Ferry Watch
Scheduling Prototype
and Recommended

Future Work

WA-RD 241 1

"Final Report
March 1992

A
' Washington State Department of Transportation
’ Washington State Transportation Cormmission

in cooperation with the
United States Department of Transportation
Federai Highway Administration

TECHNICAL REPORT STANDARD TITLE PAGE
T GOVERRMENT ACCESSIONND. . | &

RECOMMENDED FUTURE WORK

1. REPORT NO. CA
WA-RD 241.1

4. TITLE AND SUBITILE 3. REPORTDATE
FERRY WATCH SCHEDULING PROTOTYPE AND March 1992

6. PERFORMING ORGANIZATION CODE

7. AUTHOR(S)
Mark E. Hallenbeck and Jua-Been Chang

9. PER G O

Washington State Transportation Center (TRAC)
University of Washington, JE-10

Seattle, Washington 98105

The Corbet Building, Suite 204; 4507 University Way N.E.

8. PERFORMING ORGANIZATION REFORT NO.
T, WK UNITNG.
T1. CONTRACT OR GRANT NO.

GC8719, Task 10

73, SFONSORING ACENCY WAME AR5 ADDRESS
Washington State Department of Transportation

Transportation Building, KF-01
Olympia, Washington 98504

T OF BPORT D RGO SOVl |
Final report

14. O A

15. SUPFLEMENTARY NOTES

Administration.

This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway

16. ABSTRACT

time.

This report documents the initial exploration of alternatives for a computer system that assists in
the development of watch schedules for the Washington State Ferry System (WSF). A “watch
schedule” is defined as a two-week set of work shifts to be followed by a group of WSF employees
from a specific union, The report describes the programing alternatives considered, the program flow
sclected for prototype development, and the conclusions and recommendations drawn from the creation
of that prototype. Continued development of the watch scheduling system is not recommended at this

[77, REY WORDE

Ferry System Operations, Crew Scheduling, Labor
Scheduling

1%, DISTRIBUTION STATEMENT

No restrictions. This document is available to the
public through the National Technical Information
Service, Springfield, VA 22616

[19. SECURITY CLASSIF. (of thm report)

None

T SECURITY CLASSIE. (of tus page)

None 78

1. NO. OF FAGES T2 FRICE

Final Report

Research Project GC 8719 Task 10
Ferry Crew (Watch) Scheduling

FERRY WATCH SCHEDULING
PROTOTYPE AND RECOMMENDED FUTURE WORK

Mark Hallenbeck Jua-Been Chang
Senior Research Engineer Research Assistant

Washington State Transportation Center (TRAC)
University of Washington, JE-10
The Corbet Building, Suite 204
4507 University Way N.E.
Seattle, Washington 98105

Washington State Department of Transportation
Technical Monitor
Ray Deardorff
Director of Planning

Prepared for

Washington State Transportation Commission
Department of Transportation
and in cooperation with
U.S. Department of Transportation
Federal Highway Administration

March 1992

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for
the facts and the accuracy of the data presented herein. The contents do not necessarily
reflect the official views or policies of the Washington State Transportation Commission,
Department of Transportation, or the Federal Highway Administration. This report does

not constitute a standard, specification, or regulation.

TABLE OF CONTENTS

Section

Chapter 1. INtroduction...............cnimiiniieienrsseen s snsrasse st snsasssnsesat
BAaCKZIOUNA ...ttt ss st st an e e
Previous STUQIEScoeeieiieininrseerreesrnsiesesnesssenssmesnssisssssbssnssnerassssssessesssnsessesnsane
Potential Uses for Computer-Assisted Watch Scheduling..........coeveeeeccnncns

Testing Labor Contract Changes........ccocereeeeernereimnseninivssnsninssnssscnnaes
Testing Service ChaNZescouvuvciciiimreresnnnsrensssrssssssssssssassssssssssessas
Routine Schedulingcoccrvvvirrerinevercncnenne rerrareneesresasesnions
Scheduling by POSIHON........cccevnmiieirinrierinimnienmtisresissnssnsasssssensssessessas
Additional System Requirements...........coviememmrnseenenssierssnsseressssasansacsasstssnsenes

Chapter 2. WSF Watch (Crew) Scheduling..............ccconiimmniiiiinnnencnnennen.
CULTENt WSF PraCtiCe....ccrverrerraserersomsresersisssmsssssssrmssnersissnssasssessaassasasessssssasssnans
Below-Deck CrEWcicvninviimenisinseisminesarimniessrissssesssssrssss sssssseas

ADOVE-DeECK CTEW......oui e vrvisviariricsisnnninnninessssss s sssssnesssssassssnses

Impact of Labor Rules on Vessel Schedules......ovvoeiivniiiiciciicianns

Chapter 3. Alternative Prototype Designs.............ocoooiiiiininiiianens
A Computer Assisted Manual Process..........coeeervieniirieieiennnncicnisissnssscscerennees
Brute FOrce COmMPULET.......coivvmieccniriiiiriiniieniiimr e ssssssbsssssssssssssssssansses
Specialized Computer Algofithm.......c.ovoiimi e
Simplified Systern, Part Manual - Part Computer.........cooeeienieiinvonenieennns
AREnative IACAScoceeiiiiininsiitiiitiriss et san s ss s et as e saaaes

Chapter 4. Prototype Descriplion............ccocoomiiriimiiicniniinneniinicinssnsnssnsensncens
INIAL MENUSoooeermrecnieivesieisacssninaisissinssressessassnssssssnsrssssmssnsssnesessnssrsssssrasses
Scheduling Parameters...........cocimmiiiiiirnsrissisnssississsssssessssssnsssssnsnssasansas
SCheduling PIOCESS.....cocviiciiiiiiertiasenneise s st snesessesrsnssssnsessasanaans

Conclusions and RecOmMMENAALIONSoeveicverrcimeeerisinirriesssscssssrassmensasssssssas
CONCLISIONES ..coveeeiievvisreeesssorssssssrssasansresssassssmmssessssasansssssessnrasassesassssssnsrasssessssssars
RECOMMENAALIONS ..c.covvrereeerreererrrsessssssosssassssrarsssssannes snsnaseesesssesassssseassssensansessass
Discussion of RECOMMENAAONSccoorverermeerecrisivirieisereisessssrrsessrssserassssasnsns

Appendix A. Programming InStructions..............ccciiinmmnninisnnnninnnesnessereennns

Appendix B, Program Code ... s sssssnsesnes

iii

g

OO0 ~1 O8N B B BNt

]

PN RN =

LIST OF FIGURES

Flow of Prototype Ferry Watch Scheduler..........cccovvenniniincccicnane

Opening Menu and Main Menu
Scenario Parameters Menu
Legal Shift Type Definition
Scheduling Submenu
Assigning Vessel Schedules to Route and Setting Parameters

Defining Shifts

Defining Crew Assignments................

..
..
..
...

..

iv

CHAPTER 1
INTRODUCTION

This report documents the initial exploration of alternatives for a computer
program to develop watch schedules for the Washington State Ferry System. (A “watch
schedule” is defined as a two-week set of work shifts to be foliowed by a group of WSF
employees from a specific union.) The report presents

. a short introduction to watch scheduling,

. a review of the current procedures used by the WSF,

. a description of the alternative system designs considered for this project,

. a detailed description of the program flow for the alternative selected for
prototype development, and

. the conclusions and recommendations drawn from the development of that
prototype.

Finally, the report's appendices contain directions for converting the program flow
described in the fourth chapter into source code, the source code for the prototype, and
programing insights gained from the prototype development. A disketie containing the

compiled program code has been sent to the WSF planning office.

BACKGROUND

The WSF has had a reasonably stable route system for many years. Vessel
schedules operating on these routes are fairly constrained by existing labor rules and
legislative restrictions on the levels of service that WSF can provide. These limitations
have resuited in vessel schedules that have not changed dramatically over the last few
years.

Because the vessel schedules have been consistent, the WSF has been able to use
historical watch schedules as the basis for new watch schedules. These new schedules

are reasonably efficient, although they contain some unproductive time (time when crews

Waich Scheduling Text 1 31682

assigned to watches are paid but are not actively involved in operating a vessel in revenue
service). Unproductive time is primarily caused by WSF’s inability to match vessel and
personnel schedules within the constraints of the existing labor agreements and passenger
requirements.

WSF currently develops crew schedules by hand. In most instances, WSF
personnel simply use the watch scheduies that were developed for previous vessel
schedules when those schedules were in operation. When vessel schedules change
significantly (for example, with the addition of the passenger only vessels), WSF staff
must manually develop the appropriate watch schedules.

This method for scheduling personnel works acceptably because of the similarity
of current vessel schedules and labor rules to historical schedules and rules. However, if
either the union rules or a large portion of the vessel schedules were to change
dramatically, this manual process would be difficult to use and prone to error and
inefficiency.

WSF has not significantly investigated radical new vessel schedules or changes in
labor rules partially because of the large cost and staff time involved in using this manual
method to test those changes. The investigation into a computer aided watch scheduler
was started partly to examine whether significant cost savings or service improvements

could be obtained from these types of changes.

PREVIOUS STUDIES

The WSEF started the review of its scheduling systems in 1985. The report, “Ferry
Systems Data, Scheduling and Billing, Scheduling Systems Analysis,” was completed in
June 1987. This report examined the need for, and advantages to be gained by,
computerizing the vessel and crew scheduling procedures and iooked at the possibility of
obtaining this software in four different ways: writing custom software, using public

domain scheduling software, modifying public domain software to meet WSF needs, or

purchasing commercially developed scheduling software designed for either the railroad
or airline industries.

The 1987 study found that roughly seven percent of the labor costs ($39,400 per
two-week period) for the Fall 1986 schedule were spent for labor outside of the operation
of the scheduled service. The majority of these costs were unnecessary labor expenses.
They were incurred when crews had no assigned duties during some part of their paid
work week and when a watch from a larger vessel was used to crew a smaller vessel, thus
exceeding the necessary crew size mandated by the labor agreements and Coast Guard
regulations.

This study also determined that the WSF could reduce staffing costs by
scheduling individuals, rather than keeping each watch together for the entire two-week
work schedule. However, this concept (called scheduling by position) would greatly
increase the complexity of the scheduling process and might cause labor relations
problems because it would deviate significantly from the current procedures.

The report concluded that none of the existing scheduling software would meet
the WSF's needs “off-the-shelf.” It recommended that the WSF consider either
developing its own software system or purchasing one from a commercial vendor, who
would modify an existing package to meet the WSF's needs.

As a result of the Scheduling Systems work described above, the WSF did
develop a computer aided vessel scheduling system. This system is now used by WSF
and has been very well received. Upon the successful implementation of the vessel
scheduler, WSF authorized the development of a prototype watch scheduler to gain a
better understanding of the complexities of the watch scheduling problem and to better

determine whether the cost of such a system was justified.

POTENTIAL USES FOR COMPUTER-ASSISTED WATCH SCHEDULING

To start this effort, the project team examined the various tasks that a computer
aided watch scheduler might accomplish and tried to determine which tasks provided the
greatest opportunity for the WSF. The following tasks were identified as areas in which a
computer aided scheduler could provide significant improvements over the existing

manual process:

. the investigation of alternative work rules for future labor negotiations,

. the investigation of the impact of radically different vessel schedules on
labor usage,

. the routine creation of watch schedules, and

. the implementation of scheduling by position.

Each of these tasks would require a different mix of capabilities for the scheduling
system. Each of these tasks is discussed below.

Testing Labor Contract Changes

A tool that could help determine the feasibility and costs of different staffing rules
could lead to a more dynamic bargaining process in the labor negotiations WSF
undertakes with its various unions. Changes in labor rules have the potential to provide
significant increases in ferry service at relatively modest cost. To obtain these savings,
WSF may need to provide increased wages or other concessions to the labor unions.
Before granting concessions, WSF must fully explore the implications of proposed rule
and wage changes in terms-of the service enhancements provided, the size of the labor
force required to provide that service, and the total cost of that service.

The only way to adequately make these comparisons is to develop vessel and
watch schedules that use the proposed work rules. The existing computer aided vessel
scheduler makes the creation of the vessel schedules easy, but the WSF does not have the

ability to easily create watch schedules because of the complexity of the labor rules. This

inability slows the analysis process and often causes labor rule change to be discarded
from the negotiation process because the implications of the changes can not be
determined within the time frame of the negotiations.
The service changes that might be possibie, given changes in the existing labor
contracts, are as follows:
. an increase in peak service, oriented towards commuters, through the
operation of some vessels only during the peak hours,
. longer service hours for the heavily used recreational routes (i.e.,
increasing an operation from 16 hours daily to 20 hours), and
. the cr(_:at:ion of new routes and services.
To be economically feasible, these service changes would require significant revision in
the labor rules.
To be used for the above analyses, the scheduling system would have to be
flexible enough to incorporate a wide variety of labor rules that are not currently legal at

the WSF. Labor rules at various other transit authorities that might benefit WSF include

the following:
. split shifts, to accommodate commuter traffic,
. different shift length and day off combinations, for example, a ten-hour

work day with a four-day work week,

. the ability to schedule individuals rather than entire watches,

. increased use of part-time workers,

. scheduled overtime, and

. special wage increases for overtime, spread time, and shift differentials.

This group of labor rules has a variety of alternative programing implications. A
programing technique that is appropriate for testing alternative shift lengths is not
necessarily useful for looking at split shifts and the introduction of spread time. In

addition, applying all of these rules means that the computer operator must provide the

5

computer with the necessary input information for each alternative and inform the
computer program about the alternatives to include in any one program run.

As a result, these potential rule changes would make the scheduling process and
the computer program that replicated that process very complex. This complexity would
be present in the design and programing of the system, and in the knowledge the
computer operator would have to operate the computer program. Thus, to develop a
scheduling assistant for these tasks would be expensive, and the program used would
require fairly intensive training,

Testing Service Ct

Computer assistance in the watch scheduling process could potentially improve
the Ferry System's ability to rapidly create new crew schedules in response to new routes
and major service changes. While these types of service changes are not expected soon,
the continued growth in ferry ridership raises the probability that additional vessels and
possibly new routes will be added to meet the growing demand. These additions might
create situations in which the historical watch schedules were no longer valid, and watch
schedules would have to be developed from scratch,

The computer aided scheduler might be useful for quickly creating new crew
schedules. This would allow more responsive planning and would also allow the WSF to
examine more alternatives than would otherwise be possible.

To obtain these advantages, the computer system would have to be able to apply
existing labor rules, and it would have to provide a significant speed advantage over the
existing manual system. While the features listed above for testing new labor rules would
be useful, they would be unnecessary if they complicated the model so much that they
slowed the system down or made it too difficult to easily use.

A computer system that met these limited needs would be easier to build than the

program described previously. The program would also operate much more quickly

because it would not need to compute and analyze labor use combinations associated with
potential labor rule changes.

