Publications Transmittal

Transmittal Number

PT 11-007

Date

January 2011

Publication Title / Publication Number

Construction Manual M 41-01.10

Originating Organization

Environmental & Engineering Programs, Construction Office through Administrative and Engineering Publications

Remarks and Instructions

The complete manual, revision packages, and individual chapters can be accessed at www.wsdot.wa.gov/publications/manuals/m41-01.htm.

Please contact Dan Gasche at 360-705-6970 with comments, questions, or suggestions for improvement to the manual.

Instructions for Printed Manuals

Page numbers indicating portions of the manual that are to be removed and inserted are shown below.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Remove Pages</th>
<th>Insert Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>i – ii</td>
<td>i – ii</td>
</tr>
<tr>
<td>Chapter 1 Contents</td>
<td>1-i – 1-iv</td>
<td>1-i – 1-iv</td>
</tr>
<tr>
<td>Chapter 5 Contents</td>
<td>5-i – 5-ii</td>
<td>5-i – 5-ii</td>
</tr>
<tr>
<td>Chapter 5 Surface Treatments and Pavements</td>
<td>5-1 – 5-24</td>
<td>5-1 – 5-22</td>
</tr>
<tr>
<td>Chapter 6 Structures</td>
<td>6-27 – 6-30</td>
<td>6-27 – 6-30</td>
</tr>
<tr>
<td>Chapter 9 Contents</td>
<td>9-i – 9-vi</td>
<td>9-i – 9-vi</td>
</tr>
<tr>
<td>Chapter 9 Materials</td>
<td>9-1 – 9-82</td>
<td>9-1 – 9-80</td>
</tr>
<tr>
<td>T 2 Standard Practice for Sampling Aggregates</td>
<td>1 – 10</td>
<td>1 – 10</td>
</tr>
<tr>
<td>TM 2 Sampling Freshly Mixed Concrete</td>
<td>1 – 6</td>
<td>1 – 6</td>
</tr>
<tr>
<td>TM 8 In-Place Density of Hot Mix Asphalt Using the Nuclear Moisture-Density Gauge</td>
<td>1 – 6</td>
<td>1 – 6</td>
</tr>
<tr>
<td>T 23 Making and Curing Concrete Test Specimens in the Field</td>
<td>1 – 10</td>
<td>1 – 10</td>
</tr>
<tr>
<td>T 27/T 11 Sieve Analysis of Fine and Coarse Aggregates</td>
<td>1 – 14</td>
<td>1 – 14</td>
</tr>
<tr>
<td>T 119 Standard Test Method for Slump of Hydraulic-Cement Concrete</td>
<td>1 – 8</td>
<td>1 – 8</td>
</tr>
<tr>
<td>T 166 Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens</td>
<td>1 – 6</td>
<td>1 – 6</td>
</tr>
<tr>
<td>T 176 Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test</td>
<td>1 – 12</td>
<td>1 – 12</td>
</tr>
<tr>
<td>T 209 Theoretical Maximum Specific Gravity and Density of Hot-Mix Asphalt Paving Mixtures</td>
<td>1 – 10</td>
<td>1 – 10</td>
</tr>
<tr>
<td>T 248 Reducing Samples of Aggregate to Testing Size</td>
<td>1 – 8</td>
<td>1 – 8</td>
</tr>
<tr>
<td>Chapter</td>
<td>Remove Pages</td>
<td>Insert Pages</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>T 312</td>
<td>1 – 8</td>
<td>1 – 8</td>
</tr>
<tr>
<td>T 329</td>
<td>1 – 6</td>
<td>1 – 6</td>
</tr>
<tr>
<td>T 716</td>
<td>1 – 12</td>
<td>1 – 12</td>
</tr>
<tr>
<td>T 724</td>
<td>1 – 4</td>
<td>1 – 4</td>
</tr>
<tr>
<td>T 726</td>
<td>1 – 4</td>
<td>1 – 4</td>
</tr>
<tr>
<td>SOP 729</td>
<td>1 – 2</td>
<td>1 – 2</td>
</tr>
<tr>
<td>SOP 730</td>
<td>1 – 2</td>
<td>1 – 2</td>
</tr>
<tr>
<td>SOP 731</td>
<td>1 – 6</td>
<td>1 – 4</td>
</tr>
<tr>
<td>SOP 733</td>
<td>1 – 4</td>
<td>1 – 4</td>
</tr>
<tr>
<td>Chapter 11 Contents</td>
<td>11-i – 1-ii</td>
<td>11-i – 1-ii</td>
</tr>
<tr>
<td>Chapter 11 Forms</td>
<td>11-1 – 1-6</td>
<td>11-1 – 1-6</td>
</tr>
</tbody>
</table>

To get the latest information for WSDOT administrative and engineering manuals, sign up for e-mail updates for individual manuals at www.wsdot.wa.gov/publications/manuals/.

Washington State Department of Transportation
Administrative and Engineering Publications
PO Box 47304
Olympia, WA 98504-7304
Phone: 360-705-7430
E-mail: engrpubs@wsdot.wa.gov
Construction Manual

M 41-01.10

January 2011
Americans with Disabilities Act (ADA) Information

Materials can be provided in alternative formats: large print, Braille, cassette tape, or on computer disk for people with disabilities by calling the Office of Equal Opportunity (OEO) at 360-705-7097. Persons who are deaf or hard of hearing may contact OEO through the Washington Relay Service at 7-1-1.

Title VI Notice to Public

It is the Washington State Department of Transportation’s (WSDOT) policy to assure that no person shall, on the grounds of race, color, national origin or sex, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied the benefits of, or be otherwise discriminated against under any of its federally funded programs and activities. Any person who believes his/her Title VI protection has been violated, may file a complaint with WSDOT’s Office of Equal Opportunity (OEO). For Title VI complaint forms and advice, please contact OEO’s Title VI Coordinator at 360-705-7098 or 509-324-6018.

