

Publication Title / Publication Number	Date
Materials Manual M 46-01.39	May 2021
Originating Organization	
Materials Laboratory, Engineering and Regional Operations	

Remarks and Instructions

The *Materials Manual* M 46-01 has been revised. Please remove and recycle the contents of the old *Materials Manual* M 46-01 and replace with the May 2021 revision.

The complete manual, revision packages, and individual chapters can be accessed at www.wsdot.wa.gov/publications/manuals/m46-01.htm.

For updating printed manuals, page numbers indicating portions of the manual that are to be removed and replaced are shown below.

	Chapter	Remove Pages	Insert Pages
Title Page		1 – 2	1 – 2
Contents		1 – 22	1 – 22
QC 8	Standard Practice for Development, Submittal and Approval of Hot Mix Asphalt Mix Designs	1 – 6	1 – 6
SOP 723	Standard Operating Procedure for Submitting Hot Mix Asphalt (HMA) Mix Designs for Verification	1 – 2	Remove

Please contact Kevin Burns at 360-709-5412 or mawdslr@wsdot.wa.gov with comments, questions, or suggestions for improvement to the manual.

To get the latest information, please sign up for email updates for individual publications at www.wsdot.wa.gov/publications/manuals.

Washington State Department of Transportation Materials Laboratory PO Box 47365 Olympia, WA 98504-7365 www.wsdot.wa.gov/business/materialslab/default.htm

Materials Manual

M 46-01.39

May 2021

Engineering and Regional Operations State Materials Laboratory

Americans with Disabilities Act (ADA) Information: This material can be made available in an alternate format by emailing the Office of Equal Opportunity at wsdotada@wsdot.wa.gov or by calling toll free, 855-362-4ADA(4232). Persons who are deaf or hard of hearing may make a request by calling the Washington State Relay at 711.

Title VI Notice to Public: It is the Washington State Department of Transportation's (WSDOT) policy to assure that no person shall, on the grounds of race, color, national origin or sex, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied the benefits of, or be otherwise discriminated against under any of its programs and activities. Any person who believes his/ her Title VI protection has been violated, may file a complaint with WSDOT's Office of Equal Opportunity (OEO). For additional information regarding Title VI complaint procedures and/or information regarding our non-discrimination obligations, please contact OEO's Title VI Coordinator at 360-705-7090.

Contents

	Aggregate						
Procedure		Field	In				
Number	Owner	Use	Manual	Test Method			
T 11	AASHTO			Materials Finer Than 0.075 mm (No. 200) Sieve in Mineral Aggregates by Washing			
T 19	AASHTO	√	\checkmark	Bulk Density ("Unit Weight") and Voids in Aggregate (Rodding Procedure Only) (Checklist Only)			
T 21	AASHTO			Organic Impurities in Fine Aggregates for Concrete			
T 27	AASHTO			Sieve Analysis of Fine and Coarse Aggregates			
T 27_T 11	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 27_T 11, Sieve Analysis of Fine and Coarse Aggregates			
Т 37	AASHTO			Sieve Analysis of Mineral Filler for Hot Mix Asphalt (HMA)			
R 76	AASHTO			Reducing Samples of Aggregate to Testing Size			
R 76	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 76, Reducing Samples of Aggregate to Testing Size			
T 84	AASHTO			Specific Gravity and Absorption of Fine Aggregates			
T 85	AASHTO			Specific Gravity and Absorption of Coarse Aggregate			
T 85	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 85, Specific Gravity and Absorption of Coarse Aggregate			
R 90	AASHTO			Sampling Aggregate Products			
R 90	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 90, Sampling Aggregate Products			
Т 96	AASHTO			Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine			
T 112	AASHTO		\checkmark	Clay Lumps and Friable Particles in Aggregate			
T 113	WSDOT		\checkmark	Method of Test for Determination of Degradation Value			
T 123	WSDOT	\checkmark	\checkmark	Method of Test for Bark Mulch			
T 125	WSDOT		\checkmark	Determination of Fiber Length Percentages in Wood Strand Mulch			
T 126	WSDOT		\checkmark	Determination of Fiber Length Percentages in Hydraulically-Applied Erosion Control Products			
SOP 128	WSDOT	\checkmark	\checkmark	Sampling for Aggregate Source Approval			
T 176	AASHT0			Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test			
T 176	WAQTC	✓	\checkmark	FOP for AASHTO T 176, Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test			
T 255	AASHTO			Total Evaporable Moisture Content of Aggregate by Drying			
T 255	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 255, Total Evaporable Moisture Content of Aggregate by Drying			
T 288	AASHTO		\checkmark	Determining Minimum Laboratory Soil Resistivity (Checklist Only)			
T 289	AASHTO			Determining pH of Soil for Use in Corrosion Testing			
T 304	AASHTO		-	Uncompacted Void Content of Fine Aggregate			
T 304	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 304, Uncompacted Void Content of Fine Aggregate			
T 335	AASHTO			Determining the Percentage of Fracture in Coarse Aggregate			

	Aggregate					
Procedure Number	Owner	Field Use	In Manual	Test Method		
Т 335	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 335, Determining the Percentage of Fracture in Coarse Aggregate		
T 417	WSDOT		\checkmark	Method of Test for Determining Minimum Resistivity and pH of Soil and Water		
T 716	WSDOT	\checkmark	\checkmark	Method of Random Sampling for Locations of Testing and Sampling Sites		

				Bituminous Cement
Procedure	ļ	Field	In	
Number	Owner	Use	Manua	Test Method
R 28	AASHTO			Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel
R 29	AASHTO			Standard Practice for Grading or Verifying the Performance Grade (PG) of an Asphalt Binder
T 44	AASHTO			Solubility of Bituminous Materials
T 48	AASHTO			Flash and Fire Points by Cleveland Open Cup
T 49	AASHTO			Penetration of Bituminous Materials
T 50	AASHTO			Float Test for Bituminous Materials
T 51	AASHTO			Ductility of Asphalt Materials
T 53	AASHTO			Softening Point of Bitumen (Ring-and-Ball Apparatus)
T 59	AASHTO			Emulsified Asphalts
R 66	AASHTO			Sampling Asphalt Materials
R 66	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 66, Sampling Asphalt Materials
E 70	ASTM			pH of Aqueous Solutions With the Glass Electrode
T 72	AASHTO			Saybolt Viscosity
T 228	AASHTO			Specific Gravity of Semi-Solid Asphalt Materials
T 240	AASHTO			Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test)
T 301	AASHTO			Elastic Recovery Test of Asphalt Materials by Means of a Ductilometer
T 313	AASHTO			Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)
T 315	AASHTO			Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)
T 316	AASHTO			Viscosity Determination of Asphalt Binder Using Rotational Viscometer
SOP 318	WSDOT		\checkmark	Standard Operating Procedure for Melting of Flexible Bituminous Pavement Marker Adhesive for Evaluation
T 350	AASHTO			Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Reheometer (DSR)
T 426	WSDOT		\checkmark	Pull-Off Test for Hot Melt Traffic Button Adhesive
D 3111	ASTM			Flexibility Determination of Hot-Melt Adhesives by Mandrel Bend Test Method