However, if the computer system was not designed to accommodate the labor rule
changes as proposed in the previous section, and one or more of those changes was later
adopted by the WSF, a major rewrite of the computer software would be needed to retain
the usability of the computer program. This rewrite would be costly because it would
require a new programer to learn the existing coding process well enough to revise it at
some later date.

If labor changes are likely in the next five years, it would be far better to build the
computer system to handle potential labor rule changes than to limit the initial
programing effort just to reduce the cost of the system development, only to have the
system become obsolete in several years and require an expensive upgrade.

Routine Scheduli

Computer assistance in the watch scheduling process could potentially improve
the Ferry System'’s ability to rapidly create new crew schedules in response to routine
vessel schedule changes and to test the implementation of new routes and service
changes. The two computer program alternatives mentioned above would both meet the
needs for routine scheduling, but both systems might be more complex than necessary to
provide benefits to WSF.

The project team determined that, under this scenario, a computer aid less
complex than a full scheduling system might provide benefit to the WSF. One of the
most difficult challenges in watch scheduling is simply keeping track of the movement of
crews between routes. If a vessel schedule is changed on one route, watches taken from
that route to crew vessels on other routes may no longer be within union regulations.
Similarly, watches transferred onto the new route may no longer be within legal work

limits. In either case, the scheduler must carefully review the work assignments of all

watches affected by the change, as well as all watches that might be used to most cost
effectively fili (or need filling by) watches on the affected route.

A computer system would be useful for assisting in this function by tracking
which watches were available to move between routes and when they could legally be
used on other routes. It could also track which watches had already been assigned to
other routes and the cost associated with those transfers. When revising a schedule, the
planner could then quickly determine whether the changes being considered were feasible
from a labor usage standpoint, and the implications of those changes. The planner would
also be responsible for updating the computer system for each scheduling change.

Finally, the computer system could also keep track of the cost of transporting
watches between routes to assist the planner in selecting between alternative crewing
options.

Scheduling By Posii

This final function for a scheduling aid would help the WSF decrease the number
of occasions when more crew members are being used than the vessel needs. This
problem commonly occurs when the crew from a larger vessel is used to operate a
smaller vessel. Because each section of a watch (deck crew, engine room crew, and the
Masters and Mates) is scheduled as a group, all members of a watch are assigned to the
smaller vessel, even though they are not necessary. This costs the WSF some
unnecessary crewing wages.

While the 1987 study concluded that it was not in the best interests of the WSF to
schedule by position, computer aided scheduling software couid provide that capability,
should WSF change its mind. The computer system discussed at the beginning of this
section could handle scheduling by position with only minor changes. Those changes
would center on increasing the number “positions” required for each vessel from one

watch to the required number of able seamen, ordinary seamen, and other positions. This

means a little more complexity in the user interface portion of the program and a greater

computer memory requirement, but neither of these needs would be significant.

ADDITIONAL SYSTEM REQUIREMENTS

In addition to the basic scheduling functions mentioned in the preceding section, a
number of other requirements for the scheduling system were mentioned in the 1987
preliminary study. That study identified the following capabilities a watch scheduling
system should provide, regardless of the basic functioning of the system.

. The program must be able to generate line-by-line crew schedules.

. The program must be able to generate day-by-day shift assignments (e.g.,
relief times, place of relief, hours worked, position number(s) worked,
days off, and open days).

. The program must be able to generate basic schedule statistics, (i.e., the
total number of crew members or shifts required by worker classification,
total pay hours over a two-week period, amount of travel pay incurred,

number of part time, straight and split shifts).

10

CHAPTER 2
WSF WATCH (CREW) SCHEDULING

This chapter provides a brief review of the watch scheduling procedures WSF
currently follows. It also describes the primary labor rules that impact the development

of those schedules and that must be incorporated into any scheduling system.

CURRENT WSF PRACTICE

As indicated in the first chapter, all watch scheduling is currently performed by
hand and follows a system that has persisted for many years. On each vessel, three
groups of workers (Masters and Mates, the deck crew, and below deck engineers) are
assigned shifts over a 14-day pay period. Each of these groups is assigned as a unit,
rather than by specific crew position. In other words, the Master and Mate are scheduled
as a unit, rather than two separate positions. Each unit consists of all of the personnel
required to perform those functions on the vessel. A group of individuals with the same
work schedule is referred to as a "watch."”

By contract agreement, each full-time crew member must be paid for 80 hours of
work during each two-week period. Thus, the WSF must schedule each of these persons
for as close to 80 hours per two-week period as possible. In the simplest kind of
schedule, each crew member works five, eight-hour shifts each week and has two days
off. Unfortunately, this type of schedule severely limits the hours when vessels can be
cost-effectively operated. Thus, additional rules have been adopted that both allow WSF
management the flexibility to schedule crews for work periods other than five, eight-hour
days and protect crew members from unreasonable demands on their time.

Below-Deck Crew

Engineers (members of the MEBA union) generally work 12-hour shifts for seven
consecutive days and take the following seven days off. This yields an 84-hour two-week

work schedule. By negotiated agreement, the engineers are paid for 80 hours and receive

11

the extra four hours as “comp time.” Engineers may also work traditional eight-hour
shifts for five consecutive days with two days off. They may not work 10 consecutive
days (eight hours each day) followed by four days off.

When a vessel operates a 24-hour schedule, the engineers spend the entire shift
operating the vessel engines. When a vessel does not operate in revenue service for all
24-hours, the engineer on duty usually performs routine maintenance on the engine. This
full time use of the engineering crew means that no engineers have “dead time” in their
schedules, provided that the non-revenue service time is used productively.

Engineers are assigned to specific vessels rather than specific trips or routes.
They must also begin and end their work shifts at specific terminals.

Above-Deck Crew

The WSF is not allowed to use the 12-hour per day scheduling system for
above-deck personnel (the Master, Mates and Pilots Union (MM&P) or the Interational
Boatmen’s Union (IBU) crew). However, neither is WSF constrained to using traditional
five-day per week, eight-hours per day schedules. Above-deck workers may work as
little as seven and as many as nine hours on any given day without eaming overtime pay,
as long as they work no more than 80 hours over a two-week period. These crew
members may work five days on and two off, or they may work 10 days on and take four
consecutive days off. They may also work a “touring watch," in which they work an
afternoon shift on one day, sleep on the vessel that night, and work the moming shift the
next day, followed by roughly 36 hours off. (This schedule is routinely followed on
vessels that serve the Sydney, B.C., terminal.)

Currently, WSF crews are not allowed to work 10-hour per day, four-day per
week shifts, except on unscheduled extra service. In addition, the current labor rules limit
the WSF to the use of ten part-time (less than 40 hours per week) above-deck personnel
and prohibit the use of split shifts. Finally, the current labor contract states that WSF can

not intentionally schedule overtime. If a vessel operates late on a given day, overtime is

12

paid as double time, but the WSF can not intentionally schedule crews to operate vessels

for more than 80 hours per week.

IMPACT OF LABOR RULES ON VESSEL SCHEDULES

The WSF planning staff may use any or all of these labor rules when developing
watch schedules needed to crew the adopted vessel schedules. The difficult part of this
task is determining which legal shift types should be applied to which vessel runs, so that
the least labor costs are expended to operate the scheduled service.

The prohibition on scheduled overtime and the need to average 8-hour days for
above-deck crews (MM&P and IBU) have a significant impact on the schedules that the
WSF planning section creates. To make cost-effective use of the available above-deck
crew, vessel schedules usually operate for eight, 16 or 24 hours each day. Extending a
vessel’s routine workday to gny length greater than a multiple of eight hours requires that
labor be paid for eight hours for any fraction of hours over eight. (For example, an
18-hour schedule requires three separate watches each day, two watches working
eight-hour shifts, the third working a two-hour shift. However, the third gets paid for
eight hours of work, the minimum pay for a day.) The high marginal cost for these last
hours severely limits WSF’s ability to add small increments of service to meet growing
ridership.

As indicated above, in some cases a ghift may operate for nine hours on a given
day, but the crew (watch) working that shift must then work a seven-hour shift to stay
within the 80-hour, two-week limit. Thus, the combination of vessels operated by that
watch must operate daily for a multiple of 8-hours.

It is possible for the WSF to manipulate the nine-hour/seven-hour rule to a limited
extent to extend the service day of one vessel while shortening the service day of a
second vessel, but these service improvements are extremely limited. The physical

reality of scheduling vessels limits the number of locations where this strategy can be

13

employed. Even with the nine-hour/seven-hour service day, the above-deck watch
schedule often produces cost inefficiencies that result from an inability to exactly match
the crewing requirements to the vessel schedules. (That is, the number of shifts that must
be crewed is not evenly divisible by the number of full-time crews.) This is illustrated by
the following two examples.

Over a two-week period, a 16-hour schedule requires 28 eight-hour shifts, and a
24-hour schedule requires 42 shifts. Because a crew works for ten shifts each 14 days,
two additional shifts need to be filled for a 16-hour boat.

28 shifts - (3 watches * 5 shifts/wk/watch * 2 wks) = -2 shifts
and a 24-hour boat leaves one crew that must be shifted elsewhere for two shifts in a
two-week period

42 shifts - (4 watches * 5 shifts/wk/watch * 2 wks) = 2 shifts
Where the extra crew on the 24-hour boat can be shifted to fill the two unfilled shifts on a
16-hour boat, the schedule can be filled without wasting staff resources.

Unfortunately, this match does not always occur, and often in those cases where
these matches are possible, the 16- and 24-hour vessels operate on different routes. In
these cases, the WSF must pay travel costs to the crews to move between terminals. In
fact, most of the day watches on the Bremerton route are filled with "extra” crews from
other routes.

Determining which watches should move between routes, which labor rules to
use, and how the crews from different watches interact would be the major functions of

the proposed software system.

14

CHAPTER 3
ALTERNATIVE PROTOTYPE DESIGNS

A series of alternative forms for the prototype vessel scheduler were examined as
part of this project. Each of the alternatives had a different set of strengths and
weaknesses, and each was aimed at fulfilling one or more of the WSF requirements
outlined in Chapter 1. For the most part, these systems differed in the complexity of the
computer program that would have to be developed and the knowledge and interaction
required by the WSF user. The alternatives that were identified are as follows:

. a computer assisted manual process, with the computer performing

mathematics and record keeping,

. a computer system operating without manual intervention using a “brute

force” computational technique,

. a computer system operating without manual intervention using a

specialized algorithm to reduce processing requirements,

. a simplified manual/computer system, and

. alternative ideas.

Each of these alternatives is discussed in more detail below.

A COMPUTER ASSISTED MANUAL PROCESS

This alternative is similar to that developed in the June 1987 analysis of WSF
scheduling needs. This alternative is intended to meet all of the requirements stated in
the previous chapters. The basic design is a computer aid that is capable of performing
the entire scheduling process independent of human input, but it is intended to function
best in coordination with human intervention. That is, the WSF service planner would
provide input that reduced the number of alternative schedules the computer system
would have to evaluate and provide the human insight that is hard to duplicate in a

computer program.

15

This computer system design assumes that the computer would track all
scheduling information, but that a WSF planner could accept, reject, or modify all
decisions made by the software. This design would free the planner from performing the
mathematics and record keeping of the scheduling process, while maintaining the
planner’s insight in the scheduling process.

The computer system would contain all of the factors necessary for developing
schedules. This means it would be complex enough to maintain all of the intricate labor
union rules, as well as flexible enough to add rules that WSF would consider in the
future.

The concern with this alternative is that by trying to meet all of the needs for a
watch scheduler, it would meet none of those needs very well. This is not because of
expected limitations in the program design but because some of the “needs” of the desired
system appear to conflict with each other. Essentially, by being comprehensive, the
system would become complex. Because of the flexibility to change each of the
scheduling decisions, the planner operating the system would have to consciously make
decisions that were previously made routinely. This would likely slow the scheduling
process, and could possibly eliminate the speed advantage computerization was intended
to provide.

If the system had little or no speed advantage for the routine scheduling needs of
the WSF, it is unlikely that the system would be used for those purposes. Unfortunately,
the preliminary investigation of this alternative indicated that this type of system might
have a steep learning curve. If the program was not used routinely, this learning curve
would be a hindrance to using the system for the more complex (but less common)
problems for which the computer would provide the greatest advantage. The project team
fears that the resuit would be that the WSF would continue its current practice of not
performing the analyses that would be useful in Jabor negotiations rather than relearn the

computer program,

16

BRUTE FORCE COMPUTER

The second option for a scheduling system would be to create a computer
program that did not need human intervention. By reducing the need for human
intervention, the requirement for WSF planner time would be significantly improved.
This should result in routine use of the computer system. It would also result in a savings
to the WSF in labor costs required to perform the vessel scheduling.

Like the first alternative, this alternative is intended to meet all of the
requirements stated in the previous chapters. Also like the first option, this computer
system would be designed to contain all of the factors necessary for developing
schedules. This means it would be complex enough to maintain all of the intricate labor
union rules, as well as flexible enough to add rules that WSF considered in the future.
The major difference in this system is that the entire watch scheduling process would be
independent of human input.

This particular version of the “all computer” option would use a technique in
which the computer determined all legal crewing options and then used a numeric
function to determine which of these options was “best.” This technique would require
large quantities of computation time. The long execution time would slow the system
down, but because the system would be designed to operate on a microcomputer with
little or no human oversight, the “cost” of this computational time would be minor.

However, without some human oversight, the results from the computer program
might or might not be reliable. Historically, computer based schedulers based purely on
mathematics (without human review and input) have not produced schedules that were as
“good” as human/machine schedulers. This is because the scheduling process is so
complex that the algorithms used are not capable of replicating the creative thought

process of a good human scheduler. Computer algorithms are also subject to false

17

optimal points that “trick” the software into believing an optimal solution has been
found.

Under this scenario, the quality of the watch schedule would rely entirely on the
capabilities of the algorithm used by the computer program. A reliable computer
program can be written to perform these tasks for under $300,000. The prime difficulty
with this effort would be in trying to make the computer software sufficiently flexible
that it could be used to look at all reasonable future labor rules.

A secondary drawback might be the WSF staff's reaction to the scheduler output.
Computerized schedulers working without human input often create “legal” schedules
that are not intuitively obvious. They often do not take into account such factors as
“tradition” and local habit. While these factors may not result in “better” schedules, their
consideration does provide credibility to the scheduling effort, and without their
consideration, schedules are often viewed with some reservation by the personnel who

must operate those schedules.

SPECIALIZED COMPUTER ALGORITHM

The third alternative is similar to the second, except that the computer program
for this alternative would use one or more specially developed algorithms to reduce the
number of scheduling options that would have to be computed and compared. The
literature search did not yield any algorithms that would be appropriate for the WSF
application without considerable modification and adaptation. However, using “rules of
thumb” (much like a human would), it would be possible to reduce the number of
possible options without degrading the quality of the program output.

