Rest Area Usage Design Criteria Update

WA-RD 173.1

Final Report
January 1989

Washington State Department of Transportation
Planning, Research and Public Transportation Division

in cooperation with the
United States Department of Transportation
Federal Highway Administration
WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

Transportation Research Council
Transportation Commission
Loo B. Sweeney, Chair
William J. Kamps, Vice Chair
Vaughn Hubbard
Bernice Stem
Richard Odabashian
Albert D. Rosellini
Jim Henning

Federal Highway Administration
Paul C. Gregson, Division Administrator

Private Sector
Milton "Bud" Egbers, President, Skagit Valley Trucking
Richard Ford, Managing Partner, Preston, Thorgrimson, Ellis, Holman
Tom Gaetz, Project Manager, David Mowatt & Company, Bellevue
Lawrence H. Koun, Vice President, Lockheed Shipbuilding
Charles H. Knight, President, Concrete Technology
H. Carl Munson, VP for Strategic Planning, Boeing Co., Seattle
Michael Murphy, President, Central Pre-Mix Concrete
Richard Norman, President, Associated Sand & Gravel, Everett
John Ostrowski, Public Works Director, Vancouver, WA
Richard S. Page, President, Washington Roundtable
Sudarshan Sathe, Dir., Technical Services, Polycarb Inc., Cleveland, OH
 Gerald E. Weed, Public Works Director, Snohomish County

Universities
Gene L. Woolduff, Vice Provost for Research, UW
Robert V. Smith, Associate Provost for Research, WSU
Neil Hawkins, Associate Dean for Research, College of Engineering, UW
Raid Miller, Dean, College of Engineering, WSU
Colin Brown, Professor and Chair, Civil Engineering, UW
Surinder K. Bhagat, Professor and Chair, Civil Engineering, WSU

Washington State Department of Transportation
Duane Berenson, Secretary
A.D. Andreas, Deputy Secretary
James P. Toohey, Assistant Secretary for Planning, Research and Public Transportation

Washington State Transportation Commission Research Committee
William C. Kamps, Chair
Bernice Stem, Commissioner
Leo B. Sweeney, Commissioner

WSDOT Research Executive Committee
A.D. Andreas, Chair, Deputy Secretary for Transportation
E.W. Ferguson, District 4 Administrator
H. W. Parker, Assistant Secretary for Marine Transportation
Robert C. Schuster, Assistant Secretary for Highways
James P. Toohey, Assistant Secretary for Planning Research & Public Transportation

WSDOT Research Technical Committees
Highway Operations and Development
Don Senn, Chair, District 2 Administrator
John Aspaas, District 4 Project Engineer
William P. Carr, Associate Research Director
John Conrad, District 1 District Operations Engineer
Rich Darnell, District 3 Maintenance & Operations Engineer
C. Stewart Gloyd, Bridge/Structures Engineer
Wayne Gruen, State Traffic Engineer
Dennis Jackson, Roadway Construction Engineer
Stan Moon, Location/Design Engineer
Dick Shroll, District 6 Maintenance Superintendent
George Tsiafas, Structural Engineer, Washington State University

Materials and Product Evaluation
Dal Vandehay, Chair, State Construction Engineer
Keith W. Anderson, Federal Program Manager
Jim Buss, District 5 Construction Engineer
Newton Jackson, Pavement/Soils Engineer
Steve Kramer, Assistant Professor, Civil Engineering, U of W
Bob Krier, Bridge Operations Engineer
Bob Spratt, District 2 Maintenance Engineer
John Strada, Materials Engineer

Planning and Multimodal
Don Tranum, Chair, District 6 Administrator
Ron Anderson, Manager, District 6 Management Services
Ken Casavant, Professor, Washington State University
King Cudham, Director, Pierce County Transit Development
Kris Gupta, Manager, Transportation Data Office
Charles Howard, Transportation Planning Office
Jerry Lenzi, Manager, Multi Modal Branch
Jim Slakey, Manager, Public Transportation
Ray Deardorff, Service Planning Manager, Ferry System

WSDOT Research Implementation Committee
Stan Moon, Chair, Location/Design Engineer
Jack E. Hanson, Location Engineer
Dennis Ingham, State Maintenance Engineer
Newton Jackson, Roadway Construction Engineer
Karst Jacobsen, Engineering Superintendent, WSF
Bob Krier, Bridge Operations Engineer
Ed Schlect, Construction Engineer, Puyallup
Gerald Smith, District 1, Assistant 1-90 Construction Engineer
Bob Spratt, District 2 Maintenance Engineer
John Strada, Materials Engineer

WSDOT Research Office
John Doyle, Director
William P. Carr, Associate Director
Keith W. Anderson, Federal Program Manager
Julie Lessner, Database Coordinator
Carl Toney, Research Administrator

WSDOT Research Liaisons
District 2 - Dave House, Project Development Engineer
District 3 - Bob George, Assistant Location Engineer
District 4 - Richard N. Coffman, Maintenance Engineer
District 5 - Robert MacNeil, Design Engineer
District 6 - Richard Larson, Design and Planning Engineer
A data survey was conducted at eight rest area sites in Washington to reevaluate the rest area design guidelines for the number of parking stalls, the water/sewage volume, and the number and ratio of women's to men's restroom stalls. The criteria for the number of parking stalls and water/sewage volume are affected by the increased highway traffic volume and a lower average vehicle occupancy. A fifty/fifty ratio of women's to men's stalls was the standard, but the results of the data analysis show that a sixty/forty ratio is more appropriate. A simulation program, written in Lightspeed Pascal, is available to assist in determining the respective number of stalls based on vehicle arrival rate.
REST AREA USAGE DESIGN
CRITERIA UPDATE

by

William Melton
Roadside Specialist

Anh Tran
Transportation Technician

and

Julie Leversion
Transportation Planning Specialist

Washington State Department of Transportation
Technical Monitor
Jay Burgin
Travel Analyses Section Specialist

Final Report
Prepared for

Washington State Transportation Commission
Department of Transportation
and in cooperation with
U.S. Department of Transportation
Federal Highway Administration

January 24, 1989
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Transportation Commission, Department of Transportation, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Project Overview</td>
<td>2</td>
</tr>
<tr>
<td>Project Objectives</td>
<td>3</td>
</tr>
<tr>
<td>Review of Previous Work</td>
<td>4</td>
</tr>
<tr>
<td>Literature Review</td>
<td>4</td>
</tr>
<tr>
<td>Review of the 1968 Study Findings</td>
<td>4</td>
</tr>
<tr>
<td>Procedures -- 1987 Design Criteria Update</td>
<td>5</td>
</tr>
<tr>
<td>Data Collection Procedures</td>
<td>6</td>
</tr>
<tr>
<td>Data Collection Design</td>
<td>6</td>
</tr>
<tr>
<td>Discussion</td>
<td>8</td>
</tr>
<tr>
<td>Data Summary</td>
<td>8</td>
</tr>
<tr>
<td>Parking Demand</td>
<td>13</td>
</tr>
<tr>
<td>Water Usage</td>
<td>13</td>
</tr>
<tr>
<td>Restroom Equity</td>
<td>13</td>
</tr>
<tr>
<td>Application and Implementation -- The Design Criteria</td>
<td>19</td>
</tr>
<tr>
<td>Parking Stalls</td>
<td>19</td>
</tr>
<tr>
<td>Water Usage</td>
<td>20</td>
</tr>
<tr>
<td>Restroom Stalls</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
<tr>
<td>Appendix A. Location of Surveyed Rest Areas</td>
<td>A-1</td>
</tr>
<tr>
<td>Appendix B. Survey Form</td>
<td>B-1</td>
</tr>
<tr>
<td>Appendix C. Statistical Formulae Used</td>
<td>C-1</td>
</tr>
<tr>
<td>Appendix D. Computer Simulation Model Coding</td>
<td>D-1</td>
</tr>
<tr>
<td>Appendix E. Women's Restroom Times</td>
<td>E-1</td>
</tr>
<tr>
<td>Appendix F. Men's Restroom Times</td>
<td>F-1</td>
</tr>
<tr>
<td>Appendix G. Rest Area Traffic Data</td>
<td>G-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure Page
1. Highway Traffic Entering Rest Areas on Average Days (%).............. 9
2. Highway Traffic Entering Rest Areas During Peak Hour and Day (%) 10

LIST OF TABLES

Table Page
1. Distribution of Vehicle Types... 11
2. Number of Persons per Vehicle... 11
3. Restroom Use -- Interstate/Non-Interstate.. 11
4. Restroom Use By Site.. 12
5. Vehicle Length of Stay.. 14
6. Parking Demand.. 14
REST AREA DESIGN CRITERIA UPDATE

SUMMARY

Rest areas have become an increasingly important feature in highway travel. The addition of commercial advertising, information displays, weather updates, free coffee, vending machines, and recreational vehicle dump stations to highway rest areas, coupled with tension from driving in higher traffic volumes, have attracted more motorists to rest areas. So that the limited available funds are utilized most efficiently, the existing rest area design criteria need to be updated to reflect the new conditions.