	Asphalt Mixture					
Procedure	ł	Field	In			
Number	Owner	Use	Manua	Test Method		
R 30	AASHTO			Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA)		
T 30	AASHTO			Mechanical Analysis of Extracted Aggregate		
Т 30	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 30, Mechanical Analysis of Extracted Aggregate		
TM 14	WAQTC		\checkmark	Laboratory Prepared Asphalt Mixture Specimens		
Т 37	AASHTO			Sieve Analysis of Mineral Filler of Hot Mix Asphalt (HMA)		
R 47	AASHTO			Reducing Samples of Asphalt Mixtures to Testing Size		
R 47	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 47, Reducing Samples of Asphalt Mixtures to Testing Size		
R 79	AASHTO			Vacuum Drying Compacted Asphalt Specimens		
R 79	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 79, Vacuum Drying Compacted Asphalt Specimens		
R 96	AASHTO			Installation, Operation, and Maintenance of Ignition Furnaces		
R 97	AASHTO			Sampling Asphalt Mixtures		
R 97	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 97, Sampling of Asphalt Mixtures		
T 166	AASHTO			Bulk Specific Gravity (G_{mb}) of Compacted Asphalt Mixtures Using Saturated Surface-Dry Specimens		
T 166	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 166, Bulk Specific Gravity (G_{mb}) of Compacted Asphalt Mixtures Using Saturated Surface-Dry Specimens		
T 209	AASHTO			Theoretical Maximum Specific Gravity (G_{mm}) and Density of Asphalt Mixtures		
T 209	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 209, Theoretical Maximum Specific Gravity (G_{mm}) and Density of Asphalt Mixtures		
T 269	AASHTO			Percent Air Void in Compacted Dense and Open Asphalt Mixtures		
T 308	AASHTO			Determining the Asphalt Binder Content of Asphalt Mixtures by the Ignition Method		
T 308	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 308, Determining the Asphalt Binder Content of Asphalt Mixtures by the Ignition Method		
T 312	AASHTO			Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor		
T 312	WSDOT	\checkmark	\checkmark	FOP for AASHTO T 312, Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor		
T 324	AASHTO		\checkmark	Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures		
T 329	AASHTO			Moisture Content of Asphalt Mixtures by Oven Method		
T 329	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 329, Moisture Content of Asphalt Mixtures by Oven Method		
T 331	AASHTO			Bulk Specific Gravity (G_{mb}) and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method		
T 331	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 331, Bulk Specific Gravity (G_{mb}) and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method		
T 355	AASHTO			In-Place Density of Asphalt Mixtures by Nuclear Methods		
Т 355	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 355, In-Place Density of Asphalt Mixtures by Nuclear Methods		
T 716	WSDOT	\checkmark	\checkmark	Method of Random Sampling for Locations of Testing and Sampling Sites		

Asphalt Mixture				
Procedure Number	e Owner	Field Use	In Manua	Test Method
T 720	WSDOT		\checkmark	Method of Test for Thickness Measurement of Hot Mix Asphalt (HMA) Cores
SOP 729	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Determination of the Moving Average of Theoretical Maximum Density (TMD) for HMA
SOP 730	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Correlation of Nuclear Gauge Densities With Hot Mix Asphalt (HMA) Cores
SOP 731	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Determining Volumetric Properties of Hot Mix Asphalt
SOP 732	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Volumetric Design for Hot-Mix Asphalt (HMA)
SOP 733	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Determination of Pavement Density Differentials Using the Nuclear Density Gauge
SOP 734	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Sampling Hot Mix Asphalt After Compaction (Obtaining Cores)
SOP 735	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Longitudinal Joint Density
SOP 736	WSDOT		\checkmark	In-Place Density of Bituminous Mixes Using Cores
SOP 737	WSDOT		\checkmark	Procedure for the Forensic Testing of HMA Field Cores
D 6931	ASTM		\checkmark	Indirect Tensile (IDT) Strength of Asphalt Mixtures

				Cement
Procedure Number	Owner	Field Use	In Manua	Test Method
T 105	AASHTO			Chemical Analysis of Hydraulic Cement
T 106	AASHTO			Compressive Strength of Hydraulic Cement Mortars (Using 50-mm or 2-in. Cube Specimens)
T 106	WSDOT	✓	\checkmark	FOP for AASHTO for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens)
T 107	AASHTO			Autoclave Expansion of Hydraulic Cement
T 129	AASHTO			Amount of Water Required for Normal Consistency of Hydraulic Cement Paste
T 131	AASHTO			Time of Setting of Hydraulic Cement by Vicat Needle
T 133	AASHTO			Density of Hydraulic Cement
T 137	AASHTO			Air Content of Hydraulic Cement Mortar
T 153	AASHTO			Fineness of Hydraulic Cement by Air Permeability Apparatus
T 162	AASHTO			Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency
T 260	AASHTO			Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials
T 303	AASHTO			Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to Alkali-Silica Reaction
T 313	WSDOT		\checkmark	Method of Test for Cement-Latex Compatibility
T 314	WSDOT		\checkmark	Method of Test for Photovolt Reflectance
T 413	WSDOT		\checkmark	Method of Test for Evaluating Waterproofing Effectiveness of Membrane and Membrane-Pavement Systems
T 813	WSDOT	✓	√	Field Method of Fabrication of 2 in (50 mm) Cube Specimens for Compressive Strength Testing of Grouts and Mortars
T 814	WSDOT		~	Method of Test for Water Retention Efficiency of Liquid Membrane- Forming Compounds and Impermeable Sheet Materials for Curing Concrete
C 939	WSDOT	\checkmark	\checkmark	FOP for ASTM for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)

				Chemical
Procedure	Owner	Field	In Manual	Test Method
LRFD	AASHTO		manaa	Section 18, Bearing Devices
M 111	AASHTO			Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
M 251	AASHTO			Plain and Laminated Elastomeric Bridge Bearings
T 65	AASHTO			Mass (Weight) of Coating on Iron and Steel Articles With Zinc or Zinc-Alloy Coatings
T 105/ C114	AASHTO			Chemical Analysis of Hydraulic Cement
T 260	AASHTO			Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials
T 267	AASHTO			Determination of Organic Content in Soils by Loss on Ignition
C 109	ASTM			Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens)
C 311	ASTM			Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland Cement Concrete
C 579	ASTM			Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes
C 881	ASTM			Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete
C 882	ASTM		\checkmark	Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear
D 638	ASTM			Tensile Properties of Plastics
D 695	ASTM			Compressive Properties of Rigid Plastics
D 792	ASTM			Density and Specific Gravity (Relative Density) of Plastics by Displacement
D 1751	ASTM			Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)
D 2240	ASTM			Rubber Property-Durometer Hardness
D 2628/ M 220	ASTM		\checkmark	Preformed Polychloroprene Elastomeric Joint Seals for Concrete Pavements
D 5167	ASTM			Melting of Hot-Applied Joint and Crack Sealant and Filler for Evaluation
D 5329	ASTM			Sealants and Fillers, Hot-Applied, for Joints and Cracks in Asphalt Pavements and Portland Cement Concrete Pavements
D 6690	ASTM			Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements
D 7091	ASTM	\checkmark	\checkmark	Nondestructive Measurement of Dry Film Thickness of Nonmagnetic Coatings Applied to Ferrous Metals and Nonmagnetic, Nonconductive Coatings Applied to Non-Ferrous Metals

Concrete							
Procedure		Field	In				
Number	Owner	Use	Manual	Test Method			
IM 2	WAQIC	\checkmark	\checkmark	FOP for WAQIC IM 2, Sampling Freshly Mixed Concrete			
T 22	AASHTO			Compressive Strength of Cylindrical Concrete Specimens			
T 22	WSDOT	\checkmark	\checkmark	FOP for AASHTO T 22, Compressive Strength of Cylindrical Concrete Specimens			
T 23	AASHTO			Making and Curing Concrete Test Specimens in the Field			
Т 23	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 23, Making and Curing Concrete Test Specimens in the Field			
T 24	AASHTO			Obtaining and Testing Drilled Cores and Sawed Beams of Concrete			
R 39	AASHTO			Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory			
T 106	AASHTO			Compressive Strength of Hydraulic Cement Mortars (Using 50-mm or 2-in. Cube Specimens)			
T 106	WSDOT	✓	\checkmark	FOP for AASHTO for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens)			
T 119	AASHTO			Slump of Hydraulic Cement Concrete			
T 119	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 119, Slump of Hydraulic Cement Concrete			
T 121	AASHTO			Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete			
T 121	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 121, Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete			
C 140	ASTM			Sampling and Testing Concrete Masonry Units and Related Units			
T 141	AASHTO			Sampling Freshly Mixed Concrete			
T 152	AASHTO			Air Content of Freshly Mixed Concrete by the Pressure Method			
T 152	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 152, Air Content of Freshly Mixed Concrete by the Pressure Method			
T 196	AASHTO		\checkmark	Air Content of Freshly Mixed Concrete by the Volumetric Method (Checklist Only)			
T 197	AASHTO			Time of Setting of Concrete Mixtures by Penetration Resistance			
T 198	AASHTO			Splitting Tensile Strength of Cylindrical Concrete Specimens			
T 231	AASHTO			Capping Cylindrical Concrete Specimens			
T 231	WSDOT	\checkmark	\checkmark	FOP for AASHTO T 231, Capping Cylindrical Concrete Specimens			
T 260	AASHTO			Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials			
T 277	AASHTO			Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration			
T 309	AASHTO			Temperature of Freshly Mixed Portland Cement Concrete			
Т 309	WAQTC	✓	\checkmark	FOP for AASHTO T 309, Temperature of Freshly Mixed Portland Cement Concrete			
T 359	AASHTO			Pavement Thickness by Magnetic Pulse Induction			
C 457	ASTM			Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete			
C 495	ASTM			Compressive Strength of Lightweight Insulated Concrete			
T 716	WSDOT	\checkmark	\checkmark	Method of Random Sampling for Locations of Testing and Sampling Sites			
T 802	WSDOT	✓	✓	Method of Test for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading)			

