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DISCLAIMER

The contents of this report reflect the views of the author(s), who is responsible for
the facts and accuracy of the data presented herein. This document is disseminated through
the Transportation Northwest (TransNow) Regional Center under the sponsorship of the
U.S. Department of Tra,nsportation UTC Grant Program and through the Washington State
Department of Transportation. The U.S. Government assumes no liability for the contents
or use thereof. Sponsorship for the local match portion of this research project was
provided by the Washington State Department of Transportation. The contents do not
necessarily reflect the views or policies of the U.S. Department of Transportation or
Washington State Department of Transportation. This report does not constitute a

standard, specification, or regulation.
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FORECASTING FREEWAY AND RAMP DATA FOR IMPROVED REAL-TIME
CONTROL AND DATA ANALYSIS

SUMMARY

The current project addressed two major weak points of the existing WSDOT
ramp control system. One weak point in the system is the fact that it reacts to the
problem (congestion), rather than preventing the problem. The other weak point in
the system is its reliance on detector data that may be in error. Both of these
problems can be minimized by developing methods to accurately predict short-term
traffic data. By predicting the onset of congestion early enough, the ramp metering
system can act to prevent or delay occurrence of the problem. Also, if a detector
has failed or is malfunctioning, the data from the detector can be estimated from
short-term predictions based on neighboring detectors.

At the beginning of the current project, the researchers had hoped that the
same model would provide a basis for both forecasting congestion (for predictive
ramp control) and rei:]acing erroneous data (predicting actual values). However,
the best congestion or breakdown flow forecaster (the pattern recognition method)
does not provide a basis for data prediction. The best method for filling in missing
detector data turned out to be multivariate time series analysis.

Several pattern recognition and time series models were tested for further
development. In both cases, the simpler models turned out to be the best choices,
and, in both cases, further model testing and development were recommended.

The research on both model types continues in follow-up studies that are
expected to lead to incorporation of these models in the new TSMC computer

system.






INTRODUCTION AND BACKGROUND

THE NEED FOR FREEWAY DATA FORECASTIN

Freeway congestion causes public inconvenience, air pollution, excessive fuel
consumption, and loss of productivity in the labor force. Expansion of the highway
system is costly, environmentally and socially disruptive, and leads to continued low-
density development and the resulting reliance on single-occupant vehicles. (In fact,
the results of this last impact exacerbates the problems that were thought to be
addressed by the expansion.) Efficient operation of the existing system is essent:al
to address these problj'ems. |

Because persistent recurring traffic congestion is a problem facing virtually
every major metropolitan area in the U.S., and because we have expectations. of
continued growth in traffic demand with relatively little money available for capital
expansion of highway networks (which may actually add to the problem anyway),
effective traffic flow management is an important area of research for freeway
system operation. _ |

One way of efficiently operating a freeway system is through ramp control.
Since 1981, the Washington State Department of Transportation (WSDOT) has
used traffic responsive ramp control to alleviate traffic congestion on Interstate 5
north of downtown Seattle. A primary component of the real-time ramp metering
algorithm is the "bottleneck™ metering rate calculation, which becomes effective
when congestion, or breakdown flow, is detected. One of two weak points of the
current WSDOT ramp control system is that it reacts to the problem (congestion),
rather than preventing the problem. The other weak point in the system is its
reliance on detector data. By relying on detector data, the system is i'esponsive to

field conditions, but it is likewise susceptible to detector errors. If a detector fails or



malfunctions, the system lacks the capability to accurately estimate the traffic
conditions at thé site of the detector.

Both of these problems can be minimized by developing methods to
accurately predict short-term traffic data. By predicting the onset of congestion
before it occurs, the ramp metering system can act to prevent or delay the-
oceurrence of the problem. Also, if a detector has failed or is malfunctioning, the
data from the detector can be estimated from short-term predictions based on
neighboring detectors. .

Preliminary work on two previous WSDOT projects (Nihan, ef al (1) and
Nihan and Berg (2)) addressed these two aspects of predicting detector data. The
first developed a method to determine when detectors were providing erroneous
data. The second project developed an improved predictive metering algorithm that
predicts the onset of congestion and activates the appropriate control strategy.

The current project was an extension of these two previous projects. The
concentrated effort here was on predicting actual traffic data (volume and lane
occupancy), rather than simply the onset of congestion. With the results of these
predictions, we expected to be better able to estimate and replace erroneous or
missing data and therefore help the existing control algorithm to better anticipate
problems and act before the problems occur. At the start of the current project, the
researchers had hoped that the same model would provide a basis for both
forecasting congestion (for predictive ramp control) and replacing erroneocus data
(predicting actual values). However, the best congestion or breakdown flow
forecaster (the pattern recognition method) does not provide a basis for data
prediction. The best method for filling in missing detector data turned out to be
multivariate time series analysis. Therefore, this method was used (predicting

actual volume and lane occupancy values). The project also performed a follow-up



test of the pattern recognition model developed for anticipatory, on-line ramp

control and made recommendations on its further development.

