10°, the algorithm performs increasingly worse until it no longer 

can distinguish the lanes. This is due to the severe overlap of the vehicles into the next lane 

because of their nonzero height. These problems are mitigated when the camera is zoomed 

in (f greater than usual) or if φ increases beyond 15°. 

3.4 Detecting bad activity maps 

As seen previously, the activity map is essential for estimating the vanishing point 

and determining the location of the lane boundaries. A faulty activity map invalidates the 

entire process of Figure 45. Thus, it is critical to determine the validity of the activity map 

before accepting the image processing results obtained through the algorithm of Figure 45. 

Many variables affect the position and quality of the scene. Obstacles such as road signs or 

overpasses can obstruct the camera’s view of the vehicles. Raindrops on the camera lens 

noticeably affect the image quality and therefore the ability of our algorithms to extract 

image features and calibrate the camera. Shadows from nearby trees often produce image 

artifacts (i.e., false edges) that may affect the vehicle tracking results. Finally, although the 

road is usually approximately straight in the bottom one-third of the image, occasionally it 

can deviate from this assumption. This can be particularly troublesome for our algorithm 

that estimates the vanishing point from the activity map when the lanes are very narrow and 

the vanishing point is high above the image. We give examples of some of these conditions 
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in Figure 61. Any of these conditions affect the activity map and can therefore bias the 

estimate of the vanishing point.  

Based on Figure 45, we again note that much of the system depends on results from 

the activity map and, therefore, it behooves us to prematurely cease to process the image 

sequence if we detect untoward conditions within the activity map. We now present an 

algorithm that can detect each of these conditions if they are present in the activity map. As 

a side benefit, it also alerts the user if the vanishing point is inconsistent with the trends in 

the activity map. 
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Figure 61. Examples of bad activity maps.  In order left to right, top to bottom:  
a) Raindrops on camera lens. b) Raindrops on camera lens. c) Shadows on the road.  
d) Overpass blocking the road. e) High vanishing point and narrow lanes with  
curved road. f) Road sign blocking the road. 
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The basic principle in detecting poor activity maps is to find irregularities in the 

activity along the longitudinal direction of the road. Each of the scenes in Figure 61 

possesses this property. As described in Section 3.3, we linearly sample the activity map 

along lines emanating from the vanishing point to generate the signal Arel(u). During this 

sampling process, we also take order statistics when we estimate the mean activity. 

Specifically, we sort the data samples along each line and record the fifth-lowest value and 

the maximum. We do not record the lowest value because there may be artifacts along the 

bottom of the image. Next, we set portions of the signal outside the detected road boundaries 

to zero. We normalize all the signals by the maximum of Arel. Figure 62 contains the 

relevant portions of the Amax, Arel, and Amin signals for the rainy example of  Figure 61(b). In 

this particular case, we want to design an algorithm to detect the raindrop evidenced by the 

low values of Amin on the interval u ∈ [250,275]. 

In general, we expect the valleys of Arel to contain little activity, which means the 

difference between Amax and Amin will be small. As a result, we eliminate these regions as 

unreliable for determining where activity map anomalies, e.g., raindrops, are present. We 

morphologically close [45] Arel and identify where closing(Arel) = Arel. These regions are 

highlighted in bold in the example of Figure 62. The kernel size is chosen as half of the 

smallest peak-to-peak distance found by estimating the lane boundaries, i.e., 16 pixels in the 

current example. Within the regions found, we search for samples where 

Amax(u) > 0.5⋅max(Amax(u)) and Amin(u) < 0.25⋅max(Amax(u)). For the example in Figure 62, 

the anomalies are clearly evident by observing where Amin dips below its threshold and then 

observing that the left-hand portions that satisfy this criterion have a very low value of Amax 

that disqualifies them from being labeled as an anomaly. The thresholds were chosen on the 

basis of our experience with more than 20 activity maps, of which half contained anomalies 

we wanted to detect. 
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Figure 62. Line sampling maximum, mean, and minimum for the activity map in Figure 61(b) 
and the thresholds used to identify the anomalies. The bold portion indicates the 
valid regions for detection. 

3.5 The top-hat image 

The top-hat image is one of the fundamental feature images found by the framework 

of Figure 45. It is used to highlight the road boundaries and lane markers in the image 

sequence. As shown in Figure 45, we use this feature image to obtain the quantities b1, b2, 

and τL, each of which is essential for one or more of the three camera calibration methods 

presented in Chapter 2. For example, Figure 63(a) contains a 640 X 480 image of a night-

time scene that has been log-transformed so it can be visualized. One can see some of the 

road lines and faint indications of lane markers, but only with much effort. The two-

dimensional morphological top-hat [45] extracts any portions of the image that are peaked 

relative to their surroundings. For example, note that in Figure 55, the peak at u = 35 has a 

much greater magnitude in the Atop signal relative to the other peaks than it did in the Arel 
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signal. The two-dimensional top-hat operator has an analogous effect on images, as seen in 

Figure 63(b), where the road lines and lane markers are now quite visible. In our experience, 

kernel sizes of 5 and 3 seem to work well for image sizes of 640 X 480 and 320 X 240, 

respectively. The kernel size determines the maximum size of image features that are 

detected by the top-hat transform; road lines that are wider than this may not appear in the 

output image. 

 

 

Figure 63. a) Log-stretched image of a night-time scene. b) The top-hat image of the  
original scene (linear scaling). 

 At least two approaches exist for estimating the top-hat image, Itop, of a scene. 

1) Estimate the background image Ibg = average(Ii) from all images Ii in the sequence and 

then let Itop = tophat(Ibg) = tophat(average(Ii)). 2) Compute the top-hat image for all images 

in the sequence and then compute the average top-hat image, i.e., Itop = average(tophat(Ii)). 

The system is not a linear one, so the approaches are not equivalent, i.e., the average(⋅) and 

tophat(⋅) operators do not commute. It turns out that for large sample sizes, it is best to use 

the power of averaging in the second method to reduce the noise in the top-hat operator. 

Thus, for each of the 1,000 RGB input images (about 8.5 minutes at the anticipated 

2 frames/second rate for 640 X 480 images), we do the following. 1) Calculate the intensity 

by averaging the color components for each pixel (I = R + G + B). 2) Perform 3 X 3 median 

filtering over the entire image to remove JPEG artifacts and remove noise. 3) Apply the top-

hat operator to obtain the ith top-hat image estimate Itop,i. Lastly, estimate Itop by averaging 

the set of top-hat images, yielding a result like Figure 63(b). 
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 Note that the single estimate of the top-hat image in Figure 63(b) from the 

background image is reasonably good even in a night-time scene illuminated by roadside 

lamps. Thus, we conclude that our algorithm should perform fine in the light conditions at 

early morning and dusk, even if no roadside lamps are present. 

3.6 Refining the estimates of u0, v0, b1, and b2 

As we noted in our sensitivity analysis, accurate estimates for u0, v0, b1, and b2 are 

essential for each of the calibration methods. Continuing with our exposition of Figure 45, 

we now show how to refine the rough estimates of u0, v0, b1, and b2 obtained from the 

activity map using the methods of sections 3.2 and 3.3.4. Given the low quality of the image 

in Figure 54(a), it is surprising that we achieve the accuracy evident in Figure 60. However, 

once the top-hat image Itop is available, we can expect even more accurate estimates of these 

four parameters using the road boundaries themselves. As seen in Figure 64, the road lane 

markers and boundaries stand out very clearly in the top-hat image for this scene, despite the 

rainy conditions. 

 

Figure 64. Top-hat image for the scene of Figure 60. 

We begin refining our estimates by locating the intersections of the road boundary 

lines with the bottom of the image. To locate the lines, we average the line samples of Itop 

emanating from the vanishing point in the same way used for sampling the activity map in 

Section 3.3. We use the bottom one-fourth of the image because it is least affected by road 

curvature. This results in a signal Ispike’ containing multiple spikes at the intersections of the 

road lines with the bottom of the image, e.g., Figure 65. We smooth Ispike’ with a three-point 
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boxcar filter to obtain Ispike. Next, we use the kernel [-1 1] to determine the sign of the 

difference between the samples of Ispike. The values of u where this signal changes sign are 

recorded, along with the corresponding values of Ispike. The boxcar filter helps to reduce the 

noise when we extract the spike locations.  

Some care must be taken for cases in which v0 is large, i.e., v0 > H. In this case, the 

road lines may exit the side of the image rather than the bottom, or they may enter the side 

of the image instead of from the top. Thus, we set wider limits on uint in the line sampling so 

that the intersection of the line with the edges of the image occurs three-fourths of the way 

down the image (or more). Furthermore, we process the entire image because the road 

boundaries may be primarily present in either the upper or lower half of the image. 

 

Figure 65. Average value of the line samples emanating from the vanishing point in the top-hat 
image (after smoothing with a three-point boxcar filter). 

 After the candidate locations have been found, we wish to determine which of the 

spikes correspond to the left and right boundaries of the road. We assume that the white road 

boundaries will have the strongest Ispike response, so we assign the spike locations uspike,left 
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and uspike,right by finding the maximum spike within the ranges u ∈ [uleft,(uleft+uright)/2] and 

u ∈ [(uleft+uright)/2,uright], respectively, where uleft and uright are as shown in Section 3.3.4. We 

can then obtain initial estimates of b1 using the following formula: 
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with a similar result for b2 and uspike,right. 

 Once we have initial estimates for u0, v0, b1, and b2, we use the BFGS quasi-Newton 

method [46][47][48][49] to determine the four-parameter vector that maximizes the mean 

value of the samples along the two road lines. In our objective function, we use the four 

parameters to obtain samples along each line within the lower one-fourth of the image. We 

obtain the samples using bilinear interpolation of Itop. We use a stopping criterion tolerance 

of 0.0001 on the objective function and 0.01 on the parameter values so that we guarantee a 

minimum precision of 0.01 in the parameter values. 

 We begin by processing the bottom fourth of the image to handle curved roads. 

However, we also wish to fully utilize the additional information farther up in the image if 

the road is straight. Thus, we employ a tiered approach as follows. In the first stage, we 

obtain the optimal parameters using only the bottom one-fourth of the image. If our 

algorithm determines that it has successfully located both lines in this portion of the image, 

the process is repeated for the bottom one-third of the image, using the results of the 

previous stage to initialize the next optimization. We expect to obtain a more accurate result 

by measuring longer lines. After completing the search, the same criteria for success are 

applied, and if the search is again successful the process is repeated a final time for the 

bottom one-half of the image.  

For the case in which v0 > H, we do not use the tiered approach. Instead, we only 

search the bottom half of the image for two reasons. 1) It contains the lines that are the most 

straight, and including the upper half may cause the success criteria below to fail because of  

road curvature. 2) We allow the lines to exit and enter the sides of the image, and therefore, 

the bottom fourth or third of the image may provide an inadequate amount of information to 

locate the lines. 

 The criteria for a successful line search stage are as follows. First, we define the 

bottom half of the Itop image as Itop2. We normalize Itop2 by its maximum and perform 
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histogram equalization with 100 levels of precision. Next, we binarize Itop2 using the 90th 

percentile as a threshold. Finally, we sample this binary image along the road boundary lines 

found from the previous stage using bilinear interpolation to obtain signals BL1 and BL2. We 

require 50 percent of the samples on both lines to be within the quarter-image window for 

the first stage, and 60 percent of the samples to be within the image window for the second 

and third stages. If these criteria are met, then we compute the mean values of BL1 and BL2, 

each of which may be somewhat shorter than the height of the image window. If both of the 

mean values are 0.85 or greater, then we consider the search to be successful. In other 

words, we require about 85 percent of the line pixels in the image window to have a value of 

at least the 90th percentile for Itop2. 

Figure 66 contains the results for the example scene. There the changes in the 

vanishing point estimate are noticeable in the upper portion of the image, though the two 

lines are nearly indistinguishable in the lower portion. The vanishing point moved from 

(-218.2,122.6) to (-209.9,100.1). This large change is atypical for most scenes, particularly 

those where u0 is smaller in magnitude and where the road is not curved. 

3.6.1 Error estimates for u0, v0, b1, and b2  

Because of the single-shot character of the parameter estimation, it is difficult to get 

a grasp of the errors in u0, v0, b1, and b2. We offer the following general approach: vary the 

individual parameters until the mean value along the line deviates by more than 10 percent 

from its original value. This then becomes our 95 percent confidence interval for that 

particular parameter, since we have the goal of a relative standard deviation of 0.1 for 

camera calibration Method 2. We search on either side of the nominal parameter value using 

the Newton method search algorithms in [50][51]. 
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Figure 66. Top-hat image with initial estimate (dotted line) and final estimate (solid) of the 
road lines used to estimate u0, v0, b1, and b2 in the example scene. 

3.7 Estimating the lane marker interval 

Referring to Figure 45, now that we have estimates of u0, v0, the lane boundaries, and 

the top-hat feature image, we can search for the lane markers and estimate the tip-to-tip 

distance between consecutive lane markers. As discussed in Chapter 2, we encode this 

distance from the image as the parameter τL, which is critical to the success of Method 3. 

To this point, when sampling along the lines emanating from the vanishing point, we 

have only used the statistical properties of the samples, e.g., the mean or maximum. 

In many cases, the lane markers may not be very visible. We must look closely at the 

top-hat image of the night-time scene of Figure 63 in order to see the turtles (little bumps 

placed by the DOT) that are visible in the lower half of this 640 X 480 image, e.g., Figure 

67. Sampling along one of the lines emanating from the vanishing point reveals a strong 

pattern in the turtles, as evidenced in Figure 68. We define the signal T1(u,v) along any line 
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as a function of the u-coordinate of the intercept of the line with the bottom of the image and 

the v-coordinate of the pixel samples within the image. 

 

Figure 67. Bottom half of a top-hat image of a dark scene containing turtles as lane markers. 
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Figure 68. Values of Itop sampled along the lane markers second from the left in Figure 67 
using image-centered coordinates. 

3.7.1 Linear resampling of the T1(u,v) signal 

 Though the lane marker pattern is quite clear in Figure 68, it is also evident that the 

distance between markers is nonlinear, increasing as v increases. We now recall our simplest 

position formula that relates the vertical image coordinate, v, to the position Y’ along the 

road. 
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Using Equation (43) with S’ selected arbitrarily, we can use our theoretical model of 

Chapter 2 and our knowledge of v0 to remove the nonlinearity in the v-scaling of the line 

sample, e.g., Figure 69. 
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Figure 69. The signal of Figure 68 with the nonlinear scaling removed (S’ = 1).  

 In essence, we have simply changed the linear sampling in v into nonlinear sampling 

in the new domain Y’, where we expect to perform much of our signal processing. In order 

to process the signal in the Y’ domain, we must resample the signal T1 to obtain a signal T2 

that has linear spacing in the Y’ domain. We use linear interpolation with an upsampling 

factor that depends on the value of v0. Upsampling is necessary in order to preserve the 

signal detail when (v0 – v) is large in magnitude, i.e., at the bottom of the image. Thus, the 

smallest increment of Y’ is 
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If vtop is the uppermost v-coordinate that we will sample in the image, then we will need at 

least 

 ( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−
−

−
−

′
′

=
2/

2/1

00
min, Hv

H
vv

v
S

Y
N

top

top
samp δ

 (70) 

data points in T2 to avoid losing any details when v is near -H/2. We recommend a value of 

two to three times this theoretical minimum to enable us to measure the peak-to-peak 

distances with greater precision. 

3.7.2 Estimating the distance between lane markers 

 Having described how to generate T2, we now describe how to estimate the distance 

between lane markers, assuming T2 contains lane markers. Using one of the most standard 

signal processing techniques, we generate the autocovariance sequence R(τ) for T2 and 

measure the location of the largest peak away from τ = 0 that we find. Figure 70 contains 

R(τ) for the example we have been using. This particular signal has very obvious and sharp 

peaks at τ = 0, τ = 284, and τ = 571. Observing that 2⋅284 = 568, we see that there is a great 

deal of periodic structure to this particular instance of T2. This value represents 0.0988 linear 

units in Figure 69. 
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Figure 70. Autocovariance sequence for the signal of Figure 69.  

3.7.3 Relating the autocovariance technique and the camera calibration 

 The connection between this approach for measuring the distance between lane 

markers and the third camera calibration method is quite startling. We recall from Chapter 2 

the equation for the scale factor S’ in Equation (43)  
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where we had defined 
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We can therefore see that the autocovariance procedure is directly measuring the quantity τL 

to within a scale factor (dependent on the upsampling factor above) without identifying the 

quantities va and vb. Furthermore, if we measure the linear distance τ12 between two vertical 
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image levels v1 and v2 with the same upsampling factor, then our estimate of the physical 

distance along the road is simply 

 
L

LY
τ
τ 12=′∆  (73) 

where L is the known distance between lane markers. We see that the upsampling factors of 

τ12 and τL cancel, and the result is scaled to a physical distance by L. To convert τlag 

measured in the autocovariance function to the pixel ratio τL, we simply divide τlag by the 

upsampling factor (and by S’  if we assumed S’ ≠ 1 in the interpolation process). 

3.7.4 Increasing the robustness of the method 

Even though the image in Figure 67 was estimated from a night-time scene, it is 

quite clean and rather idealized because street lamps are present. If we wish to use this 

approach as the primary technique for calibrating the camera, then we must make each step 

robust in our algorithm above.  