Decreasing the number of solutions the program would have to check would
decrease the total processing time and thus improve the operation of the program,
Unfortunately, the use of these algorithms could increase the risk of obtaining non-

optimal schedules. In addition, the risk of producing non-optimal solutions would

18

increase if the “rules of thumb” applied to reduce the calculation time conflicted with new
labor rules added at a later date. (For example, a “rule of thumb” might state that, with
the exception of the first trip of the day, a shift could not start earlier than six hours after
the start of a vessel’s daily schedule. This rule would eliminate the need for the computer
to check watch schedules which were not cost effective if eight- or ten-hour shifts were
being examined. However, if four-hour shifts were made legal, such a rule would prevent
the computer from looking at part-time shifts that started in the morning.)

This alternative would have much the same set of advantages and disadvantages
as the brute force alternative. It would have the added advantage of faster execution time,

but there would be an increased chance of sub-optimal results.

SIMPLIFIED SYSTEM, PART MANUAL - PART COMPUTER

The fourth alternative is to develop a simplified computer program that is not as
powerful as the initial three systems but is easier to use. The intended system would
perform the mathematics and accounting described in the first option, but without the
complex decision making required for interpreting the labor rules. In this option, the
computer program would be more like a spreadsheet that calculated the next legal split
times, given a shift starting time and a shift length. The planner using the system would
then accept or modify that shift end, and the computer would update when that watch was
available again for assignment.

Once shift times were determined, the planner would decide how watches would
be divided between shifts and routes. The computer would be used to track available
crews and compute travel costs, mostly through automated look-up tables. All
“optimization” performed by the system would be performed by the human operator. In
this scenario, the computer would only perform data tracking and simple math

computations.

19

It is not clear whether the functions performed by such a system would be worth
the development costs of a separate project. It appears from preliminary work that this
type of system could evolve more effectively from a WSF planner’s normal work with
the schedules, rather than from a special research project. The advantage of this is that
the planner who worked intimately with the schedules would be able to more accurately
determine where the emphasis of the system design should be placed, so that the most
benefit could be gained from the programing effort.

ALTERNATIVE IDEAS

The limitations in each of the first four alternatives and the relative lack of interest
in those solutions from WSF personnel led the project team to the conclusion that a
computer aided watch scheduler may not be the answer to the basic scheduling problems
facing the WSF. The majority of the WSF's needs, and most of the potential cost savings,
would not be from the routine scheduling of tasks, but from the investigation of
advantages that could be gained from alternative work rules.

The project team suggests that as a fifth alternative, rather than continuing to
develop a computer program, WSF perform a study that directly investigates the potential
impacts of alternative crew rules. The consultant for this proposed study could use the
existing vessel scheduling software and any other tools available to perform this analysis.
Additional tools (such as those envisioned in the fourth alternative above) might also be
developed as part of the project.

The goals of the project would be to determine

. the advantages and disadvantages the proposed work rule changes would

provide,

. the conditions under which proposed work rules would be advantageous to
WSF,

20

. the impacts those rules might have on the service levels the WSF could
provide, and

. the impact those rules would have on the union members.
A secondary activity of the research might be to develop watch schedules with the
proposed union rules that WSF could use after the new rules had been adopted.

Given the stability of the WSF vessel schedules, a careful analysis along these
lines would likely address the WSF's needs for many years. Consequently, the results of
the proposed study would be useful to WSF even if those results are not acted upon in the

near future.

21

22

CHAPTER 4
PROTOTYPE DESCRIPTION

From the alternatives discussed in the previous chapter, the project team selected
the first alternative, A Computer Assisted Manual Process, for development of the
prototype under this contract. This alternative was selected for the prototype
development because it would yield the most insight into the complexity of the

scheduling problem. By developing this prototype, the project team could gain a better

feel for
. the level of human interaction that was appropriate for the scheduling
system,
. the time and cost required to develop the decision making and
optimization algorithms,
. the information required by the computer system, and
. the training required to learn and operate the system.

To develop the prototype, the project team created a flow diagram of the computer
system (see Figure 1) and then wrote the input screens and preliminary processing
algorithms that allowed them to explore the use of the program as it was designed.

This chapter outlines the prototype watch scheduling package developed under
this contract. More specific programing instructions for converting the program flow

description given below into a computer program can be found in the appendix.

INITIAL MENUS

The watch scheduling program would be used as a companion to the vessel
scheduling program produced for WSF by Washington State Transportation Center
(TRAC) in 1988. Because the vessel scheduling package creates vessel schedules for
individual routes on a specific day (separate schedules may be prepared for weekends or

holidays, for example), and a watch scheduling program would create schedules for a set

23

I[NPIYSS yolep Ausg ad£101014 Jo mopg 1 amSrg

se|qe]

19l weiey:

SOa 91 X3

OlIBUSIS
elejeg

OLBU32S
peo

sloday
99npoid

sniels
8|npayog
moys

siglaweied
0lBU39S
abueyn

suondp
wesbosd
aueyn

UOTeM
B 2INPaYIS

24

of routes over a two-week period, the watch scheduling program would first need to
aggregate a set of vessel schedules so that they became a watch scheduling “scenario.”
Upon entry into the program, the user would be presented with a menu of currently
defined scenarios, as well as the option to create a new scenario (see top of Figure 2).
The user might wish to simply load an existing scenario and alter it, or to create a new
systemwide or partial system watch schedule from scratch. To define a scenario, it would
be necessary only to choose a set of routes and name the scenario.

The user would then be presented with the program main menu, shown in the
bottom half of Figure 2. This menu would include options to manage the scenario
description files, to change parameters used within the scheduling program, to schedule

watches for a route within the current scenario, and to create or show reports.

SCHEDULING PARAMETERS

At the systemwide (or scenario) level, several options could be altered for a given
scenario. Figure 3 shows the Scenario Parameters menu. The vessels, vessel classes,
terminals, vessel travel times, and other definitions would have to be changed on
occasion, but these would most likely be changed with an external utility program (that
is, outside of the watch scheduling program) so that the changes could be shared with the
vessel scheduling software. Confusion and errors would result from the use of different
values for these parameters in the vessel and watch scheduling systems.

For each scenario, a set of legal shift types would be maintained, including the
existing default shift types, as well as any others that the user chose to define. Figure 4

shows how a shift type could be defined.

SCHEDULING PROCESS
Crews (watches) would be scheduled on one route at a time. The program could
be configured to schedule watches for all crews or for deck crews only, for whom the

schedule process is most difficuit. If below deck crews and masters and mates were to be

25

Flgure 2
Opening Menu and Main Menu

26

Scenario Parameters Menu

27

Legal Shift Type Definition

28

scheduled, each watch group would be scheduled independently. It might even be
desirable to schedule two or more groups of deck workers on a vessel in order to allow a
subset of a deck crew to be assigned to a smaller vessel for one day a week. (This would
allow limited scheduling by position. If full scheduling by position was desired, this
section of the program would have to be expanded.)

The Scheduling Submenu is shown in Figure 5. Once a route and watch group
had been selected for scheduling, a four-step process would be needed to schedule a
watch group from scratch. The first step would be to associate the route with the vessel
schedules that defined the operating hours and possible relief points for each day in the
14-day period (to allow for special schedules on weekends and holidays, fuel runs, and
special events). Secondly, the route-level scheduling parameters would be chosen,
including the shift types that could be considered for the route and watch group being
scheduled, the relief terminal for each vessel, and restrictions on the scheduling process.
Thirdly, daily vessel schedules would be broken into work shifts. Finally, crews would
be assigned to the work shifts.

Figure 6 shows the first two steps of this process. In the top half of Figure 35, a
vessel schedule is assigned to each day of the two-week period. Choosing a "base
schedule” would fill all 14 days with the same vessel schedule; then individual days could
be selected if a different vessel schedule was desired for those days.

In the bottom half of Figure 6 is an example of some of the types of scheduling
parameters one might wish to change before defining and assigning watch shifts. The
restrictions checked would be used in determining where to suggest a shift break. The
relief point determines where shifts can be broken — other time points would be ignored
by the software.

Figure 7 shows the screen that would be used to break a vessel schedule into work
shifts. (Note that an entire week would be shown.) The scheduling program would use

the restrictions defined for the route to determine the most likely breaking point between

29

Scheduling Submenu

30

Assigning Vessel Schedules to Route and Setting Parameters

3

Defining Shifts

32

shifts. If several shift types were legal for the route being scheduled, the program would
attempt to determine the legal shifts that would best fit a vessel schedule of a given
duration. The WSF planner could override the computer’s selection.

Finally, Figure 8 shows the screen that would be used to assign watches to shifts.
To schedule a watch, the user would move the cursor to the point where a new watch
should be started. Pressing the spacebar would bring up the menu shown in the figure. If
the Begin Watch option was chosen, then the program would attempt to determine the
appropriate shift type to schedule. If more than one shift type could be scheduled (e.g., if
it was an eight-hour shift and either a five- or ten-day work week could be specified),
then the user would be prompted to choose between the two. If the watch was begun in a
morning shift, but a subsequent morning shift was already assigned to another crew, then
the program would shift the new crew to the afternoon, to another vessel, or to the extra
watch list, depending on the settings specified in the route scheduling parameters.

Extra crews (i.e., crews that must split their time between two or more vessels but
have only been assigned to the first of the two) are shown on the right side of the screen.
They include both crews that have been assigned locally to the route being scheduled, as
well as crews that have been assigned on other routes and could be transported to the
current route.

Instead of using the menu, the user could also type a letter to indicate the
assignment desired. If the letter corresponded to a crew that had already been assigned,
then that crew would be reassigned to the spot where the cursor was located, swapping
with any crew already assigned to the shift. If the letter did not correspond to an existing
crew, then a new watch would be created.

Throughout this process, the program would keep track of the crews that were
eligible for each shift, indicating shift types by color coding. If the user attempted to
assign a crew to a shift where it is not eligible, the program would note the error and

allow the user to override it,

33

i?igure 8
Defining Crew Assignments

34

Ideally, the crew scheduling program would attempt to find an optimum schedule
for each watch and propose it. This capability would allow the prototype design to
approach the "Specialized Computer Algorithm” alternative described in Chapter 3.
Unfortunately, this capability will be very difficult to add, and has not been included in

the current prototype design.

35

36

CONCLUSIONS AND RECOMMENDATIONS

This chapter discusses the conclusions and recommendations the project team

drew from the development of the prototype described in the previous chapter.

CONCLUSIONS

The prototype development effort resulted in the following conclusions.

No computer algorithms exist in the literature that make the proposed crew
scheduling system less costly to build than previously estimated (roughly
$200,000).

The prototype development indicated that the previous cost estimate is
actually optimistic, because creating a user interface that would eliminate
or reduce the complexity of the scheduling process appears to be a very
difficult task. Creating the user interface would be a more difficult task
than programing the algorithms to actually compute the watch schedules.
Unless this complexity could be eliminated, the system would require
several days of training to use, and if the system was not used routinely,
refresher training would be necessary before the system was used again.

A smaller system that performed specific parts of the scheduling analysis
(but not all facets of the analysis) might be more useful to the WSF staff
than a full computer system, simply because the smaller system could take
the complexity out of the computer program, making it easier to learn and

operate.

RECOMMENDATIONS

The project team makes the following recommendations to WSF regarding the

development of a computer aid for the watch scheduling process.

37

. The WSF should not pursue further development of a computerized
system to aid in watch (crew) scheduling at this time.
. Further development of a computerized system is recommended only if at
least one of the following three conditions occur:
- WSF decides to schedule crew members by position rather than by
watch,
- WSF labor rules are changed to the extent that the current
schedules are no longer valid, or
- wholesale changes in the vessel schedules (all routes) are expected
to occur on a routine basis.
. A more effective use of the WSF’s resources would be to hire a consultant
to examine the impacts of alternative work rules on the service that WSF

can provide.

DISCUSSION OF RECOMMENDATIONS

Hiring a consultant would provide answers to the basic questions WSF has
regarding watch scheduling options. This would meet WSF's short-term needs and
provide a practical benefit. A consultant study could also be done for less money than the
development of the computer aided scheduler, and the consultant study would have much
less risk associated with it than the software development effort. (It is possible that the
scheduling software would not meet the WSF’s needs even after the expected $200,000
expenditure.)

A consulting contract would provide answers to the basic WSF questions
regarding the continuing labor negotiations. It would also provide answers to WSF
planning personnel about the labor concessions that would be most valuable in terms of
their ability to provide improved service, and the concessions the WSF could afford to

give to the labor unions to gain the desired service improvements.

38

In the long term, a computer system would provide the WSF with more flexibility
than a one time consulting effort, but given the stable history of WSF vessel schedules, it
is not clear that the WSF would use the computer system often enough to warrant the
additional cost associated with developing and then operating that system. Further,
vessel schedule stability means that for most of the WSF watch scheduling needs a
computer is not necessary.

Answers from a consultant project could be obtained much more quickly than if a
computer system was first developed and then applied by WSF staff. Computer system
development would take at least two years. A consultant’s study could be completed in
nine months to one year.

Finally, WSF might also stipulate that any tools developed by the consultant as
part of the proposed study should be given to WSF as part of the project. This might
result in some simple tools for use by WSF planners that would aid in future analyses,
while at the same time providing the WSF planners with the end results that were the
primary purpose of the scheduler development. Even the consultant did not develop any
special tools, the WSF would still have the project results to use when negotiating

alternative labor rules and the impacts of those rules on possible route structures and

schedules.

39

APPENDIX A
PROGRAMMING INSTRUCTIONS

APPENDIX A
PROGRAMING INSTRUCTIONS

CHANGE PARAMETERS

Each of these menu selections changes a table or set of tables that are used within
the scheduling software. Return from any menu item in this list is to this menu. Return
from this menu itself (i.e., the ESC key or the "Return” menu selection) takes the user back

to the Main Menu.

S io N D ‘e

This allows the user to change the file name associated with the current crew
schedule. It also lets the user create or edit a text description of the schedule being
analyzed.

When the user has completed this item, control is returned to the Change

Parameters menu.

Route List

To make the best use of crews, some crews will be scheduled to operate vessels on
more than one route (i.e., Seattle-Bremerton and Kingston-Edmonds). However, the user
might want to exclude some routes from consideration in the crew scheduling effort (it
could cut down execution time for the program.) The route list function should show all of
the routes in the system (and allow the addition of new routes) and let the user identify
which of the routes should be included in the scenario being analyzed. Once a route has
been selected for inclusion, the program should offer a second menu which allows the user
to identify the specific datafiles which contains the vessel schedules for each day for the
two week period being scheduled. (See the top half of Figure 6 in the main text.)