To get the latest information on WSDOT administrative and engineering manuals, sign up for e-mail updates for individual manuals at: www.wsdot.wa.gov/publications/manuals

Washington State Department of Transportation
Administrative and Engineering Publications
PO Box 47304
Olympia, WA 98504-7304

Phone: 360-705-7430
E-mail: engrpubs@wsdot.wa.gov
Internet: www.wsdot.wa.gov/publications/manuals
Chapter 1 Administration

Contents

1-1 General Information
- 1-1.1 Purpose and Scope of Manual
- 1-1.2 Definition of Terms
- 1-1.3 WSDOT State Construction Office
 - 1-1.3A State Construction Engineer
 - 1-1.3A(1) Administration
 - 1-1.3A(2) Roadway
 - 1-1.3A(3) Bridges
- 1-1.4 Materials
- 1-1.5 Region Organization
 - 1-1.5A Regional Administrator
 - 1-1.5B Regional Construction Manager
- 1-1.6 Relationship With Other Agencies
 - 1-1.6A Federal Highway Administration
 - 1-1.6B Local Agencies
 - 1-1.6B(1) Project Engineer Administering Local Agency Project
 - 1-1.6B(2) Local Agency Administering Its Project on State Right of Way
 - 1-1.6C Other Federal, State, and Local Agencies
 - 1-1.6C(1) Highways over National Forest Lands
- 1-1.7 Relating to the Public
- 1-1.8 Safety
- 1-1.9 Archaeological and Historical Objects
- 1-1.10 Construction Work in International Boundary Strip

1-2 Contract Administration
- 1-2.1 Proposal and Award of Contract
 - 1-2.1A Contract Proposal and Bids
 - 1-2.1B Award and Execution of Contract
 - 1-2.1C Preconstruction Meetings, Discussions
- 1-2.2 Project Engineer’s Relationship and Responsibilities
 - 1-2.2A Assignment
 - 1-2.2B Responsibility as a Public Official
 - 1-2.2C Relationship With the Contractor
 - 1-2.2D Relationship With Other Government Agencies
 - 1-2.2E Relationship With Public and Private Utilities
 - 1-2.2F Responsibility for Coordination of Railroad Agreements
 - 1-2.2G Responsibility for Railroad Encroachment Insurance
 - 1-2.2H Responsibility for Coordinating Work With Other Contracts
 - 1-2.2I Responsibility for Enforcement of Safety and Health Requirements
 - 1-2.2I(1) General
 - 1-2.2I(2) Precontract Preparation
 - 1-2.2I(3) Preconstruction Duties
 - 1-2.2I(4) The P.E.’s Role in Safety on the Project
 - 1-2.2I(5) Pedestrian Safety
 - 1-2.2I(6) Site Cleanup and Removal of Illegal Encampments
 - 1-2.2J Responsibility for Environmental Considerations
 - 1-2.2J(1) Spill Prevention, Control, and Countermeasures (SPCC) Plans
 - 1-2.2K Responsibility for Environmental Compliance During Construction
 - 1-2.2K(1) Environmental Compliance Assurance Procedure
 - 1-2.2L Responsibility for Posting Required FHWA and State Labor and Industries Job Site Posters
1-2.2M Responsibilities When Working on Tribal Lands 1-18
1-2.2N Responsibilities Following Unanticipated Discovery of Cultural Resources 1-18
 1-2.2N(1) Discovery of Human Skeletal Remains 1-19
 1-2.2N(2) Discovery of Other Cultural Resources 1-19

1-2.3 Construction Traffic Control 1-20
1-2.3A Public Convenience and Safety 1-20
 1-2.3A(1) General 1-20
 1-2.3A(2) Work Zone Clear Zone (WZCZ) 1-20
 1-2.3A(3) Temporary Breaks in Limited Access for Construction 1-20

1-2.3B Public Information and Customer Focus 1-20
1-2.3C Work Zone Traffic Control 1-21
 1-2.3C(1) General 1-21
 1-2.3C(2) Traffic Control Management 1-22
 1-2.3C(3) Traffic Control Labor, Procedures and Devices 1-24
 1-2.3C(4) Measurement 1-25
 1-2.3C(5) Payment 1-26
 1-2.3C(6) Construction and Maintenance of Detours 1-26
 1-2.3C(7) Road/Ramp Closures 1-27

1-2.3D Speed Reductions 1-27
1-2.3E Records of Construction Signing, Collisions, and Surveillance 1-27
 1-2.3E(1) Work Zone Safety and Mobility 1-27
1-2.3F Resources for Traffic Control and Work Zone Safety 1-27

1-2.4A Construction Contracts Information System (CCIS) 1-28
1-2.4B Order Lists 1-29
1-2.4C Changes in the Work 1-29
 1-2.4C(1) Types of Changes 1-29
 1-2.4C(2) Equitable Adjustment 1-35
 1-2.4C(3) Approval of Changes/Checklist 1-37
 1-2.4C(4) Delegation of Execution Authority 1-39
 1-2.4C(5) Approval to Proceed 1-39
 1-2.4C(6) Documentation 1-39
 1-2.4C(7) Minor Changes 1-41

1-2.4D Force Account 1-42
 1-2.4D(1) General 1-42
 1-2.4D(2) Payment Procedures for Force Account Work 1-43
 1-2.4D(3) Records and Source Documents 1-46
 1-2.4D(4) Summary 1-46
1-2.4E Differing Site Conditions (Changed Conditions) 1-46
1-2.4F Termination of Contract 1-46
1-2.4G Subletting Portions of the Contract 1-47
 1-2.4G(1) Owner-Operators of Trucks and Other Hauling Equipment 1-47
1-2.4H Contractors’ Shop Plans and Working Drawings 1-48
1-2.4I Relief of Responsibility for Completed Work and Relief of Responsibility for Damage by Public Traffic 1-48
1-2.4J Protested Work 1-48
1-2.4K Metric Designed Projects Administered with English Standard Specifications 1-49
1-2.4L Emergency Work Performed Under the Contract 1-49

1-2.5 Contract Time 1-49
1-2.5A General 1-49
 1-2.5A(1) Progress Schedules 1-50
 1-2.5A(1) Review and Approval of Progress Schedules 1-50
1-2.5B Working Day Charges 1-57
1-2.5C Suspension of Work 1-57
1-2.5D Extension of Time 1-58
Chapter 1

1-2.5E Substantial Completion
1-2.5F Date of Physical Completion
1-2.5G Liquidated Damages
 1-2.5G(1) Contract Time Liquidated Damages
 1-2.5G(2) Miscellaneous Liquidated Damages
1-2.5H Completion Date

1-2.6 Enforcement of Wage Rate Requirements
 1-2.6A General Instructions
 1-2.6B Monitoring of State Requirements
 1-2.6C(1) Federal Prevailing Wage Rates
 1-2.6C(2) Certified Payroll Inspection
 1-2.6C(3) Employee Interviews
 1-2.6C(4) Complaints
 1-2.6C(5) Federal Prevailing Wage Violations
 1-2.6C(6) Department of Labor Investigation
 1-2.6C(7) Fraud Notice Poster
 1-2.6C(8) Request For Authorization of Additional Classification and Rate