A data survey was conducted at eight rest area sites to reevaluate the rest area design guidelines for the number of parking stalls, water/sewage volume, and the number and ratio of women's to men's restroom stalls. The criteria for the number of parking stalls and water/sewage volume are affected by the increased highway traffic volume and a lower average vehicle occupancy. A fifty/fifty ratio of women's to men's stalls is the standard, but crowded conditions around the women's facilities led WSDOT to believe that the fifty/fifty stall ratio is not adequate.

Data analysis indicated that the formulas for determining the number of parking stalls and the water/sewage volume required modifications. Parking specifications were altered to better serve the demands of the different rest areas. Rest areas near towns have a lower parking demand than rest areas in remote locations, so the parking demand was changed to a variable 2 to 4 percent instead of the previous 4 percent.

The percentage of traffic entering the rest areas has increased at all rest areas since 1967, but this was countered by decreased vehicle occupancy and a decreased percentage of people who use the restrooms. The decreased vehicle occupancy and decrease in restroom use outweighed the increased traffic, so it was
necessary to lower the water/sewage specifications. The results of the data analysis also showed that a sixty/forty ratio of women's to men's stalls was more appropriate for restroom stall design.

INTRODUCTION

Project Overview

The Washington State Department of Transportation is reevaluating the rest area design criteria it has used since 1968. In 1968, WSDOT conducted a study of seven Washington rest areas, collecting information on average daily traffic (ADT), percentage of highway vehicles entering the rest area, vehicle occupancy, and peak conditions demand for parking and restroom usage. Data analysis resulted in the formulation of parking stalls, water/sewage volume, and restroom stalls guidelines.

Since the Rest Area Design Criteria study in 1968, changes have influenced the volume of rest area use, the nature of that use, and the length of time spent in rest areas. A few of these changes include the following:

1. decreased speed limit in most areas,
2. shorter travelling distances between rest areas,
3. higher traffic volumes, resulting in increased tension and a more frequent need to stop, and
4. the addition of attractive rest area features such as commercial advertising, information displays, weather information, free coffee, vending machines, and recreational vehicle dump stations.

There are 27 Interstate rest areas in Washington, many of which need rehabilitation at the average cost of $500,000 to $1,000,000 per rest area. WSDOT currently has a budget of $1 million per year to rehabilitate and, in some cases, expand existing rest area facilities. Thus, accurate, current design criteria are needed to maximize the use of these limited funds.
One concern in evaluating the design criteria was the ratio of female/male restroom stalls. Currently a fifty/fifty ratio is the standard implemented nationwide at rest areas. However, at many rest stations queues develop outside the women's facilities more often than the men's. WSDOT has received requests from female travellers to expand the women's facilities. Informal observations at several heavily used rest areas led to the conclusion that a sixty/forty, female/male ratio was more appropriate, but a definitive analysis was needed to verify these observations.

During the summer of 1987, a survey of current rest area usage was conducted at eight sites, three of which were control sites previously surveyed in WSDOT's 1968 study. At each survey site, the following data was collected: the number of occupants per vehicle, the number of men and women using the restrooms, and the duration a vehicle spent at the rest area. Mainline traffic counts and the number and type of vehicles entering the rest areas were taken at all Washington rest areas during the week of Labor Day 1987. Analysis of the data led to several recommendations for changes to the existing design criteria.

Project Objectives

The current rest area design criteria were established in 1968. The objectives of the 1987 study were to reevaluate the 1968 rest area design criteria and to investigate the sex ratio of restroom stall use.

One of the primary benefits of accurate design criteria is the efficient utilization of limited funds. An annual budget of $1 million will pay for rehabilitation and expansion of one to three of the 27 Interstate rest areas throughout the state. A major portion of this money is spent on building more restroom stalls to accommodate the increasing demand. Thus, it is beneficial to implement the correct ratio of female/male restroom stalls in the design criteria used for these expansion projects. State funds are inefficiently used to build, maintain, and operate excess facilities, while a rest area with too few facilities results in overcrowded, unsanitary conditions. Inadequate facilities also result in
long waiting periods for restroom use, causing public dissatisfaction. For these reasons, it is important that current and accurate design criteria are used.

REVIEW OF PREVIOUS WORK

Literature Review

A research project conducted by the Civil and Environmental Engineering Department at the University of Texas at Austin was reviewed (Straughan, Rock, et al, 1986). The project is a two-year effort currently in its completion phase. Although the report did provide rest area design criteria, the guidelines were too general to be of use in Washington. The report made no reference to the inadequacies of a fifty/fifty, female/male ratio for restroom stalls and no recommendations for change.

In addition, fifty other publications were reviewed. Some publications were obsolete, some were relevant, and others did state a need for establishing accurate design criteria but did not address the area of interest to WSDOT, ratios for restroom stall use by sex. One publication, *Rest Areas* (NCHRP, 1973), stated that "additional information was needed in the area of an operations and design manual," reaffirming WSDOT's research effort.

Review of the 1968 Study Findings

In 1968 data was collected at the following seven rest areas. (See Appendix for location of the rest areas.) The data was collected in the late summer to capture peak traffic that included vacationers:

<table>
<thead>
<tr>
<th>Rest Area</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hatton Coulee</td>
<td>August 11-12, 1968</td>
</tr>
<tr>
<td>2. Nason Creek</td>
<td>August 10-11, 1968</td>
</tr>
<tr>
<td>3. Horn School</td>
<td>August 3-4, 1968</td>
</tr>
<tr>
<td>4. Vernita</td>
<td>August 10, 1968</td>
</tr>
<tr>
<td>5. Blue Lake</td>
<td>August 3-4, 1968</td>
</tr>
<tr>
<td>6. Indian John Hill Eastbound</td>
<td>August 16-17, 1968</td>
</tr>
</tbody>
</table>
The following formulas were determined on the basis of data collected in 1968:

Parking Stall Demand

Total Parking Stalls Required = Seasonal ADT X Total Vehicles Entering (5-12%) X Parking Demand (4%)

Water Usage

Gallons Used During Peak Hour = Seasonal ADT X Total Vehicles Entering (5-12%) X Average Vehicle Occupancy (3) X Percentage of People Using the Restrooms (80%) X Gallons Used per Person (3.5)

The percentage of vehicles entering rest areas located near parks, resorts, or cities is lower than that for rest areas in remote locations. Consequently, a flexible range of 5 to 12 percent was used to calculate the total number of vehicles entering to allow for this variation in rest area usage. The total number of persons using the restrooms was 80 percent, indicating that 80 percent of the people entering the rest areas used the restroom facilities. Also, data analysis showed that each person used 3.5 gallons of water.

PROCEDURES -- 1987 DESIGN CRITERIA UPDATE

Detailed data was collected at the following eight rest areas. Traffic counts were obtained from all other sites. (See Appendix A for location of rest areas.)

<table>
<thead>
<tr>
<th>Rest Area</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Scatter Creek</td>
<td>July 19, 1987</td>
<td>1400-2000</td>
</tr>
<tr>
<td>5. Smokey Point Southbound</td>
<td>July 26, 1987</td>
<td>1200-1800</td>
</tr>
<tr>
<td>Rest Area</td>
<td>Date</td>
<td>Time</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>6. Indian John Hill Westbound*</td>
<td>July 31, 1987</td>
<td>1500-2100</td>
</tr>
<tr>
<td></td>
<td>August 1, 1987</td>
<td>1030-1830</td>
</tr>
<tr>
<td>7. Indian John Hill Eastbound*</td>
<td>August 2, 1987</td>
<td>1500-2100</td>
</tr>
<tr>
<td></td>
<td>August 2, 1987</td>
<td>1030-1830</td>
</tr>
<tr>
<td>8. Nason Creek*</td>
<td>July 31, 1987</td>
<td>1500-2100</td>
</tr>
<tr>
<td></td>
<td>August 2, 1987</td>
<td>1400-2000</td>
</tr>
</tbody>
</table>

Data Collection Procedures

At all the surveyed sites, except Custer, the following information was recorded during 15-minute periods:

1. number of vehicles entering,
2. type of vehicles entering,
3. number of passengers in each vehicle,
4. number of females/males entering the restrooms, and
5. random recording of vehicle length of stay.

On separate occasions, the length of stay in the restrooms was recorded at Maytown, Indian John Hill westbound, and Indian John Hill eastbound.

Data was recorded on forms (see Appendix B), sorted, and stored in a database developed in the software package *R:Base System V*. The peak hour was the chronological hour in the survey with the highest number of persons entering the rest area. The peak period in the survey was the 15 minutes of data collection with the highest number of persons entering the rest area.

Data Collection Design

The following factors were considered for data collection (Ulberg, 1987):

1. **Outside effects:** The survey was conducted on weekends and holidays to capture the higher traffic volumes. Poor weather conditions may

*Control Sites
cause fewer people to travel, but on a weekend or holiday this effect is lessened.