3.7.4.1 Theoretical model 

In the discussion above, we proved that our method has merit using a pragmatic 

approach and forming a connection with our camera calibration methodology. We now offer 

some theory to bolster our broad claims for the autocovariance method in Section 3.7.2. In 

the Northwest region of the United States [42][53], the lane markers are specified to be 

10 feet long with 30 feet of blank pavement in between, for a head-to-head spacing of 

40 feet. Although two styles of markers exist, i.e., turtles and painted lines, we will develop 

our theory for the case of painted lines for the sake of simplicity. We can model this 

situation as a cyclical rectangular-wave signal along the axis of the road with a value of 1 for 

a fraction of the period (i.e., the duty cycle) and a value of 0 for the rest of the cycle. For the 

example above, the duty cycle is 12/40 = 0.3, i.e., we expect the signal to have a relative 

value of 1 for 30 percent of the cycle and a value of 0 for 70 percent of the cycle. 

We now develop an intuitive sense of how the autocovariance function, Cxx(τ), will 

behave for a finite multi-cycle square wave. Figure 71(a) contains an example of a finite 

square wave containing many cycles. We use an amplitude 0.5, 100-sample, 50 percent duty 

pcycle square wave for simplicity and ease of presentation. As shown in Figure 71(b), the 

autocovariance function of any finite square wave has a triangular window superimposed 
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upon it because of the finite length of the correlation. Within the triangular window, the 

autocovariance function is composed of many identical saw-tooth functions with the same 

period as the square wave (e.g., 100 samples), as shown in the close-up view of  Figure 

71(c). We can also see in Figure 71(c) that when the square-wave function (nearly) 

completely overlaps itself, the response is a nonattenuated triangle wave. For lags of even 

multiples of 50, the square-wave is completely correlated with itself, and at lags of odd 

multiples of 50, it is completely anticorrelated with itself.  

In the actual road scenes, we typically expect two or three cycles of lane markers, 

with six to eight at the most. Thus, the effect of the triangular window will be quite strong, 

as shown in the autocovariance function for a three-cycle square wave in Figure 71(d). The 

shape of each peak within the autocovariance function will also be somewhat distorted when 

the duty cycle is not 50 percent. The effect of a smaller (or larger) duty cycle is to contract 

the triangular portion of the saw-tooth wave to the duty cycle fraction, as shown in Figure 

71(e) for a 10 percent duty cycle wave with a period of 100 samples. However, we note that 

a duty cycle other than 50 percent should not affect our ability to extract the peaks in Cxx(τ), 

even if they are compressed relative to their original width. 
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Figure 71. Behavior of the autocovariance function for a square wave. a) Finite square wave 
with 50 percent duty cycle and period of 100 samples. b) Autocovariance function 
for the square wave. c) Close-up of the autocovariance function showing the nearly 
ideal response for a single cycle. d) Autocovariance function for a three-cycle 50 
percent duty cycle square wave with a period of 100 sample. e) Close-up showing 
the nearly ideal, single-cycle response for a 10 percent duty cycle square wave. 

3.7.4.2 Image processing for more robustness 

As we indicated earlier, it is easier to locate the pattern of the painted stripes than the 

turtles in the images. The signal obtained from the example of Figure 67 was a nearly ideal 
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case. In reality, we can expect some of the turtles to be wholly or partially missing, which 

will affect the accuracy of the autocovariance method. Irregular turtle spacing can also cause 

errors, particularly because the turtles occupy so little space. We also note that even when 

using images of 640 X 480, only a small number of the vector samples from Figure 67 will 

contain a signal appropriate for estimating the lane marker spacing. To emphasize these 

features as much as possible, we normalize Itop by its maximum value and applying a gamma 

correction of 0.2. This boosts the middle and lower values. Mathematically, 

Itop,new = (Itop/max(Itop))0.2. 

To address the errors caused by the turtles and amplify the number of useable line 

vectors, we preprocess the Itop image with mathematical morphology, and again apply 

similar techniques after the nonlinear scaling is removed before calculating Cxx(τ). We begin 

by normalizing Itop by its maximum values and applying a gamma correction of 0.2 to boost 

the middle and lower values. Mathematically, Itop,new = (Itop/max(Itop))0.2. 

After the preprocessing, we obtain the image T1(u,v) by sampling Itop along the lines 

emanating from the vanishing point. As described above, we then resample each column of 

T1(u,v) to obtain the image T2(u,r), where even sampling of r produces linear spacing of T2 

in the Y’ domain. This yields an image similar to the one contained in Figure 72(a) for the 

example of Figure 67. We use bilinear interpolation to ensure a reasonably accurate 

transformation. We generally sample the bottom one-third of the image to strike a balance 

between obtaining multiple stripes and maintaining their clarity. The horizontal sampling 

boundaries are determined either by b1 and b2, if these measurements are available, or else 

the rough estimates of the road boundary locations obtained by locating the lanes in the 

activity map. 

Next, we apply the dilation operator from mathematical morphology [45], which 

assigns to a pixel the maximum value in a neighborhood surrounding that pixel. This yields 

the image T2d(u,r). To emphasize the vertical lane stripes and connect the turtles, we use a 

fairly tall kernel with some a small width, i.e., five pixels for an image width of 640. The 

small kernel width is chosen because of the high-intensity noise in the middle of the lanes, 

which could contaminate the periodicity of along the lane markers. The kernel height is 

determined by dividing the number of vertical samples in T2(u,r) by the maximum number 

of lane markers expected in that portion of the image, yielding the minimum number of 
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samples per lane marker. This value is multiplied by (20 - 12)/40 = 0.2 so that we obtain a 

50 percent duty cycle. In the example of Figure 72, we expected a maximum of 10 lane 

stripes, whereas only about five are present. Note, however, that the dilation operator 

connected the lane markers and extended them so the blank space and lane marker are 

approximately balanced in length.  

 Performing the dilation operation slightly widens the lane stripes, which ultimately 

provides more estimates of τL. It also merges and extends each lane marker so that it more 

closely matches the theoretical model of Section 3.7.4.1.  For example, Figure 73 contains 

the signal of Figure 68 after applying all the image processing operations. The signal is 

much more square, and the peaks are all at even levels, making it much more amenable to 

the autocovariance method. 

 If the vanishing coordinate v0 > H, then the camera has either a significant value for 

the down angle φ or the focal length f. The user is probably trying to enable the system to 

measure d. In this case, the image is typically occupied completely by the road, and the road 

lines often exit or enter the sides of the image. In such cases, because of the close-up view, 

the lane markers are quite clear in the image. In addition, the average top-hat image typically 

contains additional noise in the middle of the lanes because the road imperfections are 

larger. Thus, we obtain the top-hat image from the average background image (see Figure 

74(a)) rather than by averaging the individual top-hat images from the sequences. We clean 

the top-hat image slightly by morphologically opening it with a 3 X 3 “cross” (plus sign +) 

kernel. 

In the case of v0 > H, when processing T2(u,r), we widen the morphology kernel to 

15 pixels for a 640 X 480 image because the lane markers are much brighter than the lane 

features. This allows us to combat any slight curvature in the road or errors in the estimation 

of the vanishing point (see the top portion of  Figure 74(b)). Since v0 is large, we expect at 

most four lane markers, and we increase the vertical kernel size accordingly. Furthermore, 

we expand our sampling to the entire image rather than the typical bottom one-third limit. 

This allows us to capture more lane markers, which increases the accuracy of the 

autocovariance method. In addition, because the line samples may enter or exit the sides of 

the image, we track the beginning and ending indices of each column in T2(u,r). This allows 

us to shorten the sequence and thereby obtain sharper peaks in the autocovariance function. 



 131

Tracking these indices also proves useful for normal scenes where the lane markers may 

enter or exit the image from the side when the pan angle is large. 

 

Figure 72. a) Relevant portion of the top-hat image of Figure 67 after log-stretching, histogram 
equalization, and linear resampling. b) Result of (a) after morphological dilation. 
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Figure 73. Line sample signal from Figure 68 after applying the image processing operations. 

 

Figure 74. a) Typical top-hat image obtained from a background image where v0 is large. 
b) T2(u,r) sampled from the whole image (excepting the text label) after applying 
the dilation kernel. 

3.7.4.3 Robust estimation of τL via the autocovariance function 

Although many scenes produce signals and images with the level of quality of the 

previous example, the quality can be degraded greatly. For example, Figure 75 contains a 

version of T2d(u,r) taken from a rainy scene where the road is curved. Even when using the 
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front one-third of the image, the features are difficult to perceive. We must design our 

estimation procedure with these scenes in mind for two reasons: 1) we want to estimate τL in 

even the most difficult cases, and 2) we want to develop criteria to know when our algorithm 

cannot work. 

 

Figure 75. Example where the lane markers are difficult to measure in the T2d(u,r) image. 

 The problem of estimating the interval τL between lane markers can be divided into 

two stages: 1) identifying the horizontal positions, ulane(i), where the lane marker signal is 

present, and  2) estimating the lane marker interval from the autocovariance functions of 

T2d(umark(i),r). The difficulty of the first stage can be appreciated in the examples of Figure 

76, which contains examples of autocovariance functions that we wish to accept for the 

second stage (Figure 76 (a)), and those we should reject (Figure 76 (b)). Whereas the 

T2d(u,r) image here is 485 pixels wide, less than 15 of its columns contain useful data from 

which we can estimate τL.  
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Figure 76. a) Examples of good autocovariance functions for columns in the T2d(u,r) image. 
b) Examples of bad autocovariance functions for columns in the T2d(u,r) image. 

 If we are to identify all the horizontal positions ulane(i) of the lane markers, we cannot 

avoid calculating the autocovariance function Css(u,τ) for every value of u. Once this is 

complete, however, we can filter the ensemble of autocovariance functions to determine the 

values of ulane(i). We can observe several things about the samples of Css(u,τ) in Figure 76. 

1) Bad sequences may have a few broad or many narrow peaks, none of which are correct. 

2) Bad sequences may have tiny bumps near the main lobe that could falsely be considered a 

peak. 3) The good sequences possess a character similar to that of Figure 71(d) and they are 

fairly similar within the T2d(u,r) image. 4) Because of the normalization, bad sequences 

could randomly have strong autocovariance peaks off the main lobe even if the signal is 

noisy or its amplitude is small. 
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 On the basis of our analysis, we offer several criteria to reduce the full ensemble of 

autocovariance functions E1 to a subset E2. 1) The location of the maximum peak off the 

main lobe must be within 40 percent of the height of the T2d(u,r) image. 2) The maximum 

peak height, Cmax, must exceed a threshold of TCmin = 0.35. 3) The difference in Css(u,τ) 

between the lowest trough Cmin and Cmax must exceed 0.2⋅Cmax. 4) The correlation coefficient 

ρcorr (see Eq. (65)) between the candidate Css(u,τ) and a synthesized autocovariance function 

must exceed 0.75. 5) To achieve a value of 1 at the peak of the autocovariance, we 

normalize by the variance of the signal, i.e., its energy. The signal will range between -1/2 

and 1/2. We require the signal to have an energy value of at least 0.03 for normal scenes and 

0.06 when v0 > H. 

 We now explain the criteria above as follows. Requiring τL to be less than 40 percent  

of the height of the T2d(u,r) image ensures that we have at least two-and-a-half lane marker 

periods with which to estimate τL. If v0 > H, we raise the threshold to 50 percent since we 

are utilizing the entire image, and often there are only two lane markers in the image. Our 

experience suggest that a minimum value of TCmin = 0.35 works well. Because of the data 

windowing effect illustrated in Section 3.7.4.1, when τL reaches the 40 percent point, the 

theoretical maximum of Css(u,τ) is 0.6, but the value of Css(u,τ) is appreciably lower than 

this in practice. Candidates of Css(u,τ) located at or near the lane marker position can 

sometimes have a threshold in the 0.25 or 0.3 range, but false peaks reach this value much 

more frequently than when the value is higher, such as TCmin = 0.35. The choice of the 

Cmax-Cmin difference is also based on experience. The relative value of 0.2 is not very 

discriminating, but it occasionally reduces the number of errors. As for the fifth criterion, the 

energy values seem to work well in practice for a variety of scenes. The higher threshold 

when v0 > H enables us to eliminate periodic signals of low amplitude whose periodicity is 

due to extraneous road features that were enhanced by the morphology. 

 Of all the criteria, the fourth one is the most grounded in theoretical considerations. 

The correlation coefficient ρcorr is an excellent way of characterizing how well the shapes of 

two signals match. We synthesize the autocovariance function for comparison with Css(u,τ) 

by generating a square-wave with a 40 percent duty cycle with the period given by the 

estimate for τL provided by the location of the first peak in Css(u,τ). We choose a 40 percent 
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duty cycle because it lies in the middle of the duty cycle range we expect in practice. A 

particularly nice feature of this approach is that it implicitly includes the locations of the 

second, third, and subsequent peaks in the calculation of ρcorr. Another advantage of this 

approach is that the tapering of the autocovariance function due to the data window 

automatically weights the main lobe and first peak more heavily than the peaks farther from 

the main lobe. Choosing a correlation threshold of 0.75 allows many autocovariance 

functions with the same general shape as the synthetically generated function to pass. For 

example, the two signals in Figure 77 have a correlation coefficient of 0.80. 

 

Figure 77. Comparison between a candidate autocovariance function and a synthetically 
generated one, where ρcorr = 0.80. The candidate passes criterion 4 but fails 
criterion 2. 

 On occasion, the image contains periodic features that occur at multiple periods. For 

example, the lane markers on the right in Figure 78 are surrounded by horizontal lines that 

are strong enough to produce a false peak in the autocovariance function. Figure 79(a) 

contains the average autocovariance function from such a case where lags of 73 and 198 are 

competing; we originally measure 9 and 13 values of each, respectively. Thus, we check 

each member of E2 as follows. We use the average of ensemble E2 as a template and 

calculate the correlation coefficient ρcorr between it and the members of E2. We create a 

subensemble E3 composed of members of E2, where ρcorr > 0.75. In the case below, all nine 

bad members of E2 are eliminated and all 13 good members are included in E3. As seen from 

Figure 79(b), the average of E3 matches the synthetically generated autocovariance function 

extremely well. 
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Finally, we calculate the average of E3 and check it against criteria 1, 3, and 4 from 

above. Checking the average autocovariance function against a synthetically generated 

version reassures us that our estimate of τab was obtained from a signal whose shape 

approximately matches the theoretical ideal of Section 3.7.4.1. If the average autocovariance 

function passes these checks, then we collect samples of the lags of the largest peaks off the 

main lobe for each of the members of E3. We estimate τab using the average of the data. If 

the average autocovariance function fails any of the criteria, our algorithm alerts the user 

that it is unable to calibrate the camera. 

 

Figure 78. Example of T2(u,r) containing features with multiple periods. 
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Figure 79. a) Average autocovariance function for E2 when the image contains multiple 
periods. b) Average autocovariance function for E3, i.e., using members of E2 that 
are sufficiently similar to the ensemble average of E2 in (a). A synthetically 
generated autocovariance function is shown using dashed lines. 

3.7.4.4 Confidence interval estimation for τL 

 Estimating the confidence interval for τL is nontrivial because there are two sources 

of variation: image measurement errors and the variability of the physical lane marker 

intervals. Furthermore, we typically collect a sparse data set. We combat this problem by 

bootstrap-sampling the lag data collected to generate many samples of the mean of the data. 

The law of large numbers ensures that the samples of the mean are normally distributed. We 

generate 104 samples of the mean and use ±1.96s about the mean of the lag data as our 

confidence interval, where s is the sample standard deviation for the samples of the mean. 
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3.7.5 Monte-Carlo analysis 

Our image and signal processing algorithms above seem to perform in a reasonably 

robust fashion for various light and road conditions. However, we must also objectively 

characterize how they behave when the lane markers are physically not ideal. The diagram 

in Figure 6 defines the total interval between lane markers as Ltot = L1,mark + L2,mark, where 

L1,mark is the length of the blank space and L2,mark is the length of the marker itself. Typically 

Ltot is 40 feet and L2,mark is 10-12 feet. We define the duty cycle D as L2,mark /Ltot. However, 

because we morphologically dilate the lane marker image above, the apparent duty cycle is 

closer to 35-40 percent as opposed to its physical value of 25-30 percent. 

Figure 80. Periodic lane markers with distance definitions. 

 We developed a Monte-Carlo simulation to examine the performance of the 

combination of morphological preprocessing and peak extraction from the autocovariance 

function. We used a signal that was Nlength = 800 samples long, which is typical for our data. 

We fixed the number of pulses, Npulse, for the duration of the simulation. For each run of the 

simulation, we selected random values for the duty cycle D of each square-wave signal, such 

that D ~ U(0.25,0.5). For each lane marker interval, we selected random values for Ltot and 

L2, defining their standard deviations relative to the mean values of Ltot and L2. The specific 

distributions in (µ,σ) format are Ltot ~ N(Nlength/Npulse,0.1⋅Nlength/Npulse), and 

L2,mark ~ N(D⋅Nlength/Npulse,0.04⋅D⋅Nlength/Npulse). In particular, the choice for 

σLtot = 0.10⋅Nlength/Npulse was motivated by collecting physical data from a real traffic scene, 

as discussed later in Chapter 4. Figure 81 contains an example of a sample signal 

undergoing distortion by gaussian noise followed by noise suppression with the dilation 

operator. Comparing Figure 81(c) to an actual signal in Figure 73 shows that our simulation 

gives a reasonable reproduction of realistic conditions. 