The program flow would be from the menu which listed possible routes (some
flagged as included, and others flagged as not included) to a second menu which listed the

datafiles for a highlighted route. From this datafile list, control should go back to the route

A-1

menu, and when the user is done with the route menu, program control shouid return to the
Change Parameters menu. Note that you can get to these same two menus from the
Schedule Watch option of the Main Menu.

Edit Legal Shift T

This allows the user to create or edit tables which control the rules which are used
to define when a crew's shifts begin and end. It will probably be a two menu process.
The first menu allows for selecting a specific shift type. The second menu is for editing (or
creating) the table which contains the parameters associated with that shift type. The
bottom of Figure 4 gives a good example of how the two menu process should work.

Selecting Edit Legal Shift Type should bring up the list of existing legal shift types.
Selection of the shift type should bring up the table shown at the bottom of Figure 4.
When the user is done editing this table (or if they hit ESC) control should be returned to
the Change Parameters menu.

Delete Shift Type

This menu item would allow the user to delete specific types of shifts from the legal
shift listing. (Provide a list of the legal shifts and a method for marking what should be
deleted. The list could look like the window insert in Figure 4, After deletion, allow
deletion of additional shift types.)

When the user has completed deleting shift types, control is returned to the Change
Parameters menu,

Crew Complements/Cost

The scheduler assigns entire crews to vessels not individuals. Each type of vessel
requires a different number of people in its crew. This menu should list each type of
vessel, the number of crew members of each kind and their basic hourly pay rates.

When the user has completed editing this table, control is returned to the Change

Parameters menu.

Crews that serve on routes away from their normal terminal get paid extra money
for their travel. (That is, a crew which normally works the Seattle-Bremerton route gets
travel payments if they are assigned to work the Clinton-Mukilteo route.) This menu item
should bring up a table which lists the travel time and pay associated with traveling (by car)
from each terminal to every other terminal.

When the user has completed this item, control is returned to the Change
Parameters menu.

Return

Takes the user back to the Main Menu.

SCHEDULE WATCH

This selection from the main menu starts the major function of the scheduling
system. Most of the items under the Schedule Watch Menu (Figure 5 in the main body of
this report) contain additional sub-menus.

Choose Route To Schedule

The user will use this menu to select which route s/he will work on next. The menu
should present them with a list of the selected routes chosen for this scenario. (This list or
table comes from Route List created under Change Parameters above.) This menu will also
let the user add new routes to the list under this menu item. (That is, this would be a
second way to access the procedures under Route List.) However, the result from this
menu item should be an “active” route, which will be used by the system for the crew
scheduling process.

When completed with the above functions, program control should return to the

Schedule Watch Menu. {(Figure 5 in the main body of the paper.)

Assign Vessel Schedules to Route

This is the second half of the route selection process described under Route List
description above. (That is, the user is given the chance to identify or change the specific
datafiles that contain the schedule information for all 14 days in the two week schedule
period. The difference is that from this starting point, only the active route (see the
previous section, "Choose Route Selection” to define "active route”) can have the datafiles
identified or changed.

Program control from this process should return to the Schedule Watch Menu.
{(Figure 5 in the main body of the paper.)

Choose Watch Group

The different groups of WSF crew members that work on a vessel are called

“watches.” Each vessel has three "watches" per shift, one for members of the Masters,
Mates and Pilots Union, one for Inland Boatmen's Union personnel, and one for the
Marine Engineers Beneficial Association personnel. The three unions use different rules
for crewing boats.

This step is simply choosing between the three unions. That is, does the user want
to schedule masters, engincers or seamen right now?

When the union to be scheduled has been selected, program control from should
return to the Schedule Watch Menu. (Figure 5 in the main body of the paper.)

(Set) Route Level Scheduling Parameters

This is the figure shown at the bottom of Figure 6. The parameters included in the
figure control how the computer program will try to schedule the active route. This is an
informational table rather than an editing table. It should display the active parameters that
have been set using the other menu options under the "Schedule Watch" heading.

Define Shift St S

For all three unions, the current work rules state that all shifts have to start and stop

at specific terminals. (i.e., all engineers have to get on and off the boat in Seattle for all

A4

Seattle-Bremerton and Seattle-Winslow runs.) Thus, to legally start or end a shift, thé
vessel must be docked at one of those terminals. This menu item would allow the user to
add or change the terminals at which crews may start and end their work shifts for each of
the legal routes. (See the routes table under "Route List” under "Change Parameters.")

When done with these changes, program control should return to the Schedule
Watch Menu. (Figure 5 in the main body of the paper.)

Assign Crews

This is the difficult part of the program. It entails several different screens, starting
with the main screen in Figure 7, then adding the window insert shown on Figure 7 and
then progressing to Figure 8.

Show Scheduling Status

This is a summary table which shows which routes have crews assigned to all trips,
which routes still do not have crew assignments, which crews have been assigned to some
trips, but still do not have complete 40 hour/week work assignments, and when (days)
those crews are legally available for work.

Program control from this process should return to the Schedule Watch Menu.
(Figure 5 in the main body of the paper.)

Return To Previous Menu

Takes the user back to the Main Menu.

APPENDIX B
PROGRAM CODE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "crew_aux.c”

#define NUM_VESSEL 6
#define NUM_TERMINAL 20

int start_tm{10]1, dep_time[10] 1203 ;

int travel_tmi3001, fromi300]1, to(3001, vesi3001;

int num tt, dept_tm{NUM_VESSEL] {201, bk {71 (20} ;

int pesk_load[25], off_peak_load[251, peak_tm{251, off_peak_tm[251;

int n13INUM_VESSEL];

int num_vessel;

int num_terminal;

int x1st_break_pt [NUM_VESSEL] [7], x2nd_break_pt [NUM_VESSEL) [71;

void watch15_basie(int,int);
void watch15_OK(veid);
void watch15_ED{int);
void read_sched(int);
void load_stimes{int);
void load_ttimes(int);
void load_htimes(int);
void lLoad_pktimes(void);
void load_ltimes(void);
void show_summary(int};
void display_time(int);

maing) /* define a shift */
{
char answer;
int i, j, ii=1,ji=0

Load_pktimes();
load_Ltimes();
read_sched(0);
Load_stimes(0);
load_ttimes(0);
toad_htimes(0);
cleanscreen;
SET_navy;
poscur(5,10);
printf{"This is a demo program to show the option 5§ is possible ");
SET_green;
poseur(7?,15);
printf{"further work need to be done:");
poscur(8,20);
printf("extend break_points array into seconq'uégk“);
poscur{9,20); ’
printf(*smail bug in cursor position*};
poscur(10,20);
printf(licombine with crew watch schedule program');
enter(14);
for (1 =0Q; i < 7; i++)
{
for ¢ j = 0; j < NUM_VESSEL; j+#)
¢
x1st_break_pt(j] [i]
x2nd_break_pt(jl [i]
¥
for ¢ j = 07 | < 20; j*+%)
bk il [j} = O;
pkIi1 (11 = 0;
}

nwn
—

-2;

begin:
watch15_basic(ii,jj);
SET_navy;
poscur{24,1);
printf(" (1) Accept Proposed Shift (2) Edit Shifts ");
if (i == 1)
printf("™ (3> Next Week\n');
else
printf(" (3} Previous Week\n"};
printf(® (4) Next Vessel {5) Previous Menu");

input:
SET_green; choose(25,40}; poscur(23,60);
COLOR_off; answer=getch{); putch(answer};

switch(answer-48)

B-1

{

case 1 : watch15_0K();
case 2 : watch15_ED(jj};
case 3 : #i =i X2+ 1;
case & 1 Jj = (jj+1) % 2;
case 5 @ printf("\n\n"};

break;
break;
break;
ii =1
exit(0);

break;

default: c_error(24,answer);

COLOR_off; goto

input;

}
gotio begin;
>

#detine
#define
Hdefine
#idefine
#define
#define
Hdefine

13
27
32
72
S
I
80

ENTER

void watch15_ED(int [}
{
int row, col, i, j, k, bh, mm, xx, press_enter(7];
int b1, b2, d1, d2, s1, s2;
char key, ch;

SET_mavy;

poscur(24,1);

printf{" Use Arrow Key to Select the Break Point;
poscur({25,1);

printf(" the Break Point; and Use the SpaceBar to Return to Previous Memu);
k =0;

Use Enter Key to Pick Up");

* k-
; 1 < 7; press_enter{i] = 0, i++);
begin:
/* Summary */
show_summary(jj);
/i
poscur{row,col);
ch = getch{);
if ¢ch SPACE) goto end;
if (¢h == LEFT || ch == RIGHT)
{
if (bk[klib1] ==
if {ch == RIGHT)
if (ch == LEFT)
if (k < 0) k = 6;
if ¢k >6) k =05
if (press_enter(k] == 0)
{
poscur(3,3+8*k);
printf(" ");
}

0) printf(" »);
k++;

k--;

¥

if {ech == ENTER && press_enter{k]
{
x1st_break_pt{jjl [kl =
bKIKIIb1] = 1;
press_enter [K] ++;
b2 = b1;
goto show_break_pt;

0

bl1;

}

if (ch == ENTER &% press_enter[k]
{
x2nd break_pt[j]] [kl = bl;
bk [kl [(b1]1 = 2;
press_enter{kl++;
goto show_break_pt;

}
if (ch == UP || ch == DOWN}
{
if (bkIk){B1] == 0) printf(" ");
if (ch == UP) b1--;
if (ch == DOWN) bl++;
if (press_enter[k] == Q)
{
if ¢b1 < 1) bl =1;
if (b1 > M13jj3-1) b1 = M3{jj)-1;
3

B-2

if (press_enter[k] == 1)
{
if (b2 < 1) b2 = 1;
if (b1 < b2) bt = b2+1;
if (bt > n13[k1-1) b1 = n13Lk)-1;
}
;
show_break_pt:
rom = 2 + bi;
cot =3 + k *8;
poscur{roew,coll;
if (bk(k][bl} == 0
{
SET_navy;
printf("+");

}

if (bk{kl{bil == 1)
{
SET_green;
printf(i*n);

3
if (bk{k] b1} == 2)

{

SET_yel low;

printf("");

3}
/*
SET_red;
for (i =0; 1 <7 i+$)

{

j=3+8*i;
poscur{22,j);
printf(*¥ 3d ", ,n13Ljj1):
poscur(23, j);
printf(" X3d ¥, x1st_break_pt{jil[il};
poscur(24,j);
printf(" %3d ¥, x2nd_break_pt(jjl(il);
}
poscur(25,5};
printf(* k%X3d bi1x3d b2¥3d ", k, b1, b2);
*/
for ¢ i
for

0; i < ?7; i+4)
j=0; 0 <20; j+0)

el

if (bkfi}(j} == 1) x1st_break_pt[jj][i]
if (bk[i10j] == 2) x2nd_break_pt{jjlLil
>
goto beging
end;
return;
¥
void show_summary(int jj}
{
int i, j, k, s1, 82, dl, d2, xx;
SET_white;
for (i =0Q; 1 € 7; i+#)

{

sl = x1st_break_pt(jjl1Lil;

s2 = x2nd_break_pt(jjl[il;
poscur(2+i*3,64);

xx = dept_tm(]}110];
display_time{xx});

printf("-");

xx = dept_tm{jjl[s1);
display_time{xx);

if (x2nd_break_ptl[jj1lil <= @

{
poscur (3+i*3,64);
xx = dept_tm{]jlls1];
display_time(xx);
printf(*-");
xx = dept_tmij}jlIn130jjI-11;
display_time(xx);
}

else
[
poscur(3+i*3,64);
xx = dept_tm(jjl[s1];
display_time(xx};
printf("-");

xx = dept_tm{jjl(s2];
display_time{xx};
poscur(4+i*3,64);
xx = dept_tm{jj]{s2);
display_time(xx);
printf("-");
xx = dept_tm(jjlIm13(jj1-13;
display_time(xx);
b
H
/* duration */
SET_cyan; :
for (] =0; j<7; j*++)
€
dl = x1st_break_pt{jjl[j];
d2 = x2nd_break_pt(jjl1{jI;
poscur{20,4+8*});
xx = dept_tm{jj] [d1]-dept_tm(jj](0);
display_time{xx);
if (x2nd_break_pt[jjl[jl <= 0}

{
poscur(21,4+8%));
xx = dept_tm{ji) [n13{]j1-11-dept_tm{}j][d1];
display_time(xx);
3}
else

{
poscur(21,4+8%));
xx = dept_tm(jj] [d2]-dept_tm(]]j] (d1};
display_time(xx);
, poscur(22,4+8*]);
xx = dept_tm[jjI(n13[]j1-11-dept_tm(jj][de];
display_time(xx);
]
3
return;
b
void display_time(int xx)
{
int hh, mm;
hh = xx / 60;

mm = xx X &0;
if (mm < 10)

printf("%2d:0%1d", hh, mm);
else

printf(*%2d:Xad", hh, mm};
return;
¥

void watch15_basic(int ii, int jj)
{
int i, J, hh, mm, next_day, xx;
static char vessel [31[9] = { "Cathlamet®, "HiyuH };

COLOR_of f;

¢leanscreen;

SET_yellow;

subscrn("watch15,.mw);

COLOR_off;

set_screen(37,44);

poscur(17,15); printf(" %-9.9s * vessel(jjl);
set_screen(37,42);

poscur(17,48); printf(" Week X%d *,ii);
COLOR_off;

/* Summary *f

SET_white;

for (§ =20; i < 7; i++)

{
poscur(2+i*3, 64);
xx = dept_tm(jj]0];
display_time(xx);
printf("-");
xx = dept_tm[]j] [x1st_break pt(j]jIL[il);
display_time(xx);
if (x2nd_break_pt(jjllil <= O)
{
poscur{3+i*3 64);
xx = dept_tm{jjlix1st_break_pt[jjl [i1];
display_time(xx);
printf(“-"):

xx = dept_tm{jjlIn131jj1-11;
display_time(xx};
b

else

{

poscur(3+i*3, 64);

xx = dept_tm(jj][x1st_break_pt(jjllil);
display_time(xx);

printf{*-");

xx = dept_tm{jj] {x2nd_break _pt{jjl1[ill;
display_time(xx);

poscur(4+i*3, 64);

xx = dept_tmf}j) [x2nd_break pt[jjllill;
display_time(xx);

printf{"-");

xx = dept_tm{jjlIn13(jj1-11;
display_time(xx);