2. **Time effects:** The times of the survey were altered slightly for each individual rest area in order to capture peak traffic. For instance, at Maytown, data was collected from 2 p.m. until 8 p.m. on Friday and Sunday -- anticipated times during which travellers leave and return from vacations and commuters seek respite from the heavily congested Friday afternoon traffic.

3. **Testing:** Data collection was not affected by people's attitudes, motivations, performance, or behavior for the majority of the study. Most people were unaware of the survey due to the location of the data collection team. Moreover, the data recorded was quantitative: the number of vehicles, the number of passengers, the number of people using the restrooms. The only exception was the timing of restroom use. To achieve greater accuracy, the researchers were in the restrooms when timing the subjects. The presence of a surveyor may have altered the subjects' behavior, but this effect was overlooked for lack of a discreet timing method.

4. **Instrumentation:** Measurement errors may have occurred during the survey but these were treated as random errors in the statistical analysis.

5. **Central Tendency:** Data analysis showed some extreme statistics. At times, the vehicle arrival rate and the percentage of restroom use were low, causing a large deviation in overall interpretation. However, this source of data invalidity was negligible, since the main focus of the data was peak conditions.

6. **Selection:** The chosen rest areas are representative samples of all rest areas by type. Maytown and Scatter Creek have a high vehicle arrival
rate and serve many commuters. Smokey Point is located in the northern part of western Washington. This rest area is frequented by vacationers, Canadians, and some commuters. Indian John Hill is the main rest stop for east-west Washington travellers. Nason Creek was chosen because it will soon be expanded.

7. **Sample Size:** Detailed data was collected at eight sites, but to ensure research results, mainline traffic count and distribution of vehicle types were recorded at all other rest areas in Washington.

DISCUSSION

Data Summary

At all of the surveyed rest areas the percentage of highway traffic entering the rest areas on an average day has increased since 1968 (Figure 1). The percentage doubled at the Indian John Hill rest areas and tripled at the Horn School rest area. The greatest increase from 1968 to 1987 was noted at the Nason Creek rest area where the percentage of highway traffic entering increased almost 10 times.

Figure 2 compares the peak hour data of 1968 with the 1987 peak hour and peak day information. The information is shown as a percentage of highway traffic entering the rest area during peak periods. For the design of new rest areas or for expansion and rehabilitation projects, this data is used in determining the number of parking stalls, the number of restroom stalls, and the sewage system to meet the expected demand.

The distribution of vehicle types entering the surveyed rest areas is displayed in Table 1. The percentages obtained for the peak hour, as well as the surveyed time, are compared for each vehicle type. The percentage of cars entering the rest areas increased during the peak time for all rest areas except Indian John Hill
Figure 1: Highway Traffic Entering Rest Areas on Average Days (%)

REST AREAS

<table>
<thead>
<tr>
<th>Rest Area</th>
<th>1968</th>
<th>1987</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Lake</td>
<td>5.7%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Horn School</td>
<td>3.1%</td>
<td>10.4%</td>
</tr>
<tr>
<td>Vernita</td>
<td>2.2%</td>
<td>13.7%</td>
</tr>
<tr>
<td>Nason Creek</td>
<td></td>
<td>21.5%</td>
</tr>
<tr>
<td>Indian John Hill EB</td>
<td></td>
<td>19.9%</td>
</tr>
<tr>
<td>Indian John Hill WB</td>
<td></td>
<td>19.7%</td>
</tr>
<tr>
<td>Smokey Point SB</td>
<td></td>
<td>6.0%</td>
</tr>
<tr>
<td>Smokey Point NB</td>
<td></td>
<td>7.6%</td>
</tr>
<tr>
<td>Scatter Creek</td>
<td></td>
<td>8.9%</td>
</tr>
<tr>
<td>Maytown</td>
<td></td>
<td>11.5%</td>
</tr>
</tbody>
</table>

* Rest Area not surveyed in 1968
Figure 2: Highway Traffic Entering Rest Areas During Peak Hour and Day (%).

<table>
<thead>
<tr>
<th>REST AREAS</th>
<th>1968 PEAK HOUR</th>
<th>1987 PEAK HOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Lake</td>
<td>14.8%</td>
<td>10.7%</td>
</tr>
<tr>
<td>Horn School</td>
<td>13.5%</td>
<td>11.4%</td>
</tr>
<tr>
<td>Vernita</td>
<td>13.6%</td>
<td>9.7%</td>
</tr>
<tr>
<td>Nason Creek</td>
<td>16.7%</td>
<td>16.3%</td>
</tr>
<tr>
<td>Indian John Hill</td>
<td>37.6%</td>
<td>33.2%</td>
</tr>
<tr>
<td>Indian John Hill</td>
<td>10.8%</td>
<td>7.5%</td>
</tr>
<tr>
<td>Smokey Point SB</td>
<td>10.1%</td>
<td>8.1%</td>
</tr>
<tr>
<td>Smokey Point NB</td>
<td>10.2%</td>
<td>9.2%</td>
</tr>
<tr>
<td>Scatter Creek</td>
<td>14.7%</td>
<td>12.9%</td>
</tr>
<tr>
<td>Maytown</td>
<td>17.1%</td>
<td>10.2%</td>
</tr>
</tbody>
</table>
TABLE 1. DISTRIBUTION OF VEHICLE TYPES

<table>
<thead>
<tr>
<th>Rest Area</th>
<th>Surveyed Time</th>
<th>Peak Hour</th>
<th>Car (%)</th>
<th>Truck (%)</th>
<th>Vehicle w/ Trailer (%)</th>
<th>RV's (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maytown</td>
<td>83.0</td>
<td>91.6</td>
<td>8.5</td>
<td>2.9</td>
<td>5.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Scatter Creek</td>
<td>86.2</td>
<td>90.7</td>
<td>5.4</td>
<td>2.3</td>
<td>5.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Smokey Point NB</td>
<td>82.0</td>
<td>94.1</td>
<td>5.1</td>
<td>2.2</td>
<td>8.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Smokey Point SB</td>
<td>86.0</td>
<td>95.3</td>
<td>1.0</td>
<td>0.6</td>
<td>8.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Indian John EB</td>
<td>90.0</td>
<td>85.6</td>
<td>3.3</td>
<td>8.8</td>
<td>5.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Indian John WB</td>
<td>89.0</td>
<td>91.4</td>
<td>4.4</td>
<td>0.5</td>
<td>4.2</td>
<td>6.6</td>
</tr>
<tr>
<td>Nason Creek</td>
<td>87.0</td>
<td>86.7</td>
<td>1.2</td>
<td>0.0</td>
<td>7.2</td>
<td>9.1</td>
</tr>
</tbody>
</table>

TABLE 2. NUMBER OF PERSONS PER VEHICLE

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>1987 Average</th>
<th>1968 Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car</td>
<td>2.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Vehicle w/trailer</td>
<td>2.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Truck (1987 estimated)</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>R.V.</td>
<td>2.4</td>
<td>**</td>
</tr>
<tr>
<td>Weighted Average</td>
<td>2.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

**1968 Data not available

TABLE 3. RESTROOM USE -- INTERSTATE/NON-INTERSTATE

<table>
<thead>
<tr>
<th></th>
<th>1987 Peak (%)</th>
<th>1987 (%)</th>
<th>1968 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Interstate</td>
<td>45.2</td>
<td>64.5</td>
<td>77.5</td>
</tr>
<tr>
<td>Interstate</td>
<td>65.9</td>
<td>69.6</td>
<td>80.2</td>
</tr>
<tr>
<td>Combined</td>
<td>64.1</td>
<td>69.3</td>
<td>79.1</td>
</tr>
</tbody>
</table>
TABLE 4. RESTROOM USE BY SITE

<table>
<thead>
<tr>
<th>Rest Area</th>
<th>1987 Peak (%)</th>
<th>1987 Ave. (%)</th>
<th>1968 Ave. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maytown</td>
<td>62.2</td>
<td>59.9</td>
<td>*</td>
</tr>
<tr>
<td>Scatter Creek</td>
<td>68.8</td>
<td>69.5</td>
<td>*</td>
</tr>
<tr>
<td>Smokey Point NB</td>
<td>68.0</td>
<td>65.5</td>
<td>*</td>
</tr>
<tr>
<td>Smokey Point SB</td>
<td>54.0</td>
<td>63.3</td>
<td>*</td>
</tr>
<tr>
<td>Indian John Hill WB</td>
<td>73.6</td>
<td>77.0</td>
<td>79.0</td>
</tr>
<tr>
<td>Indian John Hill EB</td>
<td>76.2</td>
<td>76.4</td>
<td>74.0</td>
</tr>
<tr>
<td>Nason Creek</td>
<td>46.4</td>
<td>64.6</td>
<td>49.0</td>
</tr>
</tbody>
</table>

*Rest area not surveyed in 1968.

eastbound. The greatest increases were seen at Maytown and Smokey Point north and soundbound.