				Concrete
Procedure)	Field	In	
Number	Owner	Use	Manual	Test Method
C 805	ASTM			Rebound Number of Hardened Concrete
C 805	WSDOT	\checkmark	\checkmark	Rebound Hammer Determination of Compressive Strength of Hardened Concrete
T 808	WSDOT	\checkmark	\checkmark	Method for Making Flexural Test Beams
T 810	WSDOT	\checkmark	\checkmark	Method of Test for Determination of the Density of Portland Cement Concrete Pavement Cores
T 812	WSDOT	\checkmark	\checkmark	Method of Test for Measuring Length of Drilled Concrete Cores
T 813	WSDOT	\checkmark	\checkmark	Field Method of Fabrication of 2 in (50 mm) Cube Specimens for Compressive Strength Testing of Grouts and Mortars
T 818	WSDOT		\checkmark	Air Content of Freshly Mixed Self-Compacting Concrete by the Pressure Method
T 819	WSDOT		\checkmark	Making and Curing Self-Compacting Concrete Test Specimens in the Field
C 939	ASTM			Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)
C 939	WSDOT	\checkmark	\checkmark	FOP for ASTM C 939. Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)
C 1218	ASTM			Water-Soluble Chloride in Mortar and Concrete
D 1429	ASTM			Specific Gravity of Water and Brine
C 1604	ASTM			Obtaining and Testing Drilled Cores of Shotcrete
C 1611	WSDOT	\checkmark	\checkmark	FOP for ASTM C 1611/C 1611M Standard Test Method for Slump Flow of Self-Consolidating Concrete
C 1621	WSDOT	\checkmark	\checkmark	FOP for ASTM C 1621/C 1621M Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring

				Electrical
Procedure Number	e Owner	Field Use	In Manua	Test Method
IP 78-16	FHWA			Type 170 Signal Controller System Hardware Specification
TEES	Caltrans		_	Caltrans Transportation Electrical Equipment Specifications
PE-1	NEMA			Standards Publication: Uninterruptible Power Systems (UPS) – Specification and Performance Verification
TS-1	NEMA			Standards Publication: Traffic Control Systems
TS-2	NEMA			Standards Publication: Traffic Controller Assemblies with NTCIP Requirements
T 421	WSDOT		\checkmark	Traffic Controller Inspection Procedure
T 422	WSDOT		\checkmark	Transient Voltage Test (Spike Test) Procedure (optional)
T 423	WSDOT		\checkmark	Conflict Monitor Test Procedure
T 424	WSDOT		\checkmark	Power Interruption Test Procedure
T 425	WSDOT		\checkmark	Environmental Chamber Test Procedure
T 427	WSDOT		\checkmark	Loop Amplifier Test Procedure
T 428	WSDOT		\checkmark	Traffic Controller Compliance Inspection and Test Procedure
SOP 429	WSDOT		\checkmark	Methods for Determining the Acceptance of Traffic Signal Controller Assemblies
T 430	WSDOT		\checkmark	Uninterruptible Power Supply (UPS) System Compliance Inspection and Test Procedure
1188	IEEE			Standards Publication: Recommended Practice for Maintenance, Testing, and Replacement of Valve-Regulated Lead-Acid (VRLA) batteries for Stationary Applications
ATC 5301	AASHTO ITE NEMA			Publication: Advanced Transportation Controller (ATC) Cabinet Standard
62040-3	IEC			Standards Publication: Uninterruptible Power Systems (UPS) – Method for specifying the performance and test requirements

				Geotechnical – Soils
Procedure	•	Field	In	
Number	Owner	Use	Manua	Iest Method
R 58	AASHTO			Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test
R / 3				EOD for AASHTO B 75. Developing a Family of Curves
R / 0	WAQIC	✓	✓	FOP for AASHTO R 75, Developing a Family of Curves
T 88	AASHTO			Particle Size Analysis of Soils
Т 89	AASHTO		\checkmark	Determining the Liquid Limit of Soils (Checklist Only)
T 90	AASHTO		\checkmark	Determining the Plastic Limit and Plasticity Index of Soils (Checklist Only)
Т 99	AASHTO			Moisture-Density Relations of Soils Using a 2.5-kg (5.5-lb) Rammer and a 305-mm (12-in) Drop
Т 99	WAQTC	✓	\checkmark	FOP for AASHTO T 99, Moisture-Density Relations of Soils Using a 5.5 lb (2.5 kg) Rammer and a 12 in (305 mm) Drop
T 100	AASHTO			Specific Gravity of Soils
T 180	AASHTO			Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in) Drop
T 180	WAQTC	✓	\checkmark	FOP for AASHTO T 180, Moisture-Density Relations of Soils Using a 10 lb (4.54 kg) Rammer and an 18 in (457 mm) Drop
T 208	AASHTO			Unconfined Compressive Strength of Cohesive Soil
T 215	AASHTO			Permeability of Granular Soils (Constant Head)
T 216	AASHTO			One-Dimensional Consolidation Properties of Soils
T 236	AASHTO			Direct Shear Test of Soils Under Consolidated Drained Conditions
T 265	AASHTO			Laboratory Determination of Moisture Content of Soils
T 265	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 265, Laboratory Determination of Moisture Content of Soils
T 296	AASHTO			Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression
T 297	AASHTO			Consolidated, Undrained Triaxial Compressive Test on Cohesive Soils Shear
T 501	WSDOT		\checkmark	Test Method to Determine Durability of Very Weak Rock
D 2487	ASTM			Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
D 2488	ASTM			Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)
D 4186	ASTM			One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading
D 4644	ASTM			Slake Durability of Shales and Similar Weak Rocks
D 5084	ASTM			Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
D 5311	ASTM			Load Controlled Cyclic Triaxial Strength of Soil
D 5731	ASTM			Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications
D 6467	ASTM			Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils
D 6528	ASTM			Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils
D 7012	ASTM		\checkmark	Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Verying States of Stress and Temperatures

				Geotextile and Steel
Procedure		Field	In	
Number	Owner	Use	Manual	Test Method
E 18	ASTM			Rockwell Hardness of Metallic Materials
A 143	ASTM			Standard Practice for Safeguarding Against Embrittlement of Hot-Dip Galvanized Structural Steel Products and Procedure for Detecting Embrittlement
T 244	AASHTO			Mechanical Testing of Steel Products
A 370	ASTM			Definitions for Mechanical Testing of Steel Products
F 606	ASTM			Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets
T 914	WSDOT	\checkmark	\checkmark	Practice for Sampling of Geosynthetic Material for Testing
T 915	WSDOT		\checkmark	Practice for Conditioning of Geotextiles for Testing
Т 923	WSDOT		\checkmark	Thickness Measurement of Geotextiles
T 925	WSDOT		\checkmark	Standard Practice for Determination of Long-Term Strength for Geosynthetic Reinforcement
T 926	WSDOT		\checkmark	Geogrid Brittleness Test
D 1683	ASTM			Failure in Sewen Seams of Woven Fabrics
D 4354	ASTM		\checkmark	Standard Practice for Sampling of Geosynthetics and Rolled Erosion Control Products (RECPs) for Testing
D 4355	ASTM			Deterioration of Geotextiles From Exposure to Light, Moisture and Heat in a Xenon-Arc-Type Apparatus
D 4491	ASTM			Water Permeability of Geotextiles by permittivity
D 4533	ASTM			Trapezoid Tearing Strength of Geotextiles
D 4595	ASTM			Tensile Properties of Geotextiles by the Wide-Width Strip Method
D 4632	ASTM			Grab Breaking Load and Elongation of Geotextiles
D 4751	ASTM			Determining Apparent Opening Size of a Geotextiles
D 6241	ASTM			Static Puncture Strength of Geotextiles and Geotextile-Related Products Using a 50-mm Probe