1-2.7 EEO, D/M/WBE and Training
 1-2.7A Overview
 1-2.7B EEO (Federally Funded Projects)
 1-2.7B(1) Prompt Return of Retainage to All Subcontractors
 1-2.7C EEO (State Funded Projects)
 1-2.7D EEO (Federally Assisted Projects)
 1-2.7E Minority and Women Owned Business Enterprise (MBE, WBE)
 1-2.7F Disadvantaged Business Enterprise (DBE)
 1-2.7F(1) GSP Includes No Goal
 1-2.7F(2) GSP Includes Condition of Award (COA) Goal
 1-2.7F(3) Additional Execution Documents
 1-2.7F(4) DBE Reporting
 1-2.7F(5) On Site Reviews
 1-2.7F(6) Changes to the Condition of Award (COA)
 1-2.7F(7) Substitution
 1-2.7F(8) Condition of Award (COA) Change Orders
 1-2.7F(9) Consulting with the Office of Equal Opportunity
 1-2.7G On-the-Job Training (OJT)
 1-2.7G(1) On-the-Job Training Special Provisions — General
 1-2.7G(2) OJT Required Reports
 1-2.7G(3) Payment for “Training”
 1-2.7H Apprentice Participation
 1-2.7H(1) Apprentice Participation Special Provision – General
 1-2.7H(2) Apprentice Utilization Plan
 1-2.7H(3) Reporting
 1-2.7H(4) “Good Faith” Procedures
 1-2.7I American Recovery and Reinvestment Act (ARRA) Projects

1-2.8 Control of Work
 1-2.8A Authority of the Project Engineer
 1-2.8B Contractor’s Equipment, Personnel, and Operations
 1-2.8C Defective or Unauthorized Materials or Work
 1-2.8C(1) Defective Materials
 1-2.8C(2) Defective or Unauthorized Work
 1-2.8C(3) Material Acceptance by Manufacturer’s Certificate
 1-2.8D Contractor Submittals
 1-2.8E Guarantees/Warranties
 1-2.8F Contractor’s Performance Reports
1-3 Estimates and Records

1-3.1 Estimates
- **General**
 - **Progress Estimates**
 - 1-3.1B(1) Payment for Lump Sum Items
 - 1-3.1B(2) Payment for Material on Hand
 - 1-3.1B(3) Payment for Falsework
 - 1-3.1B(4) Payment for Shoring or Extra Excavation
 - 1-3.1B(5) Payment for Asphalt, CRS-2P, Steel, and Fuel Cost Adjustment
 - 1-3.1B(6) Payment for Surplus Processed Material
 - 1-3.1B(7) Liquidated Damages
 - 1-3.1B(8) Credits
 - 1-3.1B(9) Railroad Flagging
 - 1-3.1B(10) Payment for Third Party Damages
 - 1-3.1B(11) Withholding of Payments

1-3.1C Final Estimates — Regions
- **Final Estimates — Headquarters**
 - 1-3.1D(1) Final Estimate Claim Reservations
 - 1-3.1D(2) Unilateral Acceptance of Final Estimates

1-3.1E Supplemental Final Estimates
1-3.1F Retained Percentage

1-3.2 Final Records for Projects Constructed by Contract

1-3.3 Disputes and Claims
- 1-3.3A Claims By the Contractor
 - 1-3.3A(1) Disagreement, Dispute, Protest
 - 1-3.3A(2) Claims
 - 1-3.3A(3) Legal Filing
 - 1-3.3A(4) Final Contract Voucher Certification

1-3.3B Claims Against the Contractor — Damage
1-3.3C Claims Against the Contractor — Money
1-3.3D Claims Against Officials and Employees

1-3.4 Stewardship

1-4 Utility and Railroad Relocation

1-4.1 Work Performed Under Utility Agreements
1-4.2 Work Performed Under Railroad Agreements

1-5 Surveying

1-5.1 Site Surveying
- **Permanent Monuments**
- **Property Corner Monuments and Markers**
- **Alignment Monumentation**

1-5.2 Construction Surveying
- **Surveying Provided by the State**
- **Contractor Surveying**
- **Grade Control**
 - 1-5.2C(1) Subgrade Tolerance
 - 1-5.2C(2) Surfacing Tolerance

1-6 Inspection of Course Thicknesses
The WSDOT contact with FHWA for Construction Administration matters is the State Construction Office. In preparing and approving Standard Specifications, general special provisions, and this manual, the Construction Office seeks the review and approval of FHWA. Use of approved provisions and meeting the required outcomes described in the manual become the basis of federal reimbursement.

FHWA provides oversight of WSDOT work on some projects and has delegated that responsibility to WSDOT on others. A full discussion of WSDOT responsibilities under Stewardship is included in this Manual (Section 1-3.4).

1-1.6B Local Agencies
Cities, counties, and other municipalities within the state may also perform work funded with Federal dollars. When this happens, the money is passed through the Department of Transportation and we will have entered into agreements with the local agencies to provide services. For example, WSDOT will allow the use of testing facilities by a local agency.

1-1.6B(1) Project Engineer Administering Local Agency Project
Occasionally, a WSDOT Project Engineer may be assigned to provide engineering and inspection services on a local agency project. The duties of the Project Engineer will be determined by the actual contract provisions and by any specific agreement made between the Region administration and the local agency. The provisions of this manual may or may not apply, depending on the situation.

1-1.6B(2) Local Agency Administering Its Project on State Right of Way
In some cases, WSDOT may grant approval for a local agency to construct a facility on State Right of Way using local agency staff and contractors. (For example, a city funded overpass of an interstate). When this happens, a Project Engineer will be assigned to provide oversight of the local agency work. The Project Engineer is expected to assure that the local agency provides the same level of engineering and inspection that State employees would accomplish. While the Local Agency may have different administrative provisions with respect to risk-sharing and submittal requirements, all of the technical aspects of the Standard Specifications and this manual must be met.

1-1.6C Other Federal, State, and Local Agencies
The design and construction of transportation improvements often incorporates locations and features that fall within the jurisdiction of other agencies. It is the policy of WSDOT to cooperate with all agencies as partners in the completion of each project, recognizing and complying with each agency’s legal requirements. The Project Engineer shall cooperate with local authorities to help ensure that the contractor complies with local laws, ordinances, and regulations. However, unless specifically allowed in the statutes and the contract documents, no WSDOT employee shall engage in any kind of enforcement of laws, rules, regulations, or ordinances which are the responsibility of other agencies. As WSDOT attempts to earn confidence and build trust with resource agencies and the public, it is critical that we take the proper actions when we are aware of an issue. When WSDOT employees observe something which is questionable or appears to not be in compliance with local laws, ordinances, and regulations, it shall be brought to the Project Engineer’s attention. The Project Engineer is responsible for bringing it to the Contractor’s attention for proper action. Rely on the Regional and Headquarters expertise and the appropriate agencies when dealing with complex issues such as environmental compliance, safety, or hazardous materials.