}

/* main schedule table */
for ¢ i = 0; i < ni3jjl; i+s)
for (§ =0; j <7; j++)
{
poscur{2+{,4+8%j);
xx = dept_tmf{jjlLil;
hh = xx / 60;
mm = xx X 60;
next_day = 0;
if ¢ hh »= 26)
{
next_day = 1;
hh -= 24
xx -= 26
>
if ¢ i == xist_break_pt[jj1[j1 || i == x2nd_break_pt(jj1(j1)
{
SET_green;
poscurt2+i, 3+8*));
printf(i*);
¥
SET_white;
if (next_day) COLOR_off;
display_time(xx);
2
/* duration */
SET_cyan;
for (] =0;] <7; j*+)
{
poscur{20,4+8%});
xx = dept_tmljj] ix1st_break_pt[jj) [j}]-dept_tm[]j][01;
display_time(xx);
if (x2nd_break_pt(jjlLj] <= O}

-
'
.
I

{
poscur(2l,4+8*]);
XX = dept_tm[ij][n13[jj]-11-dept_tm{ji][x1st_break_pt{ji]£j]];
display_time(xx);
2
else
{
poscur{21,4+8%j};
XX = dept_tm[ji][xan_break_pt[jj][j]]-dept_tm[jj][x1st_break_pt[jj][j]]:
display_time(xx);
poscur(22,4+8*j);
xx = dept_tmEjj1n13Ljj1-1]-dept_tm{jjl [x2nd_break_pt{]jj) [j11;
display_time{xx};
}
3
return;
}

void watch15_OK()
{
cleanscreen;
pescur(12,30);
set_txt_blnk(35); printf(*Accept Proposed Shifts");
COLOR_off;
enter(20};
poscur{20,40);
printf(" ");
poscur(15,30);

B-5

printf{"piease wait....");
delay(2500);

return;

}

void read_sched(int m)
{
int i, j, kK, |}
char al51;
int terminal_ram(20], vessel mum([20];
FILE *fp, *fopen();
static char name[15] = “sched00C.dat";

if (m>=9)
{
m -= 10;
name [6] = 49;
b
name (7] = 49+m;
/* printf{"%-15.15s\n", name); */
if ({fp = fopen(name,"r"))==NULL}
{

file_msg{name); exit(0);
3
fgets(a, 3, fp);
l = atoi{a);
for (j =0; j < L; i++)
<
if (j == 5) while((fgetc(fp))==13);
fgets(a, 3, fp);
terminal_num(j] = atoi(a);
}
while((fgetc(fp))==13);
fgets(a, 3, fp);
k = atoi(a);
for { j =0; j < k; j*+)
{
if {j == 5) while{(fgetc(fp))==13);
fgets(a, 3, fp);
vessel _num(j] = atoi(a);

b
felose(fp);
/* printf(nxsde, 1);
for (1 5 0; i < L; i++)

{
printf(" XId", terminal_num[i]);
>

printf{"\n");

printf("x5dv k);

for (i =0; 1 < k; i++)
{
printf (" X3d",vessel_num(il);
>

printf{"\n4); */

return;

}

void load_stimes(int jj)
{
int i, j, L, m, n, hh, mm;
static char stime(12) = "stimes.000";
char htimes[12], ttimes[12];
FILE *¥p, *fopen();

if ()] »= @)
{
iio-=10;
stime(8] = 49;
¥
stime(?] = 49+}j;
if ({(fp = fopen(stime, "r"))== NULL)
{
file_msg{stime}; return;
b
fscanf(fp,"%d", &rum_vessel);
for (i = 0; 1 < num_vessel; i++)
{
start_tm[il = O;
fscanf(fp, "%s", ttimes);
l = strien{ttimes);

m=0:m<i; mee)

n=m;
if (ttimes(m) == 58) break;
hh=hh*10+ttimes {m] -48;
}
for { m=r1; m< {; ms)
mm=mm* 10+t ¢ imes [m) -48;
start_tm[i) = &0 * hh + mm;
fscanf(fp,"%s" htimes);
if (htimes[0] == 80 || htimes[0] == 112}
start_tm[i] += 720;
>
felose(fp);
return;
}

void load ttimes(int }j)
{
int i, j, k, L, m, n, hh, mm;
static char ttime(12) = “ttimes.000";
FILE *fp, *fopen();

if (jj>=®
{
ij -= 10;

ttime[8] = 49;

b

ttimel91 = 49+jj;

if (¢(fp = fopen{ttime,"r"))== NULL}
{

file_msg(ttime); return;
)
L =0;
fscanf(fp,"%d %d", &nwm_terminal, &num_vessel};
for (i = 0; 1 < num_terminal; i++)
for (j = 0; j < num_terminal-1; j++)
for ¢ k = 0; k < num_vessel; k++)
{
fscanf(fp,"%d Xd %d %g", &from[l], &to(l],&ves(l], &travel_tm[l]};
L4+;
¥
fclose(fp);
num_tt = L
return;
)

void load_htimes(int jj)
{
int i, j, k, L, m, n, num_stops, pre, start, next_day;
int vessel, stop, hold, default_hold;
int hh, mm, xx;
int default_load;
float speed;
static char htime([12] = "htimes.000";
FILE *fp, *fopen();

it (3] »= 9
€
iio-=10;

htime[8] = 49;
Y

htime[9] = &49+jj;

if ((fp = fopen(htime,"r“))== NULL)
{
file_msg(htime); return;

)
fscanf(fp,*%d", &num_vessel);
for (i = 0; 1 < num_vessel; i++)
{
t=-9;
ni3[i1 = 0;
xx = start_tm(i];
dept_tm(i1 (n13[i1] = xx;
nI3[i1++;
fscanf(fp, "%d", &num_stops);
/t
SET_red;

printf{"
*f
next_day = 0;
for (j = 0;] < num_stops; j++)
{
SET_white;
fscanf(fp,"%d %d %f ¥%d", &vessel,&stop,
ife)j==0)
{
start stop;
hh = xx / 60;
mm = xx % 60;
L++;
/*
SET_navy;
if (mm < 10)
printf("
else
printf("

%2d:0%1d", hh, mm);

%ed:%2d", hh, mm);

*/

goto next_j:

}

(k=0; k <num_tt; k++)

if (vessel == ves{k] && stop == tol(k] && pre
{
m= k;

goto find_out;

b

for

L++;
/H
printf{“(%2d %2d]*, pre, stop);
*f
goto next_j;
find_out:
if (xx >= peak_tm[j] && xx <= off_peak_tm(]})
default_hold = peak_load[j];
eise
default_hold = off_peak_loadlj];
X = xx + hold+default_hold+travel_tmim] *speed;
if (start == stop)
{
dept_tmlil [(MI3[i1] = xx;
n13fil+e;

L++;

/*

if (next_day) COLOR_off;

if (start == stop) SET_navy;

if (next_day && start stop) SET_blue;
if (start == stop)

{
if (mm < 10)
printf("
else
printf("

%2d:0%1d", hh, mm);
%ed:%2dv, hh, mm);

if (¢ % 10) == 9) printf¢™\nn);
}
>/
next_j:
pre = stop;
H
if ((num_stops % 10} = 0) printf("\n");
3
feloselfp);
return;
}

void load_pktimes()
{
int i, j, L, m, n, hh, mm;
static char stimes([12] = "pkhour";

X2d\n®, rum_stops);

gspeed, &hold);

== fromik])

FILE *fp, *fopen();

if ((fp = fopen(stimes,"r'))== NULL)
<
file_msg(stimes); return;

>
for ¢ i = 0; i < NUM_TERMINAL; i++}
p
peak_tm{il = 0;
of f_peak_tm(i) = 0;
fscanf(fp, "%s", stimes);
l = strien(stimes);
h

=

= 0;
= 0;

for (m=0; m< l; m+)
{
n

E

=m;
if (stimes{m] == 58) breax;
hh=hh*10+stimes (m] -48;
>
for (m=n+l; m< L mee)
mm=mm* 10+stimes (m] -48;
peak_tm{i] = 60 * hh + mm;
fscanf(fp,"%s" stimes);
if (stimes(0] == 80 || stimes(0) == 112}
peak_tm{i] += 720;
fscanf(fp,"%s" stimes);
= strien{stimes);

ah = 0;
mm = 0Q;
for (m=0; m< L; me+}
[§
A =M
if (stimesim) == 58) breax;
hh=hh*10+stimes (m) -48;
}

for (m= el mo< L; mes)
m=rm* 1045t imes [m] -48;
of f_peak_tm{i] = 60 * hh + nm;
fscanf(fp,"%s" stimes);
if (stimesf0] == 80 {| stimes{0] == 112}
of f_peak_tm{i] += 720;
3
fclose{fp);
return;

3

void lecaa _ltimes()
{
int i, j, %;
static char stime(15} = “tioaa.aat";
FILE **n, *fopen();

if ((fp = fopen(stime, "r"))== NULL)
(
file_msg(stime); return;
A
for (1 = 0; 1 < NUM_TERMINAL; i++)
-scanft{ fp,"%d" ceax_loaal(i});
for { 1 = 0; 1 < NUM_TERMINAL; i=*)}
‘scanf(fp,"%d", off_peak_loaalil);
fclose(fp);
return;
)

B-9

/™ user */
#define cleanscreen printf(*\033(21%);
#define poscur(r,c) printf{™\033[Xd;XdH",r,c);
#idefine SET_black printf(*\033(1;30m*);
#define SET_red printf(™033[1;31m*};
#define SET_green printf("\033(1;32");
#define SET_yellow printf(™\033(1;33m");
#define SET_blue printf(*\033(1;34m");
#idefine SET_cysn printf(™\033[1,;35a);
#define SET_navy printf(*\033(1;36m");
#define SET_white printf(™033(1;37m");
#define COLOR_off printf(=\033{m*);
#define beep x printf(™\0T");
#define set_txt_bink(f) printf("\033(5;%Xdm",f);
/* front text/background color */
#define set_screen(f,b) printf{*\033{1;%d; %", f b);
/* beep */
beep(int num)

{

whi le{rum--)

beep_x;
3

/* user] */
slbox(r1, c1, words, upper, lower}
int ri, c1, words, lower, upper;
{
int j, i;
poscur{ri, cl); /* first line %/
printf(*Xev, 218);
for(j = 0; j < words; printf("%c",196), j++};
printf(*%c\n*,191); riee;

if (upper 1= 0) /* heading Line */
{
for (i = 0; 1 < upper; i++)
{
poscur{rl,cl); printf("Xc* 179);
poscur(ri,cl+words+1); printf(™Xc\n", 179); riee;
)
if (lower 1= 0)
{
poscur{rl,c1); printf("Xc",198);
for(j = 0; j < words; printf("™%c”,205), j++);
printf("Xc\n*, 181); r1e+;
>
3}
if ¢ lower 1= 0) /* body Line %/
{ N
for (i = 0; 1 < lower; i++)
{
poscur{ri, cl}; printf(*%c*, 179);
poscur{ri,cl+words+1); printf{"Xc\n*,179); ries;
}
poscuri{ri,cl); /* last line »/
printf{"Xc",192);
for(j = 0; j < words; printf("%",196), j+*); printf("Xc», 217);
3}
dlbox(r1, c1, words, upper, lower)
int r1, ¢1, words, lower, upper;
{
int j, i;
poscur{ri,ct); printf(*Xc", 201);
for(j = 0; j < words; printf(*%c®,205), j++);
printf("Xc\n®, 187); ri+s;
if Cupper t=0) (
for (i = 0; i < upper; i++) {
poscur(ri,cl); printf{“Xc*, K 186);
poscur(r1,ci+words+1); printf{*Xc\n“, 186}; ries;
?
if (lower 1=20) (
poscur(ri,cl); printf("%c®, 204);
for(j = 0; j < words; printf(“Xcv,205), j++);
printf("%c\n*,6185); riv+;
)
b/
if { tower 1= 0)
for (i = 0; 1 < lower; i++) {
poscur{rt,ct); printf(*Xc», 186);
poscur{ri, cl+words+1); printf("Xc\n*, 186); rive;
}

B-10

poscur(rt,cl); printf("%c", 200);

for(j = 0; j < words; printf("Xc®,205), j+*); printf(*Xc" 188);

)
/* user2 */
file_meg{naee)
char name{15];

{
printf(*\n\mtfile Xs is not found, piease check...\n\n", name);

beep(1); getchar();
c__erzor(int r, char ¢)

:et_lcrecn('.'.?,ﬂ); poscur(r,10); beep(2);

printf("invelid input ’Xc’, please try sgain...\n* c);
errot)"(int r, int d)

:et_screenth RYsH poscur(r,10); beep(2);

printf(“input ‘Xd’ is an error, please try sgainl 1®,d);
entev)'(int r)

:et_screen(?nT,kZ); poscur({r,50);

printf("Press <Enter> to continue"); COLOR_of f;
)}
choose(r, ¢)
int r, ¢;
{
SET_green;
poscur(r,c);
printf(“Your choice is >> “):
COLOR_off;
3
subscrn(fname)
char frame(20] ;
L4
char Line[80];
int i;
FILE =fp, *fopen();
if ((fp = fopen{fname,*r“)) == NULL)
L4
file_msg(fname); return(0);
3
fgets(line, 79, fp);:
while(feof(fp)==0)
{
printf(“Xs", iine); fgeta(line, 80, fp);
>
fclose(fp);
>
submeru(fname, f,b)
char fname[20]1;
int f, b;

<

char tine[80];

int upper, tower, k, r, ¢, len, i;
FILE *fp, *fopen();

if ((fp = fopen(fname “r*)) == NULL)
{

COLOR_off;

COLOR_off;

getchar{);

printf(*file Xs is not found, please check....\n*, fname);

getchar();

H
fscanf{fp, “%d %d %d Xd", &r, &c, fupper, Llower);
fgets(line, 60, fp);
if upper 1= 0)

L4

for (k = 0; k < upper; k++)

{
fgets(Line 60, fp);
len = strien{line);
for ¢ i = ten-1; § < 45; Lline[{) = 32, i++);
set_screen(f,b);
poscur{r,c);
printf{"X-45.45s\n*, line);
COLOR_off;
[
}

re=i;

3

—_~

if ¢ \ower 1= 0)

{
for (k = Q; k < Lower; k++)

{

fgets(line, 60, fp);

len = strien{line);

for (1 = len-1; § < 45; Linelf] = 32, i++);
. set_screen(f b);

s poscurir,c);
printf(™X-45.45s\n", Lime);
COLOR_off;

s
3
3
fclose(fp);
b
/* user3 %/

void sleep() /* ZENITH 386/20 %/
{

int

int

long 1,
for (|
for

return;
)

. d; ™ 8ONT v
= 1;) <= 10; j++)

Ci=9; 1 <= 82510; i)

d= i X j; /* 82509.432038 %/

today is(int yy, int mm, int dd)
{

int i =

static int mon(13) = (0, 31,28,31,30,31,30,31,31,30,31,30,31);

long j=
for ¢ {

0, leap = 0, day = 0;

o;
= 1; 1 <yy; ive)

leap += leap year(i);

j =365
day = |

* (yy-1) + lLeap;
x7;

mon[2] = 28+leap_year(yy);

for (i

2 0;: | < ma; i++)

dd += monl(i);
day += dd;
day = (day+1) X 7;
return(day};