				Paint
Procedure		Field	In	
Number	Owner	Use	Manual	Test Method
D 523	ASTM			Specular Gloss
D 823	ASTM			Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
D 1475	ASTM			Density of Liquid Coatings, Inks, and Related Products
D 2244	ASTM			Standard Practice for Calculation of Color Tolerances and Color Differences From Instrumentally Measured Color Coordinates
D 2369	ASTM			Volatile Content of Coatings
D 2621	ASTM			Infrared Identification of Vehicle Solids From Solvent-Reducible Paints
D 2697	ASTM			Volume Nonvolatile Matter in Clear or Pigmented Coatings
D 2698	ASTM			Determination of the Pigment Content of Solvent-Reducible Paints by High-Speed Centrifuging

				Pavement Soils
Procedure Number	e Owner	Field Use	In Manua	Test Method
T 242	AASHTO	•		Frictional Properties of Paved Surfaces Using a Full-Scale Tire
T 272	AASHTO			One-Point Method for Determining Maximum Dry Density and Optimum Moisture
T 272	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 272, One-Point Method for Determining Maximum Dry Density and Optimum Moisture
T 307	AASHTO		\checkmark	Determining the Resilient Modulus of Soils and Aggregate Materials
T 310	AASHTO			In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
T 310	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 310, In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
T 606	WSDOT		\checkmark	Method of Test for Compaction Control of Granular Materials
T 610	WSDOT		\checkmark	Method of Test for the Capillary Rise of Soils
SOP 615	WSDOT	\checkmark	\checkmark	Determination of the % Compaction for Embankment & Untreated Surfacing Materials Using the Nuclear Moisture-Density Gauge
SOP 738	WSDOT	\checkmark	\checkmark	Establishing Maximum Field Density for Recycled Concrete Aggregates by Test Point Evaluation
T 807	WSDOT	\checkmark	\checkmark	Method of Operation of California Profilograph and Evaluation of Profiles
D 4694	ASTM			Deflections with a Falling-Weight-Type Impulse Load Device

	Standard Practice					
Procedure	•	Field	In	Track March and		
Number	Owner	Use	Manual	lest method		
QC 1	WSDOT		\checkmark	Standard Practice for Cement Producers/Suppliers That Certify Portland Cement and Blended Hydraulic Cement		
QC 2	WSDOT		\checkmark	Standard Practice for Asphalt Suppliers That Certify Performance Graded and Emulsified Asphalts		
QC 3	WSDOT		\checkmark	Quality System Laboratory Review		
QC 4	WSDOT		\checkmark	Standard Practice for Fly Ash Producers/Importers/Distributors That Certify Fly Ash		
QC 5	WSDOT		\checkmark	Standard Practice for Ground Granulated Blast-Furnace Slag Producers/ Importers/Distributors That Certify Ground Granulated Blast-Furnace Slag		
QC 6	WSDOT		\checkmark	Annual Prestressed Plant Review and Approval Process		
QC 7	WSDOT		\checkmark	Annual Precast Plant Review and Approval Process		
QC 8	WSDOT		\checkmark	Standard Practice for Development, Submittal and Approval of Hot Mix Asphalt Mix Designs		
QC 9	WSDOT		\checkmark	Standard Practice for Approval of Recycled Materials Facilities of WSDOT Recycled Concrete and Returned Concrete		
QC 10	WSDOT		\checkmark	Standard Practice for Approval of Recycled Materials Facilities from Stockpiles of Unknown Sources		
QC 11	WSDOT		\checkmark	Standard Practice for Aggregate Producers Participating in the Quality Aggregate Program		
QC 12	WSDOT		\checkmark	Standard Practice for Evaluation of Aggregate Sources		

				Numerical Order
Procedure)	Field	In	
Number	Owner	Use	Manua	Test Method
LRFD CONS	AASHTO			Section 18, Bearing Devices
QC 1	WSDOT		\checkmark	Standard Practice for Cement Producers/Suppliers That Certify Portland Cement and Blended Hydraulic Cement
QC 2	WSDOT		\checkmark	Standard Practice for Asphalt Suppliers That Certify Performance Graded and Emulsified Asphalts
QC 3	WSDOT		\checkmark	Quality System Laboratory Review
QC 4	WSDOT		✓	Standard Practice for Fly Ash Producers/Importers/Distributors That Certify Fly Ash
QC 5	WSDOT		\checkmark	Standard Practice for Ground Granulated Blast-Furnace Slag Producers/ Importers/Distributors That Certify Ground Granulated Blast-Furnace Slag
QC 6	WSDOT		\checkmark	Annual Prestressed Plant Review and Approval Process
QC 7	WSDOT		\checkmark	Annual Precast Plant Review and Approval Process
QC 8	WSDOT		\checkmark	Standard Practice for Development, Submittal and Approval of Hot Mix Asphalt Mix Designs
QC 9	WSDOT		\checkmark	Standard Practice for Approval of Recycled Materials Facilities of WSDOT Recycled Concrete and Returned Concrete
QC 10	WSDOT		\checkmark	Standard Practice for Approval of Recycled Materials Facilities from Stockpiles of Unknown Sources
QC 11	WSDOT		\checkmark	Standard Practice for Aggregate Producers Participating in the Quality Aggregate Program
QC 12	WSDOT		\checkmark	Standard Practice for Evaluation of Aggregate Sources
TEES	Caltrans			Caltrans Transportation Electrical Equipment Specifications
PE-1	NEMA			Standards Publication: Uninterruptible Power Systems (UPS) – Specification and Performance Verification
TS-1	NEMA			Standards Publication: Traffic Control Systems
TS-2	NEMA			Standards Publication: Traffic Controller Assemblies with NTCIP Requirements
TM 2	WAQTC	\checkmark	\checkmark	FOP for WAQTC TM 2, Sampling Freshly Mixed Concrete
T 11	AASHTO			Materials Finer Than 0.075 mm (No. 200) Sieve in Mineral Aggregates by Washing
TM 14	WAQTC		\checkmark	Laboratory Prepared Asphalt Mixture Specimens
E 18	ASTM			Rockwell Hardness of Metallic Materials
T 19	AASHTO	✓	\checkmark	Bulk Density ("Unit Weight") and Voids in Aggregate (Rodding Procedure Only) (Checklist Only)
T 21	AASHTO			Organic Impurities in Fine Aggregates for Concrete
T 22	AASHTO			Compressive Strength of Cylindrical Concrete Specimens
T 22	WSDOT	\checkmark	\checkmark	FOP for AASHTO T 22, Compressive Strength of Cylindrical Concrete Specimens
T 23	AASHTO			Making and Curing Concrete Test Specimens in the Field
Т 23	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 23, Making and Curing Concrete Test Specimens in the Field
T 24	AASHTO			Obtaining and Testing Drilled Cores and Sawed Beams of Concrete