The weighted average vehicle occupancy is currently 2.2, down from 3.2 in 1968 (Table 2). The reduction in vehicle occupancy can be attributed to the addition of the R.V. category and an increased percentage of single individuals, personal affluence, and number of vehicles per household.

The percentage of persons using the restrooms is down to a variable 65 to 70 percent, depending on the location of the rest area (Table 3). In 1968, 80 percent of the travellers used the restroom facilities when stopping at rest areas. Today, with facilities and services like vending machines, travel and weather information, picnic areas, telephones, RV dump stations, and free coffee, rest areas offer motorists more than just restroom use.

Table 4 shows the percentage of restroom use by rest area. At the Nason Creek rest area there was a 15 percent increase in restroom use since 1968. This rest area is scheduled to be expanded due to the increase in demand. The percentage of restroom usage is lower during the peak period because travellers often avoid the congestion of a busy restroom facility.
Parking Demand

The percent of parking demand based on the 1987 information was computed as follows:

1. The average length of vehicle stay in the rest area (Table 5) was divided into 60 minutes. This number represents the vehicle turnover per hour.

2. The number of vehicles entering the rest area during a peak day was determined. This was equal to the average daily traffic (ADT) multiplied by the peak percent of vehicles entering the rest area.

3. The number of vehicles entering during the peak day was multiplied by 85 percent. Due to space limitations, each rest area is designed to service only 85 percent of the vehicles during peak conditions.

4. The value from Step 2 was divided by the turnover rate.

5. The percentage of parking demand was determined by dividing the parking demand by the seasonal average daily traffic.

Water Usage

The factors affecting the guideline for water usage are seasonal average daily traffic (ADT), percent of total vehicles entering, average vehicle occupancy, percentage of travellers using the restrooms, and gallons of water used per person. Since 1968, the percent of total vehicles entering a rest area has changed (see Figure 1) and there has been a reduction in average vehicle occupancy and in the percentage of travellers using the restrooms. Consequently, the formula for water usage was revised to include these changes.

Restroom Equity

The design guidelines for the number of toilet fixtures also requires reevaluation. Ensuring an adequate number of toilet fixtures for each rest area is an important consideration in rest area design. Most of the budget for upgrading a rest area is spent on renovating the restrooms. 65 to 70 percent of the motorists
TABLE 5. VEHICLE LENGTH OF STAY

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Minutes</th>
<th>Turnover Rate/Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger/Pick-up</td>
<td>7.25</td>
<td>8.28</td>
</tr>
<tr>
<td>Trucks</td>
<td>8.4</td>
<td>7.14</td>
</tr>
<tr>
<td>Vehicles w/ Trailers</td>
<td>11.8</td>
<td>5.08</td>
</tr>
<tr>
<td>RV's</td>
<td>9.7</td>
<td>6.19</td>
</tr>
<tr>
<td>Combined (weighted)</td>
<td>8.34</td>
<td>7.19</td>
</tr>
</tbody>
</table>

TABLE 6. PARKING DEMAND

<table>
<thead>
<tr>
<th>Rest Area</th>
<th>Peak Use (# of vehicles)</th>
<th>85% Parking Demand</th>
<th>% of Ave. Daily Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maytown</td>
<td>3010</td>
<td>36</td>
<td>2.02</td>
</tr>
<tr>
<td>Scatter Creek</td>
<td>2793</td>
<td>30</td>
<td>1.73</td>
</tr>
<tr>
<td>Smokey Point NB</td>
<td>2683</td>
<td>37</td>
<td>1.53</td>
</tr>
<tr>
<td>Smokey Point SB</td>
<td>2101</td>
<td>26</td>
<td>1.19</td>
</tr>
<tr>
<td>Indian John EB</td>
<td>2572</td>
<td>23</td>
<td>4.45</td>
</tr>
<tr>
<td>Indian John WB</td>
<td>2362</td>
<td>27</td>
<td>3.92</td>
</tr>
<tr>
<td>Nason Creek</td>
<td>1226</td>
<td>33</td>
<td>5.25</td>
</tr>
<tr>
<td>Custer</td>
<td>1021</td>
<td>12</td>
<td>1.45</td>
</tr>
</tbody>
</table>

Stopping at these rest areas require the use of the restroom facilities. The state needs to fulfill this demand sufficiently.

Currently, the ratio of female-to-male stalls is fifty/fifty in most Washington rest areas.\(^1\) However, the fifty/fifty stall ratio was inadequate. Long queues frequently accumulate outside the women's facilities but rarely outside the men's. The results of the data collection show that a sixty/forty, female/male stall ratio is effective in alleviating the problem.

Two hypotheses are involved in the proposal to implement a sixty/forty, female/male ratio for restroom stalls: (1) The demand for use is equal, but (2) women require more time than men. Consequently, the women's queue time is longer. The data for the proportion of female to male users and the restroom

\(^1\)A sixty/forty ratio is being used for the rehabilitation project at the Gee Creek Rest Area near Vancouver.
service times must be statistically sound. (The statistical formulas used are contained in Appendix C.)

Hypothesis I -- Proportion of Female-to-Male Restroom Users. The proportion of female to male restroom users during the peak period at all test sites was as follows:

- Number of females: 269
- Number of males: 285
- Percent of females: 48.6%
- Percent of males: 51.4%
- Standard error of proportion: .02
- Null hypothesis: percent female equal to percent male
- Alternative: percent female not equal to percent male

Under the null hypothesis, the expected number of females sampled is the same as the expected number of males sampled: 277. The observed number of females sampled is 269; the observed number of males sampled is 285. The Chi-Square statistic is used to test whether the difference in proportions is significant or whether it is due to chance and negligible.

Chi-Square Statistic Test

1. Subtract each expected value from each observed value.
2. Square the difference.
3. Divide each quantity by the respective expected value.
4. Sum all the quantities obtained from Steps 1 to 3.
5. Determine the degrees of freedom. This is equal to $k-1$ where k is the number of proportions in the sample. The degree of freedom is one.
6. Test the hypothesis at a significance level of .01: the probability of the hypothesis being rejected if it is true is one percent.
7. Under the probability distribution table, the value of Chi-Square at a significance level of .01 for one degree of freedom is 6.635.

8. If the Chi-Square statistic value obtained in Step 3 is larger than 6.635, then the observed difference in the proportions cannot be attributed to chance.

9. The Chi-Square statistic value of .462 [from Step 3] does not exceed 6.635. We accept the null hypothesis. The proportions of female and male users are the same. There is equal demand.

Hypothesis II -- Service Times

Women

Number of observations: 71
Mean service time: 79 seconds
Standard deviation: 37.65 seconds
Standard error: 4.47 seconds

Men

Number of observations: 106
Mean service time: 47 seconds
Standard deviation: 40.15 seconds
Standard error: 3.90 seconds
Null hypothesis: women and men's average restroom use times are the same
Alternative: women's restroom use times are longer than men's

Procedure for hypothesis testing:

1. Find the difference in the means.

2. Divide by the square root of the sum of the standard errors. Call this quantity Z
3. Set the significance level at .01. If the null hypothesis were true, then there would be a one percent probability that it would be mistakenly rejected.

4. Under the normal probability distribution table, the z value for a significance level of .01 is 2.33.

5. If the calculated Z value from Step 2 is larger than 2.33, then the difference in the means is too large to be attributed to chance.

6. Z calculated is 5.49, which does exceed 2.33. The null hypothesis is rejected; the alternative is accepted. Women's restroom use times are longer than men's.

Simulation Modeling. Although the number of male and female users is nearly equal, women require more time to use the restroom. Consequently, queues form around the ladies' room and the demand for use increases. Maintaining the fifty/fifty toilet fixture ratio in the design criteria will result in excess male restroom facilities and/or inadequate female facilities.

A simple queueing formula shows that a sixty/forty, female/male toilet facility ratio is indeed more accurate than a fifty/fifty ratio. However, there are many disadvantages to using a queueing formula. Queueing formulae assume constant demand and usage rates, conditions that are not real-to-life. A better method for developing design guidelines is a simulation model.

A simulation model has many advantages. A simulation model is easily expandable and user-friendly. It is also possible to experiment with inter-related elements of the system and to study the effects of certain changes in the operation. The model can be used to test new policies for operating the rest area system, reducing the risk of experimentation on the real system. It enables detailed observations of activities in the system in reduced time.

Simulation does not assume static operating conditions, with constant arrival and usage rates, as a queueing formula does. Instead, a simulation model uses
distribution rates. Vehicles arrive at the rest area with a Poisson distribution: "Poisson distributed events frequently occur in the real world . . . [It] is particularly useful in dealing with the occurrence of isolated events over a continuation of time . . . "(Naylor, p. 112). The histogram of the restroom usage times resemble a bell-shaped curve. A bell-shaped curve represents a normal distribution, a range in which many random, real-to-life events fall.