RESEARCH OBJECTIVES

The objectives of the current project were to 1) investigate methods of
accurately predicting short-term traffic data (volume and lane occupancy), 2) select
the most promising prediction methods that could be used for replacing erroneous
or unreliable data for the WSDOT freeway management system, and 3) test the
predictions on the I-5 north corridor.

These were the original objectives of the project as stated in the proposal.
With the added help of student fellowship support from Transportation Northwest
(TransNow), the USDOT University Transportation Center for Region X, we were
able to expand the original objectives to include two additional goals: 4) perform a
follow-up test of the congestion prediction algorithm and its performance as a ramp
control tool, and 5) from this iest and the test performed by the previous project,

make recommendations on the further development of this predictor.






REVIEW OF PREVIOUS WORK

The previous work relevant to the scope of this project can be classified into

two areas:
1. Pattern recognition techniques: techniques that identify patterns in
previous traffic flows that foreshadow upcoming breakdown flows.
2. Time series analysis techniques: techniques that predict the actual

values of future volumes and lane occupancies on the basis of
historical traffic data.
A summary of the project’s literature review is presented below for these two

categories.

PATTERN RECOGNITION TECHNIQUES

Volumes II and IIT of the technical report present the current literature on
pattern recognition techniques as ihey apply to traffic congestion prediction. The
primary task in pattern recognition is pattern classification, which consists primarily
of classifying data into two or more pattern classes. For the congestion prediction
problem, we needed to devise a decision function for classifying the traffic data from
freeway loop detectors into two classes, 1) data patterns that precede uncongested
conditions, and 2) those that precede congested or breakdown conditions. The
technique does not allow us to forecast the actual values of the expected flow
variables, but rather to pinpoint the patterns that lead to breakdown conditions.

A review of the literature on pattern recognition techniques produced a few
existing applications of such tools to traffic flow predictions. Tsai and Case (3), for
example, applied a pattern recognition approach to an existing incident detection
system on the Queen Elizabeth freeway in Ontario. The aim was to reduce false
alarm rates while maintaining acceptable detection rates. Consequently, once an

incident has been detected by the existing algorithm, the pattern recognition



algorithm was used to distinguish between true and false alarms on the basis of their
different duration rate characteristics. Using this pattern recognition approach, they
managed to reduce the false. alarm rate from its previous value of .09 percent to .06
percent, while holding their true detection rate constant.

Collins (4) applied a computer-based algorithm, PATREG, to identify the
traffic disturbances following an incident. The PATREG algorithm used a pattern
recognition technique to monitor the average traffic speed in each lane between a
pair of detector stations (one immediately downstream from the other). It
determined the upper and lower threshold values of speed for those lanes and
indicated the occurrence of an incident when the calculated traffic speed fell outside
these predetermined threshold.values. Bohnke and Pfannerstill (5) have explored
the use of pattern recognition for identifying individual vehicles or their platoons
through the characteristic wave-form patterns each vehicle produces when passing
over an induction loop detector. This use of pattern recognition to idéntify specific
vehicles or platoons is expected to lead to a more effective traffic management and
route guidance system.

These initial applications found in the literature suggest the need for a closer
look at the potential usefulness of such a methodology to transportation analysts.
Although, to date, there are only\a few examples of pattern recognition techniques
applied to traffic flow predictions, the examples that have been developed indicate
that this is a promising area for fairly dramatic minute-by-minute changes that are
not as easily predicted by standard statistical techniques (which are much better at
forecasting average changes over time). Because pattern recognition techniques can
be used to predict impending conditions (such as breakdown flow conditions) they
are useful f_or on-line ramp control. However, they cannot predict the actual level of

change to be expected.



TIME SERIES ANALYSIS TECHNIQUES

Volumes IV and V of the technical report provide an exhaustive list of the
time series analysis literature as applied to traffic forecasting. Key examples of such
studies are summarized in this section.