}

Leap_year(int yr)
{

int feb;

if {C(yr/400)e=(yr/400.))

feb
else
if ¢

l‘];

{yr/&)==(yr/k.))

if ¢Cyr/100)=a(yr/100.))
feb = 0;

else
feb = 1;

else

return f
)}

feb = 0;
eb);

B-12

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "crew_aux.c"

#define NUM_SCENARIQ 10
#define NUM_VESSEL 3
#define NUM_TERMINAL 25
#define NUM_ROUTE 15
#Hdefine NUM_SHIFT -]

int num_scenario;

int current_scenario;

char fname [NUM_SCENARIO] [12];

int current_route;

int current_vessei;

int current_shift;

char scenario_name [NUM_SCENARIO] [24];

struct ScenStruct
{
char name{24];
char description[36];
int num_route;
struct RouteStruct
{
int num;
int num_vessel;
struct vesstruct
{
int num;
int num_shift;
struct ShiftStruct
{
char name(24];
int type;
int dayon;
int dayoff;
float maxlen;
float minlen;
float days;
float dailyover;
float daysover;
float spread;
float minoff;
int dailypen;
int dayspen;
int spreadpen;
int report;
int tieup;
} Shifg[NUM_SHIFT];
} Vessel [NUM_VESSEL];
} Route[NUM_ROUTE] ;
} Scenario;

int num_route;

char route_name [NUM_ROUTE] [32];

int num_vessel;

char vessel_name {NUM_VESSEL] [12];
int num_terminal;

char terminal_name[NUM_VESSEL] [121;
char general_entry([40];

vord load_terminal{void);
void load_route(void);

void load_vessel(void);
void read_scenario{int,int);
void load scenario(char *};
void List_scenario{void);
voi1d save_scenario(veid);
vold detete_scenario(veid);
void watchl{int,int);

vord wateh2(int *,int *);
void watch3(int,int);

void watch4{int,int);

vaid watchS{int,int);

veid watch7(int,int);

void watch8(int,int);

main(}

begi

int f =33, b=41;
char answer;

current_scenario
current_route
current_vesset
current_shift
num_scenario
load_terminal();
enter(25);

load route(};
enter(25);
Load_vessel();
enter(25);
read_scenario(f,b);

n:

COLOR_off;

cleanscreen;
set_screen(f,b);

dibox(1, 14, 45, 1, 9);
submenu(*watchO.mrut, f,b);

" me ww

nuwwun
OO0 00

input:

b

void
void
vaid
void
void
void

choose(16,24);
poscur(16,44);
answer=getch();
switch{answer-48)

{

case 1 : watchl1(f,b);

case 2 : watch2(&f,&b);

case 3 : watch3(f,b);
case 4 3§ watch4(f,b);
case 5 : watchS(f,b);:
case & : read_scenmario(f,b);

case 7 : watch7(f,b);

case 8 : watch8(f,b);

case 9 : COLOR_off;
printf("\n\n");
exit(0);

default: c_error(20, answer);

}

goto begin;

watch1i{void);
watch12(void);
watch13(void);
watchi4{void);
watch15¢void);
watch16{void};

void watchl17{void);

#inc

lude "watchl.c®

void watch1(f,b)

int f, b;

T q

begi

char answer;

n:
COLOR_off;

cleanscreen;
set_screen{f,b);

dibox(1, 14, 45, 1, 8);
submenu(watchl.mnu* £ b);

input:

choose(15,24);
poscur{15,44);
answer=getch();
switch{answer-48)

{

case 1 : watchl1(); break;
case 2 : watchl12(); break;
case 3 : watch13{); break;
case 4 : watchl4(); break;
case 5 : watch15(); break:;
case & : watch16{); break;
case 7 : watchi7({); break;

case 9 : return; break;
default: c_error(18, answer);

break;
break;
break;
break;
break;
break;
break;
break;

break;
goto input;

goto input;

B-14

}
goto begin;
b

void watch2(f,b)
int *f, *b;
{
coLrR_off;
cleanscreen;
set_screen(37,40);
subscrn("watchZ.mnut, f b);
input_f:
poscur(14,31);
scanf{"Xd",&*f);
getchar{);
if (*f == -1)
(
*f = 33;
*h = 41;
return;

[T 13

}

if (*f > 0 8% *f <= 8)
*f = ¥£429:

else

error{16,*f);
goto input_f;
>
input_b:
poscur{14,56);
scanf("Xd" E*b);
getchar();
if("b>088 *b<=8)
*h = *b+39;
else
{
error(16,*b);
goto input_b;
}
set_screen{*f, *b);
}

void watch31{void);
void watch32{void);
void watch33(void);
void watch34(void);
void watch3S5(vaid);
void watch3é(void);

#include "watch3.c"

void watch3{f,b)
int f, b;
{
char answer;

begin:
COLOR_off;
cleanscreen;
set_screen{f, b);
dibox¢1, 14, 45, 1, ™%;
submenu("watch3.mnu", f,b);
input:
choose(13,24);
poscur(13,44);
answerzgetch();
switch{answer-48)
¢
case
case
case
case

watch31();
watch32();
watch33();
watch34();
case 5 : watch35();
case 6 : watch36();
case 9 : return;

L VU R T U]

break;
break;
break;
break;
break;
break;
break;

default: c_error(16,answer);

}
goto begin;

goto i

B-15

#include '‘watché.c*

void watchid(f b)
int f, b;
{
COLOR_off;
cleanscreen;
set_screen{f,b);
dibux(1, 14, 45, 1, 0);
submenu(*watché .mu", £, b);
show_schedule();
return;

b

void watch5(f,b)
int f, b;
{
COLOR_off;
cleanscreen;
set_screen(f,b);
dlbox(1, 14, 45, 1, 9);
submenu({"watchS.mu, f, b);
produce_report();
return;
)

void watch7(f,b)
int f, b;
{
COLOR_off;
cleanscreen;
set_screen{f,b);
dibox(1, 14, 45, 1, 0);
submenu("watch?.mu", f,b);
save_scenario();
enter(10);
return;
3

void watch8(f,b)
int f, b;
{
COLOR_off;
cleanscreen;
set_screen(f,b);
dlbox(1, 14, 45, 1, num_scenario+l);
submenu({“watch8.mnu, f b);
set_screen(f,b);
detete_scenario();
return;

b

B-16

void watch11() /* choose a route */
{

int i, item;

COLOR_off; cleanscreen;

SET_navy; poscur(5,10);

printf("Choose Route tc Schedule Sub Meru'');

SET_red;

puscur({7,15); printf(™ 0) New Scrnario Route "y;

for (i = 0; i < Scenario.num_route; i++)
C
poscur(8+i,15); printf("%2d) X-27.27s", i+1,Scenario.Route(i].name);
}

input:

choose{9+Scenarioc.num_route, 10); poscur(9+Scenario.num_route,30);
scanf("%d", &item);

getchar(};

if (item == 0) goto new;

if (item < 0 || item > Scenaric.num_route)
{
error{19, item); goto input;
}

current_route = item-1; return;

new:

current_route = Scenario.num_route;
Scenario.num_route+s;

SET_green;

printf(" New Route Name ==> "); COLOR_off;
gets(Scenaria,Route[current_route] .name);
Scenario.Route{current_route] .num_shift = 0;
return;

b

char route_name[14] (30];

char route_term{14] [101;

char *name[]l = { " w
"Faunt leroy-Vashon-Southworth", "Fauntleroy-Vashon-Southworth",
"Faunt leroy-vashon-Southworth®, 'Fauntleroy-Vashon-Southworth™,
"Fayntleroy-Vashon-Southworth", *Fauntlergy-Vashon-Southworth®,
uFauntleroy-vashon-Southworth", "Fauntleroy-Vashon-Southuorth",
“Fauntieroy-vashon-Southuworth®, "Fauntleroy-VYashon-Southworth",
"ashon Specizl Schedute 2v, “Fauntleroy-vashon-Southworth",
"Faunt leroy-Vashon-Southworth", “Fauntleroy-Vashon-Southwerth® 3;

char *term{] = (" n, wEall 89w, "Fall B89%, “Fall 89", vfall 89»,
nEall 89w, wFall 89", wFall B89, “fall 89", WFall 89,
nFall 89, w W, ugall B89M, “Fall 89", “Fall 89");

void watch12_base(void);
void watch12_day(void);
void watch12_clear(void);

void watchl12() /* assign vessel */
{
char answer;
int 1;

watch12_base();
begin:

COLOR_off;

cleanscreen;

SET_yel low;

printf{'"\n");

subscrn{"watchl12.mnu);

SET_navy;

poscur{2, 10);

printf("Assign Vessel Schedule to Route Sub Meru");

COLOR_off;

/* display vessel schedule */

- SET_white;

for (1 =0; 1 < 7; i++)
{
poscur{é+i, 12); printf("%-30.30s", route_name(il});
poscur{4+i,49y; printf("%-10.10s*, route_term(i));
>

for £ 1 = 7; 1 € Yta; i++)
{
poscur(S+i,12); printf("%-30.30s", route_namelil);
poscur(5+i,49); printf{"%-10.10s", route_term(il);
}

SET_red;

B-17

dibox(1,8,45,1,0):

dlbox(19,4,55,2,0);
SET_navy;
poscur(20,5);
printf(" (1) Choose Base Schedule (2) Change Day Schedule ");
poscur(21,5);
printf("® (3) Clear Schedule {4} Previous Menu "y;
input:
SET_green; choose(23,10); poscur(23,30);
COLOR_off; answer=getch(); putch(answer);
switch({answer-48)
{
case 1 ; watchi2_base(); break;
case 2 : watch12_day(); break;

case 3 : watchl2_clear{); break;
case 4 ; return;
default: c_error{24,answer); COLOR_off; goto input;
)
goto begin;
}
void watch12_base()
{
int i;
for (1 =0; i < ¥; i++)
{
strepy(route_name(il,nameli+1]1);
strepy(route_term(il,term{i+1]);
3
return;
3
void watch12_day()
{
return;
}
void watch12_clear()
{
int i;
for (i = 0; i < 14; i++)
{
strepy(route_name (il,name[01);
strepy(route_term{il, termi0]1);
3
return;
}
void wateh13() /* choose crew shift */
{
int i, item;
int now = current_route;

COLOR_off; cleanscreen;

SET_navy; poscur(5,16);

printf{"Choose Watch Group Sub Menu");

SET_red;

poscur({7,15); printf(* 0) New Watch Crew "3;

for (i = 0; i < Scenario.Routelcurrent_route]l .num_shift; i++)
{

poscur{B8+i,15);
printf{"¥%2d) %-24.26s", i+1 Scenario.Route [current_route) .Shift{il.name);
}
nput:
choose(P+Scenario.Routelcurrent_route] .num_shift,10);
poscur(9+Scenario.Route {current_routel .num_shift,30);
scanf("%d", &item);

getchar();
if { item == Q) goto new;
if (item < 0 || item > Scenaric.Route[current_route] .num shift)
{
error{(19, item); goto input;
b
current_shift = item-1; return;
new:
current_shift = Scenario.Routelcurrent_route] .num_shift;
Scenario.Route [current_route] .num_shift++;
SET_green;
printf(" New Shift Name ==> #); COLOR_off;
gets{Scenario.Routelcurrent_route]l .Shift[current_shift].name);
return;
3
vaid wateh14() /* route level scheduling */
{

B-18

COLOR_off;

cleanscreen;
SET_yellow;
subscrn(watchld . smw®);
SET_green;

poscur(4,8); putch¢88);
poscur(5,8); putch(883;
poscur(é,8); putch(32);
peocur(7,8); putch(32);
poscur{3,8); putch(32);
poscur(?,8); putch(32);
poscur({11,8); putch(32);
poscur{12,6); putch(32);
poscur(13,6); putch(32);
poscur{17,28); putch(82};
poscur{17,44); putch(82);
poscur(17,58); putch(32);
poscur(18,28); putch(B4);
poscur{18,44); putch(84);
poscur(18,58); putch(32);
poscuri{ 19,28); putch(32);
poscur{19,44); putch(32);
poscur{19,58); putch(66};
enter({24);

return;

)

void watch15_basic(int,int);

void
void

watch15_0K(void);
watch15_ED(void);

void watch15¢) /* define a shift */

begi

{
char answer;
int ii =1, jj=0;

n:
watch15_basic(ii,jj};
SET_navy;
poscur(24,1);
printf(" (1) Accept Proposed Shift (2) Edit Shifts ");
if (ii == 1)
printf(" (3) Next Week\n");
else
printf(" (3) Previous Week\n");
printf(" (4) Next Vessel {5) Previous Menu");

input:
SET_green; choose(25,40); poscur(25,50);
COLOR_off; answerzgetch(); putch{answer);
switch(answer-48)
{
case 1 : watch15_0K(); break;
case 2 : watch15_ED(); break;
case 3 : ii = ii ¥ 2 + 1; break;
case & 1 jJ = (jj+v1)y % 22; ii = 1; break;
case 5 : return;
default: c_error(24,answer); COLOR_off; goto input;
}
goto begin;
>
vaid watch15S_basic(int ii, int jj)
{
int i, j;

static char timef131(51 = (" 7:30", v B:50%, "10:10%, *11:30n, w12:50,
4100, 915:30%, #146:50%, »18:10%, "19:30v, v20:50", "22:10", w23:30");
static char vessel{22][12) = ("Cathlamet*, "Chelan", "Eiwha", “Evergreen®,
"Hiyu", "Hyak", "Illahee", "Issaquah*, "Kaieetan', "Kitsap", "Kittitas",
UK lahowya", “Kiickitat", “Nisquaily", "Clympic", "Quinautt",
“Rhododendron®, "Sealth”, "Spokane”, "Tillikum®, "Walla_Walta", "Yakima"};

COLOR_off;

cleanscreen;

SET _yellow;
subscrn("watchi5.mnu");
COLDR_off;
set_screen(37,44);

poscur{17,15}; printf(™ %-12.12s ", vessel[jjl};
set_sereen(3?,42);
pascur(17,48); printf(" Week %d »,ii);

B-19

COLOR_off;

SET_white;

for € i =0; 1 < 7; i++)
{

poseur(2+i*3 64); printf(* 7:30-

poscur{3+i*3 44);

if (i <5)
printf{"15:30-23:30");

else
printf(*15:30-24:50™);

0; i < 13; i++)
J=0; j<7; [+

15:30m);

poscur(2+i,4+8%j); printf("%-5.5s", timelil);

o

SET_cyan;
for { j=0; j <7; j++)
¢

poscur(20,4+B8*j); printf("%-5.5s%, " 8:00");
poscur(21,4+8*j); printf("%-5.5s", " 8:00M);