A simulation model was developed in *Lightspeed Pascal* to represent the operation of a rest area, with focus on the restroom usage. The coding for this program is contained in Appendix D. The program prompts the user for the following information, most of which may remain constant for any rest area (constant rates are denoted by an asterisk):

1. The number of male and female stalls
 Example: 4,4
2. The vehicle arrival rate per hour at the rest area
 Example: 300
3. The length of peak time in minutes
 Example: 15
4. The average number of passengers per car
 Example: 2.2 *
5. The percentage of women
 Example: 48% * (.48)
6. The percentage of men
 Example: 52% * (.52)
7. The percentage of people who will use restrooms
 Example: 70% (.70)
8. Average service rate for women, in seconds
 Example: 79 *
9. Average service rate for men, in seconds
 Example: 45 *

The program will run after the last input and will output the number of men and women who waited in line during the peak period with their average wait time. To reduce the women's wait time, the program is run again, keeping every value the same except the number of stalls. When inputting the values for the number of
stalls representing the sixty/forty, female/male ratio, the output will show a decreased waiting time for both sexes. The process is repeated until a satisfactory number of stalls and waiting time has been determined.

APPLICATION AND IMPLEMENTATION -- THE DESIGN CRITERIA

The design criteria consist of guidelines for the optimal number of restroom stalls, the number of parking stalls, and water/sewage usage. The simulation program can be used to determine the number of restroom stalls. Formulae established in the 1968 study were modified on the basis of the new data results from this current study to determine the number of parking stalls and water volume.

Parking Stalls

Most rest areas in Washington are designed to accommodate the parking demand 85 percent of the time during the peak hour. To determine the number of parking stalls, the procedures below should be followed:

1. Determine a projection of the seasonal average daily highway traffic (ADT) from counter readings.
2. Multiply the ADT by the percentage of vehicles entering the rest area. Percentages range from 5-12 percent of the ADT, depending on the location of the rest area.
3. The product from Step 2 is the average daily number of vehicles that go through a rest area, or the average daily usage. Depending on the location and type of rest area, parking demand is equal to 2 to 4 percent of so the average daily usage. A rest area near a town serves more commuters, the length of stay at the rest area is approximately 5 minutes. The parking turnover rate for that rest area is high; the parking demand is closer to 2 percent. A remote rest area with recreational features serves more vacationers, whose length of stay is much longer than that of commuters. The parking turnover rate for
that rest area is low; the parking demand is closer to 4 percent. For
greater accuracy in determining the required number of parking stalls,
a parking survey of the individual rest area should be conducted.

4. Thus, for the number of stalls that will satisfy the parking demand
eighty-five percent of the time, multiply the average daily usage
(product from Step 2) by .02 to .04.

Water Usage

The following formula is used in determining the water demand during peak
time:

\[
\text{Gallons Used During Peak Hour} = \text{Seasonal ADT} \times \text{Total Vehicles Entering (5-12\%)} \times \text{Average Vehicle Occupancy (2)} \times \text{Percentage of People Using the Restrooms (70\%)} \times \text{Gallons Used per Person (3.5)}
\]

Restroom Stalls

WSDOT has a list of the level of traffic for each hour of the year. Most rest
areas in Washington are designed to accommodate the 30th busiest traffic hour of
the year. An important decision factor in the design criteria is the determination of
a tolerable waiting time during the other 29 hours of traffic. The simulation
program can be used to test several sample numbers for restroom stalls, demand of
use, and vehicle arrival rates that will result in a satisfactory waiting time.

Traffic volume and rest area use are lower during the winter months. To
reduce maintenance and operations costs, the men and women's restrooms should
be constructed with a divider in each to allow the toilet fixtures that are not needed
during the slow periods to be shut down.
REFERENCES

5. Straughan, W.T., Rock, Brian, Scharfe, Carl, Fowler, David W., Malina, Joseph F., Perry, Kirby, Vliet, Gary. Design Recommendations For Rest Areas, Center For Transportation Research, University of Texas at Austin, Austin, Texas, 1986.

APPENDIX A
LOCATION OF SURVEYED REST AREAS
APPENDIX A
LOCATION OF SURVEYED REST AREAS

<table>
<thead>
<tr>
<th>Rest Area</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Lake</td>
<td>Southwest of Coulee City on SR-17</td>
</tr>
<tr>
<td>Custer</td>
<td>North of Bellingham on I-5</td>
</tr>
<tr>
<td>Hatton-Coulee</td>
<td>SR-26 & SR-395, Southwest of Ritzville</td>
</tr>
<tr>
<td>Horn School</td>
<td>South of Rosalia on SR-195</td>
</tr>
<tr>
<td>Indian John Hill (East & Westbound)</td>
<td>Northwest of Ellensburg on I-90</td>
</tr>
<tr>
<td>Maytown</td>
<td>South of Olympia on I-5 SB</td>
</tr>
<tr>
<td>Nason Creek</td>
<td>West of Coles Corner on SR-2</td>
</tr>
<tr>
<td>Scatter Creek</td>
<td>South of Olympia on I-5 NB</td>
</tr>
<tr>
<td>Smokey Point</td>
<td>North of Mount Vernon on I-5</td>
</tr>
<tr>
<td>Vernita</td>
<td>Northwest of Pasco on SR-240</td>
</tr>
</tbody>
</table>
APPENDIX B
SURVEY FORM
<table>
<thead>
<tr>
<th>Station: Scatter Creek Rest Area</th>
<th>Date: 7/19/87</th>
<th>Time(s): N/A</th>
<th>Davis sighting: 70°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cars, Vans, Pick-ups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 20 3 4 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicles with Trailers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV's</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 pass 4'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass 12'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triple Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass 3'1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass 3'1, 32'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male Restroom Use</td>
<td>27</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Female Restroom Use</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 3 4 5 6 1445</td>
<td></td>
<td>1 2 3 4 5 6 1500</td>
<td></td>
</tr>
<tr>
<td>Cars, Vans, Pick-ups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 14 25 1</td>
<td>8 14 4 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicles with Trailers</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RV's</td>
<td>2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass 11'</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass 12'</td>
<td>pass 13'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triple Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass 3'1, 32'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass 3'1, 32'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male Restroom Use</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female Restroom Use</td>
<td></td>
<td>.53</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C
STATISTICAL FORMULAE USED
APPENDIX C

Formulae used in statistical analysis:

\[X_1 = \text{observation} \]
\[n_1 = \text{total number of female observations} \]
\[n_2 = \text{total number of male observations} \]
\[N = \text{total observations} \]
\[\sum X = \text{summation of} \]
\[\bar{X} = \text{mean} \]
\[P_1 = \text{1st proportion} \]
\[P_2 = \text{2nd proportion} \]
\[P_c = \text{combined proportion} \]
\[\sigma = \text{standard deviation} \]
\[\sigma_e = \text{standard error} \]
\[\sigma_p = \text{standard error in proportions} \]
\[\alpha_e = \text{standard error in difference between two means} \]
\[\alpha_p = \text{standard error in difference between two proportions} \]

\[\bar{X} = \frac{\sum X_n}{N} \]
\[\alpha_e = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \]
\[\sigma = \sqrt{\frac{\sum (X_n - \bar{X})^2}{N}} \]
\[\alpha_p = \sqrt{P_c(1-P_c)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \]
\[\sigma_e = \frac{\sigma}{\sqrt{N}} \]
\[\sigma_p = \sqrt{\frac{p_1(1-p_1)}{N}} \]
\[p_c = \frac{n_1 p_1 + n_2 p_2}{N} \]
APPENDIX D
COMPUTER SIMULATION MODEL CODING
APPENDIX D
COMPUTER SIMULATION MODEL CODING

{REST AREA SIMULATION SYSTEM}
{This program will simulate the operation of a rest area to aid the program user in determining}
{the number of stalls needed to accommodate any rate of user arrival. The program user needs}
{to input the vehicle arrival rate, the average use time or service rate, the male/female ratio,}
{the average passenger count, and the duration of the simulation.}

PROGRAM RestArea;

CONST
Maxstall = 25; {an arbitrary number for the maximum number of stalls for syntax}
MaxQueue = 250; {an arbitrary number for the number of people in line}

VAR
QueueM : ARRAY[0..MaxQueue] OF integer;
StallsM : ARRAY[0..Maxstall] OF integer;
QueueF : ARRAY[0..MaxQueue] OF integer;
StallsF : ARRAY[0..Maxstall] OF integer;
numberstallsM, numberstallsF : integer;
headM, headF : integer;
tailM, tailF : integer;
clock : integer;
endtime : integer;
TotalBTM, TotalBTF : integer;
TotalQT,M, TotalQTF : integer;
TotalBM, TotalBF : integer;
TotalQM, TotalQF : integer;
SizeQM, SizeQF : integer;
MenInCar : integer;
WomenInCar : integer;
arriverate : integer;
passengers : integer;
usratem : integer;
useratet : integer;
stdM, stdW, stdP : real;
duration : integer;
PlaceQM, PlaceQF : integer;
Passenger : integer;
i, j : integer;
PercentWomen : real;
PercentMen : real;
PercentF : real;
AveCount : real;
QTimeF, QTimeM : real;
cararrives : boolean;