Ltot

L1 L2
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 To make our simulation even more realistic, we include in our model the possibility 

that a lane marker is only half-present, i.e., L2 = 0.5⋅D⋅Nlength/Npulse. For any given lane 

interval, we allow a 1/3 probability that it is half-missing. Our experience suggests that this 

probability is likely somewhat high because departments of transportation typically perform 

road striping maintenance annually [52]. 
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Figure 81. a) Original rectangular signal. b) Signal with additive gaussian noise σ = 0.25.  
c) Signal after morphological dilation with 40-sample kernel. 
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 We have already shown that the autocovariance function is generally a reasonable 

way to estimate the lane marker interval. However, we wish to know the variability in that 

estimate as a function of the number of estimates we make from the lane stripe image. 

Furthermore, when we only obtain a few estimates, the lack of data can sometimes 

completely sabotage our estimation process. Thus, we would also like to determine the 

likelihood of obtaining a valid measurement as a function of the number of measurements 

we perform. By “measurement,” we mean the processing of a column in the lane stripe 

image that we know physically ought to contain lane stripes. 

Figure 82(a) shows that the relative variability of our estimate of the lane marker 

interval decreases with the number of measurements we are able to make on the lane stripe 

image. The decrease is due to the increased sample size, as well as the increased probability 

of getting multiple valid measurements, i.e., those without partially missing lane markers. It 

is also interesting to note that the relative standard deviation of the estimate (0.05) for a 

single estimate is half of the input relative standard deviation (0.10). This is because the 

filtering criteria of Section 3.7.4.3 reject many of the outliers. For example, if one of the two 

lane markers is only half-present, then the autocovariance will probably be too low, and that 

estimate will be rejected. We also note that the autocovariance method induces an averaging 

effect that reduces the estimate variance. 

Figure 82(b) shows that if we can obtain ten or more measurements, we can almost 

guarantee that at least one of them will give us a reasonable estimate of the lane marker 

interval, i.e., a valid autocovariance function. For this number of measurements, we can also 

expect a reasonably low relative standard deviation, as shown in Figure 82(a). This result 

provides additional support for our image processing strategy above to use horizontal 

dilation on the lane stripes to magnify the effect of each set of lane markers to obtain more 

measurements. 
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Figure 82. Trends for a Monte-Carlo simulation for the measurement of the interval involving 
two lane stripes. a) The trend in relative variability of the lane marker interval 
estimate with the number of measurements attempted. b) The trend in the 
probability of a valid measurement with the number of measurements attempted. 
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 We also offer Figure 83 in comparison for the case of four markers visible in the lane 

stripe image. The result of Figure 83(a) is essentially the same as that of the single-interval 

case of Figure 82(a), apart from the larger initial value for a single measurement.  Because 

there are three intervals instead of one, we note from Figure 83(b) that we are much more 

likely to obtain a good estimate of the cycle length than when we measure only a single 

interval, as in Figure 82(b). 

 

Figure 83. Trends for a Monte-Carlo simulation for the measurement of the interval involving 
four lane stripes. a) The trend in relative variability of the lane marker interval 
estimate with the number of measurements attempted. b) The trend in the 
probability of a valid measurement with the number of measurements attempted. 

 In our data sets, we typically achieve at least ten separate measurements. Thus, we 

can expect reasonably low variability in the output of our algorithm, even with a large 

relative standard deviation for L of about 0.1. It is also encouraging to note that if we have 

multiple intervals, the threat of a half-missing lane marker is not that great and, on average, 

should not sabotage our measurements. 
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3.8 Estimating vehicle lines 

The last parameter from Chapter 2 for which we need an estimate is u1, the 

u-coordinate of the vanishing point for the lines perpendicular to the road. This parameter is 

essential for calibrating the camera using Method 1. However, there are no guarantees that 

any lines perpendicular to the road exist on the roadway or the surrounding scene. Because 

the vehicles themselves contain (small) line segments that are perpendicular to the road, we 

can calculate u1 by estimating the parameters of these line segments. This procedure is 

complicated by the discrete nature of the image digitization. Even for reasonably large 

camera angles, there is not much slope to the vehicle lines at the 320 X 240 image 

resolution. Fortunately, because our system uses an NTSC camera, we have higher-

resolution, 640 X 480 interlaced images available. However, the vehicles often travel a 

significant distance between successive scans of the interlaced image frame. Thus, we 

deinterlace the image by doubling the two sets of scan lines, creating two 640 X 480 

noninterlaced images captured 1/60 second apart. To ensure the best estimates of u1 (and d), 

we require the vanishing coordinate v0 to be large, i.e., v0 > H. 

As shown in Figure 45, we simply need an appropriate image sequence, an estimate 

of the vanishing point coordinate v0, and a set of lane masks in order to estimate u1. Our 

general strategy is to identify the edge pixels of the vehicles with orientations within an 

expected range. After thresholding to create a binary image, we remove any pixels outside 

of the lane masks. We thin the mask using morphology and perform a connected 

components analysis to remove small islands. Next, we use the Hough transform [44] to find 

any lines that exist in the image. Finally, we calculate the intersection of each line with the 

vanishing line v = v0 and estimate u1. 

3.8.1 General image processing 

 We follow the procedure below to identify vehicle edge pixels that might belong to a 

line that is perpendicular to the road. 1) Calculate the image intensity by averaging the RGB 

color components. 2) Deinterlace the image and create two images by duplicating the odd 

rows in the even rows of the image, and vice versa. 3) Estimate the horizontal and vertical 

image gradients, Ix and Iy, of the current frame using a derivative-of-gaussian kernel  
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where n ∈ {-6, -5, … , 5, 6} and σ = 2. The “x” subscript denotes a 1 X 13 convolution 

kernel that detects vertical edges, with the converse (transpose) for “y.”  n and σ may be 

scaled linearly according to the current image dimensions (640 X 480). 4) Estimate the angle 

of the line direction for each pixel by γ = tan-1(Iy/Ix). 5) Calculate the gradient magnitude 

image ||∇I|| = (Ix
2 +  Iy

2)-1/2. 6) Create a binary image in which pixels are 1 if  ||∇I|| > 0.50 

and 0 < γ < 40°, and 0 otherwise for u1 > 0. The inequality becomes 0 > γ > -40° if u1 < 0. 

7) Threshold ||∇I|| and set to 0 any pixels in the binary image where ||∇I|| < 0.085⋅max(Ii); 

the threshold is chosen as a fraction of the maximum image intensity. An ideal step edge has 

a maximum filter response of approximately 17 percent of the step magnitude. Thus, we 

detect step edge magnitudes that are at least half of the maximum image intensity. 

8) Remove any pixels outside the logical addition of the lane masks. We generally use only 

the bottom half of the image, since the lines have greater slope in this region. Figure 84(a) 

contains a typical mask found by applying these eight steps. 

 Filtering the edges on the basis of their orientation does a pretty good job of 

eliminating false edges. However, thick lines (see Figure 84(a)) add unnecessary noise to the 

Hough transform because a wider range of angles fit within a thicker block. Morphological 

skeletonization is a perfect solution to this problem because it reduces a region to its 

minimum number of connected pixels at the center of the region [45]. Figure 84(b) 

illustrates the effects of morphological skeletonization on a binary image generated by the 

process above. Next, we perform a connected components analysis on the skeleton image to 

remove any features that are less than 20 pixels long.  
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Figure 84. a) Binary image B  generated by thresholding the gradient magnitude of a traffic
image. b) Morphological skeleton of B . c) Binary image B after skeletonization and
connected components analysis.
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3.8.2 Estimating the line parameters 

 After we finalize the binary image, we calculate the Hough transform [44] of the 

binary image using one of the standard line parameterizations  

 ρ = u cos(Φ) + v sin(Φ) (75) 

where ρ is the perpendicular distance from the origin to the line, and Φ is the angle between 

the line and the u-axis. We use non-image-centered coordinates because it makes the 

parameterization of ρ more convenient. Since we operate on the lower half of the image, we 

expect the extreme ranges to be ρ ∈ (3H/8, (W2 + H2)1/2). Since we require the vehicles to be 

passing through the bottom of the image, we require Φ ∈ (60,110) degrees when u0 < 0. The 

range of Φ past 90° is to enable us to analyze the statistical properties of Φ later on. We 

calculate the extrema of ρ that we will encounter by calculating its maximum and minimum 

at the four corners of the image window. To use the Hough transform we quantize ρ into 1-

pixel increments, and quantize alpha into 0.15-degrees increments for 640 X 480 images. 

We select (ρ,Φ) bins from the Hough transform containing at least 20 pixels and record the 

(ρ,Φ) pair.  Using a finer ρ quantization noticeably reduces the number of pixels in each bin, 

reducing the number of lines found. Because of the fine quantization of Φ, each line is 

usually measured as multiple (ρ,Φ) pairs distributed about a nominal angle Φ. Because each 

nominal angle is slightly different, we are essentially convolving a bunch of distributions for 

Φ. If this hypothesis were completely true, this convolution should eventually lead us to an 

asymptotically normal distribution for Φ because of the large number of samples that we 

collect. Figure 85 contains a distribution of 101,721 samples of Φ that appears to be 

normally distributed. However, as shown from the curve fit of the normal distribution 

specified by the estimates of the mean and standard deviation of the data, the underlying 

distribution is probably not normal. 

The algorithm above assumes that that u0 < 0. We know that u0 > 0 implies that 

u1 < 0, which changes the ranges we expect of ρ and Φ in the Hough transform. However, if 

we flip the image and let u’ = W - u, then we can proceed with the analysis above without 

any further modifications. 
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Figure 85. Empirical (x) and theoretical gaussian (-) distributions of the line angle Φ for a 
scene when the perpendicular lines to the road have a noticeable tilt in the image. 
The theoretical distribution is based on estimates of the mean and variance from the 
data. 

3.8.3 Estimating u1 from the data 

There are two main problems to be solved in trying to estimate u1 from the line 

parameter data. First, we must determine whether the data will allow us to estimate u1, or the 

line slope is too small. As we argued earlier in Chapter 2, we cannot make claims to measure 

line slopes less than a certain level. We choose a minimum slope of 1/15, which is consistent 

with our choices for a minimum line length of 20 pixels. Thus, if our estimate of the mean 

value for Φ exceeds 90° - tan-1(1/15) = 86.19° ≡ Φmax, then we conclude that the 

quantization errors in our estimates will prevent us from reliably estimating u1. For example, 

Figure 86 contains the distribution of Φ for a scene where the line slopes are very slight. The 

estimate of the mean for this distribution is 88.9°, so we conclude that u1 cannot be 

estimated from the data of the scene. 
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Figure 86. Empirical distribution of the line angle Φ for a scene where the tilt of the lines 
perpendicular to the road is very small. 

 The second problem to solve is estimating u1 itself, given the distributions of the line 

parameters Φ and ρ. We recall that the v-coordinate of the second vanishing point is v0 

under the assumptions of our camera model from Chapter 2. Solving for u = u1 in 

Equation (75) yields 
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where we have included correction terms for the fact that u0, u1, and v0 assume image-

centered coordinates, and the measurements of Φ and ρ do not. We can now see why u1 

cannot be estimated for small slopes, i.e., cos(Φ) → 0 as Φ → 90°, and the uniformly 

quantized values of Φ run out of resolution beyond Φmax. We can also see that because of the 
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transcendental transformations of Φ, we should not expect the distribution of u1 to be 

symmetrical. For example, the distribution in Figure 87 has a peak around 4200, whereas the 

true value is more than 5000; the average and median values are 5822 and 5018, 

respectively. 

 As shown in the example of Figure 87, the distribution of u1 is quite skewed. It is not 

obvious how we should estimate u1, since Equation (76) is nonlinear. However, the median 

and mean are reasonable estimators of u1 that are worth trying. Thus, we performed a 

Monte-Carlo simulation with known values of u0, v0, and u1 and generated random lines by 

connecting the point (u1,v0) to points in the measurement window. After calculating Φ and ρ 

for the line, we added random noise according to N(0,3.7°) to each value of Φ. The resulting 

distribution of Φ had approximately the same shape and standard deviation as the 

distribution in Figure 85. Next, we calculated u1 according to Equation (75) and examined 

the efficacy of the average and median values as estimators of the known value of u1. We 

found that as long as samples are ordered properly across the branch cut of Φ = 90°, the 

median is an unbiased estimator of u1, whereas the mean is not. One way to handle the 

branch cut is to add a very large value with the same sign as u1 to those estimates of u1 with 

the same sign as u0. 
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Figure 87. Empirical distribution of u1 for the data in Figure 85. This heavy-tailed distribution 
continues up to 105. 

3.8.4 Estimating the error in u1 

The u1 estimation procedure has two interesting properties. For one thing, the distribution of 

u1 is inherently skewed, and therefore, it is nontrivial to estimate u1 and even more difficult 

to estimate its variance. On the other hand, the estimation procedure produced a lot of data. 

We use this fact to our advantage by bootstrapping the samples on hand to estimate the 

variance of u1. Specifically, we sample the data we collected  for u1. If Nall is the total data 

size, we obtain η⋅Nall samples, where η is a fraction between 0 and 1. We choose η = 0.2, 

both for practical considerations of computational cost and to avoid repeating samples as 

much as possible because we sample with replacement. After obtaining the samples, we 

estimate u1 by finding the median of the samples and record it as one estimate of u1. On the 

basis of the law of large numbers, we expect this distribution of the estimates of u1 obtained 

through bootstrapping to converge to the normal distribution. After performing this 
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procedure a sufficient number of times, we then use the sample variance su1,η
2 as an estimate 

of the population variance σu1,η
 2 for the case of η⋅Nall samples. To estimate the population 

variance σu1 for the u1 estimate obtained using Nall samples, we simply multiply by η: 

 2
,1

2
1 ηησσ uu =  (77) 

For example, the median of the distribution in Figure 87 is 5603 pixels. When we perform 

5000 runs with η = 0.1, we obtain su1,η
2 = 890.1. Therefore, our estimate of 

σu1,η
2 = 0.1(890.1) = 89.00. The same experiment with η = 0.2 yields su1,η

2 = 452.0 and the 

estimate σu1,η
2 = 90.41. The consistency in these two estimates of σu1,η

2 greatly increases our 

confidence in Equation (77). The variance is actually quite small because of the large sample 

size (Nall = 101721). 

 

 

Figure 88. Distribution of the median values of u1 found by bootstrapping the data  
displayed in Figure 87. 
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3.9 Summary 

Chapter 2 provides a fundamental model for the camera and road scene and outlines 

several ways of calibrating the camera by performing measurements in the digital images. In 

this chapter, we describe algorithms for automatically extracting these quantities (i.e., u0, v0, 

u1, b1, b2, and τL) in a reliable fashion. All of the algorithms depend on the two fundamental 

feature images—the average top-hat image and activity map—that we generate from 1,000 

images sampled from the scene. The activity map enables us to estimate the approximate 

vanishing point from which we can further analyze the activity map and extract the lane 

boundaries of the road. The lane boundaries are critical to the success of our vehicle tracker, 

which assumes that the vehicles are constrained to move down the road in single fashion. 

We also describe a raindrop and obstacle detection algorithm to disqualify certain scenes 

from being processed since the camera would not be able to be calibrated. Once the lane 

boundaries and rough vanishing point are estimated, we show how to precisely locate the 

road boundaries and vanishing point using the top-hat image. This, in turn, constrains our 

search process while estimating the interval between lane markers with the autocovariance 

signal processing technique. Finally, our knowledge of the activity region of the vehicles 

enables us to develop a method for estimating the vanishing point for the lines perpendicular 

to the road using the vehicles themselves. We believe that our algorithms should perform 

reliably under any daytime or dusk conditions in the context of a system using our rain 

detector where the pan angle |θ| < 20°.  
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4 APPLICATION OF IMAGE PROCESSING TECHNIQUES TO CAMERA 
CALIBRATION 

4.1 Introduction 

The image processing techniques of Chapter 3 enable us to perform the 

measurements required to calibrate the camera using the various methods described in 

Chapter 2. Given the two options for calibrating the camera on a day-to-day basis from 

Chapter 2, we must test two major types of scenes to determine the performance of each 

approach. In the first type of scene, the camera has a large down angle φ, giving it a large 

value of v0. Such scenes are appropriate for estimating the distance, d, between the camera 

and the road with either Method 1 or Method 3. This estimate enables us to use Method 2 on 

future scenes from that camera. 

In the second type of scene, the camera is usually zoomed out all the way with a 

slight to moderate down angle so it can view the whole road, usually including the horizon. 

This is the typical operating position for the camera on a day-to-day basis. Road curvature is 

much more evident in this type of scene than in the first type of scene. Because of road 

curvature and perspective effects, only the bottom portion of the image possesses useful 

calibration information. Camera calibration methods 2 and 3 are potentially applicable to 

this type of scene. As explained in Chapter 2, Method 1 typically won’t work because the 

lines perpendicular to the road appear nearly horizontal in the image, and thus their slope 

cannot be reliably estimated.  

Within this second major type of scene, there are two subtypes. In one subtype, the 

camera is located on an overpass (e.g., Scene 3 of Figure 8(c)) where the perpendicular 

distance, d, between the road boundary and the camera is nearly zero or negative. Operators 

typically orient the camera with a small pan angle θ for such a camera geometry. In the 

second subtype, the camera is located off to the side of the road (e.g., Scene 1 of Figure 

8(a)) where d is greater than 10 feet. Operators typically orient a camera in this position with 

a reasonably large pan angle θ to capture the full road. 

In order to characterize the system performance, we must compare it to a reference. 

We begin by describing how we obtain reference data for the camera parameters before we 

discuss the calibration results for our algorithms. 
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4.2 Estimating the reference parameters 

Although we have many operator-controlled cameras from which we can get vehicle 

image sequences, none of them are calibrated. Thus, we must use our knowledge of the 

scene, together with the equations for Method 3 from our theoretical model of Chapter 2, to 

estimate the true camera parameters. We note that if the road slope and tilt are zero, the 

equations for all three calibration methods are fully compatible. We chose to use the 

equations for Method 3 because known distances were the easiest features to accurately 

measure in the images.  