¥
return;
}
void watch15_0K()
{
cleanscreen;
poscur{12,30);

set_txt_bink(35); printf{"Accept Proposed Shifts");

COLOR_off;

enter(20);
poscur(20,40);
printf("
poscur(15,30);
printf("please wait....");
delay{2500);
return;
¥

void watch15_ED(}
£
return;
3

void watchl15_vessel()
{
return;
3}

char shift_name(14][8];
char *xreme{] = { " ", MCBFEJR
"ABDEGHJ *
"ACDFGJ *

"CBDEGHA *

void watchlé_basic(veid);
void watchlé_begin(veid);
void watchl6_delete(void);
void watch16_move(void);
void wateh16_list{void);
void watchl6_ext(void);

roid watchté() /* assign crew */
{
char answer;
int i, j;

watch16_basie();
begin:

COLOR_off;

cleanscreen;

SET_navy;

subscrn{"watch16.mnu");

SET_white;

for (i =2 0; 1 < 7; i++)
{
for (] = 0; j <8 j*=2)

{

poscur(4+i, 9+{j/2)*20);
poscur(4+i 13+(j/2)*20);
2

"ACDEGHB ®
"ABDFGJC *
"CBFEGHD *

ll)'-

", YABFEJHC ™, “ABDEJHF v,

“ACDFGHE ", “ACDFGJH ",
“ABDEGJF ", UABDEGHJ ",
BCBFEJHG " 3;

- m owow

putchar(shift_name{il[j)1};
putchar(shift name(i] [j+11);

B-20

for { i =7; 1 € 14; i++)
{
for (j =0; j <« 8; j+=2)
{

poscur(S+i,9+(j/2)*20); putchar(shift_name[i]l[j1);
poscur(S+i, 13+(j/2)%20); putchar(shift_name[i] [j+11};
}

3

poscur{20,48); printf("%-28,.28s", Scensrio.Route[current_route].name);

SET_yel low;

poscur{22,5);

printf{"{1) Begin Watch (2) Delete Watch {3) Move Watch ");

poscur(23,5);

printf("(4) Crew Summary (5) External Crews (&) Previous Menu");
input:

SET_green; choose(24,10); poscur(24,30);
COLOR_off; answer=getch{); putch{answer);
switch(answer-48)
{
case 1 : watchlé _begin(); break;
case 2 : watchlié_delete(); break;
case 3 : watchté_move(); break;
case & : watchté_List(); break;
case 5 : watchté_ext(); break;
case & : return;
default: c_errer{25,answer); COLOR_off; goto input;
b
goto begin;
H
void watchlé_basic()
{
int i;

for (i =0; 1 < 14; i++)
{
strepy(shift_name{il,xnameli+1]);
3

return;
3
void wateh1é_beging)
{
return;
}
void watchié_delete()
{
return;
b
void watch1é_move(}
{
return;
H
void watch1é_list(}
{
static char tt(71(3] = ¢ nguntt, 1IHmll' “Tue“, "Hed", "Thu", "Fl"i“, ngatn };
int i, j, r, ¢;

COLOR_off;
cteanscreen;
SET_navy;
subscrn("watchléa.mw");
SET_yel low; pescur(1,25); printf("CREW SUMMARY L[ST");
for (i =20; i < 9; 1++)
{
poscur(5+i,7); printf("%ch, &5+i);
poscur (15+1,7); printf("%c”, 65+i);

>

for (1 =0; i < 7; i++}
{
SET_green;

poscur{3,12+8%i); printf("%3.3s", tt[il);
SET_yetilow;
poscur(4 11+8%i); printf("1");
poscur(4,13+8*i); printf("2");
poscur{4, 15+8%i); printf(#3v);
}
SET_white;
poscur(2,2); putch(218);
for (i = 0; i < 62; putch(196), i++); putch(191);
for (1 =0; 1 < 7; i+s)

B-21

{
poscur(2,9+8%i);

putch(194);
3

for ¢ 1 =20; § < 11; i++)
{

poscur{3+i, 2); putch(179);
for (J =0; j < 8; putch(179), j++)
poscur(3+i 9+8%j);
3}
poscur{14,2); putch(198);
for (i = 0; i < 62; putch(205), i++}; putch(181);
for ¢ i =0; i < 7; putch(216), is+)

poscur{14,5+8*i);
for ¢ 1 = 11; i < 20; i++)
{

poscur(4+i,2); putch{i179);
for ¢ j = 0; j < 8; putch(179), j++}
poscur{a+i 9+8%j);
}
poscur(24,2); putch(192);
for (i =0; i < 62; putch(196), i++); putch(217);
for (i =0; i <« 7; putch(193), i++)
poseur(24,9+8%i);
enter(25);
return;
3
void watchlé_ext()
{
return;
3

void watchl7() /* show schedule */
{
printf("\n\n\tShow Scheduling Status \n");
getchar();
return;
}

B-22

void watch31()
{
char answer;

COLOR_off;
cleanscreen;
SET_navy;
poscur(5,10);
printf("Scenario Name/Description Sub_Menu");
SCi_red;
poscur(7,5);
printf("Scenario Name ==»> "}
poscur(8,5);
printf("Scenario Description ==> ®);:
SET_green;
poscur(7,23);
printf{“%s" Scenario.name);
poscur{8,630);
printf{"%s",Scenario.description);
input:
set_screen(37,42);
poscur(14,20);
printf(" Do you want to change them ? (y/n) "
SET_vyellow;
poscur{10,58);
scanf("%c", Lanswer);
getchar();
if (answer == 78
if (answer == 89
c_errar{12,answer);
goto input;
change:
COLOR_of f;
poscur{7,23);
gets{Scenario.name);
poscur(8,30);
gets{Scenario.description);
return;

answer == 110) return;
answer == 121) goto change;

2}
void wateh32¢)
{
int r, ¢, i, j, num_route, jj;
char cc;
int now = current_route;

r = 12;
num_route = Scenario.num_route;
if {num_route != 0)
{
set_screen(33,42);
for (i = 0; i < num_route; i++)
{
poscur(r+i,25);
printf(" X2d) X%-30.30s\n",i+1, Scenario.Route[i].name);:
3
COLOR_off;
b
set_screen{33,42);
dlbox(11, 24, 35, 0, num_route};
enter{22);
return;
3}

void watch33()
{
int r, ¢, i, J, num_type,]i;
char ce;
int now = current_route;

r = 13;
num_type = Scenario.Route[now}.num_shift;
if (rum_type 1= 0}
{
set_screen{33,42);
for (1 = 0; i < num_type; i++)
{
poscur{r+i, 25);
printf{" %X2d) %-30.30s\n",i+1, Scenario.Route[now].Shift{i].name);

)
COLOR_off;

B-23

)

set_screen(33,42);

dlbox(11, 24, 35, 0, num_type+l);
poscur(12,25);

printf(®" 0) New Shift Type "y

COLOR_of f;
choose(15+num_type, 30);
poscur{15+num_type, S0);

scanf("%d" &c);
getcnar();

if (e <0 || c>num_type } return;

cleanscreen;
SET_yellow;

subsern("watch33 mu");

COLOR_off;
if (¢c==0)

{
poscur(2,30);

gets{general_entry);
strepy(Scenario.Route (now] .Shift [num_type] .name, general_entry);

type_nl:
Scenario.Routenowl .Shift(num_typel.type = 1;
poscur(4,13); putchar(88);
poseur(5,13); putchar(32);
poscur(é,13); putchar(32); poscur{4,13);
cc = geteh(); if (cc == 0) cc = getch();
if (ec == '\t’ || cc == 77 || cc == 80) goto type_n2;
if (cc == 88 || cc == 120) goto type_nx;

type_n2:
Scenario.Route[now] .Shiftnum_type].type = 2;
poscur{4,13); putchar(32);
poscur{5,13}); putchar(88);
poscur{6,13); putchar(32); poscur(5,13);
cc = getch(); if (ee == Q) c¢c = getch();
if {ce == "\t! cc == 77 cc == 80) goto type n3;
if (cec == "\b’ ce == 72 cec == 73) goto type_nl;
if (cc == 88 || cc == 120) goto type_nx;

type_n3:
Scenario.Route(now] .Shift[num_typel.type = 3;
poscur{4,13); putchar{32):
poscur(5,13); putchar(32);
poscur(é,13); putchar(88); poscur(6,13);
ce = getch(); if (cc == 0) cc = getch();
if (cc == \b' ce == 72 cc == 73) goto type_n2;
if (ce == N\t ec == 77 cc == 80) goto type_nx;
if (ce == 88 || cc == 120) goto type_nx;

type_nx:
poscur(8,38); scanf("%d",&Scenario.Routelnow] .Shift [num_type].dayon);
poscur(9,38); scanf("%d", &Scenario.Route{now] .Shift [rm_typel .dayoff);
poscur(10,38); scanf("%f", &5censrio.Routenow] .Shift [num_typel.maxien);
poscur(11,38); scanf("%f", &Scenaric.Route[now] .Shift[num_typel .minlen);
poscur{12,38); scanf("%f" EScenaric.Route[now].Shift{num_type] .days);
poscur(13,38); scanf("%f" &Scenario.Route[now].Shiftnum_typel .daiiyover);
poscur{14,38); scanf("%f" §Scenario.Route[now].Shift{num_type) .daysover);
poscur{15,38); scanf("%f" &Scenario.Route(now).Shift{num_typel .minoff);
poscur{16,38); scanf("%f" LScenario.Route([now).5hift [mum_type].spread);
poscur(17,38); scanf("id", &Scenario.Route[nowl .Shift [num_type] .dailypen);
poscur(18,38); scanf("%d", &Scenario.Routelnowl .Shift[num_type] .dayspen);
poscur(19,38); scanf("%d",&Scenario.Route(nowl.Shift[rum_typel .spreadpen);
poscur(20,38); scanf("%d", &Scenario.Route[now] .Shift[mum_typel.report);
poscur{21,38); scanf("%d", &Scenario.Routelnow] .Shift[num_typel.tieup);
getchar(); num_type++;
)

else

{
SET_green;
poscur{2,30); printf("%-30.30s", Scenmario.Route(nowl.Shiftlc-11.name};
j = Scenario.Routel[now] .Shift[c-1].type;
poscur(3+j,13); putch(88);
poscur(8,38); printf("%-4d", Scenario.Routelnow].Shift{c-1).dayon);

poscur(9,38);

poscur{16,38);
poscur(11,38);
poscur(12,38);
poscur(13,38);
poscur(14,33);
poscur(15,38);
poscur(16,38);
poscur{17,38);
poscur(18,38);

printf({"%-4d", Scenario.Route[now).Shift{c-1].dayoff);

printf (s, 1fu,
printf(%4 14,
printf("%4 1f1,
printf ("%, 110
printf{"%4_ 1f1,
printf("%4_ 11w,
printf("%e. 1",

Scenario.
Scenario.
Scenario.
Scenario.
Scenerio.
Scenario.
Scenario,

Route{now] .Shiftlc-1] .maxlen);
Route{now] .Shift{c-1].minlen);
Route{now] .Shift{c-1).days);
Route{rnow} .Shift [c-1].dailyover);
Route [now] .Shift{c-1]) .daysover);
Route[nou] .Shift[c-1).minoff);
Route[now) .Shift{c-1].spread);

printf{"%-4d"*, Scenario.Routelnow).Shiftlc-1).datlypen);
printf("%-4d", Scenario.Route{now].Shiftic-1).dayspen);

B-24

type _s1:

type_si:

type_s3:

type_sx:

poscur(1%,38); printf("X-4d", Scenario.Routelnow] .Shift[c-1].spreadpen);
poscur(20,38); printf("X-4d", Scenario.Route[nowl .Shiftic-11.report);
poscur{21,38); printf("%-4d", Scenario.Route[nowl .Shift[c-1).tieup);

COLOR_off;

poscur{2,30); gets(generai_entry);
Route [now] .Shift [c-1] .name,general_entry);
poscur(2,30); printf("%-30.30s", Scenario.Route[now}.Shiftic-1]1.name);

strepy(Scenario.

putchar(88); poscur(5,13); putchar(32);
putchar(32);

ce = getch(); if {cc == 0) cc = getch();

if (cc == *\t’ || cc == 77 || cc == BO) goto type_sZ;

putchar(88); poscur(5,13); putchar(32);

ii =0;

v (j] 1=
{
poscur(4,13);
poscur(é,13);
K

poscur(4,13);

Vi

if (cc == B8 || cc == 120)
{
poscur(4,13);
poscur(6,13);

goto type_sx;
3}

if ¢jij 1= O
{
poscur(4,13);
poscur(s,13);

3
poscur{5,13);
if (cc == ‘\t’
if {cc == "\b’

Jjre;

c
cc

putchar(32}; Scenario.Routefnow] .Shiftlc-1).type = 1;

putchar(32); poscur(5,13); putchar(88);
putchar(32);

¢cc = getch(); if {cc == 0) cc = gerch();
== 77 cc == 80) goto type_s3;
== 72 cc == 75) goto type_sli;

if (cc == 88 |] cc == 120}

{
poscur{4, 13);
poscur(6,13);
goto type_sX;
3

if (jj 1= 0
{
poscurcs,13);
poscur(s,13);
3
poscur(6,13);
if (cc == "\b’
if {cc == "\t/
jiv+;

ce
cC

putchar(32); poscur(5,13); putchar(88);
putchar(32); Scenario.Route[now] .Shiftlc-1].type = 2;

putchar(32); poscur(S,13); putchar(32);
putchar(88);