	Numerical Order						
Procedure	•	Field	In				
Number	Owner	Use	Manua	Test Method			
T 27	AASHTO			Sieve Analysis of Fine and Coarse Aggregates			
T 27_T 11	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 27_T 11, Sieve Analysis of Fine and Coarse Aggregates			
R 28	AASHTO			Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel			
R 29	AASHTO			Standard Practice for Grading or Verifying the Performance Grade (PG) of an Asphalt Binder			
R 30	AASHTO			Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA)			
Т 30	AASHTO			Mechanical Analysis of Extracted Aggregate			
Т 30	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 30, Mechanical Analysis of Extracted Aggregate			
Т 37	AASHTO			Sieve Analysis of Mineral Filler for Hot Mix Asphalt (HMA)			
R 39	AASHTO			Standard Practice for Making and curing Concrete Test Specimens in the Laboratory			
T 44	AASHTO			Solubility of Bituminous Materials			
R 47	AASHTO			Reducing Samples of Asphalt Mixtures to Testing Size			
R 47	WAQTC	✓	\checkmark	FOP for AASHTO R 47, Reducing Samples of Asphalt Mixtures to Testing Size			
T 48	AASHTO			Flash and Fire Points by Cleveland Open Cup			
T 49	AASHTO			Penetration of Bituminous Materials			
T 50	AASHTO			Float Test for Bituminous Materials			
T 51	AASHTO			Ductility of Asphalt Materials			
T 53	AASHTO			Softening Point of Bitumen (Ring-and-Ball Apparatus)			
R 58	AASHTO			Dry Preparation of Disturbed Soil and Soil Aggregate Samples for Test			
T 59	AASHTO			Emulsified Asphalts			
T 65	AASHTO			Mass (Weight) of Coating on Iron and Steel Articles With Zinc or Zinc-Alloy Coatings			
R 66	AASHTO			Sampling Asphalt Materials			
R 66	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 66, Sampling Asphalt Materials			
E 70	ASTM			pH of Aqueous Solutions With the Glass Electrode			
T 72	AASHTO			Saybolt Viscosity			
R 75	AASHTO			Developing a Family of Curves			
R 75	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 75, Developing a Family of Curves			
R 76	AASHTO			Reducing Samples of Aggregate to Testing Size			
R 76	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 76, Reducing Samples of Aggregate to Testing Size			
IP 78-16	FHWA			Type 170 Signal Controller System Hardware Specification			
R 79	AASHTO			Vacuum Drying Compacted Asphalt Specimens			
R 79	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 79, Vacuum Drying Compacted Asphalt Specimens			
T 84	AASHTO			Specific Gravity and Absorption of Fine Aggregates			
T 85	AASHTO			Specific Gravity and Absorption of Coarse Aggregates			
T 85	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 85, Specific Gravity and Absorption of Coarse Aggregate			
T 88	AASHTO			Particle Size Analysis of Soils			

	Numerical Order						
Procedure)	Field	In				
Number	Owner	Use	Manua	Test Method			
1 89	AASHIO		\checkmark	Determining the Liquid Limit of Soils (Checklist Only)			
R 90	AASHTO			Sampling Aggregate Products			
R 90	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 90, Sampling Aggregate Products			
Т 90	AASHTO		\checkmark	Determining the Plastic Limit and Plasticity Index of Soils (Checklist Only)			
R 96	AASHTO			Installation, Operation, and Maintenance of Ignition Furnaces			
Т 96	AASHTO			Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine			
R 97	AASHTO			Sampling Asphalt Mixtures			
R 97	WAQTC	\checkmark	\checkmark	FOP for AASHTO R 97, Sampling of Asphalt Mixtures			
Т 99	AASHTO			Moisture-Density Relations of Soils Using a 2.5-kg (5.5-lb) Rammer and a 305 mm (12-in) Drop			
Т 99	WAQTC	✓	\checkmark	FOP for AASHTO T 99, Moisture-Density Relations of Soils Using a 5.5 lb (2.5 kg) Rammer and a 12 in (305 mm) Drop			
T 100	AASHTO			Specific Gravity of Soils			
T 105	AASHTO			Chemical Analysis of Hydraulic Cement			
T 106	AASHTO			Compressive Strength of Hydraulic Cement Mortars (Using 50-mm or 2-in Cube Specimens)			
T 106	WSDOT	\checkmark	\checkmark	FOP for AASHTO for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens)			
T 107	AASHTO			Autoclave Expansion of Hydraulic Cement			
M 111	AASHTO			Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products			
T 112	AASHTO		\checkmark	Clay Lumps and Friable Particles in Aggregate			
T 113	WSDOT		\checkmark	Method of Test for Determination of Degradation Value			
T 119	AASHTO			Slump of Hydraulic Cement Concrete			
T 119	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 119, Slump of Hydraulic Cement Concrete			
T 121	AASHTO			Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete			
T 121	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 121, Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete			
T 123	WSDOT	\checkmark	\checkmark	Method of Test for Bark Mulch			
T 125	WSDOT		\checkmark	Determination of Fiber Length Percentages in Wood Strand Mulch			
T 126	WSDOT		√	Determination of Fiber Length Percentages in Hydraulically-Applied Erosion Control Products			
T 127	WSDOT		\checkmark	Preparation of Leachate Sample for Testing Toxicity of HECP Effluents			
SOP 128	WSDOT	\checkmark	\checkmark	Sampling for Aggregate Source Approval			
T 129	AASHTO			Amount of Water Required for Normal Consistency of Hydraulic Cement Paste			
T 131	AASHTO			Time of Setting of Hydraulic Cement by Vicat Needle			
T 133	AASHTO			Density of Hydraulic Cement			
T 137	AASHTO			Air Content of Hydraulic Cement Mortar			
C 140	ASTM			Sampling and Testing Concrete Masonry Units and Related Units			
T 141	AASHTO			Sampling Freshly Mixed Concrete			

				Numerical Order
Procedure) Orana a m	Field	In	Took Mathad
Number	Owner	Use	Manual	Iest Method
A 143	ASTIVI			Hot-Dip Galvanized Structural Steel Products and Procedure for Detecting Embrittlement
T 152	AASHTO			Air Content of Freshly Mixed Concrete by the Pressure Method
T 152	WAQTC	✓	\checkmark	FOP for AASHTO T 152, Air Content of Freshly Mixed Concrete by the Pressure Method
T 153	AASHTO			Fineness of Hydraulic Cement by Air Permeability Apparatus
T 162	AASHTO			Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency
T 166	AASHTO			Bulk Specific Gravity (G _m) of Compacted Asphalt Mixtures Using Saturated Surface-Dry Specimens
T 166	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 166, for Bulk Specific Gravity of Compacted Asphalt Mixtures Using Saturated Surface-Dry Specimens
T 176	AASHTO			Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test
T 176	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 176, Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test
T 180	AASHTO			Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and an 457-mm (18-in) Drop
T 180	WAQTC	✓	\checkmark	FOP for AASHTO T 180, Moisture-Density Relations of Soils Using a 10 lb (4.54 kg) Rammer and an 18 in (457 mm) Drop
T 196	AASHTO		\checkmark	Air Content of Freshly Mixed Concrete by the (Volumetric Method) (Checklist Only)
T 197	AASHTO			Time of Setting of Concrete Mixtures by Penetration Resistance
T 198	AASHTO			Splitting Tensile Strength of Cylindrical Concrete Specimens
T 208	AASHTO			Unconfined Compressive Strength of Cohesive Soil
T 209	AASHTO			Theoretical Maximum Specific Gravity (G_{mm}) and Density of Asphalt Mixtures
T 209	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 209, Theoretical Maximum Specific Gravity (G_{mm}) and Density of Asphalt Mixtures
T 215	AASHTO			Permeability of Granular Soils (Constant Head)
T 216	AASHTO			One-Dimensional Consolidation Properties of Soils
T 228	AASHTO			Specific Gravity of Semi-Solid Asphalt Materials
T 231	AASHTO			Capping Cylindrical Concrete Specimens
T 231	WSDOT	\checkmark	\checkmark	FOP for AASHTO T 231, Capping Cylindrical Concrete Specimens
T 236	AASHTO			Direct Shear test of Soils Under Consolidated Drained Conditions
T 240	AASHTO			Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin- Film Oven Test)
T 242	AASHTO			Frictional Properties of Paved Surfaces Using a Full-Scale Tire
T 244	AASHTO			Mechanical Testing of Steel Products
M 251	AASHTO			Plain and Laminated Elastomeric Bridge Bearings
T 255	AASHTO			Total Evaporable Moisture Content of Aggregate by Drying
T 255	WAQTC	✓	\checkmark	FOP for AASHTO T 255, Total Evaporable Moisture Content of Aggregate by Drying