By using the same assumptions as those used in the model of Chapter 2, we are 

essentially comparing the ability of the computer to measure image features with a human 

observer who identifies points in the image. We expect that both the computer and the 

human observer will make errors. We lump our imperfect knowledge of the scene into the 

measurement errors of the human observer. At the end, we expect to obtain 95 percent 

confidence intervals for the three camera parameters f, φ, and θ, the camera position d, and 

the overall scale factor S’, which is the greatest determinant of the accuracy of distance 

measurements. We also estimate u1, the u-coordinate for the vanishing point of the lines 

perpendicular to the road, in order to compare it to the results of the image processing. 

 We calculate estimates for f, φ, θ, d, S’, and u1 by estimating the intermediates b1, b2, 

u0, and v0. These intermediates are estimated on the basis of points clicked by the human 

observer. We requested the human observer to perform 25 iterations of the following 

procedure: click twice on the left-hand road boundary, twice on the right-hand road 

boundary, and sequentially on road features that are separated by a known distance. This 

yields Ndist pairs of points, each with 25 observations, and 50 observations along each of the 

road boundary lines. Figure 89 contains a top-hat image and points clicked by the user. 

According to the Manual on Uniform Traffic Control Devices [42] and WSDOT engineering 

staff [53], the Northwest region uses 10-foot-long lane markers on all freeways,m with a 

blank interval of 28-30 feet, for a total required end to end distance of 40 feet. This known 

distance corresponds to L in the equations that follow. Of course, individual instances of this 

distance will contain errors because of imperfections in painting the road or placing the 

turtles. 
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Figure 89. Sample image used in hand-calibration of the camera with superimposed points 
clicked by a human observer. 

4.2.1 Reference parameter estimation using the theoretical model 

 Our strategy for hand-calibrating the camera for a given scene is to use the equations 

of Method 3 from Chapter 2, which we selectively repeat here without derivation. The 

following equation defines the useful quantity τL, which is a function of the vertical 

positions va and vb of the two points defining the known 3-D distance L in the image. The 

calculation for τL uses the vanishing point coordinate v0 to remove the perspective distortion 

and obtain a quantity that is proportional to the linear distance along the road. τL is 

extremely important because, together with v0, it encodes all of the calibration information 

that can be gathered from the image. We will find that it is constant regardless of position in 

the image, and it is directly proportional to the physical distance L. 
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The next equation relates the known distance L to other quantities we can measure (the 

u-axis intercepts b1 and b2 of the road lines in the image, τL, u0, and v0), the unknown focal 

length f, and the road width w (assumed to be known). 
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In Chapter 2, we derived formulae for u0, v0, b1, and b2 in terms of the camera parameters 

and scene/camera geometry. Thus, we deduce that the ratio L/τL depends entirely on the 

camera parameters and scene/camera geometry and is therefore constant for any given 

situation. This result will prove very useful later on. 

 To solve for f, we first define 
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where we assume knowledge of w and L and we estimate b1, b2, and τ from the mouse-clicks 

of the user upon the image. Following the derivation of Chapter 2, we define 
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Finally, we calculate f: 
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The remaining parameters θ, φ, d, and S’ can now be found as described in Chapter 2 using 

their theoretical relationship to f. 

 We note that because these equations are the very ones used by Method 3, we must 

take care to acknowledge the weaknesses in this calibration method. Even if Method 3 

perfectly mimics the hand-calibration results, we cannot guarantee that our algorithm found 

the true camera parameters unless our assumptions about w, L, and our two-angle camera 

model are completely valid. At the very least, however, given the analysis of road slope and 

tilt in Chapter 2, we can assert that our scale factor S’ for road distance measurements is 
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essentially unbiased by nonzero road slope or tilt. The truth about the bias of other output 

parameters is less certain. 

4.2.2 Estimating b1, b2, and τL from the human observer’s mouse-clicks 

We estimate b1 and b2 by performing a linear regression of the points along the left 

and right road boundaries defined as lines L1 and L2 in Chapter 2. Their equations within the 

image are u = m1v + b1 and u = m2v + b2, respectively. From the estimates of m1, b1, m2, and 

b2 we can estimate u0 and v0, the coordinates of the vanishing point as previously derived in 

Chapter 2: 
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Given an estimate of v0, we may then estimate the average value of τL from Equation (78) 

using all the pairs of points collected from the human observer that we assume are separated 

by a uniform distance L in 3-D. 

4.2.3 Estimating the confidence intervals in the output parameters 

The errors in the output parameters have two sources: errors in the human 

observations and errors in the assumed values of w and L. It is important to keep in mind 

that while these errors give the output parameters a certain distribution, this is different than 

the distribution of the mean values for the output parameters, which is the range we intend to 

quantify. Implicit in this statement is our (reasonable) assumption that the mean is an 

unbiased estimate of the true value. 

We provide the following procedure for establishing the 95 percent confidence 

intervals of the output parameters, using a Monte-Carlo simulation of 104 runs to build our 

confidence interval estimates. To start with, we use the standard errors in m1, m2, b1 and b2 

from the linear regression of the mouse clicks along the road boundary as estimates of σm1, 

σm2, σb1, and σb2. These values are the standard deviations for the errors associated with the 

subscripted parameters, assuming they are approximately normally distributed. 

Theoretically, the errors in the regression parameters have a t-distribution, but since we have 

50 data points on each line, our approximation is reasonably good. Next, we generate 104 
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samples for each of the line parameters using a normal distribution with the appropriate 

standard deviation just found from the standard errors of the linear regression.  From these 

normally distributed samples of m1, m2, b1 and b2, we obtain 104 samples of u0 and v0 using 

Equation (83). These samples of u0 and v0 will form the basis for further Monte-Carlo 

simulations to determine the statistical properties of f and the other output parameters.  

When determining the spread of τL, we note that it is affected both by errors in 

human observations and errors in the physical spacing between lane markers (i.e., 

inconsistent values of L). In other words, each estimate of τL from a pair of points observed 

by a human contains observer error and a bias due to imperfections in placing the lane 

markers. Using the average value of v0 to calculate a value of τL from each of 150 pairs of 

points (6 different distances times 25 observations), we obtain a distribution for τL such as 

that contained by Figure 90(a) for the example scene in Figure 89. However, we again 

emphasize that the distribution of τL is not the same as the distribution of its mean value. 

Thus, we calculate the mean value of τL for the 150 pairs of points using each of the 104 

samples of v0 generated above. This yields a much tighter distribution for the mean of the τL 

data, as shown in Figure 90(b). 
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Figure 90. a) Histogram of the values of τL calculated from 150 human observations and an 
estimate of v0 for the example scene in Figure 89. b) Distribution of τL found by 
estimating its mean value using the distribution of v0 for the example scene in 
Figure 89. 

The variability in the outputs of Method 3 is primarily due to three inputs, which 

contribute equally. It is critical to obtain an accurate estimate of τL from the hand-calibrated 

data because it is one of these inputs to which Method 3 is most sensitive. 

Given the 104 samples of b1, b2, τL, w, u0, and v0, we may then calculate f, θ, φ, d, S’, 

and u1 using the equations previously derived. By sorting the calculated values, we can 

determine the 2.5 percentile and 97.5 percentile points, yielding the 95 percent confidence 

interval for each parameter. We used a normal distribution for w and L such that each has a 

±1-foot 95 percent confidence interval. Since our best estimates of the input parameters each 

has an approximately normal distribution, the distributions of the output parameters are also 

approximately normal, as shown in the results of figures 91 and 92 or the example from 

Figure 89. 
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Figure 91. Sample histograms of τL, S’, d, and u1 from 10,000 runs of a Monte-Carlo 
simulation used to generate confidence intervals for the example of Figure 89. 
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Figure 92. Sample histograms of f, θ, φ from 10,000 runs of a Monte-Carlo simulation used to 
generate confidence intervals for the example of Figure 89. 

On the basis of conversations with WSDOT [54], we know that a machine originally 

paints the lane stripes and marks where to place the RPMs to mark the lanes. These 

machines have an accuracy of better than 1 percent. However, the markers must eventually 

be repainted or replaced. To estimate the parameters of the actual distribution of L, we 

measured the individual distances from tip-to-tip of 101 lane marker intervals using a tape 

measure on a section of the express lanes. The nominal interval specified in the road design 

is 40 feet [42]. However, as shown in the histogram for the data in Figure 93, the data have a 

fairly wide, centroidal distribution, with a standard deviation of 3.5 feet. The mean is 

40.5 feet, with a 95 percent confidence interval of 39.9 ≤ µ ≤ 41.2 feet. Thus, the data are 

unbiased with a bigger spread than we might prefer. However, all three people who helped 

gather the data agreed that the the section of freeway from which the data were obtained was 

noticeably worse than other sections of the express lanes and the regular traffic lanes. This is 
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probably due to poor maintenance and to the fact that cars travel bidirectionally and 

therefore wear off the markers on both ends. Thus, we offer these data as a worse-case 

scenario rather than as typical data for Seattle freeways.  

Averaging the distances from multiple lane intervals can help to noticeably reduce 

the variability in the estimate of L, i.e., on the order of σ/N1/2 as expected from the law of 

large numbers. In this way, the average of four measurements should yield a 95 percent 

confidence interval that remains within 10 percent of the mean, even for this noisy set of 

data. 

 

Figure 93. Histograms of the lane marker intervals measured using a distance wheel. 

4.3 Camera calibration results 

4.3.1 Overview of sample scenes 

We captured four image sequences, two from one camera and two from another 

camera. For each camera, one sequence was from a close-up view and the other was from a 

normal far-field perspective. Sample images contained in Figure 94 illustrate several 

interesting and challenging properties of the scenes. Note that even with the extreme down 

angle in Figure 94(a,c), the slope of the vehicle lines perpendicular to the road is not very 

noticeable. However, the large value of v0 is quite noticeable and distinguishes this type of 

scene from those in Figure 94(b,d). Also note the road imperfections and extraneous, 

distracting features that are present in the close-up scenes that are not visible in the far-field 

perspective. The mix of sunshine and shadows in the scene of Figure 94(d) will also present 

some unique challenges to our algorithms because of the additional dynamic and static 

strong edges. In addition, because the road is curved, the value of d measured in Figure 
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94(c) may not necessarily apply to every camera viewpoint, since the apparent road 

direction differs as the road bends; calibration Method 2 may fail in this case. 

 

Figure 94. Sample images from the image sequences for which we calibrated the camera. From 
left-to-right, top-to-bottom: a) Close-up view of NE 45th St. b) Far-field view of 
NE 45th St. c) Close-up view of NE 145th St. d) Far-field view of NE 145th St. 

4.3.2 Image processing results 

We applied the image processing techniques of Chapter 3 to each of the sequences of 

Figure 94. The algorithms successfully found a rough estimate of the vanishing point and 

lane boundaries. They were also successful in refining the vanishing point estimate and were 

able to locate the road boundary lines. Finally, in each sequence, the algorithms were able to 

estimate the lane marker interval. These results are presented visually on the average top-hat 

feature images in the following four figures. The exception is the background image used in 

Figure 97 because the top-hat image was too distracting. 
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The lane boundaries are quite accurate in Figure 96 and Figure 98, where it matters 

for tracking vehicles. The activity maps for the scenes of figures 95 and 97 are quite spread 

out, and the pan angle is fairly large, so the lane segmentation is noticeably distorted.  

The road boundaries are reasonably strong in all the images, though the right and left 

boundaries of Figure 94(b) and Figurer 94(d) present some challenges, respectively, because 

they are farther from the image center than the other boundary. However, because the lane 

location worked reasonably well, our algorithm is also able to locate the road boundaries 

very accurately. 

We note from the horizontal lines in Figure 95 that our algorithm properly matched 

the left set of lane markers, but the other two clearly do not match. This is an excellent 

example of where the separation between lane markers is not exactly uniform. Another 

deviation is evident in Figure 97 in the upper marker of the middle set. 

 

Figure 95. Average top-hat image and features for the sequences of Figure 94(a). The road 
boundaries are marked with solid lines, and the lane boundaries are marked with 
dashed lines. The 40-foot intervals are marked with horizontal lines. 
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Figure 96. Average top-hat image and features for the sequence of Figure 94(b). The road 
boundaries are marked with solid lines, and the lane boundaries are marked with 
dashed lines. The 40-foot intervals are marked with horizontal lines. 

 

Figure 97. Background image for the sequence of Figure 94(c). The road boundaries are 
marked with solid lines, and the lane boundaries are marked with dashed lines. The 
40-foot intervals are marked with horizontal lines. 
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Figure 98. Average top-hat image and features for the sequence of Figure 94(d). The road 
boundaries are marked with solid lines, and the lane boundaries are marked with 
dashed lines. The 40-foot intervals are marked with horizontal lines. 

 In addition to estimating b1, b2, u0, v0, and τL, we also applied the techniques of 

Chapter 3 to estimate u1, the horizontal coordinate for the vanishing point for the lines 

perpendicular to the road. Because the scenes in Figure 94(a) and Figure 94(c) were the ones 

with a vanishing point coordinate v0 > H, our algorithm estimated u1 only for these scenes 

and ignored the other two. The histograms for the estimates of u1 for the two valid scenes 

are contained in figures 99 and 100, respectively. Given the centroidal tendency of both 

histograms with a median value of Φ that is less than 87°, we anticipate that our estimates of 

u1 will be reasonably accurate for both scenes and, therefore, provide decent estimates of f, 

φ, θ, S’, and especially d. 
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Figure 99. Histograms from estimating the vanishing point (u1,v0) for the scene in Figure 94(a). 
a) Distribution of line angles. b) Distribution of u1 estimates. 

 

Figure 100. Histograms from estimating the vanishing point (u1,v0) for the scene in Figure 94(c). 
a) Distribution of line angles. b) Distribution of u1 estimates. 
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4.3.3 Results for close-up scenes 

As presented in Chapter 2, camera calibration Method 1 assumes that we can 

estimate u1, the u-coordinate of the vanishing point for the lines perpendicular to the road. 

This information, together with u0, v0, b1, and b2, enables us to estimate the camera 

parameters f, φ, and θ, and the road distance scale factor S’. More importantly, we can also 

estimate d, the distance of the camera to the road, which should be fixed for any given 

camera geometry (neglecting road curvature). As pointed out earlier, Method 1 is only 

appropriate when the camera has been specially positioned by the operator with large values 

of φ, θ, and v0, as in the scenes of Figure 94(a) and Figure 94(c). 

 In Chapter 2, we also derived Method 3, which uses estimates of the vanishing point 

(u0,v0) and the interval τL between tips of the lane markers to calibrate the distance along the 

road. By measuring b1 and b2 and assuming knowledge about the width of the road, we can 

also estimate the parameters of the camera and its position relative to the road. 

 We applied methods 1 and 3 to the scenes in Figure 94(a) and obtained estimates of 

all the camera parameters in Table 7. Before we compare the results to the hand-calibrated 

estimates, we note that the automated results used exactly the same image processing 

techniques to estimate u0, v0, b1, and b2. However, Method 1 used an image processing 

technique to estimate u1 and derived an estimate of τL from u1. On the other hand, Method 3 

estimated τL first and then used this value to estimate u1. 
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Table 7. Calibration results for the scene in Figure 94(a). 

 Hand-calibrated 
95% confidence intervals 

(estimated value) 

Method 1 
95% confidence intervals 

(estimated value) 

Method 3 
95% confidence intervals 

(estimated value) 
u0 

(pixels) -278.10 (-277.17) -276.25 -270.25 (-274.70) -280.34 -270.25 (-274.70) -280.34 

v0 
(pixels) 

749.69 (751.81) 753.89 725.66 (740.40) 752.84 725.66 (740.40) 752.84 

u1 
(pixels) 

1.37x104 (1.44x104) 1.49x104 1.46x104 (1.53x104) 1.60x104 1.29x104 (1.37x104) 1.45x104 

b1 
(pixels) 

-255.74 (-255.57) -255.41 -255.63 (-255.13) -254.63 -255.63 (-255.13) -254.63 

b2 
(pixels) 

216.37 (216.56) 216.76 215.72 (216.22) 216.72 215.72 (216.22) 216.72 

τL 0.1933 (0.1939) 0.1945 0.1764 (0.1884) 0.2006 0.1960 (0.1983) 0.2006 

f 
(pixels) 1797 (1843) 1891 1855 (1910) 1969 1740 (1795) 1851 

φ  
(deg.) 21.67 (22.19) 22.71 20.39 (21.19) 21.91 21.58 (22.41) 23.20 

θ  
(deg.) 7.753 (7.927) 8.103 7.457 (7.639) 7.847 7.797 (8.052) 8.346 

S’ 205.7 (206.3) 206.9 205.0 (212.3) 220.1 199.5 (201.7) 203.9 

∆Y’ 
(feet) 39.89 40.0 40.12 39.75 41.17 42.68 38.68 39.11 39.54 

d  
(feet) -2.06 (-1.82) -1.60 -2.17 (-1.66) -1.01 -2.59 (-2.07) -1.46 

 

Table 7 contains the calibration results for the scene of Figure 94(a). We note that 

our algorithm estimated b1 and b2 to better  than ½-pixel accuracy of the hand-calibrated 

result, and indeed our 95 percent confidence intervals include the estimate provided from the 

human observer. Similarly, with u0 and v0, the 95 percent confidence interval for the results 

of the algorithm contains the hand-calibrated estimate, with relative errors of only 0.9 

percent and 1.5 percent for u0 and v0, respectively. 