Time series analysis techniques use historical traffic flow data to forecast
specific traffic variables. An example of this is a study by Nicholson and Swan (6)
that used historical data to forecast traffic volumes at the Liverpool (UK) Mersey
Queensway Tunnel. Researchers used data in 6-minute time slices for 2 hours in
the morning and evening commutes for 43 days, not including weekends. The study
found that the maximum prediction errors were on.the rate of 8-11 percent, with
higher errors obtained when the prediction used data compiled from average
previous data (12-19 percent error). Nihan and Holmesland (7) explored the use of
time series techniques for short-term traffic volume forecasts for a more aggregate
time interval. A data set containing monthly volumes on a freeway segment for the
years 1968 through 1976 was used to fit a times series model. The resulting model
was then used to forecast volumes for the year 1977. With the month of December
1976 as the origin for the forecast, the largest error was 7.5 percent (for the month
of September); all other errors were around 5 percent or less.

Ahmed and Cook (8) used time series techniques to forecast freeway volume
and occupancy. A total of 166 data sets from three surveillance systems in Los
Angeles, Minneapolis, and Detroit was used to develop a model for short-term
traffic data forecasts. The Los Angeles data were 20-second volumes and
occupancies per lane, and the data from Minneapolis and Detroit were volumes and
occupancies aggregated over all lanes at 30- and 60-second intervals, respectively.
Levin and Tsao (9) analyzed 20-, 40-, and 60-second occupancy and volume data
collected during a morning rush period at two freeway locations, one on the local
lanes and the other on the express lanes of the Dan Ryan Expressway in Chicago,

Illinois. The 60-second forecasting interval was found to be the most effective

9



interval. Forecasts of volume data were found to be less variable than those for
occupancy data. By the same token, forecasts for the volumes and occupancy on the
express lanes were found to be less variable than those on the local lanes.

Another researcher, Gafariap (10), used time series techniques to forecast
dénsity. The results indicated that the forecast functions behaved reasonably up to
roughly 5-, 10-, and 20-second lead times for the 92-, 305-, and 558-meter test
sections, respectively. The correlation time of the density process increased as the
physical leﬁgth of the roadway section increased; thus, if density were measured
over long sections, correspondingly long historical records would be required to {it
models and forecast the process. For traffic responsive control, the computational
task here might become a problem. Also, this analj(sis some times produced results
with unsatisfactory goodness of fit and large errors.

In 1971, Gazis (11) developed a method for estimating the number of
vehicles on a section of roadway from speed and flow measurements at the entrance
and exit points of that section. This algorithm was tested with data from three
adjoining half-mile sections in the Lincoln Tunnel, and the exact counts were
compared with those generated by the algorithm. The results indicated that 99
percent of the time the error was below 10 percent; such accuracy had not been
previously obtained with flow and speed data. This research was extended in 1975
by Chang and Gazis (12) to include explicit consideration of lane-changihg ona
multi-lane freeway. They found that the estimation error could be reduced in this
fashiori. Moreover, as the roadway section became larger, increasing the number of
lane changes, the reduction of error was greater.

Okutani and Stephanedes (13) predicted 15-minute volumes on a study link
during the day using the traffic flow on the study link, as well as the traffic flows on
the other links feeding into it. The predictive models performed well, and they

found that increasing the number of 5-minute time intervals ahead of the current
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time for which prediction was made from 1 to 9 did not significantly effect the
performance. This type of robust quality is highly desirable for long-term predictive
models.

Finally, Davis and Nihan (14) designed a time series model to estimate
changes in freeway level of service despite missing data. They used historical
volume and occupancy data for the dependent variables, plus dummy intervention
variables to represent the time periods when certain policy interventions occurred.
The results indicated that the time series model can be used to investigate fairly
subtle interactions among traffic stream flows, control policies, and external factors.
Davis and Nihan also looked at the application of time series tools for estimating
OD patterns from traffic volume data. The results for forecasting intersection
turning movements (15) and freeway origin-destination (OD) patterns (16) were
very promising and further work in this area is progressing. Finally, Davis and
Nihan developed preliminary freeway traffic forecasting models that served as
forerunners to the time series work presented in this current report. (17)

In reviewing the literature and relying on our previous experience of fitting
time series data to volume and lane. occupancy data, we found that this technique
can be fairly accurate for forecasting average changes over time, but less accurate in
obtaining minute-by-minute forecasts. Because the desired product for replacing
missing or erroneous data from loop detectors is 2 good average value of volume
and lane occupancy for particular 5-minute periods, this technique appears to be the
best suited for application in missing data replacement for freeway control and
traffic analysis. It is less suited for predicting minute-by-minute changes to the

system, something that is handled better by pattern recognition techniques.
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PROCEDURES

The procedures used in this study can be categorized into those developed
and used for 1) forecasting expected breakdown conditions (pattern recognition),
and 2) forecasting traffic data for missing data replacement (time series). These are

discussed below.