1-1.6C(1) Highways over National Forest Lands
WSDOT has entered into a Memorandum of Understanding (MOU) with the United States Forest Service (USFS) and the Project Engineer is required to do the following when performing work on National Forest Service Lands:

1. Represent the department in all matters pertaining to the project.
2. Confirm that the USFS has been notified of the project advertisement and award.
3. Notify and obtain approval from the USFS for any changes in the project that will affect National Forest System Lands, beyond that of the original contract.
4. Notify the USFS when the project nears completion, at which time the USFS will indicate if they choose to participate in the final review of the project.

1-1.7 Relating to the Public
Public confidence is enhanced by WSDOT personnel being responsive to reasonable requests for information, providing timely advanced notice of possible impacts, and reducing inconvenience to traffic while maintaining worker safety. When possible, the Project Engineer should rely on resources such as Regional Public Information Officers and the State Office of Communications and Public Involvement. If there is concern or reason to question the confidentiality or sensitivity of the information requested, consult with your supervisor or seek the advice of the Attorney General’s office.

1-1.8 Safety
Safety is not optional in WSDOT. No employee will be permitted to disregard applicable safety and health standards of the State Department of Labor and Industries or other regulatory agencies.

The Secretary of Transportation’s Executive Order E1033.01 provides direction to all WSDOT employees to adhere to the following basic safety provisions in every work activity:

• Participate in your work group safety plan (or Safety Management System for WSDOT Ferries Division employees).
• Look for ways to prevent accidents.
• Immediately identify hazards and safety concerns.
• Always use personal protective equipment.
• Promptly report all injuries.
The Order also states that all employees at WSDOT Ferries Division are already covered and shall continue to be covered by the existing Ferries Division Safety Management System. Therefore:

- All Ferries Division employees will refresh their knowledge of existing Safety Management System procedures and shall follow them accordingly.
- A concerted effort will be made to address existing and new Safety Management System safety reports in a timely manner.
- All Ferries Division employees shall address issues of concern with existing safety procedures using the existing Safety Management System reporting program. All other WSDOT employees are covered and continue to be covered by the policies and procedures in the WSDOT Safety Procedures and Guidelines Manual M 75-01, and other related policy documents. Therefore, a pre-activity safety plan is required prior to performing any new field work. Office staff will conduct a hazard assessment and mitigation plan for all office environments. Since WSDOT employees on transportation construction projects are routinely exposed to a variety of hazards, they must take adequate safety precautions at all times. The following items represent common activities that workers or work crews may encounter, and should be addressed in pre-activity safety plans as needed.

- The employee shall ensure that an area is safe before entering it for the purpose of inspection. For example, a deep trench must be adequately shored and braced before entering it.
- Aggregate production and material processing plants should be inspected for safety hazards. Corrective measures should be called to the attention of the Contractor or producer. Corrections must be completed before WSDOT personnel will be permitted to proceed with entry or work upon the premises.
- The employee must, at all times, watch for backing trucks and not depend upon hearing alone for warning. The noise of plants and other equipment often make it impossible to hear trucks approaching and the truck driver’s vision area is restricted when backing a truck.
- Parking WSDOT vehicles too close to the path of construction equipment, behind standing equipment, or in other hazardous locations is not permitted.
- Where traffic is maintained in work zones, care must be taken to avoid approaching traffic when it is necessary for inspectors and others to step onto or cross the traveled portion of the roadway. Whenever possible, work activities, ingress and egress, should be conducted within the relative safety of the work zone.
- WSDOT employees working on foot in the highway right of way and other areas exposed to vehicular traffic must comply with the high visibility clothing requirements of Section 4.2, Chapter 3, of the Safety Procedures and Guidelines Manual (M 75-01.10).
- Where the engineering crew is working adjacent to traffic, without positive barriers, the work area should be marked with proper signs and traffic control devices as shown on the appropriate Traffic Control Plan (TCP). The crew may be protected by a certified flagger or spotter as needed.
- When the engineering crew is working under the protection of the Contractor’s flaggers and signs, other signs may not be needed, but a “STOP”/“SLOW” paddle should be available for use in special situations. Good communication with the Contractor and Flagger is needed to ensure that they are aware of crew activities within the work zone.
- A survey crew is typically exposed to traffic hazards and should conduct survey work under approved TCPs from the Work Zone Traffic Control Guidelines (M 54-44). The Region Traffic Office will assist survey crews with TCPs for situations not covered in this publication.
- During blasting operations, employees are instructed to seek cover at least 500 feet from the location of the blasting.

In addition to the above requirements for workers and work crews, supervisors also have the following responsibilities:

- Each supervisory employee is charged with the responsibility of providing safety leadership at all times and safety enforcement when necessary.
- Supervisors shall give thorough instructions to employees under their jurisdiction on the safe use of tools, materials, and equipment and the safe prosecution of work on construction projects.
- The Division of Occupational Safety and Health requires that every foreman, supervisor, or other person in charge of a crew have a valid first aid card.
- When employees are injured on the job to the extent that the services of a doctor are required, the Regional Safety Officer shall be notified immediately.
- When traffic control measures are necessary, approved Traffic Control Plans (TCPs) should be used in conformance with the Manual on Uniform Traffic Control Devices, as adopted by WSDOT. Supervisors should ensure that the appropriate TCP is used and that the necessary signs, devices and equipment are available.

1.1.9 Archaeological and Historical Objects

It is both National and State policy to preserve historical or prehistoric objects and ruins. These objects and ruins may include sites, buildings, artifacts, fossils, or other objects of antiquity that may have particular significance from a historical, cultural, or scientific standpoint.

If provisions for archaeological and historical salvage have not been made in the contract and it appears that significant historic or prehistoric objects or ruins have been or are about to be encountered, the Project Engineer should immediately take steps to preserve and protect the objects or ruins. Once the objects or ruins have been sufficiently protected, the Project Engineer should immediately notify the Region Construction Manager, who will provide any necessary initial assistance to the Project Engineer. Where the Region determines appropriate, the Project Engineer will contact and inform through existing Region environmental
staff, the cultural resources consultant, the State Historic Preservation Officer (SHPO), FHWA, and affected tribes of the discovery. The Project Engineer will also help facilitate any on-site meetings for the appropriate parties should either FHWA, SHPO, or the cultural resources consultant believes it necessary.

1-1.10 Construction Work in International Boundary Strip

The International Boundary Commission of Washington, D.C., by treaty with Canada, has the exclusive jurisdiction of the 20-foot boundary strip, 10 feet on each side of the International Boundary. Any construction work within this strip must be with the exclusive permission of the International Boundary Commission (IBC). Boundary monuments are not to be moved or disturbed in any manner without the expressed approval of the IBC. It is expected that permission for all work within the boundary strip will be obtained from the IBC during the design stage of a project. However, it is the Project Engineer’s responsibility to ascertain that permission has, in fact, been obtained from the IBC for all work performed within the boundary strip. The Region shall be immediately notified if, upon construction, it is found that permission has not been obtained to relocate boundary markers or perform construction work in the 20 foot boundary strip.