 We now compare the confidence intervals for u1 and τL to the hand-calibrated 

estimates. Method 1 estimates a confidence interval for u1 that is too tight and does not 

contain the hand-calibrated estimate. Method 3 produces a similarly flawed result for τL. On 

the other hand, the derived intervals for τL and u1 from methods 1 and 3, respectively, do 

contain the hand-calibrated estimate. Thus, we infer that our confidence intervals for the 

measured parameters u1 and τL are overly narrow for methods 1 and 3, respectively. 
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 Method 1 provides a fairly accurate result relative to the hand-calibrated reference, 

and Table 7 shows that the hand-estimates of S’  and d are within the computer-estimated 

confidence interval.  However, the confidence intervals from the algorithm for f, φ, and θ do 

not contain the hand-calibrated estimates for these parameters. On the other hand, the 

computer-generated confidence intervals for f, φ, θ, and d from Method 3 contain the hand-

calibrated estimates, though the confidence interval for S’ does not. However, we note that 

our confidence intervals for w and L were chosen somewhat arbitrarily, and expanding them 

would eventually lead to the inclusion of the hand-calibrated estimate. 

 We also applied methods 1 and 3 to the scene in Figure 94 (c) and obtained estimates 

of all the camera parameters, which are contained in Table 8. Comparing the results of 

Method 3 to the hand-calibrated results shows that the Method 3 intervals for u0, v0, b1, b2, 

and τL do not contain the hand-calibrated estimate. This indicates that our confidence 

interval calculations may yield intervals that are too restrictive or somehow do not account 

for some of the variability that is present. Nonetheless, the confidence intervals of Method 3 

for f, φ, and θ do contain the hand-calibrated estimate, although the intervals for the (more 

important) parameters S’ and d do not. 

 In contrast to the results of Method 3, Method 1 yields values that are not even close 

to the hand-calibrated estimate. This is due to its estimate of u1, which was obtained directly 

from the set of images by measuring the angles of vehicle lines that were judged to be 

perpendicular to the road. Fortunately, because of the strong down-angle, the background 

image contains linear features that we believe are perpendicular to the road in 3-D. These 

features can provide independent verification of the vanishing point for the lines 

perpendicular to the road. We obtained human observations of three of these lines and found 

their intersection at the vanishing point (u1,v1) for the lines perpendicular to the road; these 

data are contained as a special entry in Table 8. We recall that in our original two-angle 

camera model, v0 = v1, i.e., the vertical image coordinate for all sets of parallel lines on the 

same 3-D plane was the same. However, we hypothesize that the road slope is sufficiently 

large that this model is no longer correct. The data of Table 8 strongly support this 

hypothesis, as we note that the 95 percent confidence interval for the hand-estimate of u1 

contains the u1 estimate from Method 1 (when we substitute the hand-estimate of v1 for v0 in 

our calculations). These results are consistent with our analysis in Chapter 2, which showed 
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that Method 1 is susceptible to nonzero road slope and tilt, whereas Method 3 is relatively 

immune. 

Table 8. Calibration results for the scene in Figure 94(c). * indicates the calculation of u1 using the 
hand-calibrated value of v1. ** denotes alternate calibration procedure using lines 

perpendicular to the road.  

 Hand-calibrated 
95% confidence intervals 

(nominal value) 

Method 1 
95% confidence intervals 

(nominal value) 

Method 3 
95% confidence intervals 

(nominal value) 
u0 

(pixels) 934.77 (942.96) 951.15 906.34 (909.58) 919.80 906.34 (909.58) 919.80 

v0 
(pixels) 

625.60 (632.35) 639.10 595.10 (600.49) 604.07 595.10 (600.49) 604.07 

u1 
(pixels) 

-3114 (-2816) -2538 -6701 (-6604) -6507 -3093 (-2861) -2572 

u1** 
(pixels) 

-6233 -5586 -5044 -5904* -5824* -5740*    

v1** 
(pixels) 

452.8 520.3 602.0       

b1 
(pixels) 

-63.25 (-62.84) -62.43 -61.42 (-60.92) -60.42 -61.42 (-60.92) -60.42 

b2 
(pixels) 

377.36 (378.25) 379.15 377.21 (377.71) 378.21 377.21 (377.71) 378.21 

τL 0.1671 (0.1690) 0.1709 0.1233 (0.1311) 0.1383 0.1708 (0.1719) 0.1730 

f 
(pixels) 1413 (1501) 1590 2359 (2376) 2404 1413 (1497) 1568 

φ  
(deg.) 21.6 (22.9) 24.2 14.0 (14.2) 14.3 20.9 (21.9) 23.0 

θ  
(deg.) -31.4 (-30.1) -28.8 -20.6 (-20.4) -20.2 -30.8 (-29.4) -28.5 

S’ 234.0 (236.6) 239.4 299.8 (305.2) 312.0 231.2 (232.7) 234.1 

∆Y’ 
(feet) 39.55 40.00 40.46 50.66 51.58 52.73 39.07 39.32 39.56 

d  
(feet) -94.9 (-93.9) -92.9 -102.9 (-100.2) -98.4 -93.7 (-92.4) -91.5 

 

4.3.4 Results for far-field scenes 

As presented in Chapter 2, camera calibration Method 2 assumes that we can have an 

estimate of d, the perpendicular distance between the camera and the road. This information, 

together with u0, v0, b1, and b2, enables us to estimate the camera parameters f, φ, and θ, and 

the road distance scale factor S’. We anticipate from our sensitivity analysis of Chapter 2 

that Method 2 is more likely to fail on a straight-on scene (i.e., Figure 94(b)) than on a scene 
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where the camera is located farther from the road (i.e., Figure 94(d)). We may use Method 3 

any time we are able to estimate the lane marker interval; our algorithm successfully 

estimated τL for both far-field scenes, as shown in Section 4.3.2. 

 We applied methods 2 and 3 to the far-field scene in Figure 94(b). However, 

Method 2 gave completely wrong results, even when the hand-estimated interval for d was 

substituted. For example, given our knowledge of the focal length range of the camera, it is 

obvious that a confidence interval of 226 < f < 371 pixels is physically impossible. Thus, 

Table 9 contains a comparison of just the hand-calibrated estimates with the estimates from 

Method 3. 

Examining the fundamental measurement quantities u0, v0, b1, b2, and τL, we note 

that the nominal values seem fairly close in absolute terms but are somewhat distant in 

relative terms. We measure the relative deviation error Erel as a fraction normalized to as 

follows: 

 
estimatehand

estimatecomputer
Erel −=1  (84) 

This creates a situation in which, of the derived parameters, the confidence intervals for φ, θ, 

and d overlap, but those of f and S’ do not. However, we note that the estimated values for 

the fundamental parameters that affect speed estimation, i.e., v0 and S’, differ by only 2.8 

percent and 5.5 percent from the hand-estimates, respectively, so we expect a similarly small 

relative bias in the speed estimates. 



 175

Table 9. Calibration results for the scene in Figure 94(b). 

 Hand-calibrated 
95% confidence intervals 

(nominal value) 

Method 3 
95% confidence intervals 

(nominal value) 
u0 

(pixels) -15.66 (-13.68) -11.70 -16.05 (-15.44) -14.60 

v0 
(pixels) 

178.51 (182.74) 186.98 190.46 (187.86) 185.84 

u1 
(pixels) 

2.13x105 (2.48x105) 2.92x105 2.33x105 (2.49x105) 2.69x105 

b1 
(pixels) 

-15.08 (-13.50) -11.93 -14.71 (-14.35) -14.07 

b2 
(pixels) 

98.37 (100.31) 102.24 100.31 (100.71) 101.06 

τL 0.0514 (0.0516) 0.0518 0.0486 (0.0489) 0.0493 

f 
(pixels) 1779 (1828) 1878 1907 (1951) 1997 

φ  
(deg.) 5.51 (5.71) 5.91 5.36 (5.50) 5.66 

θ  
(deg.) 0.36 (0.43) 0.49 0.42 (0.45) 0.47 

S’ 772.2 (774.9) 777.6 812.4 (817.8) 823.2 

∆Y’ 
(feet) 39.9 40.0 40.1 41.9 42.2 42.5 

d  
(feet) -1.03 (0.02) 1.07 -0.01 (0.39) 0.68 

 

 We also applied methods 2 and 3 to the far-field scene in Figure 94(d), yielding the 

measurements and calibration results of Table 10. When applying Method 2, we must use an 

estimate of d obtained by either Method 1 or Method 3. However, referring to the last row of 

Table 8, we note that methods 1 and 3 gave very different results. When using the 

confidence intervals for d from Method 1 for the scene in Figure 94(d), we obtained 

imaginary numbers that are clearly wrong. Thus, even though the estimate from Method 1 

was correct in terms of its image processing, the reduced-order camera model gave an 

incorrect result because of the nonzero slope and tilt of the road. Applying the confidence 

interval for d from the Method 3 result gave very wide confidence intervals, as shown in the 

Method 2 results of Table 10. This is consistent with our sensitivity analysis of Chapter 2. 
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Nevertheless, the estimate of S’ (which is critical for speed estimation) was off by only 

about 8 percent, which is surprisingly low given the immense 95 percent confidence 

interval.  The results for Method 3 are also contained in Table 10, which shows Method 3 to 

be vastly preferable to Method 2 in terms of its precision, though its accuracy relative to the 

hand-calibration result is roughly comparable to that of Method 2. 

Table 10. Calibration results for the scene in Figure 94(d). 

 Hand-calibrated 
95% confidence intervals 

(nominal value) 

Method 2 
95% confidence intervals 

(nominal value) 

Method 3 
95% confidence intervals 

(nominal value) 
u0 

(pixels) 289.43 (293.99) 298.55 284.07 (285.87) 287.27 284.07 (285.87) 287.27 

v0 
(pixels) 

217.73 (222.02) 226.32 225.46 (223.17) 221.36 225.46 (223.17) 221.36 

u1 
(pixels) 

-9826 (-9271) -8750 -7.911x104 (-6633) -3474 -9577 (-9106) -8671 

b1 
(pixels) 

-6.83 (-5.59) -4.33 -9.90 (-9.40) -8.90 -9.90 (-9.40) -8.90 

b2 
(pixels) 

143.13 (144.16) 145.18 139.59 (140.09) 140.59 139.59 (140.09) 140.59 

τL 0.0795 (0.0800) 0.0804 0.0262 (0.0867) 0.1142 0.0743 (0.0749) 0.0754 

f  
(pixels) 1590 (1636) 1682 972 (1359) 4729 1559  (1598) 1638 

φ  
(deg.) 7.46 (7.73) 8.00 2.69 (9.33) 12.96 7.74 (7.95) 8.18 

θ  
(deg.) -10.42 (-10.10) -9.78 -16.02 (-11.73) -3.44 -10.30 (-10.05) -9.79 

S’ 497.6 (500.3) 503.0 352.6 (461.2) 1506 530.8 (534.3) 538.0 

∆Y’ 
(feet) 39.8 40.0 40.2 28.2 36.9 120. 42.5 42.7 43.0 

d  
(feet) -88.9 (-86.5) -84.1    -95.0 (-93.0) -91.0 

 

4.4 Summary 

We analyzed four scenes described in detail in Section 4.3: one close-up and one far-

field view for each of two cameras. We generated a reference for the output parameters of 

the system on the basis of our reduced-order camera and scene model of Chapter 2 by using 

the observations of a person that clicked on multiple features in the image. Our image 

processing algorithms successfully estimated the input parameters b1, b2, u0, and v0, which 

are critical for the success of each calibration method. 
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We obtained mixed results when applying Method 1 to the close-up scenes, i.e., 

where v0 exceeded H. Our image processing algorithm accurately estimated the slopes of the 

perpendicular lines in both scenes. However, the road slope and tilt were negligible for one 

of the scenes but not for the other one. Consequently, the camera calibration was fairly 

accurate for the former scene but completely wrong for the latter. These experiments support 

our recommendations in Chapter 2 that Method 1 be applied only when the road is known to 

be essentially flat. 

The results for Method 2 strongly support the sensitivity analysis of Chapter 2. Just 

like the computer simulation of the similar scene in Figure 8(c), Method 2 completely failed 

for the scene where the camera had a straight-on view. In the scene with a moderate pan 

angle, Method 2 gave an estimate of S’ that was within 8 percent of the hand-estimate, albeit 

with an extraordinarily wide confidence interval. Such a wide confidence interval strongly 

supports our conclusions about the sensitivity of this method that were predicted in 

Chapter 2. Nevertheless, the latter scene (i.e., Figure 94(d)) approximately conforms to our 

recommendations at the end of Chapter 2. Specifically, the camera is located on an overpass, 

so it is about 70 feet above the road, and if we subtract the road width of 48 feet, then the 

camera is located only about 45 feet from the nearest road boundary marker. 

Of the three methods, Method 3 was the only one we successfully applied to all four 

scenes. Even though the hand-calibrated and Method 3 confidence intervals did not always 

overlap, the output parameters for each scene were consistently within 7.5 percent relative to 

the hand-based estimates. Although this is not an exhaustive study, the Method 3 approach 

successfully surmounted difficulties (e.g., extraneous road features, shadows, closely spaced 

lane markers) that typically occur in freeway scenes. Thus, we can conclude that at the very 

least, this algorithm holds a great deal of promise for calibrating the roadside cameras for 

the wide variety of orientations we expect them to encounter 
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5 ESTIMATING THE AVERAGE VEHICLE SPEED 

5.1 Introduction 

In Chapter 1, the original problem statement outlined our goal of estimating the 

average vehicle speed for each of the lanes for a section of freeway. We also discussed the 

previous work in tracking vehicles and other objects in image sequences. Traditional 

methods that track objects individually are inadequate for the present task because the 

vehicles often occlude one another as a result the camera perspective, especially during high 

traffic volumes. Instead of estimating the image position of individual vehicles, we now 

present our algorithm, which treats the vehicles like a particle flow problem and estimates 

the average flow speed along each of the lanes of traffic. This approach estimates the 

average speed in a natural way without identifying the positions of individual vehicles.  

Our algorithm assumes that vehicle lane masks have been extracted from the image 

sequence and that the vanishing point coordinate v0 has been estimated. The algorithm can 

be used with a wide range of image sizes, though the spatial resolution is lower at lower 

image resolutions. The vehicles typically move rapidly through the useful range of the 

image, so we require a known sampling frequency of at least 3 frames/second to properly 

track the vehicles.  

We now present the tracking algorithm, its connection to the computer vision 

equations, and the results for several image sequences. 

5.2 Tracking algorithm 

5.2.1 Theoretical model 

As described in Chapter 2, when the road can be modeled as a flat plane and we 

reduce the camera model to only two camera angles, the position along the road has a very 

simple relationship to the vertical position in the image: 
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We found it convenient to define the difference between two vertical positions v1 and v2 as 

follows: 
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In Chapter 2, we showed that if we know the physical distance L = ∆Y’ between two known 

image coordinates va and vb, then the scale factor S’ for the scene can be determined: 
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Thus, to find the physical distance along the road between any two image coordinates v1 and 

v2, we simply calculate ∆Y’ = Lτ12/τL, where τ12 is defined above. Using the same line of 

thinking as that used in Chapter 3 for estimating τL, we now describe the image processing 

steps necessary to estimate the shift τ12 for a lane of traffic directly from the images without 

specifically identifying v1 or v2. This will enable us to calculate the average distance traveled 

by the vehicles between the known frame interval and thereby calculate the average speed 

for the lane of traffic. 

5.2.2 Image processing 

Before we can estimate τ12, we must obtain the features from the moving vehicles. In 

order to avoid including background features (e.g., shadows) that would bias the estimate of 

τ12 towards a zero shift, we subtract the background from the current image as part of our 

process of extracting vehicle features. 

5.2.2.1 The background image 

Not only is the background image a useful presentation tool, but it enables us to 

perform background subtraction to isolate the vehicles. The background image is simply the 

scene without any vehicles present. For large sample sizes (500 or more frames), we may 

estimate the background image as the expected value of the set of frames. Since our system 

continuously receives data, we need not worry about the possibility of a sparse data set. On 

occasion, we must manipulate the histogram of the background image before processing it, 



 181

e.g., the night-time scene in Chapter 4. Having the background image available makes it 

easier (via image subtraction) to determine whether image features belong to the foreground 

or background. 

5.2.2.2 Vehicle feature extraction 

Once we have obtained the background image, the lane masks, and the vanishing 

point estimate v0 from our other algorithms, we can appropriately extract vehicle features 

from each of the images. By properly processing these features in a manner similar to that of 

Chapter 3, we can estimate τ12, the average linear shift along the road. In Chapter 3, we used 

the top-hat image as the basis for our features. In the present case, we apply a vertical 

derivative-of-gaussian convolution kernel to the difference between the background image, 

Ibg, and the ith image frame, Ii, to detect horizontal edges in (Ii - Ibg), i.e., 
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where n ∈ {-3, … , 3} and σ = 1 for 320 X 240 images. We use a value for σ that slightly 

smoothes the image yet preserves the details of all the important edges. We normalize the 

kernel by 255 to uniformly scale the image. Subtracting helps to isolate the features of the 

moving vehicles. We then take the absolute value of the feature image to equally emphasize 

both rising and falling edges. Applying the lane mask yields an image similar to that in 

Figure 101(a). Next, we binarize the image using a threshold of 0.15, which preserves only 

the moderately strong edges, producing a result similar to Figure 101(b). Binarizing the 

signal removes a great deal of noise and sharpens the distinctive features of the vehicles later 

on. Note that we only process the bottom one-third of the image to limit the effects of road 

curvature and because of greater quantization error higher in the image.  