FORECASTING EXPECTED BREAKDOWN CONDITIONS (PATTERN
RECOGNITION)
Development of the Davis/Nihan Model. '

Davis and Nihan (18) developed the first short-term congestion forecasting
model based on pattern recognition for application to the WSDOT's real-time ramp
metering control system. This simple model used historical 1-minute lane
occupancy and storage rate data measured for a routinely congested section of
Interstate 5 north of Seattle to classify patterns that reflect impending breakdown
conditions versus those that precede uncongested traffic conditions. Testing of
several lagged measurements revealed that the variables that best classified the pre-
congestion and pre-noncongestion patterns were the occupancy of the test section
lagged 1 minute, and the storage rate of the downstream section lagged 2 minutes.
This simple model was incorporated on-line at the WSDOT's Traffic System
Management Center (TSMC) and evaluated for two separate on-line data
collections efforts. These evaluations are discussed in the next section. In
developing the model, the research team studied a section of southbc;und I-5
approximately 12 miles north of downtown Seattle. On this section, congestion
routinely begins on weekday mornings and affects traffic flow for several miles
upstream. This section was designated as section 2, the section immediately
downstream as section 1, and the section immediately upstream as section 3. Figure

1 shows the geometry of this study area. The total length of the three sections was
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about 1.3 miles. The researchers used 1-minute volume and lane occupancy time
series data from each of these sections to develop their predictive model. The
approach to model development was a simple form of statistical pattern recognition
in which the primary activity was to sort observations into two or more categories
(Chen (19)). The 1-minute intervals were sorted into queueing and non-queueing
intervals on the basis of observed volume and lane occupancy values for each
interval. Queueing intervals were those for which the data met the bottleneck
criteria for section 2. The criteria used by the TSMC for bottleneck or breakdown
conditions were 1) a positive storage rate for the section, and 2) a lane occupancy
for the section > 18 percent. Non-queueing intervals did not meet those criteria.
Storage rate and occupancy measurements from previous (lag) intervals for sections
1,2, and 3 were then sorted into those that preceded bottleneck formation and those
that did not. A rule based on these lag measurements was developed to
discriminate between the fwo classes of observations using the box-plot feature of
the MINITAB statistical package. The researchers evaluated the storage rate and
occupancy measurements at time intervals lagged 1, 2, and 3 minutes for sections 1,
2, and 3 to determine which had the greatest ability to discriminate between
queueing and non-queueing intervals.

The forecasting algorithm developed by this process is a simple one.
Combined values of lane occupancy in section 2 at time t (OCy(t)) and the storage
rate for section 1 lagged 1 minute (SRq(t-1)) are the determining factors in
forecasting breakdown or queueing conditions for section 2. If OCy(t) and SR(t-1)
both indicate an impending "bottleneck,” the algorithm forecasts breakdown
conditions.

The forecaster’s simplicity fits well into real-time process control. It was
programmed as a two-step process, as illustrated in Figure 2. First, the computer

program
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OC,(1) >137 No
Yes
SA(t-1) > 67 No
Yes
Yy r
Bottleneck Normal TSMC
Metering Metering
Algorithm Algorithm

Figure 2. Davis/Nihan Predictive Algorithin
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checks the occupancy level at section 2. If the occupancy is above the level that
indicates a positive prediction (13 percent), the algorithm checks the storage rate for
section 1 from the previous minute. If the storage rate is greater than six vehicles,
the algorithm predicts the formation of queueing in section 2 during the next minute
and calls the normal bottleneck metering algorithm. This algorithm uses an average
storage rate for the metering rate reduction that it distributes over upstream ramps.
Table 1 shows the accuracy of the Davis and Nihan model for each of five

days for which data were collected on the system before an on-line performance

test,
Table 1. Detection Rates for Pattern Recognition Forecasts
Date Forecaster* Percent False False
' Correct Positives Negatives
11/22/88 SRy(t-1) 63 28 49
OCx(1) 68 24 47
AND 68 7 73
OR 63 46 22
11/23/88 SR,(t-1) 71 29 36
OC2(I) 77 25 0
AND 92 5 36
OR 55 50 0
12/13/88 SR;(t-1) 76 23 33
OCy(1t) 57 46 0
AND 88 11 33
OR 45 60 0
12/14/88 SR;(1-1) 69 25 48
oG (1) 56 58 3
AND 78 11 : 52
OR 45 72 0
12/15/88 SRy(t-1) 67 33 33
OCy(t) 82 23 0
AND 89 10 33
OR 55 47 0

* AND = SR(t-1) and OC(t)
OR = SRy(t-1) or OC,(t)

17



Development of Extended Babla/Nihan Model

The Babla/Nihan model was developed to improve the accuracy level
obtatned with the Davis/Nihan model. This more complicated parametric approach
involves the use of loss functions in determining pattern classifications. In this
approach, preceding traffic flow conditions are assigned to one of two classes on the
basis of a statistical risk calculation that uses a priori probabilities for the two
classes. The classes are, as in the Davis/Nithan model, traffic conditions precedent
to congested flow and traffic conditions precedent to uncongested flow. Because of
the more complicated mathematics of this second model, and because of its ultimate
rejection in favor of the simpler approach, the reader is referred to Volume II of
this report for a detailed déscription of the extended Babla/Nihan model.