	-			Numerical Order
Procedure	!	Field	In	
Number	Owner	Use	Manual	Test Method
T 260	AASHTO			Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials
T 265	AASHTO			Laboratory Determination of Moisture Content of Soils
T 265	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 265, Laboratory Determination of Moisture Content of Soils
T 267	AASHTO			Determination of Organic Content in Soils by Loss on Ignition
T 269	AASHTO			Percent Air Void in Compacted Dense and Open Asphalt Mixtures
T 272	AASHTO			One-Point Method for Determining Maximum Dry Density and Optimum Moisture
T 272	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 272, One-Point Method for Determining Maximum Dry Density and Optimum Moisture
T 277	AASHTO			Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration
T 288	AASHTO		\checkmark	Determining Minimum Laboratory Soil Resistivity (Checklist Only)
T 289	AASHTO			Determining pH of Soil for Use in Corrosion Testing
T 296	AASHTO			Unconsolidated, Undrained Compressive Strength of Cohesive Soils in Triaxial Compression
T 297	AASHTO			Consolidated, Undrained Triaxial Compressive Test on Cohesive Soils Shear
T 301	AASHTO			Elastic Recovery Test of Asphalt Materials by Means of a Ductilometer
Т 303	AASHTO			Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to Alkali-Silica Reaction
T 304	AASHTO			Uncompacted Void Content of Fine Aggregate
T 304	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 304, Uncompacted Void Content of Fine Aggregate
T 307	AASHTO		\checkmark	Determining the Resilient Modulus of Soils and Aggregate Materials
T 308	AASHTO			Determining the Asphalt Binder Content of Asphalt Mixtures by the Ignition Method
T 308	WAQTC	✓	\checkmark	FOP for AASHTO T 308, Determining the Asphalt Binder Content of Asphalt Mixtures by the Ignition Method
T 309	AASHTO			Temperature of Freshly Mixed Hydraulic Cement Concrete
Т 309	WAQTC	\checkmark	\checkmark	FOP for AASHTO T309, Temperature of Freshly Mixed Portland Cement Concrete
T 310	AASHTO			In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
T 310	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 310, In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
C 311	ASTM			Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland Cement Concrete
T 312	AASHTO			Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor
T 312	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 312, Preparing and Determining the Density of Asphalt Mixture Specimens by Means of the Superpave Gyratory Compactor
T 313	AASHTO			Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)
T 313	WSDOT		\checkmark	Method of Test for Cement-Latex Compatibility

	Numerical Order						
Procedure		Field	In				
Number	Owner	Use	Manua	Test Method			
1 314	WSDOT		✓	Method of Test for Photovolt Reflectance			
T 315	AASHTO			Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)			
T 316	AASHTO			Viscosity Determination of Asphalt Binder Using Rotational Viscometer			
SOP 318	WSDOT		\checkmark	Standard Operating Procedure for Melting of Flexible Bituminous Pavement Marker Adhesive for Evaluation			
T 324	AASHTO		\checkmark	Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures			
T 329	AASHTO			Moisture Content of Asphalt Mixtures by Oven Method			
T 329	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 329, Moisture Content of Asphalt Mixture by Oven Method			
T 331	AASHTO			Bulk Specific Gravity (G_{mb}) and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method			
T 331	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 331, Bulk Specific Gravity (G_{mb}) and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method			
T 335	AASHTO			Determining the Percentage of Fracture in Coarse Aggregate			
T 335	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 335, Determining the Percentage of Fracture in Coarse Aggregate			
T 350	AASHTO			Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Reheometer (DSR)			
T 355	AASHTO			In-Place Density of Asphalt Mixtures by Nuclear Methods			
T 355	WAQTC	\checkmark	\checkmark	FOP for AASHTO T 355, In-Place Density of Asphalt Mixtures by Nuclear Methods			
T 359	AASHTO			Pavement Thickness by Magnetic Pulse Induction			
A 370	ASTM			Definitions for Mechanical Testing of Steel Products			
T 413	WSDOT	\checkmark	\checkmark	Method of Test for Evaluating Waterproofing Efectiveness of Membrane and Membrane-Pavement Systems			
T 417	WSDOT		\checkmark	Method of Test for Determining Minimum Resistivily and pH of Soil and Water			
T 421	WSDOT		\checkmark	Traffic Controller Inspection Procedure			
T 422	WSDOT		\checkmark	Transient Voltage Test (Spike Test) Procedure (optional)			
T 423	WSDOT		\checkmark	Conflict Monitor Test Procedure			
T 424	WSDOT		\checkmark	Power Interruption Test Procedure			
T 425	WSDOT		\checkmark	Environmental Chamber Test Procedure			
T 426	WSDOT		\checkmark	Pull-Off Test for Hot Melt Traffic Button Adhesive			
T 427	WSDOT		\checkmark	Loop Amplifier Test Procedure			
T 428	WSDOT		\checkmark	Traffic Controller Compliance Inspection and Test Procedure			
SOP 429	WSDOT		✓	Methods for Determining the Acceptance of Traffic Signal Controller Assemblies			
T 430	WSDOT		\checkmark	Uninterruptible Power Supply (UPS) System Compliance Inspection and Test Procedure			
T 432	WSDOT		\checkmark	Flexibility Test for Hot-Melt Adhesives			

				Numerical Order
Procedure		Field	In	
Number	Owner	Use	Manual	Test Method
C 457	ASTM			Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete
C 495	ASTM			Compressive Strength of Lightweight Insulated Concrete
T 501	WSDOT		\checkmark	Test Method to Determine Durability of Very Weak Rock
D 523	ASTM			Specular Gloss
C 579	ASTM			Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes
F 606	ASTM			Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets
Т 606	WSDOT		\checkmark	Method of Test for Compaction Control of Granular Materials
T 610	WSDOT		\checkmark	Method of Test for the Capillary Rise of Soils
SOP 615	WSDOT	\checkmark	\checkmark	Determination of the % Compaction for Embankment and Untreated Surfacing Materials Using the Nuclear Moisture-Density Gauge
D 638	ASTM			Tensile Properties of Plastics
D 695	ASTM			Compressive Properties of Rigid Plastics
T 716	WSDOT	\checkmark	\checkmark	Method of Random Sampling for Locations of Testing and Sampling Sites
T 720	WSDOT		\checkmark	Method of Test for Thickness Measurement of Hot Mix Asphalt (HMA) Cores
SOP 729	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Determination of the Moving Average of Theoretical Maximum Density (TMD) for HMA
SOP 730	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Correlation of Nuclear Gauge Densities With Hot Mix Asphalt (HMA) Cores
SOP 731	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Determining Volumetric Properties of Hot Mix Asphalt
SOP 732	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Volumetric Design for Hot-Mix Asphalt (HMA)
SOP 733	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Determination of Pavement Density Differentials Using the Nuclear Density Gauge
SOP 734	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Sampling Hot Mix Asphalt After Compaction (Obtaining Cores)
SOP 735	WSDOT	\checkmark	\checkmark	Standard Operating Procedure for Longitudinal Joint Density
SOP 736	WSDOT		\checkmark	In-Place Density of Bituminous Mixes Using Cores
SOP 737	WSDOT		\checkmark	Procedure for the Forensic Testing of HMA Field Cores
SOP 738	WSDOT	\checkmark	\checkmark	Establishing Maximum Field Density for Recycled Concrete Aggregates by Test Point Evaluation
D 792	ASTM			Density and Specific Gravity (Relative Density) of Plastics by Displacement
T 802	WSDOT	\checkmark	\checkmark	Method of Test for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading)
C 805	ASTM			Rebound Number of Hardened Concrete
C 805	WSDOT	\checkmark	\checkmark	Rebound Hammer Determination of Compressive Strength of Hardened Concrete
T 807	WSDOT	\checkmark	\checkmark	Method of Operation of California Profilograph and Evaluation of Profiles