 

Figure 101. a) Horizontal image gradient features found in a lane of uncongested traffic. 
b) Binary edge features remaining after thresholding. 
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Once we have isolated the features for a single lane, we chop off the top and bottom 

five rows to remove the effects of a finite convolution kernel (note the false edges at the top 

and bottom of Figure 101(b)). Next, we generate a one-dimensional signal, S1, by 

horizontally summing the feature image and normalizing each sample by the number of 

pixels in each row of the lane mask. This creates a signal ranging between 0 and 1, since the 

binary image has values of only 0 and 1. Figure 102(a) contains examples of S1 from the 

same lane at two adjacent time steps. 

 

Figure 102. a) Average feature signals S1(t) and S1(t + 1) (nonlinear spatial sampling). b) 
Average feature signals S2(t) and S2(t + 1) (linear spatial sampling). 

 As shown in the two signals of Figure 102(a), there is a reasonably strong correlation 

between time samples of S1. However, the figure also illustrates some of the nonlinear 

spatial distortion for which we must use Equation (43) to compensate. Specifically, the shift 

of the new signal relative to the older sample is much smaller on the right than on the left of 

S1(t), although we acknowledge that the vehicle on the left in S1(t+1) is noticeably more 

compressed than in S1(t). We reassign the spatial sampling points as follows to create a 

linear scaling for S1: 
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In other words, if we resample S1 such that Y’ is sampled linearly, then we obtain a signal 

that is a function of position along the road, e.g., Figure 102(b). If we perform further 

scaling as described in Equation (89), where ∆t is the time between image frames, then the 

shift in the signal is an estimate of the vehicle speed in miles/hour. We resample S1 using 

linear interpolation to create a new signal, S2(r), that has a linear resolution in r of 

0.5 miles/hour. 

5.2.3 Signal processing for speed estimation 

As shown in Figure 102(b), the adjacent time samples S2(r,t) and S2(r, t + 1) exhibit a 

high degree of correlation when properly aligned. In fact, with the proper scaling described 

above, the shift between the two signals is a single estimate of the mean vehicle speed 

between times t and t + 1. Thus, we proceed with calculating the noncircular cross-

covariance function Ct,t+1(τ) of the two sequences of length N as follows: 
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where var(⋅) denotes the spatial variance of each signal. We use the noncircular cross-

covariance function rather than calculating the circular version with the discrete Fourier 

transform because there is no guarantee that the vehicles are equally spaced. This also 

reduces the peak magnitudes that are far from zero because of the natural triangular 

windowing from the noncircular convolution. Continuing with our example from Figure 

102, we obtained a cross-covariance function similar to the signal in Figure 103. The 

negative offset of the peak indicates that the vehicles are traveling up in the image away 

from the camera. From Figure 102, we note that the data based on the binary image typically 

exhibit no noise on the floor of the signal with distinctive triangular and rectangular features 

that often create a strongly peaked cross-covariance function. 
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Figure 103. Cross covariance function for the two signals of  Figure 102(b). The peak occurs at 
-26 MPH. 

Our approach offers many advantages over the state-of-the-art approach to vehicle 

tracking [23] for the task of estimating mean vehicle speed. 1) All available data are 

considered when our algorithm estimates the average speed; the averaging is inherent in the 

method. All other methods, including that of Beymer et al. [23], depend on locating 

individual vehicles. 2) Our method is robust even should some vehicle features disappear 

from frame-to-frame. The work of Beymer et al. [23] will lose the vehicle if its features 

disappear. 3) The normalization factor of Ct,t+1(τ) allows us to set a matching threshold on 

the basis of well-understood signal processing techniques below which we may disregard 

the speed estimate. There are no natural criteria for determining when the approach of 

Beymer et al. [23] has lost a vehicle. 4) The method can handle very large displacements 

between frames, whereas the work of Beymer et al.[23] limits the search to a neighborhood 

around the previous vehicle. 
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We use the location of the maximum peak of the cross-covariance function as an 

estimate of the average speed. Given our experience with several sequences under various 

conditions, we require the maximum peak to exceed 0.5 in order for it to be considered a 

valid estimate.  

5.2.4 Temporal tracking 

The mean speed of each lane constantly changes over time, by small amounts in 

normal conditions and by large amounts when a traffic event occurs. Given the cross-

covariance approach for estimating the mean speed, we can imagine a variety of possibilities 

for dynamically estimating the mean speed. One option is to model the past M cross-

covariance functions as an ensemble. We could then extract the peak from an FIR- or IIR-

filtered version of the ensemble. This requires a moderate amount of memory and a 

moderate amount of complexity. We choose instead to treat each maximum peak of the 

cross-covariance function that exceeds 0.5 as a noisy measurement of the mean speed. We 

then apply a Kalman filter to predict and smooth the data. This approach enables us to take 

advantage of our knowledge of the statistics and state model of the system when we 

encounter very noisy measurements or fail to record a measurement at a given time step. 

Besides its advantages as a well-tested and rigorous technique, the Kalman filter is 

computationally simple and has a very low memory overhead. 

5.2.4.1 Kalman filter recipe 

The classic discrete Kalman filter assumes that we have a state model in which the 

next state vector X(k+1) is a linear combination of the previous state estimate X+(k) plus 

some zero-mean gaussian noise vector u(k), where the noise has a covariance matrix Q (we 

give matrices and vectors in bold). 

 ( ) ( ) ( ) )(1 kkkk uXAX +=+ +  (91) 

A(k) is the state-update matrix that can change with time. The “innovations” or new 

information from the system are often modeled by the noise term u(k). In the discussion 

below, we denote predictions by the superscript - and the same quantities after updates using 

system measurements with the superscript +.  
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We assume that we obtain measurements Y that are linear combinations of the states 

in X plus some zero-mean gaussian noise w(k) having a covariance matrix R. We define M 

as the measurement matrix. 

 ( ) ( ) )(kkk wMXY += +  (92) 

 

In the Kalman filter recipe, we calculate X-(k+1) = A(k)X+(k) on the basis of Equation (91). 

Next, we obtain the covariance matrix P-(k+1) for X-(k+1) by sing the previous covariance 

matrix P+(k) as follows: 

 ( ) ( ) ( ) ( ) QAPAP +=+ +− Tkkkk 1  (93) 

We then calculate the Kalman gain K, which tells us how to optimally (when u(k) and w(k) 

have a known gaussian distribution) incorporate differences between the state prediction 

X-(k+1) and any states Y(k+1) that we were able to measure. 

 ( ) ( )( ) 1
11

−−− +++= RMMPMPK TT kk  (94) 

 ( ) ( ) ( ) ( )( )1111 +−+++=+ −−+ kkkk MXYKXX  (95) 

X+(k+1) is the Kalman filter estimate of X(k+1) given the state model, noise model, and 

measurements of the system. Finally, we obtain our new estimate P+(k+1), the covariance 

for X+(k+1) 

 ( ) ( ) ( )( ) TTkk KRKKMIPKMIP +−+−=+ −+ 11  (96) 

5.2.4.2 State model 

We use a first-order predictive model with a state vector composed of the speed, s, 

and acceleration, a, of the vehicles. We assume we are only able to measure s. Thus, our 

state model is 
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where ∆t is the time step between our measurements. 

5.2.4.3 Advancing the filter 

It is important to note that unless we make a measurement Y that we accept, we 

allow ∆t to increase without advancing the filter. Our acceptance criteria are outlined below. 

This filtering strategy enables us to increase the noise variance to respond rapidly when we 

have not made a measurement for a long time. For example, on occasion the frame-grabber 

may drop frames or an Internet outage may delay or drop the frame transmission. In other 

cases, we may have rejected measurements for a while before finding one that we accept. 

We desire the filter to respond quickly to this new information. 

5.2.4.4 Kalman filter noise parameters 

The choices for the state-update covariance, Q, and measurement covariance matrix, 

R, have always been something of an art form. Recently, researchers [59]  developed a 

theory and procedure for determining optimal values for these parameters based on typical 

measurements Y made by the system. We applied this approach to speed data measured by 

the process above in two cases: free-flowing traffic (60 MPH) and slow to stop-and-go 

conditions (0-30 MPH). In both cases, the component of R representing the measurement 

variance for s was approximately the square of 10 percent of the nominal speed. Thus, we 

choose to let R(k+1) = (0.1⋅s+(k))2, where s+(k) is the Kalman-updated estimate of the speed 

at the previous time step. 

The choice for Q is based on our choice for the variance σa
2 of the acceleration, into 

which we lump all of the innovations of the system (i.e., we assume σs
2 = 0). The details can 

be found in [1]: 
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The choice of σa determines the responsiveness of the system to innovations, i.e., 

measurements that are quite different than the current state. We found that a value of 

σa = 1.0 MPH/s allowed the system to track the acceleration and decelerations of the 
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vehicles while smoothing the overall trajectory. We also note that as ∆t increases, the 

components of Q also increase, resulting in a greater Kalman gain K, and a faster response 

to innovations on the state prediction X-(k+1). 

5.2.4.5 Performing measurements 

Our system must work under a wide variety of traffic conditions. At certain times of 

the day, traffic may be sporadic, and there may be no measurement for the system to make. 

In this case, the cross-covariance function will indicate a speed of 0, especially if there are 

extraneous horizontal lines on the road, e.g., shadows. If this happens, then the system will 

be oscillating between the nominal speed Savg and 0 as it attempts to respond to the input 

measurements. Another problem we can expect is that the cross-covariance function 

maximum peak may be too low, and therefore, the measurement will be invalid. We wish to 

handle these situations in an intelligent and robust fashion. 

There are three types of measurements that we will specifically ignore. As indicated 

previously, we ignore any peak maxima that are less than 0.5. Furthermore, in keeping with 

our choice for R, we ignore any speed estimate that deviates more than 30 percent from the 

most recent Kalman-filtered speed estimate s+(k). The single exception is the regime in 

which the speed drops below 15 MPH, when we accept any speed measurements that 

deviate from s+(k) by 5 MPH or less. We also calculate the energy (i.e., variance) EE2(t+1) 

of S2(r,t+1) and reject the measurement if EE2(t+1) < 2.5 x 10-4, recalling that 

-1 < S2(r,t+1) < 1 because we normalized by the width of the lane mask. This prevents the 

filter from responding to data from weak edges in the current image. 

5.2.4.6 Starting the Kalman filter 

We selected a value for σa that smoothes the output but does not respond very 

rapidly to large changes. This selection, combined with the criteria of Section 5.2.4.5 for 

ignoring certain measurements, can cause the Kalman filter to never get properly started and 

ignore all measurements. To avoid this situation, we analyze 20 seconds’ worth of data, 

collecting all of the cross-covariance lags that have a peak of 0.7 or greater with speed 

estimates ranging from 5-90 MPH. Within this time interval we expect to obtain a 

reasonable sampling of vehicle speeds under even the most sparse conditions. Using a 

threshold of 0.7 that is greater than the typical value of 0.5 adds to our confidence in the data 
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that are collected. After collecting the data for all of the lanes, we classify the speed 

measurements for each lane by using the K-means algorithm with a setting of two clusters. 

We take the cluster mean with the most votes as our estimate of the speed with which to 

initialize the Kalman filter; a tie-breaker goes to the greater speed estimate. If we obtain no 

measurements, we continue to analyze new data in blocks of 20 seconds until our criteria are 

met by at least three samples. 

5.2.4.7 Restarting the Kalman filter 

On occasion, particularly in rapidly changing traffic conditions, the Kalman filter 

may continuously ignore speed measurements because they are out of range of the last value 

s+(k). If the time ∆t since the last accepted measurement exceeds 20 seconds, we examine all 

of the measurement data since the last accepted measurement (which may exceed 

20 seconds). We apply the K-means algorithm to any speed estimates with a cross-

covariance peak of greater than 0.7 and signal energy of greater than 2.5 x 10-4. We take the 

cluster mean with the most votes as our estimate of the speed with which to restart the 

Kalman filter; a tie-breaker goes to the greater speed estimate. If there has been only one or 

fewer such estimates, i.e., the K-means makes little sense, then we use the peak of an IIR-

filtered cross-covariance function Ctotal(τ), which updates after processing every image with 

the following equation: 

 ( ) ( ) ( )τττ ktotaltotal CCC 05.095.0 +=  (99) 

This enables us to track new developments in the mean speed while retaining a 

memory of all past data. This approach also naturally emphasizes the estimates with the 

highest peaks, which we can assume are the most reliable. 

5.3 Tracking results 

To apply our mean vehicle speed estimation algorithm in day-to-day conditions, we 

must have a feel for its performance under a wide variety of conditions. Typical challenges 

it will encounter include bright sunlight with shadows, road glare, light conditions at dusk, 

night-time light conditions, raindrops on the camera lens, sparse traffic, dense traffic, stop-

and-go conditions, curved roads, and both large and small pan angles. We applied the mean 

vehicle speed estimation algorithm to four sequences that, taken together, present most of 
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the challenges our algorithm will face. Figure 94 shows one or more key frames from each 

of the sequences. Our objective in presenting these results is not to offer an exhaustive study 

of the precise behavior of our algorithm. Instead, we hope that by illustrating its robustness 

under a variety of conditions, we can provide a measure of confidence that the algorithm can 

do well in new situations. 

The camera was calibrated using Method 3 for all the sequences, apart from the dark 

scene and the scene with raindrops on the camera lens. The calibration results for the scenes 

of Figure 94 (c-e) are contained in Chapter 4 in more detail. As for the first two scenes, our 

algorithm was unable to find the vanishing point or the vehicle lanes because of the 

raindrops and darkness that obscured the features in the image. In these two cases, we 

calibrated the scenes by hand using the method outlined in Chapter 4. However, we believe 

that our image processing techniques in Chapter 3 are strong enough to locate any features 

that a human observer can identify if we take the time to fully develop an expert system to 

handle the specific cases of raindrops and darkness. We leave this for future research. 
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Figure 104. Sample images from the four scenes to which we applied our tracking algorithm 
(from left-to-right, top-to-bottom). a) Free-flowing daytime traffic scene with 
raindrops on the camera lens and road glare. b) Dark, sparse traffic scene. 
c,d) Sunny, slightly curved scene with shadows and congestion that becomes stop-
and-go. e) Afternoon commuting scene.  

5.3.1 Free-flowing scene with raindrops 

The scene contained in Figure 94(a) is very distorted by the multiple raindrops on the 

camera lens. The images are also challenging for the computer to process because of the 
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strongly curved road and the glare due to the rain. In fact, our standard approach outlined in 

Chapter 3 was unable to successfully analyze the scene and calibrate the camera, so we 

calibrated it by hand using the methods described in Chapter 4. The scene contains free-

flowing traffic, so we expect data in the range of the speed limit, which is 60 MPH.  

Figure 105 contains the raw speed data and the Kalman-filtered mean vehicle speed 

estimates for the four lanes of traffic. The Kalman filter was started successfully, and the 

remainders of the sequences are relatively unremarkable, apart from the sparsity of good 

data and the overall noisiness of the data. It was particularly difficult for our algorithm to get 

reasonable measurements on lane 3 because it was extremely obscured by the raindrops, and 

this is evident in the extra noise of lane 3 relative to the other lanes. Several restarts of lane 1 

are evidenced by the long straight lines of the Kalman filter signal, i.e., t = 60 and t = 100. 

This occurred after 20 seconds of no valid measurements, but the restarts seemed adequate 

to get the system back on track. 

We obtained inductance loop data containing 20-second average speed estimates 

from the same time interval. We also calculated 20-second averages from the output of the 

Kalman filter. Figure 106 compares the two distributions from the inductance loop sensor 

and a comparable computer-vision based sensor for lane 1 (slow) and lane 4 (passing). We 

note that the two distributions have approximately the same mean and rough distribution, 

indicating a certain equivalence between the sensors. This experiment also demonstrates the 

robustness of our method of mean vehicle speed estimation even under extremely adverse 

conditions, i.e., raindrops on the camera lens, road curvature, and road glare. 

 We present this scene before any of the others for an important reason. Because our 

third calibration method—the most functional one—is largely mimicking the process we 

perform by hand, it is reasonable to question the legitimacy of our camera calibration 

results, particularly given the moderate variability in the lane marker interval. However, this 

experiment demonstrates that the lane markers contain enough calibration information to 

place the computer vision results essentially at the center of the distribution of the 

inductance loop data. This adds a great deal of credibility to the results we present later in 

which inductance loop data were not necessarily available, but we can see that our algorithm 

properly identified the lane marker intervals. We also note that these results are also 

consistent with our general experience that our vehicle speed estimation algorithm is less 
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sensitive to image and signal processing errors than are our algorithms for analyzing the 

scene and calibrating the camera. 

 

Figure 105. Fine-resolution tracking results for lanes 1-4 (top to bottom) of the scene of Figure 
94(c). Lane 1 is on the left and lane 4 is on the right in the scene. The Kalman filter 
output is solid, and the dots are the speed estimates satisfying the energy and cross-
covariance thresholds. 
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Figure 106. Histograms of speed estimates. a) Inductance loop sensor, lane 1. b) Computer 
vision sensor, lane 1. c) Inductance loop sensor, lane 4. d) Computer vision sensor, 
lane 4. 
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5.3.2 Dark scene with very sparse traffic 

If we want to apply our speed estimation approach in a universal fashion, we will 

also want to know how it performs in dark conditions. In some cases, lamps are present to 

illuminate the freeway, but we chose a sequence where they were absent. The only 

illumination was from the taillights of the vehicles traveling away from the camera; these 

are not nearly as bright as headlights. The area of interest comprises the lanes on the right-

hand side of the road that exit the left half of the bottom of the image. We also want to see 

how the algorithm and Kalman filter behave under sparse traffic conditions—the scene in 

Figure 94 (b) meets both of these criteria. However, the scene is so dark that our scene 

analysis and camera calibration algorithms from Chapter 3 cannot calibrate the camera or 

identify the vehicle lanes. Thus, like the previous sequence, we calibrated the scene and 

identified the lane masks by hand.  