72 cc 75) goto type_si;

ce = getch(); if (cc == 0) cc = getch();
== 77 ce B0 goto type_SX;

un
uon

if (cc == 88 || cec == 120}

{
poscur(4,13);
poscur(6,13);
goto type_sx;
2

poscur(8,38);

poscur(8,38);

poscur(9,38);

poscur(9,38);

poscur(10,38);
poscur(10,38);
pascur(11,38);
poscur(11,38);
poscur(i2,38);
poscur{12,38};
poscur(13,38);
poscur(13,38);
poscur{14,3B);
poscur(14,38);
poscur(15,38);
poscur{15,38};
poscur(16,38);
poscur(16,38);
poscur(17,38);
poscur(17,38);
poscur(18,38);
poscur(18,38);
poscur(19,38);
poscur(19,38);

putchar(32); poscur(5,13); putchar(32);
putchar(88); Scenario.Route [now) .Shiftic-1].type = 3;

scanf(“xd",&5cenario.Route[noul.Shift[c-1l.dayon);
printf("x-ﬁd“,5cenario.Route[nou].Shift[c-11.dayon);
scanf(“%d".55cenario.koute[now].Shift[c-1]-dayoff):
printf(“%-ﬂd“,Scenario.Route[nou].Shift[c-1].dayoff);
scanf(“%f“,&Scenario.ioute[nou].Shift[c-1].maxlen):
printf("%ﬁ.1f“,5cenario.Route[nou].Shift[c-!].maxlen);
scanf(*%f", &Scenario.Route{now) .Shiftlc-11.minten);
printf(“%&.1f“,$cenario.Route[nou].Shift[c-1].minlen);
scanf(*%f", &Scenario.Route[now] .Shiftlc-11.days);
printf(“xk.1f",Scenario.Route[nou].Shift[c-1].days):
scanf("%f“,&Scenario.Route[nou].Shift[c-1],dai1yover);
printf("%A.1f“,5cenario.Route[nou].Shifttc-11.dailyover);
scanf(“%f",&Scenario.Routetnou}.5hifttc—1].daysover):
printf("%ﬁ.lf“,Scenurio.Rcute(now]-Shift[c—1].daysover);
scanf(“!f",&Scenario.Route[noul.Shift{c-1l.minoff);
printf(“%k.tf",Scenario.koute[nou].Shift[c—1].minoff);
scanf("%f",&Scenario.koute[nou].Shift[c-1].spread);
printf(“xk.1f",Scenario.Route[nou].shifttc-1].spread);
scanf("%d“,&Scenario.ﬂoute[nnw].Shift[c-t].dailypen);
printf(“%-éd",Sceﬂurio.Route[nou].Shift[c-11.dailypen):
scanf("%d“,&Scenario.Route[nou].Shift[c-1].dayspen);
printf("%-kd“,Scenario.Route[nou].Shift[c-1].dayspen):
scanf("%d“,&Scenario.noute[nou].Shift[c-1].spreadpen);
printf("K-&d",Scenario.Route(nou].Shifttc-%].spreadpen);

B-25

poscur(20,38); scanf("xd" &Scenario.Route [now] .Shiftlc-11 . report);

poscur(20,38); printf{"%-4d%, Scenario.Routenouw] .Shift[c-1].report):;
poscur(21,38); scanf("Xd" LScenerio.Route [now] .Shift [c-1).tieup);
poscur(21,38); printf("%-4d", Scenario.Route(now] .Shiftfc-1]1.tieup);
getchar();
b

return;

>

void watch34()
{
int r,e, i, j, num_type;
int now = current_route;

num_type = Scenario.Route[now] .num shift;
dlbox{11, 24, 35, 0, num_type+1);
set_screen(33,42);
poscur(12,25);
printf(" 0) No Delete Shift Type "};
for (i =0; i < rnum_type; i++)
{
poscur{13+§,25);
printf("* %2d) %-30.30s", j+1, Scenario.Route[now) .Shift{i].name);
b
COLOR_off;
choose(14+num_type, 30);
poscur(14+num_type, 50);
scanf("Xd",&c);
getchar();
if(c==0]]| ¢>nun_type) return;
Scenario.Route(nowl .num_shift = num_type-1;
if (¢ == mm_type) return;
for (i =¢; i < num_type; i++)
Scenario.Route [now] .Shift[i-11 = Scenario.Route[now) .Shifr(il;
return;
}

void watch3S()
{
int i, i, k, man(8] [4];
float cost(B][4];
FILE *fp, *fopen();

if ({(fp = fopen{Mcrewcost.dat","r"}}== NULL}
{
file_msg("crewcost.dat"}; enter(24); return;

}

fscanf(fp, "%d",&k);

COLOR_of f;

cleanscreen;

SET_navy;

poscur{3,25);

printf("Crew Complements/Cost"):

SET_yellow;

dibox(2,23,23,1,0);

SET_cyan;

poscur{b,1);

subsern(*watech35.mnu");

SET_white;

for (1 =0; 7 < k; j++)

for { j =07 j < &; jee)

{
fscanf(fp, "%a %", &man(il[j1, Bcostlilljl);
poscur{10+i,22+j*13);
printf(¥X2d %5.2f", man(il{j], cost{il(j1);
¥

felose(fp);

enter(24);

B

void watch3é()
{
COLOR_off;
cleanscreen;
subscrn("watch36.mnu");
enter(2s);
return;
3

B-26

void read_scenariolint f, int b)
{
char answer;
FILE *fp, *fopen{);
int i, j, k, I;

if ((fp = fopen(“scenario.dat", "r*))ssNULL)
{

Tile_msg("scenario.dat"); enter(20);
num_scenario = 0;
return;
H
i=1;
fgets(general _entry, 15, fp);
while(feof(fp)==0)
<
1 = strien(general_entry) -1;
strncpy(frame{i}, general_entry, L);
fgets(general_entry, 35, fp);
L = strlen{general_entry)-1;
strncpy(scenario_name[i],general_entry, [);
num_scenario = i;
i++?
fgets(general_entry, 15, fp);

3}
fclose(fp);
cleanscreen;
set_screen(f, b);
dibax(1, 14, 453, 1, 1+num_scenario);
submenu("watchx.mnu¥, f bl
sat_screen(f,b);
for (1 =1; i <= num scenario; i++)
{
k = strlen{scenario_name(il);
poscur(4+i, 15+k);
for (j = 15+¢k; j < 60; printf(* "), j++);
poscur(4+i 15);
princf(* %2d) X-25.25s", i, scenario_namelil);

H

choose(13,24);

input_x:

poascur{13,44);

answer=getch();

tf (answer >= 4B && answer <= 48+num_scenario)
{
current_scenario = answer- 48;
tf (current_scenario == Q) return;
load_scenariof fname {answer-481);
3}

else
{
c_error{14,answer);
goto input_x;
3

return;

>

void load_scenario(name) /* Loadin a Scenarioc */
char name(12];
{
int i, j, k, I
FILE *fp, *fopen();

if ({fp = fopen(name,"r"))==NULL)
{
file_msg(name); retutrn;
3
fgets(general _entry,23,fp);
L = strien(generai_entry)-1;
strncpy(Scenario.name, general_entry,t);
fgets(general_entry,59,fp);
L = strien(general_entry)-1;
if (L >35) 1L =35
strncpy(Scenario.description,general_entry, 1);
fsecanf(fp,*%d", &Scenarioc.num_route);
for { i = 0; 1 < Scenario.num_route; i++)
{
fgetc(fp);
fgets{general_entry,39,fp);
L = strlen{general_entry)-1;

B-27

if ¢ L>31)1=73%;

strncpy(Scenario.Route[i].name, general_entry, L);

fscanf(fp, "%d", &Scenario.Route(i].num_shift);
for (j = 0; j < Scenario.Routeli].num_shift; j++)

{

fogete{fp);
fgets(general_entry, 39, fp);
L = strlen(general _entry)-1;
if ¢ L>23) L = 23;

fgetc(fp);

strncpy(Scenario.Route[i).Shift(j).name,general_entry,l);

fscanf{fp "%d", &Scenario.Route(il.Shift[j].

fscanf(fp,"%d", &Scenario.Route[il.Shift[j]
fscanf(fp,"xd", &Scenario.Route[i].Shift(j]
fscanf(fp,*%f", &Scenario.Route({].Shift(]j]
fscanf(fp "%f%, &Scenaric.Route(i).Shifti])

fscanf(fp,"%f",
fscanf(fp, "%f",
fscanf(fp, "ifr,
fscanf(fp, "xfe,
fscanf(fp, "%f",
fscanf(fp,"%dv,
fscanf(fp,"%d",
fscanf(fp,"%d",

&Scenario.
&Scenario.
&Scenario,
&Scenario,
&Scenario.
&Scenmario.
&Scenario.
&Scenario.

Route{i).Shift[]]
Routeii].shift[j]
Routeli] .shift[j]
Route{i]l.shift[j]
Route[i].Shift(j]
Route(il.shift[j]
Route{i].shift[j]
Route{i].shift[j]

type);

.dayon);
.dayoff);
.maxlien);
.minlen);
.days);
.dailyover);
.daysover);
minoff);
.spread);
.dailypen):
.dayspen);
.spreadpen);

fscanf(fp,"%d", &Scenario.Route(il.Shift[j]l.report);

fscanf(fp,"%d", &Scenario.Route(il.Shiftlj].tieup);
¥
M
return;
3
void list_scenario() /* List current Scenario */
{
int 1, j:

SET_yellow;
printf("\n\nmitlist Current Scenario\n\n");
COLOR_off;
printf(“%s\n", Scenario.name);
printf("Xs\n", Scenario.description);
printf("X5d\n¥, Scenario.num_route);
for {1 = 0; 1 < Scenario.num_route;
{
printf("%s\n", Scenario.Route[i].name);
printf("A5d\n", Scenario.Route[i].num_shift);
for ¢ j =0;] < Scenario.Route[il.num_shift; j++)
{
printf{*%s\n", Scenario.Route{il .Shift[}].name);
printf(" %4d", Scenario.Routel(i]l.Shift[j].type);

j++)

printf(" Xid", Scenario.Routel(f].Shift{j].dayon);
printf{"™ ¥4d", Scenario.Routelil.Shift{j].dayoff);
printf(™ %.2f", Scenario.Route[il.Shift[j]._maxien);
printf(" %.2f", Scenario.Route(il.Shift(j].minlen);
printf(" %.2¢", Scenario.Route[il.Shift(j].days);
printf(" %.2f", Scenaric.Route(il.Shift[].dailyover);
printf{" %.2f", Scenario.Routelil.Shift[j].daysover);
printf{" %.2¢fv, Scenario.Route(i].Shift[j].minoff);
printf(" %.2f", Scenario.Route[i].Shift[j).spread);
printf(" %4d", Scenario.Routeli].Shift{j].dailypen);
printf{" %d", Scenario.Routefi].Shift[j] . dayspen);
printf(" %4d", Scenario.Routeli].Shift{]].spreadpen);
printf{" %4d", Scenario.Routelil.Shift{j]l.report);
printf(" %d\n", Scenario.Route(i].Shift(j]l.tieup);
¥
H
return;
)]
void show_schedule()
{
printf{"\mmn\tremark show_schedule (unfinished option)\n");
getchar();
return;
3
void produce_report() * o *f
{
char answer;
again:
choose(15,25);
poseur{15,45);

B-28

scanf(4%c!, Lanswer);

getchar();
switch{answer-48)
{
case 0: return; break;
case 1:
case ¢2:
case 3:
case 4:
case 5:
case 6:
case 7: /™ printf{("\n unfinished option\n"); */

break;
default: c_error(22, answer);
goto again;
3}
goto again;
return;
¥

veid save_scenario()
{
int i, j;
char name{20]1, answer;
FILE *fp, *fopen();

if {current_scenario == 0)
{
printf{¥\t Current Scenario is a New Scneario\n");
input:
printf{"\tdata to be saved on file... =s=> ");
scanf(*X%s" name);
getchar();
if {{fp = fopen{name,"r"}) != NULL)
{

printf("file Xs is already existed, do you want to use other one 7", name);

scanf("%c", Lanswer); getchar();

fclose{fp);

it (answer == 89 || answer == 121) goto input;
b

fp = fopen{"scenario.dat", "a");

current_scenario = num_scenario;
fprintf(fp,¥%-15.15s" name);

strepy(fname (num_scenario] ,name);
strcpy(scenario_name[num_scenariol ,Scenaric.name);
fprintf(fp, "X-30_30s\n",Scenario.name);

fp = fopen{ fname[current_scenario],"w");
fprintf{fp, "%-24.245\n", Scenario.name);
fprintf(fp,"%-36.36s\n*, Scenario.description);
fprintf(fp, %2d\n", Scenario.num_route);
for (i = 0; 1 < Scenario.num_routa; i++)
{
fprintf{fp, "%-28.28s5\n", Scenario.Route(i].name);
fprintf(fp, "%5d\n", Scenario.Route[i].mm_shift);
for (j = 0;) < Scenario.Routefil.mum_shift; j++)
{
fprintf(fp,"%-25.25s\n",Scenario.Route(i}.Shift(j] .name);
fprintf(fp," %d", Scenario.Routeli].Shiftl[j}.type);
fprintf(fp," %d", Scenmaric.Route[il.Shift[j].dayon);
fprintf(fp," %d", Scenario.Route(i).Shift[j].dayoff);
fprintf(fp,"* %.1f*, Scenario.Route(i].Shift(jl.maxlen);
fprintf{fp,™ %.1f", Scenario.Routelil.Shiftljl.minlen);
fprintf(fp," %.1f", Scenario.Route{il.Shift([j].days);
fprintf(fp," %X.1f", Scenario.Route[il.Shift(j].dailyover);
fprintf(fp," %.1f", Scenario.Routeli]l.Shift[j].daysover);
fprintf(fp," %.1f", Scenario.Route{il.shift[j]l._spread);
fprintf{fp," %.1f", Scenario.Route[i].shift{}]).minoff);
fprintf(fp,” %d", Scenario.Route(i].Shift{j].dailypen);
fprintf(fp," %d“, Scenario.Route(i]l.Shift[j].dayspen);
fprintf(fp," %d", Scenario.Routelil.Shiftljl.spreadpen);
fprintf(fp," %", Scenaric.Route[il.Shift[]]l.report);
fprintf(fp," %d\n", Scenario.Routelil.shift[j].tieup);
¥

}
felose(fp);

printf("\n\n Current Scenario Schedule is saved on file ¥%s", fname[current_scenariol);
return;

>

B-29

void delete_scenario()
{
char answer;
FILE *fp, *fopen();
int i, j, item, k, L;

if ((fp = fopen(“scenarioc.dat", "r"))==NULL}
{

tile_msg(“scenario.dat"); enter(20);
rnum_scenario = 0;
return;
}
i =0;
fgets(general_entry, 15, fp);
while{feof(fp)==0)
{
i+=1;
L = strien(general_entry) -1;
strncpy(fname[i], general_entry, 1);
fgets(general_entry, 35, fp);
| = strien(general_entry)-1;
strnepy({scenaric_name(i],general_entry,l};
nun_scenario = 1;
fgets{general_entry,15, fp};

3

fclose(fp);

for (i = 1; i <= num_scenario; i++}
{

¥ = strien(scenario_name(i]);

poscur(dvi, 15+k);

for ¢ j = 15+k; | < 60; printf(" "), j++);
poscur(4+i, 15);

printf(*® %2d) %-25.25s%, i, scenario_namelil);

3
choose(13,24);
inpuL_x:
poseur(13,44);
answer=getch(); putch{answer);
if (answer »= 4B && answer <= 48+num_scenario)
{

item = answer- 48;

if (item == 0) return;

fp = fopen('scenario.dat", '"w"};

faor (§ = 1; i <= num_scenario; it++)

{
it ¢ i 1= item)
{
forintf({fp, “%-12.12s\n%, fname(il);
fprintf{fp, "%-24&.24s\n", scemaryo_name(il);
H
}
tclose({fp);
)
alse
{

c_error(l4, answer);
goto input_x;
3}

return;

>

B-30