This extended model and the simpler model were compared by simulation
rather than further on-line testing. Freeway volume and lane occupancy data were
obtained from the TSMC for calibration and testing of the new (Babla/Nihan)
pattern recognition algorithm. One-minute traffic data from the stations in the test
section shown in Figure 3 were collected for the morning peak periods of March 28,
29, and 3b, 1990. The data collected by the TSMC through loop detectors were in
the form of 1-minute volume and occupancy measures at mainline and on-ramp
detector stations.

The storage rates for each section (upstream volume minus downstream
volume) plus the average occupancy over a section (average occupancy of upstream
and downstream stations for that section) were also calculated for the model
development. Once the calibration has been completed, TSMC data were used to
calibrate an INTRAS simulation model that was then run to compare the
performance of the Davis/Nihan model with the Babla/Nihan model. These

evaluations are presented in the Discussion Section.
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FORECASTING TRAFFIC DATA FROM MISSING DATA REPLACEMENT
(TIME SERIES).

Development of Zhu/Nihan Model.

Time series models were developed by Zhu and Nihan to predict volumes
and lane occupancies prior to ordinary least squares (OLS) regression for the
separate dependent variables V(t) (volume at time t) and O(t) (lane occupancy at
time t) against appropriate lagged variables. Spectral analysis was used to
determine the appropriate lags for the independent variables. For the test case
freeway section (see Figure 3), volumes of the upstream station lagged once and
twice, plus volumes for the upstream on-ramp lagged once, were the three variables
required to predict a station's volume at time t. A similarly simple model was
obtained for predicting lane occupancy for a station at time t.

With data collected at the TSMC for 1-minute time intervals between the
hours of 6:00 and 8:00 a.m. on Wednesday, February 23, 1989, the following models
were created for testing. (Note: Because a univariate model was selected for the
occupancy model, data for only one station was needed for the pre;liminary test.
However, the multivariate volume model required data from upstream and

downstream stations, as well as from the on-ramp.)

V4(t) = .42 Vip(t-1) + .60 Vup(t-2) + 25V (t-1) Equation 1

Oyp(t) = 3.1 + .733 Oyp(t-1) Equation 2
where

\ = downstream volume (volume at station NE 162nd)

Vup = upstream volume (volume at station NE 185th)

Von = on-ramp volume (volume at station NE 175th on)

Oup = upstream occupancy (lane occupancy at station NE 185th)

The traffic volume and occupancy data obtained from the TSMC were

collected by detectors on the Seattle I-5 freeway segment between 185th and 162nd
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N.E. for a peak morning period in F ebruary. The data interval was I-minute, with a
total of 122 data points for each section. The first 102 data points were used to
build the models shown above, and the last 20 data points were used to evaluate the
accuracy of the models and to update the forecasting. Results of this evaluation and
its comparison with the Nihan/Knutson model results are covered in the Discussjon

Section.

Additional Calibration of Simple Model and Development of Extended
{Nihan/Knutson) Mode]

In an effort to develop a more accurate predictor of 1-minute volume and

lane occupancies for a freeway station, Nihan and Knutson investigated additional
independent variables including downstream storage rates, volume and lane
occupancy values, and upstream and on-ramp values. A new set of TSMC data was
collected for this study from a freeway section of I-5 a couple of miles upstream of
the section used by Zhu and Nihan for their analysis. This section bypasses the city
of Lynnwood immediately north of Seattle (see Figure 4).

The selected study site was a freeway section where data had typically been
found to be reliable. Reliability is defined in this case as stations that have
equipment that rarely breaks down. This stretch of freeway had recurrent peak-
hour ‘congestion because of several entrance ramps in a short distance.
Coincidentally, this is typical of what is often researched in other parts of the
country. This study site was used to calibrate a simple model of the Zhu/Nihan
formulation, as well as a new model developed by Nihan and Knutson with
additional indeﬁendent variables. (Hereafter, the Zhu/Nihan model will be
referred to as the simple time series model and the Nihan/Knutson model will be
referred to as the extended time series model.) The section of the study site
required for the old model was 2.13 miles (11,244 feet) in length, encompassing
212th Street SW through 244th Street SW, while the extended model was 1.46 miles
(7,675 feet) in length, encompassing one less station, 220th Street SW through 244th
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Street SW. Both had two entrance ramps (220th Street SW and 236th Street SW)
and one exit ramp. In the final 1,925 feet of the section Just under the 236th Street
overpass, a high occupancy vehicle (HOV) lane was added as lane four (the left
lane). The segment served suburban commuters en route to employment centers in
the CBD and other suburban communities for the duration of the study period.