Numerical Order					
Procedure)	Field	In		
Number	Owner	Use	Manua	Test Method	
T 808	WSDOT	\checkmark	\checkmark	Method for Making Flexural Test Beams	
T 810	WSDOT	\checkmark	\checkmark	Method of Test for Determination of the Density of Portland Cement Concrete Pavement Cores	
T 812	WSDOT	\checkmark	\checkmark	Method of Test for Measuring Length of Drilled Concrete Cores	
T 813	WSDOT	\checkmark	\checkmark	Field Method of Fabrication of 2 in (50 mm) Cube Specimens for Compressive Strength Testing of Grouts and Mortars	
T 814	WSDOT		√	Method of Test for Water Retention Efficiency of Liquid Membrane- Forming Compounds and Impermeable Sheet Materials for Curing Concrete	
T 818	WSDOT		\checkmark	Air Content of Freshly Mixed Self-Compacting Concrete by the Pressure Method	
T 819	WSDOT		\checkmark	Making and Curing Self-Compacting Concrete Test Specimens in the Field	
D 823	ASTM			Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels	
C 881	ASTM			Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete	
C 882	ASTM		\checkmark	Bond Strength of Epoxy-Resin Systems Used With Concrete By Slant Shear (Checklist Only)	
T 914	WSDOT	\checkmark	\checkmark	Practice for Sampling of Geosynthetic Material for Testing	
T 915	WSDOT		\checkmark	Practice for Conditioning of Geotextiles for Testing	
T 923	WSDOT		\checkmark	Thickness Measurement of Geotextiles	
T 925	WSDOT		\checkmark	Standard Practice for Determination of Long-Term Strength for Geosynthetic Reinforcement	
T 926	WSDOT		\checkmark	Geogrid Brittleness Test	
C 939	ASTM		_	Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)	
C 939	WSDOT	✓	✓	FOP for ASTM for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)	
1188	IEEE			Standards Publication: Recommended Practice for Maintenance, Testing, and Replacement of Valve-Regulated Lead-Acid (VRLA) batteries for Stationary Applications	
C 1218	ASTM			Water-Soluble Chloride in Mortar and Concrete	
C 1437	ASTM			Standard Test Method for Flow of Hydraulic Cement Mortar	
D 1475	ASTM			Density of Liquid Coatings, Inks, and Related Products	
C 1604	ASTM			Obtaining and Testing Drilled Cores of Shotcrete	
C 1611	WSDOT	\checkmark	\checkmark	FOP for ASTM C 1611/C 1611M Standard Test Method for Slump Flow of Self-Consolidating Concrete	
C 1621	WSDOT	\checkmark	\checkmark	FOP for ASTM C 1621/C 1621M Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring	
D 1683	ASTM			Failure in Sewn Seams of Woven Fabrics	
D 1751	ASTM			Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)	
D 2240	ASTM			Standard Test Method for Rubber Property – Durometer Hardness	
D 2244	ASTM			Standard Practice for Calculation of Color Tolerances and Color Differences From Instrumentally Measured Color Coordinates	

Numerical Order					
Procedure		Field	In		
Number	Owner	Use	Manua	Test Method	
D 2369	ASIM			Volatile Content of Coatings	
D 2487	ASIM			(Unified Soil Classification System)	
D 2488	ASTM			Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)	
D 2621	ASTM			Infrared Identification of Vehicle Solids From Solvent-Reducible Paints	
D 2628/ M 220	ASTM	\checkmark	\checkmark	Preformed Polychloroprene Elastomeric Joint Seals for Concrete Pavements	
D 2697	ASTM			Volume Nonvolatile Matter in Clear or Pigmented Coatings	
D 2698	ASTM			Determination of the Pigment Content of Solvent-Reducible Paints by High-Speed Centrifuging	
D 3111	ASTM			Flexibility Determination of Hot-Melt Adhesives by Mandrel Bend Test Method	
D 3723	ASTM			Pigment Content of Water Emulsion Paints by Temperature Ashing	
D 4186	ASTM			One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading	
D 4354	ASTM		\checkmark	Standard Practice for Sampling of Geosynthetics and Rolled Erosion Control Products (RECPs) for Testing	
D 4355	ASTM			Deterioration of Geotextiles From Exposure to Light, Moisture and Heat in a Xenon-Arc-Type Apparatus	
D 4491	ASTM			Water Permeability of Geotextiles by Permittivity	
D 4533	ASTM			Trapezoid Tearing Strength of Geotextiles	
D 4595	ASTM			Tensile Properties of Geotextiles by the Wide-Width Strip Method	
D 4632	ASTM			Grab Breaking Load and Elongation of Geotextiles	
D 4644	ASTM			Slake Durability of Shales and Similar Weak Rocks	
D 4694	ASTM			Deflections with Falling-Weight-Type Impulse Load Device	
D 4751	ASTM			Determining Apparent Opening Size of a Geotextile	
D 5084	ASTM			Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter	
D 5167	ASTM			Melting of Hot-Applied Joint and Crack Sealant and Filler for Evaluation	
ATC 5301	AASHTO ITE NEMA			Publication: Advanced Transportation Controller (ATC) Cabinet Standard	
D 5311	ASTM			Load Controlled Cyclic Triaxial Strength of Soil	
D 5329	ASTM			Sealants and Fillers, Hot-Applied, for Joints and Cracks in Asphalt Pavements and Portland Cement Concrete Pavements	
D 5731	ASTM			Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications	
D 6241	ASTM			Static Puncture Strength of Geotextiles and Geotextile-Related Products Using a 50-mm Probe	
D 6467	ASTM			Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils	
D 6528	ASTM			Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils	
D 6690	ASTM			Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements	

Numerical Order					
Procedure Number	Owner	Field Use	In Manual	Test Method	
D 6931	ASTM		\checkmark	Indirect Tensile (IDT) Strength of Asphalt Mixtures	
D 7012	ASTM		\checkmark	Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Verying States of Stress and Temperatures	
D 7091	ASTM	~	√	Nondestructive Measurement of Dry Film Thickness of Nonmagnetic Coatings Applied to Ferrous Metals and Nonmagnetic, Nonconductive Coatings Applied to Non-Ferrous Metals (Checklist Only)	
62040-3	IEC			Standards Publication: Uninterruptible Power Systems (UPS) – Method for specifying the performance and test requirements	

WSDOT Standard Practice for HMA Mix Designs QC 8

Standard Practice for Development, Submittal and Approval of Hot Mix Asphalt Mix Designs

1. Scope

- 1.1 This standard specifies requirements and procedures for evaluation and approval of Hot Mix Asphalt mix designs for the Qualified Products List.
- 1.2 This standard may involve hazardous materials, operations and equipment. It does not address all of the safety problems associated with their use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 WSDOT Standards
 - 2.1.1 Standard Specifications for Road, Bridge, and Municipal Construction M 41-10

3. Terminology

- 3.1 **AASHTO** American Association of State Highway and Transportation Officials
- 3.2 **Contractor/Producer** The Contractor, Producer or production facility that has the capacity for producing HMA meeting WSDOT *Standard Specifications*.
- 3.3 ASA Aggregate Source Approval
- 3.4 **ASTM –** American Society of Testing and Materials
- 3.5 HMA Hot Mix Asphalt
- 3.6 **PG –** Performance Graded asphalt binder
- 3.7 **QPL –** Qualified Products List
- 3.8 State Materials Laboratory 1655 S. 2nd Avenue SW, Tumwater, WA 98512-6951
- 3.9 **WSDOT –** Washington State Department of Transportation
- 3.10 **Business Days –** All weekdays, excluding state and federal holidays
- 3.11 **Bituminous Materials Section –** Testing Laboratory located at the WSDOT State Materials Laboratory

4. Significance and Use

4.1 This standard specifies procedures for designing, submitting, evaluating and approving HMA mix designs for inclusion to the QPL.

5. Mix Design Development

- 5.1 The Contractor/Producer or designee shall develop a HMA mix design in accordance with Section 5-04.2(1) of the *Standard Specifications*. The HMA mix design aggregate structure, asphalt binder content, anti-stripping additive, rutting susceptibility and indirect tensile strength shall be determined in accordance with WSDOT SOP 732, FOP for AASHTO T 324 and WSDOT FOP for ASTM D 6931 and meet the requirements of Sections 9-03.8(2) and 9-03.8(6) of the *Standard Specifications*.
 - 5.1.1 The Contractor/Producer's mix design %Gmm Ndesign must be 96.0 \pm 0.2% at the optimum percent binder (Pb).