1-2 Contract Administration

1-2.1 Proposal and Award of Contract

1-2.1A Contract Proposal and Bids

When the design phase of a project is completed and funding has been secured, the public is then notified that WSDOT is ready to accept bids for completion of the work involved. This notice is accomplished by publishing an advertisement for the project, along with an invitation to bid the work, in the “Daily Journal of Commerce”. The advertisement includes a specific date and time for the opening of bids along with the necessary information for obtaining plans, specifications, and bid documents. Once advertised, these plans and specifications are then made available to all contractors who wish to study the project. Contract proposal forms or bid documents are also furnished, but only to those prospective contractors who have been prequalified to bid on the types and quantities of work involved. Once bids have been opened, an announcement in the “Daily Journal of Commerce” will also be made identifying the “Apparent Low Bidder”. Specific information regarding the advertisement phase and bidding procedures can be found in the Ad & Award Manual, M 27-02.

If the Project Engineer determines that prospective bidders may have difficulty locating the project or determining the project limits, the Project Engineer may choose to post the project limits.

Section 1-02.4 of the Standard Specifications requires that all requests for explanation or interpretation of the contract documents be submitted in writing. Anytime the answer to a question from a prospective bidder would provide additional information that would not be available to all bidders, the Project Engineer should immediately contact the Region Construction Manager or Region Plans Office in order to facilitate the preparation of an Addendum. Answers to such questions must be provided to all bidders in the same manner. If the question has to do with generic issues such as office procedures (for example, methods of payment calculation or handling requests for information,) the answer may be provided directly to the questioning party without involving other bidders.

All questions from prospective bidders regarding an advertised project should be referred to the Project Engineer listed in the “Notice to All Planholders” for a complete response. The Project Engineer will coordinate the effort to determine if any requested information needs to be addressed by an addendum.

1-2.1B Award and Execution of Contract

Bids for the contract are opened at a public meeting where each prospective bidder’s proposal is read and the Apparent Low Bidder is announced. Within 45 calendar days of bid opening, the proposals will be closely reviewed and the contract will be awarded to the lowest bidder deemed responsive. In accordance with Section 1-03 of the Standard Specifications, the successful bidder is then allowed 20 calendar days to return the signed documents that are necessary to enter into a contract with WSDOT. The Contract Administration and Payment System (CAPS) Unit of Accountability & Financial Services (AFS) sends the awarded contract to the Contractor for execution within 3 days of award. Additional copies go to the Region, State Construction Office, Bridge and Structures Office, other internal WSDOT divisions and railroads as needed.

After these documents are returned to WSDOT, the contract must be approved and executed. No proposal submitted by a Contractor is binding upon WSDOT prior to the date of execution by WSDOT. No work is to be performed within the project limits or WSDOT furnished sites prior to the execution of the contract by WSDOT. Any work that is performed by the Contractor outside of these areas, or any material that is ordered prior to WSDOT execution, is done so solely at the risk of the Contractor.

In order to ensure timely notification to the Contractor regarding execution of the contract and authority to proceed, the following procedure is used:

1. Immediately after execution of the contract documents by WSDOT, the CAPS Unit of AFS or (for Region Ad & Award projects) the Region Plans Office will e-mail notification to the office administering the contract (the Regional Construction Manager’s Office, the Director of Terminal Engineering, or the Architecture Office). The CAPS Unit of AFS also notifies, by memorandum, the National Association of Credit Management, and internal interested parties that the contract has been executed and/or the work may proceed.

2. The Regional Construction Manager or a representative should contact the Project Engineer’s office as soon as notification is received. The Project Engineer should then contact the Contractor and provide notification of the execution date. The date, time, and method of notification in all instances should be recorded in the project diary.
3. Following the initial contact, the CAPS Unit of AFS will return fully executed copies of the contract to the Contractor.

1-2.1C Preconstruction Meetings, Discussions

The Project Engineer is required to communicate with the Contractor for the purpose of discussing the project and exchanging a variety of information. Depending upon the complexity of the project, this information can be exchanged in any combination of the following methods:

- Information packets provided to the Contractor
- Letters transmitting information
- Informal meetings
- A single multipurpose formal meeting
- Several formal meetings with different purposes

If the Project Engineer decides that a formal meeting is necessary in order to successfully begin work on the project, a meeting should be arranged as soon as practical after the contract is awarded and the Contractor has organized for the work.

In the case of a project that includes utilities to be adjusted, relocated, replaced or constructed by a utility, or their contractor, during the performance of the contract, the Project Engineer shall facilitate a mandatory utility preconstruction meeting with the Contractor, all affected utility owners and their contractors prior to any on-site work. The Project Engineer should request assistance from the Region Utilities Engineer for help in getting utilities to attend this meeting. This meeting should include a discussion of all utility work schedules, in order to enable the utilities and the Contractor to coordinate their work, resolve schedule conflicts, and eliminate delays.

All information exchanged should be documented in the project records, by formal meeting minutes, by file copies of letters, or by diary entries.

The nature, amounts, and methods of communication with the Contractor are left to the Project Engineer. As a minimum, the following subject areas should be covered during the preconstruction time period:

- CONTRACTOR WSDOT RELATIONSHIPS
 The Project Engineer should begin to develop a positive and effective relationship with the Contractor as soon as the contract is awarded. This is also a good time to introduce the concept of “Partnering” if it has not already been introduced on the project. The Project Engineer should strive to create an environment that encourages a cooperative approach to completing the project. This can be helped by beginning the development of a team consisting of both the Contractor’s and WSDOT’s project people. The level of authority delegated to each member of the Project Engineer’s staff should be discussed with the Contractor. The level of authority of each member of the Contractor’s staff, in particular regarding change orders, should be discussed. In addition the methods of establishing the Contractor’s Performance ratings can be reviewed (Manual M 41 40) (see Chapter 1-2.8F of this manual for additional information). The Contractor should also be informed that there is an opportunity to evaluate the WSDOT construction process as well.

Especially on projects with Contractor surveying, it is strongly advised to invite the Region Survey Committee member or their representative to discuss the requirements for removing, disturbing, or re-establishing survey monuments.

- ENVIRONMENTAL COMMITMENTS
 If there are commitment files for the project, these should be made available and discussed with the Contractor. Any references in the Standard Specifications or the special provisions to environmental requirements or permits should be discussed. The Contractor’s responsibility to obtain any local agency permits should also be discussed. If rock crushers are involved in the project, the State Department of Ecology registration requirements should be discussed (WAC 173–400). In addition, a written record of this discussion should be sent to the regional office of the State Department of Ecology so that they are aware of the timing and location of the rock crushing operation.