Figure 107 contains the tracking results for the scene in Figure 94(b). Each of the 

Kalman filters started successfully, though we had to wait for 40 seconds to start the one for 

lane 4. Each Kalman filter had to be restarted more than once because of the sparsity of the 

data. Figure 108 contains histograms comparing the inductance loops and the 20-second 

average output from the Kalman filter for lanes 2 and 3. We note that the distributions are 

quite similar, strengthening our case for using the lane marker intervals as a calibration 

method. 

The ability of our algorithms to estimate the mean speed in a very dark scene is quite 

encouraging. It is reasonable to assume that our algorithms will perform even better in 

scenes where street lamps are present. The calibration algorithms presented in Chapter 3 

may even be suitable in certain cases when street lamps are present, yielding a sensor 

capable of robustly processing any weather or lighting conditions. 
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Figure 107. Fine-resolution tracking results for the scene of Figure 94(b). Lane 1 is on the left 
and lane 4 is on the right. The Kalman filter output is solid, and the dots are the 
speed estimates satisfying the energy and cross-covariance thresholds. 
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Figure 108. Histograms of speed estimates. a) Inductance loop sensor, lane 1. b) Computer 
vision sensor, lane 1. c) Inductance loop sensor, lane 4. d) Computer vision sensor, 
lane 4. 
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5.3.3 Congested scene with shadows 

The scene in Figure 94(c,d) is difficult to analyze because the mix of shadows and 

sunshine on the road creates many horizontal edges in the image that could confuse the 

speed estimation algorithm. The images were captured as traffic became heavy in the 

afternoon commute at about 4:00 PM, and the speed is highly dynamic, creating difficulties 

for the Kalman filter. High density traffic is evident in the distance, and during the 3-minute 

segment, the stop-and-go shockwave reaches the viewing area of the camera and the 

vehicles begin backing up, as shown in Figure 94(d). Figure 109 contains the mean speed 

estimates from our algorithm and the Kalman-filtered mean vehicle speed estimates for the 

main four lanes of traffic. The unfiltered start-up noise in the first 20 seconds illustrates the 

challenges addressed in Section 5.2.4.6. We also note the inability of the Kalman filter to 

track the rapidly changing data in lane 4 at t = 30, 80, and 120 seconds. This shows that we 

ought to increase the value of σa used to calculate the Kalman gain so the filter is more 

responsive to the input data. However, it is interesting to note that the data from our mean 

speed estimator are so clear that the error in the Kalman filter signal is quite visible. This 

indicates that the mean speed estimator is performing quite well under these conditions. 

As far as the traffic patterns are concerned, we note that the rightmost lane 

experiences the stopped-traffic shockwave first, which reaches the other lanes shortly 

thereafter in order from lane 4 to lane 1. It is encouraging to note that the left-hand passing 

lane shows the most free flow of traffic, as we would expect. Visually comparing the speed 

estimate with the image sequence demonstrates it to be essentially a perfect representation 

from a subjective perspective. 

Although inductance loop data are available, we cannot easily compare these data 

with our estimates because the 20-second average time resolution from the inductance loop 

sensors is inappropriate in the dynamic conditions of this scene. 
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Figure 109. Fine-resolution tracking results for the scene of Figure 94(b,c). Lane 1 is on the left 
and lane 4 is on the right. 
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5.3.4 Afternoon commuting scene with medium density 

The scene contained in Figure 94(c) is not particularly notable, apart from the low 

pan angle. Examining the tracking results in Figure 110 shows that it does a reasonable job 

of tracking the traffic dynamics, especially after the start-up transient. The only spot where 

the data change too rapidly for the Kalman filter to track is in lane 4 at t = 80. The linear 

portions of lane 1 exist because there are no vehicles present.  

We note that most of the data collected from the mean speed estimate algorithm are 

within range of the Kalman filter output signal, indicating that it is particularly reliable in 

this scene. The decreased variability of the mean speed estimate when many vehicles are 

present is an interesting and counter-intuitive property of the mean speed estimation 

algorithm. However, it is clear that the peak in the cross-covariance function is stronger and 

more narrow when many features are present in the two signals that are compared. Future 

work could examine how to take advantage of this property when traffic density is heavy. 
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Figure 110. Fine-resolution tracking results for the scene of Figure 94(c). Lane 1 is on the left 
and lane 4 is on the right. 
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5.4 Error analysis 

In order to estimate the vehicle speed, we applied the formula 

 ( ) ( ) ( )kSkLks
L

1212 ττ
τ

′==  (100) 

to estimate the mean vehicle speed for a given lane at time k. The process described in this 

chapter assumed it had been given the scale factor S’. Multiple sources of error exist that 

contribute to the output uncertainty of s(k). Simply starting with the terms of Equation (100), 

we note that S’ has a given uncertainty that was estimated in chapters 3 and 4. S’ itself is 

composed of L and τL, both of which have uncertainties associated with them, i.e., the 

physical lane stripe interval variation and the measurement errors of our image processing. 

This chapter devoted itself to estimating τ12(k), assuming a constant value of S’ has 

been provided. Thus, the variability of the data presented in this chapter is due entirely to 

τ12(k). Several sources contribute to this variability. First of all, the vehicles themselves have 

a speed distribution, as shown in many of the figures above. Even if we performed perfect 

image processing and camera calibration, we would expect temporal variability in the mean 

vehicle speed. However, our speed estimation process is not perfect, as shown by the many 

data points that do not necessarily lie near the Kalman-filtered output signal. If we simply 

took the data as a whole, it would indeed be a fairly noisy process. However, the Kalman 

filter helps us to select which measurements are appropriate to incorporate into our model. 

At the end, it also gives us P+(k+1), the covariance for X+(k+1), which is our mean vehicle 

speed estimate at k+1. In our one-variable case, P+(k+1) is simply the variance of our 

estimate at the current time step. This variance becomes a very convenient way of describing 

the noise in the estimate τ12(k), given our state-space model in Equation (97). However, we 

also acknowledge that its steady-state value is ultimately determined by the input noise 

model. 

As we might expect from intuition, we are able to reduce the variance of our mean 

speed estimate by averaging over short time periods. From statistics, we know that the 

variance of the estimate of a normally distributed variable decreases according to (Nsamp)-1/2, 

where Nsamp is the number of samples used in the average. Thus, we expect that when our 

process is able to perform many measurements, it can significantly reduce the variance of 
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the mean speed estimate arising from the temporal term τ12(k). In other words, we can trade 

time resolution for precision in our mean vehicle speed estimate. 

Regardless of how much we reduce the variability due to τ12(k), we cannot escape 

the bias introduced by errors in S’. However, according to our estimates in Chapter 4, the 95 

percent confidence intervals for S’ for the scenes of  Figure 94(c) and Figure 94(e) have a 

fairly narrow range on the order of 0.6 percent, though they are biased by about 6.8 percent 

and 5.5 percent, respectively, as compared to the results of our hand calibration. 

For the scenes in Figure 94(a), (b), (c-d), and (e), the average standard deviation of 

the output X+ were, respectively, 3.5, 3.0, 2.0, and 2.0 MPH over the course of the 

sequences. Lane 3 in the raindrops scene had an average standard deviation of 3.75 MPH, so 

we can offer a worst-case 95 percent confidence interval of about ±7.5 MPH for free-

flowing traffic and ±4.0 MPH for congested traffic. If we assume a worst-case bias of 7.5 

percent, which is very reasonable in our experience, then we can offer 95 percent confidence 

intervals of ±6.25 MPH at congested levels (30 MPH) or ±12 MPH in free-flowing traffic 

(60 MPH). These worst-case values amount to about ±20 percent of the nominal value.  

While these values seem quite large, we note that this interval describes the mean speed 

estimate at a 0.2-second time resolution. If we perform averaging with 100 samples over 

20 seconds similar to the inductance loops, we can reduce the variability in τ12(k) by a factor 

of 10, leaving the calibration bias as the major source of error. 

5.5 Summary 

Rather than tracking vehicles individually, we describe how to track the flow of their 

features through the image. We showe how the offset of the features between frames has a 

direct connection to the three-dimensional distance the vehicles travel along the road. By 

applying appropriate thresholds on the signal energy and minimum cross-covariance, we are 

able to estimate the mean vehicle speed at a very high time resolution. Finally, we apply a 

Kalman filter to smooth the output signal.  

Our experiments showed that our algorithms perform well under a wide variety of 

real-world conditions. We showed that in the case of free-flowing traffic, the distribution of 

the 20-second average speed is quite similar to inductance loop data. When traffic becomes 

congested, the algorithms perform even better, with lower measurement variance. 
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Occasionally the traffic will change too rapidly for the Kalman filter to follow. However, we 

provide reasonable criteria with which to restart the Kalman filter to provide a robust 

solution. In summary, the experiments support the proposition that our speed estimation 

algorithm can serve as the basis for a sensor with fine time resolution (i.e., congested 

conditions) and a sensor with coarse time resolution (e.g., 20-second averages similar to the 

inductance loops). 
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6 CONCLUSIONS 

6.1 Summary of our work 

This document began by reviewing the literature, which contains a great deal of 

work in the areas of camera calibration and vehicle tracking. However, few of the efforts 

have been precisely directed at dynamically calibrating cameras that view road scenes. By a 

similar token, most vehicle trackers focus on individual vehicles for counting and 

classification rather than tackling the problem of mean speed estimation. 

To develop our context, we present analytical models of the camera and the scene 

that ignores camera roll, road tilt, and road slope. We developed three methods of calibrating 

the camera in terms of features that are available for measurement in the images, together 

with information about the scene known a priori. We presented results from a Monte-Carlo 

simulation of errors for each calibration method illustrating the operational limits for each 

calibration method. We also provide plots illustrating the effects of nonzero road slope and 

tilt on each calibration method. 

 We found that in the absence of features separated by a known distance, it is possible 

to estimate the camera parameters and its position using the vanishing points for lines that 

are parallel and perpendicular to the road. To use this method, however, the camera must be 

properly aimed, and the road slope and tilt must be nearly zero. The second calibration 

method that we proposed assumes that the camera-to-road distance is known. Because this 

method is quite sensitive to errors in this distance and any slope or tilt to the road, its 

applicability is limited to a fairly narrow range. However, our third camera calibration 

method, which utilizes known distances along the road is fairly immune to the slope or tilt of 

the road. On the basis of our analysis of its sensitivity to errors and range of operation, we 

recommend this method as a sound approach for calibrating the WSDOT traffic cameras 

under the wide variety of focal lengths and orientations that they will encounter (assuming 

that lane markers are visible in the images). 

After the development of our fundamental model for the camera and road scene, we 

describe algorithms for automatically extracting the necessary measurements from digital 

images to calibrate the camera. We generate the background image, average top-hat image, 

and activity map as feature images for these algorithms. The activity map enables us to 
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estimate the approximate vanishing point from which we can further analyze the activity 

map and extract the lane boundaries of the road. We also describe a raindrop and obstacle 

detection algorithm to disqualify certain scenes from being processed, since the camera 

cannot be calibrated. This yields a set of algorithms that is robust for any conditions a traffic 

camera might encounter during the day. 

Assuming that the lane boundaries and rough vanishing point have been estimated, 

we describe how to precisely locate the road boundaries and vanishing point using the 

average top-hat image. Our knowledge of the activity region of the vehicles also enabled us 

to develop a method for estimating the vanishing point for the lines perpendicular to the road 

from the vehicles themselves. Finally, we describe how to use the knowledge of the 

vanishing point and road lanes to estimate the interval between lane markers by using the 

autocovariance signal processing technique. 

We tested our scene analysis and measurement algorithms on four scenes to 

determine the performance of our camera calibration methods. We obtained 95 percent 

confidence intervals for a hand-calibrated reference using many of the equations from one of 

the camera calibration techniques. Applying our three automatic methods of camera 

calibration to all four scenes (where appropriate) gave us confidence intervals for the camera 

parameters f, φ, and θ, the camera position d, and the overall scale factor S’, which we 

compared to the hand-calibrated reference. The results supported our hypotheses about the 

sensitivity and limits of operation that we developed for each method on the basis of our 

Monte-Carlo simulations of the theoretical models. 

Method 1 performed well on one close-up scene but not the other, where the 

reduced-order camera model could not adequately handle the levels of slope and tilt in the 

road. The second method also failed on the far-field scene containing the sloped and tilted 

road. Although it succeeded on the other far-field scene, the resulting confidence intervals 

were quite large, as anticipated by the simulations in Chapter 2. Of the three methods, 

Method 3 was the only one we successfully applied to all four scenes. Even though the 

hand-calibrated and Method 3 confidence intervals did not always overlap, the output 

parameters for each scene were consistently within 7.5 percent relative to the hand-based 

estimates. We concluded that because this approach successfully surmounted many 

difficulties (e.g., extraneous road features, shadows, closely-spaced lane markers) that 
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typically occur in freeway scenes, it has the potential to be able to calibrate the roadside 

cameras under any reasonable daytime or dusk conditions. 

In Chapter 5, we present our algorithm for estimating mean vehicle speed in a given 

lane of traffic by estimating the flow of edge features between frames with the cross-

covariance function. Our method is intimately connected to the camera calibration method 

based on the lane marker interval. In essence, by removing the nonlinearity from the 

perspective projection, we only need to take the ratio of the distance traveled along the road 

to the distance between lane markers and scale it by the known lane marker interval to 

obtain a speed estimate. We also point out that the method naturally estimates the mean 

vehicle speed for all vehicles in a lane of traffic without identifying any particular vehicle. 

We obtained a mean speed estimate signal with high time resolution to which we applied a 

Kalman filter for smoothing. 

Although they remained somewhat noisy, the mean speed estimate signals possessed 

a very strong correlation with subjective observations of the dynamic traffic patterns in 

congested and stop-and-go traffic. We found that the mean speed estimate had less 

variability at lower speeds than in free-flowing conditions. It also performed much better 

under congestion than in sparse traffic because more image features were available for 

tracking. If we include the camera calibration bias, we assessed our algorithm with (at a 

maximum) a 95 percent confidence interval of 20 percent relative error in the mean speed 

estimate at 0.2-second time resolution. Temporal averaging over 20 seconds greatly reduces 

this variability, however, leaving the camera calibration bias as the major source of error, for 

a total maximum error of about 8.5 percent, or 5 MPH at 60 MPH nominal speeds. 

In summary, our experiments under many challenging conditions support the 

hypothesis that our image processing algorithms can generally perform well in real-world 

conditions. Of course, this assumes that we ensure the scene conditions are appropriate for 

whichever camera calibration method that we choose to use. We showed that in the case of 

free-flowing traffic, the distribution of the 20-second average speed is quite similar to 

inductance loop data. Thus, the experiments support the proposition that our algorithms can 

serve as the basis for a sensor with fine time resolution (i.e., congested conditions) and a 

sensor with coarse time resolution (e.g., 20-second averages similar to the inductance loops). 
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6.2 Contribution of our work to the literature 

Having summarized our work, we now highlight the portions that are particularly 

significant contributions beyond the work of others. For starters, while they are not very 

complex, the camera and scene model are the first of which we are aware that explicitly 

model the road boundaries and lane markers for a road scene in terms of computer vision 

equations. As a direct consequence of our modeling approach, we have contributed three 

novel and unique calibration approaches based on different assumed quantities and 

measurements that can be made from the images. We gave this contribution practical import 

by our sensitivity analysis that described the range of usefulness for each of the calibration 

methods, including the effects of road tilt and slope. Such an analysis has yet to be 

performed in the literature for any system, whether it is manually or automatically 

calibrated. 

 We have also contributed significantly to the area of road scene analysis. Our 

activity map composed from the average frame difference extended the binary activity 

region approaches by Stewart et al. [40] and Tseng et al. [56] and the accumulation of binary 

change-detection images [57] to new levels of functionality. The activity map enabled us to 

estimate the vanishing point of the road to a fair degree of accuracy using vehicles alone, 

without considering cues from the static portion of the scene. It also provided us with the 

features that we used to extract the lane boundaries for each lane of traffic for reasonable 

values of the pan angle θ, i.e., |θ| < 20°. To our knowledge, only two other approaches exist 

for solving this problem [40][41]. One [40] applies morphology to a binary version of the 

activity map to extract very rough lane boundaries in scenes where the pan angle is nearly 

zero. This makes it irrelevant to the current problem where the pan angle often exceeds 5 

degrees. Another detractor is the method’s inability to provide a reasonable estimate of the 

vanishing point. The other [41] relies on static line features on the road, which may vary 

considerably from road to road. Such an edge-based approach is likely to fail under real-

world lighting and weather conditions. In distinction, the ingenuity of our development of 

the activity map is that it offers the possibility of feature extraction, vanishing point 

estimation, and lane boundary extraction even in the face of adverse weather and lighting 

conditions, as long as the vehicles are somewhat visible.  
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The activity map also formed the basis for our algorithm to detect raindrops or other 

obstacles such as highway overpasses that obscure the road from the camera. This is another 

important contribution that is critical for a system to behave robustly in real-world 

applications. To our knowledge, no other research has bothered to detect such untoward 

conditions, probably because nearly all approaches assume a static camera without rainy 

conditions. 