As with the initial study described in the preceding section, data were
obtained electronically by WSDOT's loop detectors. A loop embedded in each lane
at a particular location records both volume and lane occupancy. A group of loops
at one location constitutes a data station; vehicle counts were aggregated at each
station to provide the data used in this study. Data can be incremented in 1-, 5-, 15-,
or 16-minute blocks for study. As before, the data used in this study were set in 1-
minute increments.

Data obtained on February 11 and April 17, 1991, were used for model
calibration and evaluation. Two hours of data were collected in 1-minute
increments for each day from 6:15 a.m, to 8:15 am, at the following stations: 212th
Street SW, 220th Street SW, 236th Street SW, 244th Street SW (all on the main line
of I-5), the entrance ramp from 236th Street SW, and the exit ramps to 220th Street
SW and 244th Street SW. The weather for the first day included cloudy skies, light
rain, and good visibility, and the roadway was bare and wet. The second day was
partly cloudy with good visibility.

New Calibration of Simple (Zhu/Nihan) Model

Of the 120 data points collected, the first 90 available data points were used
to obtain an equation for the simple model and then used to forecast the final 30
points. The model developed here started out as an attempt to determine whether
Zhu and Nihan's methods could be applied to other sections of I-5. In keeping with

the original goals of this research, it was necessary to find time-lags of upstream
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sta;ions that significantly affected the data station in question (downstream station
236th Street SW).

The general form of the simple model is that downstream volume can be
expressed as a function of upstream volumes lagged at appropriate time increments.

In other words,

K; L
V4t) = iakarupl (k) + ... +zh,0von1 (t) + ...+ 2(t)

where Equation 3

V4 = downstream volume,

Vypi = upstream volume, station i,

Vonj = upstream volume, on-ramp j,

K; = maximum number of travel increments to traverse section from
upstream station i

L = maximum number of travel increments to traverse section from on-
ramp ]

ap, by = constant coefficients

z(t) = error term

Use of Zhu and Nihan's dependent variable set shows that the simple model
has significant variables at 212th Street SW (lag 1), 220th Street SW (lags 1 and 2),
and the entrance ramp from 220th Street SW (lags 1 and 3). Therefore the

forecasting equation for the simpler model was as follows:

Vg (1) = .186 Vypp (t-1) + 281 Vg (t-1) + .491 Vo (t-2)
+ 456 V,, (t-1) + 598 V,, (-3) Equation 4

Development of Extended (Nihan/Knutson) Model
In theory, the above method should have forecast traffic volumes relatively

well because what was truly being forecast was the critical lags. Unless the vehicles
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upstream exited to 220th (a small percentage not accounted for), the traffic volumes
at upstream stations would indeed pass the station for which a forecast was desired.
However, queueing that might occur downstream from the study section could affect
this forecast as well. It is well known from shock wave theory that such breakdown
conditions can have major effects both upstream and downstream of the congested
Vlocation. Consequently, backward-forming and forward-recovery shock waves were
considered to be important in the development of an extended forecasting model.

To account for the effects of shock waves on the volume forecast model,
additional dependent variables (upstream lane occupancies and upstream and
downstream storage rates) with appropriate lags were introduced to the simple
model formulation. Using the first 90 points of the study site data described above,
the extended model forecasting equation was calibrated with the least squares
methodology, as with the simpler model. In the extended model, significant
variables were found to be volume at 220th Street SW (lags 1 and 2), lane
occupancy at 220th Street SW (lag 1), the upstream storage rate (lags 1 and 3), and
the downstream storage rate (lag 2). The extended model foreeasting equation for
the study site was as follows:

Vi (1)  =4128 + 472 Vo (t-1) + .226 Vypq (1-2) - 312 Opyy (1-1)

-311 SRyp (t-1) - .153 SRllp (t-3) - .138 SRy, (t-2) Equation 5

where

Oy = lane occupancy for station 220,

SRup = upsiream storage rate = V) - Vaye,

SRgn = downstream storage rate = Vs - V244-

The results of the evaluation of the simple and extended time series models

are discussed in the next section.
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DISCUSSION

COMPARISON OF PATTERN RECOGNITION MODELS

The Davis/Nihan and Babla/Nihan models were compared with the existing
WSDOT ramp metering system through simulation testing with INTRAS software
(see Volume II). Tables 2 and 3 give the results of an accuracy check on the models
and a summary of the comparative simulation results. These comparisons showed
that, although the Babia/Nihan model achieved a slightly higher system-wide
average speed and lower system-wide total delay, the accuracy of its predicting
capability was not better than that of the simpler Davis/Nihan model. Given that
one of the future objectives of the development of these models was on-line
incorporation in the TSMC's computerized ramp control system, the simpler
Davis/Nihan model was selected for further development.