- ORDER OF WORK AND TIME SCHEDULES
 In order for the Project Engineer to set up the required crews, arrange for any special inspections, provide timely reviews of submittals, etc., the project office must be made aware of the contractor’s schedule of work. In addition the contract specifications may include specific requirements for sequencing or durations for some items of work. The contract requirements for progress schedule or time for completion in accordance with Section 1-08, or as amended by the special provisions, can also be discussed.

- SUBCONTRACTORS AND LOWER-TIER SUBCONTRACTORS
 In accordance with Section 1-08.1 of the Standard Specifications, the Project Engineer needs to become aware of the Contractor’s plans to delegate portions of the work to subcontractors. These plans must conform to the condition of award, if any, related to disadvantaged business enterprise participation. The Project Engineer should explain the requirements and process involved for subcontractor and lower-tier subcontractor approval, including the prevailing wage rate requirements outlined in the contract documents (see Chapter 1-2.6 of this manual), the requirement to verify that each subcontractor meets the responsibility criteria outlined in 39.04 RCW and possesses any license required by 19.28 RCW or 70.87 RCW. WSDOT/Contractor/Subcontractor relationships should also be discussed. The Project Engineer should remind the Contractor that there is no contractual relationship between WSDOT and the subcontractors. All subcontractor correspondence with WSDOT should pass through the Contractor for submittal to WSDOT or vice versa. Contractor representation should also be discussed. It will be necessary for the Contractor to be represented at the job site at all times, even when there is only subcontractor work in progress.

- UTILITIES, RAILROADS, AND OTHER THIRD PARTIES
 If the project affects or is affected by third party organizations, the Project Engineer must advise the Contractor about the relationships with the third parties.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Communication Type</th>
<th>File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Contractor/WSDOT Relationship</td>
<td>(Letter, Min. of Mtg., Info. Packet, Diary) Completed (Date)</td>
<td></td>
</tr>
<tr>
<td>1. General Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Contractor Performance Rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. C.O. signature authority (form)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Discuss Monumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Environmental Commitments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Commitment Files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Rock Crushers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Order of Work and Schedules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Discuss Plans for Prosecution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Formal Schedule Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Completion Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Subcontractors and Lower Tier Subs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. General Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Condition of Award</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Paperwork Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 39.04 RCW, 19.28 RCW, 70.87 RCW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. WSDOT/Prime/Sub Relationship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Correspondence through Prime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Prime represented on site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. WSDOT will address sub concerns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Utilities, Railroads, and Other Third Parties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Existing Agreements described</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Commitments, Obligations, Notices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Underground Locator Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Insurance Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Merchantable Timber (Dept. of Revenue)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Safety and Traffic Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Discuss Contractor’s Safety Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Traffic Control Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Police Relationship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Job-Specific Safety Concerns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Off-site Hauling Restrictions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Control of Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Material Approval Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Source Approval for Aggregates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Acceptance Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fabricated Items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Installation without Certifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Other Submittals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Job-Specific List and Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Delay of 1st Progress Payment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Equal Employment Opportunity and Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Contract EEO Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Contract Training Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Training Plan/Trainee Appr. Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Monitoring and Reporting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Work Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Wage Rate Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Prevailing Wage Rates Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Payrolls, Wage Rate Interviews</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Davis-Bacon Investigations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Forms/Posters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Describe Required Forms/Posters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Provide supply of Forms/Posters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Deferral of Payments (Std. Spec 1-06.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Deferral Triggers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Notification Method (of intent to defer)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preconstruction Communication Checklist
and the expectations they hold regarding the actions of both WSDOT and the Contractor. The Project Engineer may wish to arrange face-to-face meetings with representatives of affected third parties. In the case of utilities, reference should be made to the underground locator services and the requirements to utilize them (see RCW 19.122). If WSDOT has agreed to notification time limits, these should be communicated to the Contractor. If special insurance is required by any agreements with third parties, then these requirements should be pointed out to the Contractor.

If utilities are to be adjusted, relocated, repaired or constructed by the utility during the performance of the contract, the Project Engineer shall facilitate a separate, mandatory, utility preconstruction meeting with the Contractor, the utility, and their contractors.

• SAFETY AND TRAFFIC CONTROL

The Contractor’s safety program should be discussed as outlined in Section 1-2.2(3) of this manual. WSDOT has an interest in safe operations on the job and the Project Engineer should make clear that this interest will be protected. As part of a discussion of specific safety requirements of the particular work, safety considerations for workers and WSDOT personnel, such as safety zone requirements, vehicle intrusion protection, fall prevention, closed spaces, hazardous materials, work around heavy equipment, etc., should be addressed. The need for control of speed on all construction equipment should be emphasized.

The Project Engineer should describe WSDOT’s traffic requirements. The Contractor’s Traffic Control Manager (TCM), Traffic Control Supervisor (TCS) and WSDOT’s traffic control contact person should be identified and their responsibilities and authorities clearly stated. Any traffic control requirements that are unique or restrictive should be emphasized and addressed by the Contractor with respect to construction operations. Unacceptable delays to traffic should also be discussed.

The Manual on Uniform Traffic Control Devices, as adopted by WSDOT, is the legal standard for all signing, traffic control devices and traffic control plan requirements on the project. These standards have been incorporated into the project Traffic Control Plans (TCPs). If the Contractor chooses to use these TCPs, they must be formally adopted in writing as required in Section 1-10.2(2) of the Standard Specifications. If the Contractor wishes to use some other traffic control scheme, then that plan must be submitted and approved in advance.

Flaggers and their intended locations must be included in the plans. When Flaggers are utilized, they must have a current flagging card and shall be equipped with hard hats, vests, and standard stop/slow paddles as required in Sections 1-07.8 and 1-10.3 of the Standard Specifications. Overuse of flaggers is not appropriate as “catch all” traffic control and should be discouraged. Safety of flaggers, through use of physical protection devices where practical, proper flagging methods and formulating an emergency escape plan, should be emphasized.

The Contractor and the Project Engineer should establish communication with the Washington State Patrol (WSP) and local law enforcement agencies. Law enforcement advice about traffic control should be considered. Arrangements for all law enforcement agencies to notify the project office about accidents near, or in, the construction area should be established, if possible. If WSP traffic control assistance is to be used, a general discussion of strategy and responsibilities should be included.

Off site hauling can pose a safety hazard to the public. WSDOT will cooperate with law enforcement agencies in the enforcement of legal load limit requirements and the covered load regulations. The Project Engineer should discuss this with the Contractor before any hauling begins.

• CONTROL of MATERIALS

The Contractor should be reminded of Section 1-06.1 of the Standard Specifications, requiring the Engineer’s approval of all materials prior to their use. In order to expedite these approvals, the Contractor should be encouraged to make these requests as early as possible.