{Produces a variable amount of restroom time that male user requires, based on experimental standard}
{deviation of 38 seconds and mean of 47 seconds}

FUNCTION UseTimeM (avetimeM : integer) : integer;

VAR
a, b, c, x, y, z : real;

BEGIN
REPEAT

x := (abs(random MOD 100) + 1) / 100;

D-1
\[y := ((\text{abs}(\text{random MOD 100}) + 1) / 100); \]
\[b := 360 * y; \]
\[c := (\sin(b)); \]
\[z := ((-2) * (\ln(x)) * (c)); \]
\[a := (\text{stdM} * z) + \text{avetimeM} \]
\[\text{UNTIL } a > 0; \]
\[\text{UseTimeM} := \text{trunc}(a + x); \]

\text{END;}

{Produces a variable amount of restroom time that female user requires}

\text{FUNCTION UseTimeF (avetimeF : integer) : integer;}
\text{VAR}
\quad a, b, c, x, y, z : real;
\text{BEGIN}
\text{REPEAT}
\quad x := ((\text{abs}(\text{random MOD 100}) + 1) / 100);
\quad y := ((\text{abs}(\text{random MOD 100}) + 1) / 100);
\quad b := 360 * y;
\quad c := (\sin(b));
\quad z := ((-2) * (\ln(x)) * (c));
\quad a := (\text{stdW} * z) + \text{avetimeF} \\
\text{UNTIL } a > 0; \\
\text{UseTimeF} := \text{trunc}(a + x); \]

\text{END;}

{Converts duration of peak time into seconds}

\text{FUNCTION Convert (Finishtime : integer) : integer;}
\text{BEGIN}
\quad \text{Convert} := \text{Finishtime} * 60; \]
\text{END;}

{Generates vehicle arrival based on the given rate}

\text{PROCEDURE GetCar (arrivalrate, finishtime : integer);}
\text{VAR}
\quad y, carrate : real;
\quad w, z, newrate : integer;
\text{BEGIN}
\quad \text{carrate} := (\text{arrivalrate} * (\text{finishtime} / 60));
\quad y := \ln(\text{abs}(\text{random MOD 11}) + 22) / 10;
\quad \text{newrate} := \text{trunc}(\text{carrate} * y);
\quad w := \text{Convert(endtime)};
\quad z := \text{abs}(\text{random MOD } w) + 1;
\text{IF } z <= \text{newrate THEN}
\quad \text{cararrives} := \text{true}
ELSE
 cararrives := false;
 IF cararrives THEN
 newrate := newrate - 1;
 w := w - 1;
 END;

{Output is the number of women and men requiring use of restroom}
PROCEDURE PassCount (AvePass : real);
 VAR
 a, b, c, x, y, z : real;
 BEGIN
 REPEAT
 x := ((abs(random MOD 100) + 1) / 100);
 y := ((abs(random MOD 100) + 1) / 100);
 b := 360 * y;
 c := (sin(b));
 z := ((-2) * (ln(x)) * (c));
 a := (stdP * z) + AvePass
 UNTIL a > 0.5;
 Passenger := trunc(a + x);
 WomenInCar := trunc(Passenger * PercentWomen * PercentIn);
 MenInCar := trunc(Passenger * PercentMen * PercentIn);
 END;

{Asks program user to input necessary data}
PROCEDURE Prompt;
 BEGIN
 writeln('Enter the number of stalls in facilities for women: ');
 readln(numberStallsF);
 writeln('Enter the number of stalls and urinals in facilities for men: ');
 readln(numberStallsM);
 writeln('Enter vehicle arrival rate per hour: ');
 readln(arrivate);
 writeln('How long do you want to run the simulation (in simulated run time)? ');
 readln(endtime);
 writeln('What is the average number of occupants per car? ');
 readln(AveCount);
 writeln('Standard deviation for the average number of vehicle occupancy: ');
 readln(stdP);
 writeln('What is the proportion of women (enter as two place decimals)? ');
 readln(PercentWomen);
 IF (PercentWomen < 0) OR (PercentWomen > 1) THEN
 writeln('The proportion of women who use the bathroom must be a proportion between zero and one. Restart the program and try again.
 writeln('What is the percent of people who will use restroom (enter as two place decimals)? ');
 readln(PercentIn);
 IF (PercentIn < 0) OR (PercentIn > 1) THEN
 writeln('The proportion of users must be a decimal fraction between zero and one. Reset program and try again.
D-3
writeln('Average service time for men, round off in seconds: ');
readln(usratem);
writeln('Average service time for women, round off in seconds: ');
readln(usratelf);
writeln('Standard deviation for men’s use time, round off in seconds: ');
readln(sdevM);
writeln('Standard deviation for women’s use time, round off in seconds: ');
readln(sdevW);

END;

PROCEDURE Initialize;

VAR
 a, b : integer;

BEGIN

 clock := 0;
 headM := 0;
 headF := 0;
 tailM := 0;
 tailF := 0;
 TotalBTimeM := 0;
 TotalBTM := 0;
 TotalQTimeM := 0;
 TotalQTM := 0;
 TotalBM := 0;
 TotalBF := 0;
 TotalQM := 0;
 TotalQF := 0;
 SizeQM := 0;
 SizeQF := 0;
 WomenInCar := 0;
 MenInCar := 0;
 Passenger := 0;
 QTimeF := 0;
 QTimeM := 0;
 cararrives := false;
 PercentMen := 1 - PercentWomen;

 FOR a := 0 TO MaxQueue DO
 BEGIN
 QueueM[a] := 0;
 QueueF[a] := 0
 END;

 FOR b := 0 TO Maxstall DO
 BEGIN
 StallsM[b] := 0;
 StallsF[b] := 0;
 END;

 END;

{Places men in line for restroom}

PROCEDURE InQueueM (PlaceQM : integer);
BEGIN

QueueM[tailM] := PlaceQM;
IF tailM = MaxQueue THEN
tailM := 0
ELSE
BEGIN

tailM := tailM + 1;
SizeQM := SizeQM + 1;
END
END;

{Places women in line for restroom}
PROCEDURE InQueueF (PlaceQF : integer);
BEGIN

QueueF[tailF] := PlaceQF;
IF tailF = MaxQueue THEN
tailF := 0
ELSE
BEGIN

tailF := tailF + 1;
SizeQF := SizeQF + 1;
END
END;

{Takes women out of bathroom line}
PROCEDURE OutQueueF;
BEGIN

IF headF = MaxQueue THEN
headF := 0
ELSE
BEGIN

headF := headF + 1;
SizeQF := SizeQF - 1;
END;
END;
{Takes men out of bathroom line}

PROCEDURE OutQueueM;
BEGIN
 IF headM = MaxQueue THEN
 headM := 0
 ELSE
 BEGIN
 headM := headM + 1;
 SizeQM := SizeQM - 1;
 END;
END;

{Adds "time" to duration in queue for men}

PROCEDURE IncrementQM;
VAR
 c : integer;
BEGIN
 c := headM;
 WHILE c <> tailM DO
 BEGIN
 QueueM[c] := QueueM[c] + 1;
 IF c = MaxQueue THEN
 c := 0
 ELSE
 c := c + 1
 END;
END;

{Adds "time" to duration in queue for women}

PROCEDURE IncrementQF;
VAR
 c : integer;
BEGIN
 c := headF;
 WHILE c <> tailF DO
 BEGIN
 QueueF[c] := QueueF[c] + 1;
 IF c = MaxQueue THEN
 c := 0
 ELSE
 END;
END;
c := c + 1
END;

{Subtracts "time" men will spend in facilities}
PROCEDURE DecrementBM;
VAR
c : integer;
BEGIN
FOR c := 1 TO numberstallsM DO
IF StallsM[c] <> 0 THEN
 StallsM[c] := StallsM[c] - 1;
END;

{Subtracts "time" women will spend in facilities}
PROCEDURE DecrementBF;
VAR
c : integer;
BEGIN
FOR c := 1 TO numberstallsF DO
IF StallsF[c] <> 0 THEN
 StallsF[c] := StallsF[c] - 1;
END;

BEGIN
Prompt;
Initialize;
ShowText;
duration := Convert(endtime);
WHILE clock <= duration DO
BEGIN
 clock := clock + 1;
 GetCar(arriverate, endtime);
 IF cararrives = true THEN
 BEGIN
 PassCount(AveCount);
 writeln('Car came at ', clock, ' with ', Passenger, ' people.);
 writeln(WomenInCar, ' were female', MenInCar, ' were male.);
 IF WomenInCar <> 0 THEN
 FOR i := 1 TO WomenInCar DO
 InQueueF(0);
 IF MenInCar <> 0 THEN
 BEGIN
 FOR j := 1 TO MenInCar DO
 End
InQueueM(0);
END;