In addition to the simulation tests, two sets of on-line performance tests were
performed on this model. The first on-line test was conducted during the
development of the model, and these evaluations are described in Nihan and Berg
(2). The second on-line data collection process with this algorithm was evaluated
during the current study. This evaluation and its comparison to the results of the
first on-line test are described in detail in Volume III of the technical report.

- The researchers determined that the chosen pattern recognition model
(Davis/Nihan) produced acceptable predictive accuracy, but it required additional
study to determine how its use could have a greater impact on overall system
performance. One area of possible future study is alternative control strategies for
responses to the model’s prediction of upcoming congestion. Another potential area
of study is the possibility of further model development for longer term forecasts. A
final suggested study area is determin‘ation of the overall effect of a larger number

of stations being incorporated into the on-line testing. .
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TABLE 2

RESULTS FROM APPLICATION OF DAVIS/NIHAN AND BABLA/NIHAN
MODELS ON TSMC DATA

TYPE OF DATA

Davis / Nihan model
applied to lightly congested data

Davis / Nihan model
applied to highly congested data

Babla / Nihan model applied
to a.m. peak data of
South-bound I-5

PERCENT
CORRECT

92

68

75

PERCENT
FALSE
POSITIVES

10

PERCENT
FALSE

NEGATIVES

36

73
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TABLE 3

RESULTS FROM APPLICATION OF DAVIS/NIHAN AND BABLA/NIHAN
MODELS BY SIMULATION USING INTRAS

WSDOT DAVIS/NIHAN BABLA/NIHAN

EXISTING ALGORITHM ALGORITHM
ALGORITHM
Average mainline
speed, mph 238 28.0 253
Average speed
system-wide, mph 20.2 19.6 209
Total veh-miles
travelled on
mainline 7726 8340 8132
Total veh-miles
travelled '
system-wide 8100 8604 8488
Veh-min. of mainline
delay 10970 8757 10327
Veh-min. of delay
system-wide 14985 16778 14854
Mainline volume
in veh/In/hr 1452 1568 1529
Total number of
vehicles output
from all on-ramps 1264 866 1189
Total gallons of
fuel consumed
system-wide 1678 1779 1722
Veh-miles travelled
per gallon of fuel
consumed system-wide 4.83 4.84 4.93
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COMPARISON OF TIME SERIES MODELS

Tests of the Zhu/Nihan model conducted during model development (see
Volume IV of the technical report) indicated that an average forecast error of less
than 10 percent could be expected (although individual minute forecasts could be
much higher). This appears to be a very promising result for missing data
replacement requirements when loop detectors are malfunctioning or out. The
extended (Nihan/Knutson) model had slightly better accuracy (see Volume V of the
technical report), but this was counter-balanced by the additional number of
independent variables needed. 'The researchers decided that the additional
complication did not sufficiently improve the accuracy of the predictive model to
warrant the additional resources required for system-wide implementation.

Table 4 summarizes the error measurements for the initial Zhu/Nihan
model calibrated for the test section shown in Figure 3 (test section A) and the
corresponding measurements for the Zhu/Nihan and Nihan/Knutson models
calibrated for the test section shown in Figure 4 (test section B). Two basic error
measurements were established as effective for use in comparing the forecasting
methods. The mean absolute error (MAE) indicates a typical error for individual
forecasts, while the mean squared error (MSE) penalizes large prediction errors.
They are defined as follows:

MAE = [& I(actual V(t) - forecast V())| ] / N Equation 6

MSE = [£ (actual V(1) - forecast V(1))2]/ N Equation 7

where N = number of predictions

Additionally, sometimes percentages or relative values should be used rather
than absolute numbers, since absolute numbers may be difficult to evaluate (i.e., it is
hard to distinguish the difference in effects of a vehicle error of magnitude E on two
different actual volumes: error of 15 vehicles on actual volume of 30 vehicles is

different than on an actual volume of 115 vehicles). Therefore, the percentages of
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the mean absolute error values (MAE%) were also computed, as were the relative
values of the squared error. These were given as follows:

MAE% = [& |(actual V(1) - forecast V(t)/actual V(i) ]/ Nx100 Equation 8

MSEr! = [ {(actual V(t) - forecast V(t)/actual V(1)}2]1/N Equation 9
Table 4
COMPARISON OF MODELS
Zhu/Nihan Zhu/Nihan Nihan/Knutson

(Test section A) (test section B) (test section B)
Mean Actual V(1) 95.6 veh/min 499 veh/min 49.9 veh/min
Standard Deviation 115 35 3.5
MAE 7.3 veh/min 5.2 veh/min 4.3 veh/min
MAEY% . 8.2% 9.9% 9.0%
MSE 75.1 veh/min 43.7 veh?/min 31.4 veh2/min
MSErel 0.86 0.89 0.64
EMAX% 27.8% 27.5% 30.6%

Finally, another error term, Emax%, was also used, ‘This represented the
maximum percentage of error noted for any particular minute for the forecast data
sets. This type of error is important for setting up criteria for determining when an
incident or data collection error may have occurred. It can be used in cases where
the predicted volume exceeds some preset maximum error. When this happens,
some type of malfunction or incident may be assumed to have happened.

A serendipitous result was found in the model testing conducted during the
current study in that the data collected by the TSMC for the Volume V report (test
section B) included a time period during which an incident occurred. Both models
flagged the incident very well and then, after a few minutes of updating, returned to

the same level of forecasting accuracy for the new traffic situation.
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APPLICATION AND IMPLEMENT ATION

ON-LINE FREEWAY CONTROL

The simple pattern recognition model developed by Davis and Nihan has
acceptable accuracy and looks promising as an on-line addition to the current
computerized ramp control algorithm. Additional development is required before
this can occur. The area of alternative ramp control strategies for responses to
predicted congestion, as well as the iinpact of longer term forecasts and possible
further model development, will be studied before final decisions for
implementation are made.

Once these have been determined, plans for incorporation of the improved
algorithm into the new computer system at the TSMC should be able to proceed.
Further testing of this model for inclusion in several parts of the system will be
continuing in a follow-up study and is expected to result in a model system that can

be incorporated into the WSDOT overall system,

MISSING DATA REPLACEMENT

Of the two models developed for testing during this study, the simpler
Zhu/Nihan model was considered the best choice for implementation. As with the
other models, however, this model is site-specific and station-specific in that it was
fit to historical data for a certain section of freeway. This is not as serious a
problem as it might appear, since the simple model contains only three explanatory
variables and is recursively fit to new data, Therefore, it can be easily incorporated
at several sections along the freeway without large computer requirements.

Continued development of this model is needed before it can be successfully
incorporated into the TSMC system. This is planned in a follow-up study and is
expected to produce a set of recursive models that can be applied to various freeway

segments.
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CONCLUSIONS AND RECOMMENDATIONS

Of the various types of models tested for forecasting freeway flow, the
researchers found that pattern recognition models were best for predicting on-
coming congestion on a minute-by minute-basis. However, these models could not
be used to forecast the actual values of volume and Jape occupancy for the expected
congestion. Rather, they proved to be most sensitive to upcoming peaks and valleys
in freeway flow without the capability of specifying the actual numbers.

Time series models, on the other hand, were found capable of predicting
actual values of volume and lane occupancy, but were not as sensitive to the minute
by minute changes. These models were better at predicting the average values of
these variables over time, i.e., future moving averages.

Consequently, a major conclusion of this study was the choice of pattern
recognition models for use in on-line freeway control and time series models for yse
in missing data replacement. The study determined that a pattern recognition
model could best be used for forecasting congestion of breakdown conditions 1 or 2
minutes before they occurred, and, with this forecast, to alter the ramp control
algorithm to head off the expected breakdown conditions. The researchers also
concluded that an off-line time series model would provide the best forecast for
situations in which malfunctioning loops reduced in bad data or missing data for a
particular freeway statjon, Such a model could be used to replace the defective data
for 5-minute (or larger) data intervals.

Of the pattern recognition models tested, the simplest model developed by
Davis and Nihan had acceptable accuracy and was most promising as an on-line
addition to the current computerized ramp control system. However, additional
development will be required before the model can be incorporated into the new
computer system. Two recommended areas of model development include D

_investigation of the impacts of longer term forecasts and the trade-offs in accuracy,
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and 2) investigation of alternative ramp control strategies, including incorporation
of the model in several test sections along the freeway at once.

Of the time series models developed for testing during this study, the simpler
Zhu/Nihan model was considered the best choice for implementation. Further
testing and refinement of this model], including an additional look at the possible
inclusion of downstream variables, plus testing of the model on several sections of

the freeway system, are recommended.
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