The Project Engineer should provide the Contractor with a current copy of the Record of Materials (ROM) for the project. The Project Engineer should discuss the ROM with the Contractor, covering the various requirements for sampling, catalog cuts, shop drawings, certification requirements, etc., which may be needed for approval of materials prior to their use. If the project includes Federal funds, the Project Engineer should discuss the requirements of “Buy America” and WSDOT Form 350-109 EF, Certification of Materials Origin. The requirements of Section 1-06.2 of the Standard Specifications for ongoing acceptance of approved materials prior to their being incorporated into the work, should also be discussed. If fabricated items will be needed, the inspection process for fabricated materials, including shop drawing approvals and notification requirements for fabrication inspectors, should also be outlined. The requirements of Section 1-06.3 of the Standard Specifications that require manufacturer certifications prior to use of the materials should also be reviewed.

The Contractor should be reminded that, in order to avoid deferred progress payments for portions of work not completed, all necessary documentation for approval of materials and required certifications must be received and accepted prior to their use. A method of notification of intent to defer payment should be discussed with the Contractor, and an agreed upon method documented in the project files.

• OTHER SUBMITTALS

Discuss any other submittals that may be needed during the course of the contract. This may include Falsework and Forming Plans, Traffic Control Plans, Temporary Water Pollution/Erosion Control Plans, Schedules, Installation or Operating Procedures, or other Contractor initiated items requiring WSDOT review and/or approval. There are requirements for a number of submittals which, if not satisfied in a timely manner,
could delay the initial progress payment. These include the Statement of Intent to Pay Prevailing Wages, the Progress Schedule, and the Training Plan. There may be others depending on the work to be done and as required by the contract provisions. The Project Engineer should identify and remind the Contractor of these requirements and the potential for deferred payments.

- **DBE PARTICIPATION / EEO / TRAINING**
 The Project Engineer should briefly discuss and answer any questions the contractor may have with regard to the efforts, reports, and monitoring necessary to ensure successful performance for DBE Participation, EEO, & Training. Chapter 1-2.7A provides a breakdown of these various programs and the general requirements each contains. However, the specific requirements and contractor performance information are included in the *Standard Specifications for Road and Bridge Construction*, the Amendments included in the contract, as well as the contract specific special provisions titled *Equal Employment Opportunity Responsibilities*. If additional assistance or information is necessary, the Project Engineer could also request assistance from the Region EEO Officer, the State Office of Equal Opportunity, or the State Construction Engineer’s Office.

 The Contractor should be ready to discuss how utilizing the services of the Department of Employment Security’s Work Source will be incorporated into their recruitment program when filling new jobs on the project.

- **WAGE RATE ADMINISTRATION**
 Advise the Contractor of the requirement to pay prevailing wage rates as identified in the Contract. Advise the Contractor that it is their responsibility to work directly with Washington State Department of Labor and Industries (L&I) for approval of the Statement of Intent to Pay Prevailing Wages (SI) and Affidavit of Wages Paid (AWP) and that:
 - The SI and AWP will be on forms provided by L&I.
 - The forms will be obtained from L&I or can be filed electronically with L&I online at www.LNI.wa.gov/prevailingwage, if the contractor is registered by L & I to file electronically.
 - The contractors, subcontractors, lower-tier subcontractors, suppliers, manufacturers, and fabricators that are required to submit SI and AWP will pay the approval fee directly to L&I.
 - The Contractor will provide the Project Engineer a copy of the approved forms (SI, before any payment can be made for the work performed and all AWP, before the Contractor’s performance bond or any retained percentage can be released). If payrolls are required, establish submittal deadlines in accordance with Section 1-07.9(5) of the *Standard Specifications*. Describe the wage rate interview process. Describe the required and/or recommended job site posters and provide them to the Contractor (See Chapter 1-2.6 of this manual). On all Federal-Aid contracts, the Project Engineer must remind the Contractor that the work falls under the guidance of Davis-Bacon and Related Acts and the Contract Work Hours and Safety Standards Acts. As indicated in Chapter 1-2.6C of this manual, the U.S. Department of Labor may conduct investigations to ensure compliance with these Acts.

- **FORMS**
 The Project Engineer should provide the Contractor a description of all required forms, giving the Contractor an initial supply of each. Additional forms required by the Contractor over the course of the work should be provided by the Project Engineer upon request by the Contractor. Remind the Contractor that all form submittals, including those of subcontractors, lower-tier subcontractors, and suppliers, should be routed through the Prime Contractor for submittal to WSDOT.

- **SUMMARY**
 While these issues are to be discussed with the Contractor in some manner at the beginning of each contract, the Project Engineer is free to select the most effective method of doing so. A formal preconstruction conference may or may not be the best solution. Perhaps a single meeting is adequate or several meetings may be required. The entire preconstruction communication may also be covered in a short meeting between the Project Engineer and the Contractor. The Project Engineer is responsible to address these subjects, inform the Contractor in some manner and maintain a written summary of the preconstruction meetings or discussions for the contract files.

 The Contractor and Project Engineer may be knowledgeable about those normal requirements listed above. In this situation, some items need only be listed in a mailing as a convenience to the Contractor’s staff. Unique features, constructability, and third party coordination should be focused on with as many of the interested parties as can be assembled.

 The key is effective communication, getting the right message to the necessary people. Additional meetings may be required as people change, as new facets of the work become imminent, or as the project goes into a second or third season. In order to assist this process, a checklist has been developed as a tool for the project office’s use. It can be used to help identify the issues and track them for completion through the various preconstruction communications. See Figure 1-4.

1-2.2 Project Engineer’s Relationship and Responsibilities

1-2.2A Assignment

The Region will appoint a Project Engineer to act as the authorized representative of the Secretary of Transportation for each contracted project. After the contract has been executed by WSDOT, the Region may provide the Contractor with written confirmation of the name and address of the Project Engineer assigned. (The Region may rely on the special provisions and forego this letter, unless a change is made.) If a letter is sent, the Contractor should be reminded to send all correspondence and forms regarding the project to the Project Engineer.
• A negotiated price will likely be higher than a competitive bid price.
• A proposal which assigns extensive risk to the contractor will likely be more costly yet.
• The contractor may be willing to take on this risk if the price is a bit higher.
• The significant advantage of reaching a price agreement before the work is started (forward pricing) is that
 the contractor assumes the risk of the accuracy of the pricing assumptions and predicted duration for
 performing the work.
• (when forward pricing) the Project Engineer may utilize the high end of the estimating range in justification.
• (when forward pricing) an audited overhead rate may be substituted for the markups described in Section 1-09.6.
 Contractors can usually provide an estimated home office overhead rate which may be checked by an annual
 audit, if warranted.