FOR i := 1 TO numberstallsF DO
 IF SizeQF <> 0 THEN
 IF StallsF[i] = 0 THEN
 BEGIN
 StallsF[i] := UseTimeF(useratef);
 writeln('Woman came in at ', clock);
 writeln('Woman in Stall# ', i, ', takes ', StallsF[i], ' seconds');
 TotalBF := TotalBF + 1;
 TotalBTimeF := TotalBTimeF + UseTimeF(useratef);
 TotalQTimeF := TotalQTimeF + QueueF[headF];
 writeln('Woman spent ', QueueF[headF], ' seconds in line.');
 IF QueueF[headF] > 0 THEN
 TotalQF := TotalQF + 1;
 OutQueueF;
 END;
 IncrementQF;
 DecrementBF;
 END;

FOR j := 1 TO numberstallsM DO
 IF SizeQM <> 0 THEN
 IF StallsM[j] = 0 THEN
 BEGIN
 StallsM[j] := UseTimeM(useratem);
 writeln('Man came in at ', clock);
 writeln('Man in Stall# ', j, ', takes', StallsM[j], ' seconds');
 TotalBM := TotalBM + 1;
 TotalBTimeM := TotalBTimeM + UseTimeM(useratem);
 TotalQTimeM := TotalQTimeM + QueueM[headM];
 writeln('Man spent ', QueueM[headM], ' seconds in line.');
 IF QueueM[headM] > 0 THEN
 TotalQM := TotalQM + 1;
 OutQueueM;
 END;
 IncrementQM;
 DecrementBM;
 END;

QTimeF := TotalQTimeF / TotalQF;
QTimeM := TotalQTimeM / TotalQM;

writeln('The total number of women in line during simulation is ', TotalQF);
writeln('The total number of men in line during simulation is ', TotalQM);
writeln('The average time women spent in line is ', QTimeF);
writeln('The average time men spent in line is ', QTimeM);

END.
APPENDIX E
WOMEN'S RESTROOM TIMES
APPENDIX E
WOMEN'S RESTROOM TIMES

Taken during peak period at Maytown, listed in ascending order

Mean: 79 seconds

<table>
<thead>
<tr>
<th>Obs.</th>
<th>[Obs - Mean]</th>
<th>[Obs - Mean]^2</th>
<th>Obs.</th>
<th>[Obs - Mean]</th>
<th>[Obs - Mean]^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>49</td>
<td>2401</td>
<td>73</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>31</td>
<td>48</td>
<td>2304</td>
<td>74</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>44</td>
<td>1936</td>
<td>75</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>38</td>
<td>41</td>
<td>1681</td>
<td>78</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>41</td>
<td>1681</td>
<td>78</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>1600</td>
<td>79</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>39</td>
<td>1521</td>
<td>79</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>39</td>
<td>1521</td>
<td>79</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>38</td>
<td>1444</td>
<td>80</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>37</td>
<td>1369</td>
<td>81</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>44</td>
<td>35</td>
<td>1225</td>
<td>81</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>45</td>
<td>34</td>
<td>1156</td>
<td>84</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>46</td>
<td>33</td>
<td>1089</td>
<td>91</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td>50</td>
<td>29</td>
<td>841</td>
<td>93</td>
<td>14</td>
<td>196</td>
</tr>
<tr>
<td>51</td>
<td>28</td>
<td>784</td>
<td>93</td>
<td>14</td>
<td>196</td>
</tr>
<tr>
<td>51</td>
<td>28</td>
<td>784</td>
<td>95</td>
<td>16</td>
<td>256</td>
</tr>
<tr>
<td>51</td>
<td>28</td>
<td>784</td>
<td>95</td>
<td>16</td>
<td>256</td>
</tr>
<tr>
<td>52</td>
<td>27</td>
<td>729</td>
<td>96</td>
<td>17</td>
<td>289</td>
</tr>
<tr>
<td>52</td>
<td>27</td>
<td>729</td>
<td>98</td>
<td>19</td>
<td>361</td>
</tr>
<tr>
<td>53</td>
<td>26</td>
<td>676</td>
<td>99</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>54</td>
<td>25</td>
<td>625</td>
<td>99</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>55</td>
<td>24</td>
<td>576</td>
<td>100</td>
<td>21</td>
<td>441</td>
</tr>
<tr>
<td>55</td>
<td>24</td>
<td>576</td>
<td>105</td>
<td>26</td>
<td>676</td>
</tr>
<tr>
<td>58</td>
<td>21</td>
<td>441</td>
<td>105</td>
<td>26</td>
<td>676</td>
</tr>
<tr>
<td>61</td>
<td>18</td>
<td>324</td>
<td>105</td>
<td>26</td>
<td>676</td>
</tr>
<tr>
<td>64</td>
<td>15</td>
<td>225</td>
<td>109</td>
<td>30</td>
<td>900</td>
</tr>
<tr>
<td>64</td>
<td>15</td>
<td>225</td>
<td>110</td>
<td>31</td>
<td>961</td>
</tr>
<tr>
<td>64</td>
<td>15</td>
<td>225</td>
<td>114</td>
<td>35</td>
<td>1225</td>
</tr>
<tr>
<td>66</td>
<td>13</td>
<td>169</td>
<td>135</td>
<td>56</td>
<td>3136</td>
</tr>
<tr>
<td>66</td>
<td>13</td>
<td>169</td>
<td>139</td>
<td>60</td>
<td>3600</td>
</tr>
<tr>
<td>67</td>
<td>12</td>
<td>144</td>
<td>142</td>
<td>63</td>
<td>3969</td>
</tr>
<tr>
<td>68</td>
<td>11</td>
<td>121</td>
<td>152</td>
<td>73</td>
<td>5329</td>
</tr>
<tr>
<td>70</td>
<td>9</td>
<td>81</td>
<td>153</td>
<td>74</td>
<td>5476</td>
</tr>
<tr>
<td>70</td>
<td>9</td>
<td>81</td>
<td>195</td>
<td>116</td>
<td>13456</td>
</tr>
<tr>
<td>72</td>
<td>7</td>
<td>49</td>
<td>244</td>
<td>165</td>
<td>27225</td>
</tr>
</tbody>
</table>

E-1
APPENDIX F
MEN'S RESTROOM TIMES
APPENDIX F
MEN'S RESTROOM TIMES

Mean: 47 seconds
Taken during peak period at Maytown, listed in ascending order

<table>
<thead>
<tr>
<th>Obs.</th>
<th>[Obs - Mean]</th>
<th>[Obs. - Mean]^2</th>
<th>Obs.</th>
<th>[Obs - Mean]</th>
<th>[Obs. - Mean]^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>34</td>
<td>1156</td>
<td>34</td>
<td>13</td>
<td>169</td>
</tr>
<tr>
<td>16</td>
<td>31</td>
<td>961</td>
<td>34</td>
<td>13</td>
<td>169</td>
</tr>
<tr>
<td>17</td>
<td>30</td>
<td>900</td>
<td>35</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td>17</td>
<td>30</td>
<td>900</td>
<td>35</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td>18</td>
<td>29</td>
<td>841</td>
<td>35</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>729</td>
<td>35</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td>21</td>
<td>26</td>
<td>676</td>
<td>35</td>
<td>12</td>
<td>144</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>576</td>
<td>36</td>
<td>11</td>
<td>121</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>576</td>
<td>36</td>
<td>11</td>
<td>121</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>484</td>
<td>36</td>
<td>11</td>
<td>121</td>
</tr>
<tr>
<td>26</td>
<td>21</td>
<td>441</td>
<td>37</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>26</td>
<td>21</td>
<td>441</td>
<td>37</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>26</td>
<td>21</td>
<td>441</td>
<td>37</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>400</td>
<td>38</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>400</td>
<td>38</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>400</td>
<td>38</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>400</td>
<td>40</td>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>28</td>
<td>19</td>
<td>361</td>
<td>40</td>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>28</td>
<td>19</td>
<td>361</td>
<td>41</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>29</td>
<td>18</td>
<td>324</td>
<td>44</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>29</td>
<td>18</td>
<td>324</td>
<td>44</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>29</td>
<td>18</td>
<td>324</td>
<td>45</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>17</td>
<td>289</td>
<td>45</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>17</td>
<td>289</td>
<td>45</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>16</td>
<td>256</td>
<td>45</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>16</td>
<td>256</td>
<td>46</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>16</td>
<td>256</td>
<td>46</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>16</td>
<td>256</td>
<td>48</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>15</td>
<td>225</td>
<td>49</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>15</td>
<td>225</td>
<td>50</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>32</td>
<td>15</td>
<td>225</td>
<td>51</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>15</td>
<td>225</td>
<td>51</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>33</td>
<td>14</td>
<td>196</td>
<td>51</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>33</td>
<td>14</td>
<td>196</td>
<td>52</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>33</td>
<td>14</td>
<td>196</td>
<td>52</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>33</td>
<td>14</td>
<td>196</td>
<td>54</td>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>34</td>
<td>13</td>
<td>169</td>
<td>56</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>34</td>
<td>13</td>
<td>169</td>
<td>57</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>34</td>
<td>13</td>
<td>169</td>
<td>57</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>
APPENDIX F
MEN'S RESTROOM TIMES (Continued)