In addition to the activity map, we introduced the morphological top-hat image as an 

important contributor to the set of features with which we can analyze the traffic scene. This 

morphological operator is well known but has not been used to process traffic images, to our 

knowledge. Only the average top-hat image for a video sequence lane marker features that 

were strong enough to allow us to estimate the lane marker interval. Although the 

autocovariance function is a classic method of estimating the periodicity of a signal, it has 

certainly never been tried in the traffic monitoring literature for measuring vehicle 

displacements. The autocovariance approach holds other possibilities for traffic scene 

analysis, depending on the camera position and orientation, e.g., applying the method in the 

orthogonal direction to estimate the width of the road. Thus, our successful attempt at 

extracting the lane marker intervals from the images and using them to calibrate the camera 

is yet another novel and fruitful contribution of this work. 

When determining features with which to perform camera calibration, nearly all of 

the approaches in the literature rely exclusively on static features from the scene. The lone 

exception is the work by Zhu et al. [19], in which the authors calibrated the system by 

sending a vehicle of known dimensions through the scene. Of course, this is impractical for 

a large-scale solution, not to mention the need for recalibration each time the operator moves 

the camera. However, we showed that with a properly oriented camera and road without any 

slope or tilt, our algorithm could extract important information from the vehicles themselves 

regarding the vanishing point for the set of lines that are perpendicular to the road in 3-D. 

This could eliminate the need for a hand-calibration tool for the detection and classification 

work done by Gupte et al. [22]. 

 Vehicle tracking has long been the focus of a great deal of research, as shown by the 

plethora of references in our literature review of Chapter 1. A primary reason for this fact is 

that perfect vehicle tracking and extraction would immediately provide perfect vehicle speed 
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estimates and vehicle counts. It would also give vehicle classification algorithms the best 

chance of success. However, our speed estimation algorithm focuses solely on estimating 

the mean vehicle speed without necessitating the extraction of individual vehicles. By 

contributing the cross-covariance method of speed estimation, we have solved several 

subproblems. First, we have obviated the problem of occlusion; the algorithm works even 

better when the image contains more vehicle features. Second, we have shown how to 

naturally incorporate the imaging information from all vehicles into the speed estimate. 

Third, the cross-covariance method carries with it all the weight of signal processing rigor, 

including an indication of our confidence in the speed estimate, i.e., the cross-covariance 

peak height that ranges from zero to one. Fourth, by averaging the features across the lane 

masks, we greatly simplify the tracking challenge to a one-dimensional problem while 

adding robustness in the averaging process. This means that the tracking portion of the 

algorithm is computationally very inexpensive, and a real-time implementation is well 

within reach. Fifth, unlike inductance loops, which measure time mean speed, our algorithm 

inherently measures space mean speed, which has desirable theoretical properties [58]. The 

differences between the two types of mean speed are accentuated at lower speeds, exactly 

where our algorithms perform best. Finally, our fresh approach to speed estimation also has 

implications for the estimation of other fundamental traffic parameters that will be discussed 

below. 

6.3 Computational complexity and implementation 

Because we developed these algorithms exclusively in the Matlab environment, it is 

difficult to assess their computational requirements with complete accuracy. The following 

represents our best attempt to indicate the algorithms from which we should expect real-time 

performance. We expect the feature images for the scene analysis and camera calibration to 

operate at the 640 X 480 pixel resolution at 1-2 Hz, and the images for speed estimation to 

operate at 320 X 240 pixel resolution at 5 Hz. We can reasonably assume that we can 

request gray-scale, JPEG-compressed images rather than color ones; this will somewhat 

shorten the processing time. 
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6.3.1 Feature extraction 

Generating the primary feature images should take little overhead, and this could 

even operate as a background process. Specifically, we must update accumulators for the 

average image, the average top-hat image, and the average frame-difference. Besides a lot of 

amount of memory, this involves three image additions, two image subtractions, one 

morphological dilation, and one morphological erosion. A computer can perform each of 

these operations in-place. We can either apply an IIR filter with an update factor of about 

0.005 or 0.001, or else perform conventional averaging. The latter will require many fewer 

multiplication operations, whether they are fixed or floating-point.  

We note that because we calculate the frame difference in order to estimate the level 

of image activity, we do not require a specific sampling rate. In fact, 1 Hz or 0.5 Hz would 

be perfectly satisfactory if the feature generation were part of a background process. 

Furthermore, unless we know the camera is zoomed in or has a large down-angle, we can 

simply calculate the features in the bottom half of the image, which will cut memory and 

processing requirements in half. 

The algorithm for estimating u1 could also be performed as a background process, if 

one decided to implement the secondary camera calibration methods we proposed. For each 

input frame, the computer must perform 13 X 1 and 1 X 13 convolutions, an image division, 

and calculate the arctangent of the image, all in the effort to obtain the image gradient. The 

computer must also perform three morphological dilations with a 7 X 2 kernel, one dilation 

with a 20 X 1 kernel, one morphological skeletonization, one connected components 

analysis, three thresholdings, seven logical AND’s, two logical NOT’s, several image 

searches for the coordinates of nonzero pixels, and a Hough-like accumulation for nonzero 

pixels in a very sparse binary image. This algorithm requires the computer to process the 

entire image for each of these operations. 

Finally, we will wish to periodically analyze the past history of the Kalman filter to 

optimally select the covariance matrices using the algorithm of Bell [59]. This can also be 

performed in the background, so its complexity is not of great importance. 

6.3.2 Scene analysis 

After obtaining a sufficient number of frames to estimate the feature images, i.e., 

1000 or more, the computer must perform the most complex processing required for our 
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algorithm. However, since we only do these operations once, the computational complexity 

is not very important. The operations include the Canny edge detector and the Hough 

transform for estimating the vanishing point from the activity map. Extracting the lane 

masks from the activity map involves one bilinear image sampling and some one-

dimensional signal processing that is computationally very inexpensive. Precisely locating 

the road boundaries and vanishing point involves one bilinear image sampling to generate 

the initial estimates. However, the search process is computationally expensive. A typical 

search involved two passes, the first with 251 function evaluations, and the second with 119 

functional evaluations. Each function evaluation involves bilinear sampling of the pixels 

along two different lines in the image. Of course, the search algorithm overhead is also 

nontrivial. To estimate the confidence intervals for the parameters found required eight 

different searches, i.e., two for each parameter we located; this expense is optional. Each of 

these searches typically involved ten functional evaluations of the bilinear line pixel 

sampling. Typically, we could expect to process only the bottom half of all of these images. 

Analyzing the scene for raindrops or other obstacles involves one bilinear image 

sampling and some one-dimensional signal processing. We anticipate that this set of 

algorithms could be automatically applied every 10-15 minutes, to either refine our 

calibration estimates or replace them. This would eliminate the need to determine whether or 

not the scene requires recalibration. 

Estimating the lane marker interval requires one image maximum, two image 

multiplications, one image exponential, a bilinear resampling of the image with 3-4x 

upsampling, one morphological dilation with a 5 X 25 pixel (approximately) kernel, and 

calculation of the covariance function for all columns in the upsampled image. Again, we 

note that the computer performs all of these computationally expensive operations only once 

per scene or perhaps every 10-20 minutes. 

6.3.3 Mean vehicle speed estimation 

When estimating the mean vehicle speed, we only process the bottom one-third of a 

320 X 240 image, which contains many fewer pixels than any of the images used in the 

operations described above. This estimation process requires one image convolution, several 

image thresholdings, several image AND’s, and a bunch of one-dimensional signal 

processing that should be computationally inexpensive. After a speed estimate has been 
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obtained, the Kalman filtering process is quite inexpensive. Depending on the size of the 

history buffer for past signals, it may require the same amount of memory that an image 

would occupy. 

6.3.4 Summary 

The computational requirements for our algorithms should not prove prohibitive for 

implemention in a real-time system, particularly at the low frame rates the data lines can 

support. While the set of algorithms contains many nuances and areas of complexity, they 

build upon standard image and signal processing techniques for which optimal 

implementations are likely available in a library. Thus, the development effort should not 

prove overly burdensome, and the implementation should perform at a near-optimal level. 

6.4 Applications 

The algorithms described to this point perform best under certain assumptions for the 

task of average vehicle speed estimation. Assuming we use the recommended camera 

calibration method, these include daytime or dusk light conditions, a small pan angle 

(θ ∈ [0°,20°] degrees), a small down angle (φ ∈ [0°,12°]), a camera height of 30 feet or 

more, and a relatively low focal length so that many cars are in view. We expect that the 

vehicle lanes will generally exit the bottom of the image. We also assume that the camera is 

positioned and oriented in such a way that it can get multiple samples of a vehicle as it 

travels through the range of the image. Camera poses with a large down angle are unusable 

because they can only capture a couple samples at the frame rate of 5 Hz before a vehicle 

has already traveled through the image. If overhead freeway lamps are present as an external 

light source besides the vehicle headlights, our algorithms should also be able to function at 

night as is or with some slight modifications. Since we recommend using the lane marker 

intervals to calibrate the camera, we do not anticipate road curvature restricting the 

application of our algorithms to vehicle speed estimation. Of course, we offer the raindrop 

and obstacle detection algorithms to label bad data or alert the operator that the camera must 

be repositioned so that a sign or overpass does not obscure the road. As for detecting when 

the camera should be recalibrated, we recommend either the algorithm by Pumrin and 

Dailey [57] or simply recalibrating every few minutes using the background process 

described in Section 6.3. 
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Many of our scene analysis algorithms should prove useful when performing other 

tasks involving traffic monitoring or vehicle tracking. For example, extracting the lane 

masks from the road greatly constrains the tracking problem and should prove advantageous 

for vehicle tracking algorithms. As mentioned before, our method of estimating u1 from the 

vehicle lines should eliminate the need for a camera calibration tool in some cases, e.g., see 

Gupte et al. [22]. Our raindrop/obstacle detector should also prove useful in making other 

traffic monitoring systems more robust.  

 Under the proper conditions, our camera calibration Method 1 involving 

perpendicular and parallel line extraction is worth trying in applications such as vehicle 

navigation in corridors. Researchers [60] have already used similar techniques to solve such 

a problem, but they leveraged the pre-existing rectangular pattern present on office ceilings. 

In our framework, since the system produces four measurements (slope and intercept for two 

parallel lines on the ground plane), it could obtain the focal length, lateral position, tilt angle, 

and pan angle by viewing the corridor itself, assuming a fixed, known camera height and 

corridor width. Such an approach would be particularly tenable if many estimates could be 

continuously gathered to reduce the variability of the estimate. Using our approach in this 

situation could either reduce the number of cameras on the vehicle or allow it to focus its 

attention forward and downward rather than regularly pausing to gaze at the ceiling. 

 Airport surface surveillance [61][62][63] represents another transportation problem 

that might benefit from some or all of the camera calibration and tracking techniques 

presented here. In brief, the Federal Aviation Administration (FAA) has begun working with 

industry and academia to meet the needs of large airports to run more efficiently. One key to 

these improvements involves providing air traffic controllers with precise knowledge of the 

position of every aircraft and surface vehicle. In an evaluation of airport surface surveillance 

technologies [63], employees of the Rannoch Corporation (the primary industry partner of 

the FAA in this venture) included infrared cameras used to measure vehicle position as an 

essential part of their proposed surveillance solution. Infrared cameras prove advantageous 

over traditional visible-spectrum cameras in the stormy or nighttime conditions often present 

at major airline hubs. Since the cameras must locate vehicles with fairly high accuracy, they 

also require reasonably accurate calibration. Although painting parallel lines visible in the 

infrared spectrum all over the airport surface might prove impractical for calibrating roving 
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cameras, the methods presented here might prove useful when calibrating a fixed camera to 

avoid the expense of a surveying crew. Depending on the camera perspective, certain 

aspects of the tracking techniques presented here might apply, as well as the 2-D to 3-D 

equations due to Lai and Yung that enable 3-D tracking on a ground plane.  

Video surveillance of people could also benefit from the self-calibration methods 

described above. For example, Jaynes [64] used the parallel and perpendicular structure in a 

scene to calibrate a camera. In fact, he developed a multi-camera system capable of 

extracting the trajectory of people as they move through a surveillance area. However, he 

followed Haralick’s analysis of a rectangle in 3-D [65] to obtain the pose of the camera, 

which needlessly assumes knowledge of the focal length. Bradshaw, Reid, and Murray [66] 

spent a great deal of effort developing a computer vision system with complex system 

dynamics capable of detecting and actively tracking an object on a ground plane in simple 

scenes and extracting its 3-D trajectory. However, they assumed that four points or four 

lines lie within view of the camera at all times whereby the system can calibrate itself and 

thereby identify the object’s real-world location. Clearly, both these systems could benefit 

from the methods described above that appreciably reduce the information required to 

dynamically calibrate the camera. In fact, from this brief survey, one can imagine a variety 

of surveillance applications for actively tracking vehicles, equipment, and people at delivery 

centers, in parking lots, outside building entrances, or inside warehouses.  

The strongest contribution of our work is the mean vehicle speed estimation. It does 

an excellent job at estimating the mean speed of a collection of objects moving in a 

constrained fashion through an image, i.e., objects with an exponentially distributed arrival 

time and normally distributed speed. Situations that might benefit include assembly line 

processes and trains. However, the true power of our approach is obvious when we consider 

nonlinear motion for which we sample the image in a special way. In particular, angular 

velocity is not particularly easy to track using a camera (particularly at low frame rates) but 

could be very amenable to a modified version of our algorithm if the path of motion could 

be estimated by a technique like our activity map. 

 In summary, while our algorithms are most directly applicable to traffic monitoring, 

they may very well prove useful in other applications as well. 
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6.5 Future work 

As with any endeavor, there remains work that would enhance our algorithms, as 

well as new research directions that could prove fruitful. One of the biggest needs is for our 

algorithms to be implemented in a real-time system to characterize their performance under 

various conditions. Specifically, we would be interested in the system’s performance in free-

flowing, congested, and stop-and-go situations. This would allow us to determine realistic 

values for the time resolution of the output and reveal any weaknesses in these situations. It 

would probably require fairly tight synchronization between inductance loops or even laser 

range pointers to obtain accurate reference data. Furthermore, research should also 

undertake the challenge of determining how rain on the ground, dusk lighting conditions, 

and extremely bright sunlight statistically affect the tracking accuracy, if at all.  

In addition to characterizing our algorithms’ performance in difficult conditions, we 

believe they can also be enhanced to the point where they can operate reliably in the dark 

and even when raindrops are on the camera lens. We believe that if a human being can hand-

calibrate the scene and draw lane masks, then we should be able to design an algorithm to 

perform the same task. The scene analysis relies heavily on the quality of the feature images. 

Future research can look into unsharp masking, the amplification of high frequencies, 

nonlinear diffusion, and other techniques to enhance the average top-hat image in dark 

scenes. In addition, it might be useful to accumulate the moving edges in the activity map 

under dark conditions rather than the frame difference because the moving edges will 

probably give a stronger response relative to the background than will the moving pixels 

themselves. Because we can distinguish dark scenes and raindrop scenes from normal ones 

(via histogram analysis and our rain detector, respectively), future research can develop 

specialized algorithms to build an expert-style system to handle all the different cases. 

In the current work, we used the RGB average to do our image processing, i.e., the V 

component of the HSV color space. However, researchers [67] have recently shown that the 

Y component in the YCbCr color space is most effective at distinguishing the foreground, 

shadows, and objects when traffic is monitored. While this may not specifically apply to our 

feature images (i.e., the activity map and the top-hat image), it would be useful to 

quantitatively evaluate the performance of these two color spaces (at a minimum). 
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The decreased performance of the activity map as the pan angle θ increases is a 

somewhat disappointing limitation of our system, though it is not insurmountable. This 

limitation is due to the nonzero vehicle heights that overlap the adjacent lanes. It would also 

be useful to determine whether this limitation impinges on the practical usefulness of the 

algorithm, and if so, how to overcome it. 

As illustrated by their heavy application throughout our algorithms, the 

autocovariance and cross-covariance functions are extremely useful. Although we leveraged 

these methods well in analyzing the vertical portion of the road (after removing the 

perspective effects), we failed to apply them to the horizontal portion of the road. This 

would have provided us with a simple means of estimating the lane widths and could 

constrain our search for the lane markers. Furthermore, we note that the autocovariance 

functions for adjacent columns in the lane marker images are very similar, whereas those for 

the rest of the road are highly variable. This would be another useful criterion to use when 

identifying image columns containing the lane markers. 

As we have emphasized previously, one of the strengths of our mean speed 

estimation algorithm is that it only attempts to estimate one parameter: mean vehicle speed. 

As such, it is able to integrate information throughout the image in a very natural way. One 

of the other great applications for vehicle tracking is vehicle counting. Although we 

fundamentally avoid identifying individual vehicles, we hypothesize that we can derive 

parameters that are just as useful as counting the number of vehicles contained in an area of 

the image. Specifically, we propose to calculate the autocovariance function of each of the 

signals used to calculate the cross-covariance function for a lane of traffic. The first peak in 

the autocovariance function should give us an idea of the average spacing between vehicles, 

which would lead to estimates of traffic occupancy and density. The binary image obtained 

by thresholding the edge features could prove particularly useful, since we anticipate that 

any blank spots in the data would aid the specificity of this method. 

In summary, we have established a useful set of algorithms for performing traffic 

monitoring, including a camera model, a method for camera calibration, methods of 

generating scene features, and several creative uses for the auto- and cross-covariance 

functions. However, many more opportunities exist to enhance the performance of the 

proposed algorithms or to apply our research to new areas. 
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