6. Submission to the WSDOT Qualified Products List

- 6.1 Once the HMA mix design has been developed, the Contractor/Producer shall contact the QPL Engineer (at qpl@wsdot.wa.gov) or 360-709-5442 to initiate the HMA mix design submittal process.
- 6.2 To initiate the mix design submittal process, the Contractor/Producer shall provide the following:
 - Company contact and billing information
 - A completed copy of WSDOT Form 350-042
 - A completed WSDOT Product Submittal Application Form
 - ASA Report for the aggregate source(s)
 - QPL Contractor/Producer Product Information page(s) for the PG asphalt binder and the anti-stripping additive
 - Certification on the source of the recycled materials and applicable documentation per *Standard Specifications* Sections 5-04.2 and 9-03.21(1) for mix designs containing Recycled Asphalt Pavement (RAP) and/or Reclaimed Asphalt Shingles (RAS)
- 6.3 Once the information from Step 6.2 is received the QPL Engineer will forward the Contractor/Producer's submittal to the Bituminous Materials Section and assign a QPL evaluation tracking number. This will initiate the timeline associated with each step of the mix design evaluation process in Section 6 of this plan, as shown in Table 1.
- 6.4 The Bituminous Materials Section will review the mix design submittal (WSDOT Form 350-042) and all documentation provided to ensure it is complete and meets specification requirements. The Bituminous Materials Section will notify the QPL Engineer once the review is complete. Mix design submittals that are incomplete or do not meet the specification requirements will be rejected and require resubmittal in accordance with Section 6.2 of this plan. All timelines in Table 1 will restart with resubmittal of mix designs.

- 6.5 If the mix design submittal is complete and meets specification, the QPL Engineer will provide the following to the Contractor/Producer:
 - QPL evaluation tracking number
 - Initial letter detailing mix design evaluation
 - Cost sheet for mix design evaluation detailing submittal requirements and associated charges
- 6.6 After payment is received for the mix design evaluation, the Bituminous Materials Section will contact the Contractor/Producer and schedule the mix design materials delivery date.
 - 6.6.1 The Contractor shall submit representative <u>samples of</u> aggregate, <u>RAP and RAS</u> (if required), totaling 700 pounds proportioned to match the Contractor's proposal to the State Materials Laboratory for testing.

For example, if the Contractor's proposal consists of five stockpiles with the following blending ratio:

Material	Ratio
³ ⁄ ₄ ″ – #4	20%
1⁄2″ – #8	30%
#4 – 0	30%
RAP	15%
RAS	5%

Calculate the amount of aggregate needed from each stockpile in the following manner:

Material		Pounds of Aggregate Needed Per Stockpile
³ ⁄ ₄ ″ – #4	700 lbs x 0.20	140 pounds
1⁄2″ – #8	700 lbs x 0.30	210 pounds
#4 – 0	700 lbs x 0.30	210 pounds
RAP	700 lbs x 0.15	105 pounds
RAS	700 lbs x 0.05	35 pounds

- 6.6.2 Transport aggregate in bags or other containers so constructed as to preclude loss or contamination of any part of the sample, or damage to the contents from mishandling during shipment. The weight limit for each bag or container of aggregate is 30 pounds maximum.
- 6.6.3 Each aggregate bag or container shall be clearly marked or labeled with suitable identification including the contract number, aggregate source identification and size of stockpile material.

- 6.7 The Bituminous Materials Section will notify the Contractor/Producer when the mix design materials have been received, logged-in and a calendar day completion will be provided to the Contractor/Producer as specified in Section 6.9.
 - 6.7.1 Mix design materials that are non-representative and/or out of specification will be rejected and require resubmittal of all mix design material. Mix design materials that are rejected and not picked up by the Contractor/Producer within 2 working days of the receipt of rejection will be disposed of. All timelines in Table 1 will restart with resubmittal of mix design materials.
- 6.8 A priority queue will be established by the Bituminous Materials Section for HMA mix design evaluations.
 - 6.8.1 Preference will be given to mix designs submitted for WSDOT contracts.
 - 6.8.2 HMA mix design evaluations for WSDOT contracts will be completed within 25 calendar days after the notification in Section 6.8.
 - 6.8.3 HMA mix design evaluations that are not for WSDOT contracts will be completed approximately 40 calendar days after the notification in Section 6.7.
 - 6.8.4 The Bituminous Materials Section reserves the right to limit the number of HMA mix design evaluations accepted for non WSDOT contracts at any time. Workload and staffing will dictate the number of HMA mix design evaluations accepted at one time.
- 6.9 After the mix design evaluation is complete the Bituminous Materials Section will provide the following:
 - Final notification indicating QPL status after completion of the mix design evaluation.

Table 1Timelines Associated with Each Step of the Mix Design
Evaluation Process

7. Mix Design Evaluation

- 7.1 The HMA mix design submitted by the Contractor/Producer will be evaluated by the Bituminous Materials Section in accordance with Section 9-03.8(2) and 9-03.8(6) of the *Standard Specifications*. All communication from the Bituminous Materials Section will be to the Contractor's/Producer's contact as specified on WSDOT Form 350-042.
- 7.2 HMA mix designs will be placed on the QPL provided they meet the requirements of Section 9-03.8(2) and 9-03.8(6) of the *Standard Specifications*.
 - 7.2.1 Voids in Mineral Aggregate (VMA) must be within 0.5% of the minimum specification in accordance with Section 9-03.8(2) of the *Standard Specifications* for the class of HMA evaluated.
 - 7.2.2 % Gmm at N design must be within 1.5% of the specification in Section 9-03.8(2) of the *Standard Specifications* for the class of HMA evaluated.
 - 7.2.3 Voids Filled with Asphalt (VFA) in Section 9-03.8(2) will not be part of the mix design evaluation.
- 7.3 A mix design that fails to meet the requirements listed in Section 7.2, 7.2.1 and 7.2.2 will not be accepted or placed on the QPL.
- 7.4 Adjustments to mix designs will not be allowed once they have been evaluated.
- 7.5 The Contractor/Producer will be issued a QPL mix design record providing the mix design is in compliance with Section 9 of this Standard Practice.
- 7.6 The QPL listing for HMA mix designs will show the following information:
 - Company name
 - HMA Class
 - Aggregate Source(s)
 - PG Grade
 - PG Supplier

Anti-stripping additive brand and quantity (if applicable)

8. Referencing Mix Designs From The QPL

- 8.1 Requests for reference HMA mix designs for non WSDOT projects will be completed on WSDOT Form 350-041 and emailed to BituminousMaterials@wsdot.wa.gov.
- 8.2 Reference HMA mix design reports will be issued for new mix designs on active and awarded WSDOT contracts once accepted and placed on the QPL.
- 8.3 Reference HMA mix design reports will be issued for current mix designs on active and awarded WSDOT contracts provided the HMA production history is in compliance with *Standard Specifications* Section 5-04.3(11)F.

9. Removal From The QPL

- 9.1 HMA mix designs will be automatically removed from the QPL in accordance with *Standard Specifications* Section 5-04.2(1).
- 9.2 HMA mix designs may be removed from the QPL if found in nonconformance with the *Standard Specifications* or this Standard Practice. Causes for removal from the QPL may include, but are not limited to the following:
 - Failure to comply with requirements of Standard Practice QC 8.
 - HMA mix designs that are out of compliance in accordance with *Standard Specifications*
 - Section 5-04.3(11)F.
 - Failure to notify WSDOT of changes in HMA production.
 - Removal at the request of the Contractor/Producer

10. Ignition Furnace Calibration Factor (IFCF) Samples

- 10.1 Each HMA mix design submitted for evaluation will have 12 IFCF samples produced for WSDOT as part of the QPL evaluation process.
- 10.2 The Contractor/Producer may elect to have 4 IFCF samples produced as part of the QPL evaluation process.