<table>
<thead>
<tr>
<th>Obs.</th>
<th>[Obs - Mean]</th>
<th>[Obs - Mean]^2</th>
<th>Obs.</th>
<th>[Obs - Mean]</th>
<th>[Obs - Mean]^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>11</td>
<td>121</td>
<td>70</td>
<td>23</td>
<td>529</td>
</tr>
<tr>
<td>59</td>
<td>12</td>
<td>144</td>
<td>72</td>
<td>25</td>
<td>625</td>
</tr>
<tr>
<td>59</td>
<td>12</td>
<td>144</td>
<td>73</td>
<td>26</td>
<td>676</td>
</tr>
<tr>
<td>59</td>
<td>12</td>
<td>144</td>
<td>74</td>
<td>27</td>
<td>729</td>
</tr>
<tr>
<td>59</td>
<td>12</td>
<td>144</td>
<td>76</td>
<td>29</td>
<td>841</td>
</tr>
<tr>
<td>61</td>
<td>14</td>
<td>196</td>
<td>76</td>
<td>29</td>
<td>841</td>
</tr>
<tr>
<td>62</td>
<td>15</td>
<td>225</td>
<td>92</td>
<td>45</td>
<td>2025</td>
</tr>
<tr>
<td>62</td>
<td>15</td>
<td>225</td>
<td>115</td>
<td>68</td>
<td>4624</td>
</tr>
<tr>
<td>63</td>
<td>16</td>
<td>256</td>
<td>146</td>
<td>99</td>
<td>9801</td>
</tr>
<tr>
<td>64</td>
<td>17</td>
<td>289</td>
<td>166</td>
<td>119</td>
<td>14161</td>
</tr>
<tr>
<td>65</td>
<td>18</td>
<td>324</td>
<td>385</td>
<td>338</td>
<td>114244</td>
</tr>
</tbody>
</table>
APPENDIX G
REST AREA TRAFFIC DATA
APPENDIX G
REST AREA TRAFFIC DATA

<table>
<thead>
<tr>
<th>Rest Area</th>
<th>ADT</th>
<th>% Entering on Average Day</th>
<th>% Entering on Peak Day</th>
<th>% Entering During Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bow Hill NB</td>
<td>12100</td>
<td>6.96</td>
<td>10.8</td>
<td>9.5</td>
</tr>
<tr>
<td>Bow Hill SB</td>
<td>12100</td>
<td>6.5</td>
<td>8.4</td>
<td>10.97</td>
</tr>
<tr>
<td>Chamberlain Lake EB</td>
<td>1745</td>
<td>7.2</td>
<td>7.8</td>
<td>12.5</td>
</tr>
<tr>
<td>Custer NB</td>
<td>8300</td>
<td>7.2</td>
<td>12.3</td>
<td>9.7</td>
</tr>
<tr>
<td>Custer SB</td>
<td>8300</td>
<td>7.6</td>
<td>*38.9</td>
<td>12.7</td>
</tr>
<tr>
<td>Elma EB</td>
<td>5600</td>
<td>12.3</td>
<td>*38.9</td>
<td></td>
</tr>
<tr>
<td>Gee Creek NB</td>
<td>18300</td>
<td>8.1</td>
<td>13.2</td>
<td>9.5</td>
</tr>
<tr>
<td>Gee Creek SB</td>
<td>18400</td>
<td>8.5</td>
<td>12.8</td>
<td>9.3</td>
</tr>
<tr>
<td>Hatton Coulee NB</td>
<td>1883</td>
<td>22.5</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hatton Coulee SB</td>
<td>1714</td>
<td>12.7</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Horn School NB</td>
<td>3905</td>
<td>10.4</td>
<td>*16.3</td>
<td>9.7</td>
</tr>
<tr>
<td>Horn School SB</td>
<td>3905</td>
<td>10.4</td>
<td>16.3</td>
<td>9.7</td>
</tr>
<tr>
<td>Indian John Hill EB</td>
<td>6841</td>
<td>19.9</td>
<td>37.6</td>
<td>7.5</td>
</tr>
<tr>
<td>Indian John Hill WB</td>
<td>7114</td>
<td>19.7</td>
<td>33.2</td>
<td>9.6</td>
</tr>
<tr>
<td>Maytown SB</td>
<td>17600</td>
<td>11.5</td>
<td>*17.1</td>
<td>10.2</td>
</tr>
<tr>
<td>Megler EB</td>
<td>1472</td>
<td>21.0</td>
<td>29.1</td>
<td>11.7</td>
</tr>
<tr>
<td>Megler WB</td>
<td>1472</td>
<td>21.0</td>
<td>29.1</td>
<td>11.7</td>
</tr>
<tr>
<td>Nason Creek EB</td>
<td>2761</td>
<td>21.5</td>
<td>44.4</td>
<td>22.9</td>
</tr>
<tr>
<td>Nason Creek WB</td>
<td>2761</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Quincy Valley EB</td>
<td>4513</td>
<td>10.2</td>
<td>*15.8</td>
<td>10.4</td>
</tr>
<tr>
<td>Quincy Valley WB</td>
<td>4513</td>
<td>10.2</td>
<td>*15.8</td>
<td>10.4</td>
</tr>
<tr>
<td>Ryegrass EB</td>
<td>5054</td>
<td>10</td>
<td>15.6</td>
<td>10.4</td>
</tr>
<tr>
<td>Ryegrass WB</td>
<td>5232</td>
<td>10.2</td>
<td>25.7</td>
<td>10.5</td>
</tr>
<tr>
<td>Scatter Creek NB</td>
<td>19000</td>
<td>8.9</td>
<td>*14.7</td>
<td>9.2</td>
</tr>
<tr>
<td>Schrag EB</td>
<td>3296</td>
<td>15.4</td>
<td>*27.3</td>
<td>10.1</td>
</tr>
<tr>
<td>Schrag WB</td>
<td>3293</td>
<td>17.0</td>
<td>*39.3</td>
<td>9.7</td>
</tr>
<tr>
<td>Sea-Tac NB</td>
<td>47500</td>
<td>3.2</td>
<td>6.2</td>
<td>9.2</td>
</tr>
<tr>
<td>Selah Creek NB</td>
<td>4286</td>
<td>9.7</td>
<td>19.9</td>
<td>10.8</td>
</tr>
<tr>
<td>Selah Creek SB</td>
<td>4158</td>
<td>8.3</td>
<td>*12.3</td>
<td>11.8</td>
</tr>
<tr>
<td>Silver Lake SB</td>
<td>47000</td>
<td>1.8</td>
<td>3.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Smokey Point NB</td>
<td>20800</td>
<td>7.6</td>
<td>12.9</td>
<td>10.2</td>
</tr>
<tr>
<td>Smokey Point SB</td>
<td>20800</td>
<td>6.0</td>
<td>10.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Spokane River WB</td>
<td>12000</td>
<td>6.3</td>
<td>*6.4</td>
<td>--</td>
</tr>
<tr>
<td>Sprague Lake EB</td>
<td>6029</td>
<td>13.3</td>
<td>*25.3</td>
<td>10.5</td>
</tr>
<tr>
<td>Sprague Lake WB</td>
<td>6055</td>
<td>13.5</td>
<td>*20.0</td>
<td>9.7</td>
</tr>
<tr>
<td>Telford EB</td>
<td>2150</td>
<td>6.9</td>
<td>*10.9</td>
<td>6.6</td>
</tr>
<tr>
<td>Telford WB</td>
<td>2150</td>
<td>6.9</td>
<td>*10.9</td>
<td>6.6</td>
</tr>
<tr>
<td>Toutle NB</td>
<td>16800</td>
<td>10.6</td>
<td>16.0</td>
<td>9.1</td>
</tr>
<tr>
<td>Toutle SB</td>
<td>17000</td>
<td>11.0</td>
<td>15.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Vernita NB</td>
<td>2224</td>
<td>--</td>
<td>*44.0</td>
<td>11.4</td>
</tr>
<tr>
<td>Vernita SB</td>
<td>2224</td>
<td>13.7</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Winchester EB</td>
<td>3555</td>
<td>11.8</td>
<td>*14.5</td>
<td>9.7</td>
</tr>
<tr>
<td>Winchester WB</td>
<td>3845</td>
<td>11.1</td>
<td>27.0</td>
<td>9.6</td>
</tr>
</tbody>
</table>

* Data collected on Labor Day