(III) PRICING AFTER FACT

When establishing prices after the work has been performed, actual costs should be used to the extent they are available.
The following are key points to keep in mind:
• Costs for equipment cannot exceed the rates established by the AGC/WSDOT Equipment Rental Agreement for
 an equitable adjustment.
• When pricing after the fact, the markups described in Section 1-09.6 are appropriate for measuring time and
 materials because there is no risk involved in after the fact pricing.

(IV) UNILATERAL PRICING

In the interest of being timely, the change order should be a tool to document agreement and not a negotiation tool
back and forth. Ideally we will have agreement with the contractor when pricing the work. On occasion, however,
due to time constraints and difference of opinion, we can’t always come to agreement. The difference of opinion may be
for only a small portion of the work. Standard Specification 1-09.4 (2) provides, “If the parties cannot agree, the price
will be determined by the Engineer using unit prices, or other means to establish costs”. This is not to say that the
contractor is obligated to honor unit bid prices for work that qualifies for an equitable adjustment. This allows us to
proceed with changed work prior to reaching an agreement on the price. In the interest of being timely, and provided the
Project Engineer is comfortable that the included price can be supported, there’s nothing wrong with issuing a change
order to the contractor unilaterally. This orders the work to proceed, establishes the State’s position on cost, and puts the
decision to continue negotiations in the contractor’s hands as detailed under 1-04.5. The contractor is obligated to endorse,
write a separate acceptance, or protest as described in the specification and a timeline is provided for these actions.

(V) TIME

The completed equitable adjustment should include provisions for any increases or decreases in contract
time based on impacts to overall contract duration. The decision on time should be supported by an analysis of the
project schedule. Analyzing time in advance encourages communication between the parties allowing the contracting
agency to make an informed decision on the true costs. It also enables the contracting agency to mitigate time impacts
if that is in the agency’s best interest.

1-2.4C(3) Approval of Changes/Checklist

In addition to noting who can execute a change order, the checklist (see Figure 1-5) further indicates who must approve
the change prior to execution. The completed checklist shall accompany the change order when it is transmitted to
Headquarters, and represents the minimum information required to process the change order. If the Region wishes
to supplement the checklist, they may do so on a separate sheet. Written approval constitutes agreeing with the general
nature of the change and can be granted by memorandum or e-mail. The checklist works as follows: for any item
marked “yes”, approval from the State Construction Office must be obtained if indicated by the column with the “Xs”.
The Project Engineer and the Region Construction Office have the authority to decide not to proceed with the change.
This approval does not constitute authority to proceed with the work. That authority must come from the person who
will execute the change order (see approval to proceed) in an emergency; the Region Construction Manager may authorize
work to begin on any change order if the State Construction Office cannot be contacted for the required approvals within
a reasonable amount of time.

(I) STATE CONSTRUCTION OFFICE

[1] FHWA APPROVAL - On a project with federal funding and for which the stewardship responsibility has not been
delegated (full FHWA oversight), written FHWA approval, or other less formal prior approval if the public interest
is served by the more timely action, is required prior to beginning work on change orders that will:
• involve new construction on the Interstate
• alter the termini, character, or scope of work
• increase or decrease the project cost by more than $200,000 (except for changes prepared in accordance
 with Standard Specification Section 1-04.6)
• add more than 30 days to contract time

[a] who does what? The State Construction Office will formally submit this type of change order to FHWA
for approval.

Projects with full FHWA oversight are listed on the State Construction Office web site at:
www.wsdot.wa.gov/biz/construction/Reports.cfm#stewardship.
[2] CONSTRUCTION ENGINEER, ADMINISTRATION
 (a) areas of responsibility: Contract Payments and Withholding of Payments; Contractor Assignment of Payments; Contractor Default; Time Extensions; Assessment of Liquidated Damages; Contract D/M/WBE, EEO, and Training Programs (i.e., Division 1 of the Standard Specifications).

[3] CONSTRUCTION ENGINEER, BRIDGE
 (a) areas of responsibility: Division 6 of the Standard Specifications (See Chapter 1-1.3A(3))

[4] CONSTRUCTION ENGINEER, ROADWAY
 (a) areas of responsibility: Divisions 2, 3, 4, 5, 7, and 8 of the Standard Specifications (See Chapter 1-1.3A(2)).

[5] STATE MATERIALS LAB
 (a) areas of responsibility: Division 9 of the Standard Specifications (See Chapter 1-1.4) The State Materials Laboratory also advises the State Construction Office and Regions regarding an alternate material’s capability to perform the same function as a required material. However, the State Construction Office makes the final approval based on application of the material, maintenance concerns, etc., as to whether an alternate material is capable of performing. As you will notice from the checklist, the State Materials Laboratory plays a major role-:

CHECKLIST ITEM #11 the State Materials Lab is the design approval authority for a structural change with regard to roadway sections. Once design approval is obtained, the Region may approve the change order.

[6] BRIDGE TECHNICAL ADVISOR (BTA)
 (a) areas of responsibility: the BTA is on call to the Project Engineer during active contract work. BTA's are responsible for questions relating to structures design, plan inconsistencies, and “minor” structural changes to support construction contracts.

 (b) assignment of BTA: after the contract has been awarded, the Project Engineer may send a written request to the Bridge Construction Engineer in the State Construction Office for the assignment of a BTA. The State Construction Office will evaluate the request with the Region to determine if BTA assignment is appropriate or necessary for the specific contract under discussion.

 (c) delegation of executing authority if BTA is assigned: when a BTA has been assigned to the project, the Region may execute minor structural change orders provided: 1) there is written structural concurrence and a recommendation from the BTA; and 2) the magnitude of the change is within the Region’s authority to execute. A copy of all correspondence between the BTA and the Region shall be concurrently sent to the State Construction Office. All other requirements of the change order checklist apply with the exception that when structural changes, under item #15, are deemed to be “minor” the BTA’s written structural concurrence and recommendation may substitute for the State Construction Office approval.

 (d) minor structural changes: a “minor” structural change is not easy to identify, therefore, when in doubt, contact the State Construction Office for advice. Changes involving specifications, materials, work method changes, repairs, major design changes, and CRIPs should be referred to the State Construction Office. The BTA would never become involved in contract administration issues such as payment, determining the existence of a change to the contract, or directing the contractor. These would be construction issues. Structural questions which require support analysis exceeding field capabilities or questions regarding geotechnical or hydraulics issues should be referred to the State Construction Office. Any redesign of significance will be managed through the State Construction Office.

 (e) BTA guidelines:
 • Develop the most economical solutions with consideration to the Contractor’s means and methods.
 • Structural concurrence and recommendations for “minor” structural changes should be made in writing to the Project Engineer and the State Construction Office and should include:
 ▪ A cost estimate of the change work and written documentation to support the recommendation for changes.
 • Keep a project diary of all activities and recommendations.
 • Refer contract administration issues to the Project Engineer and the State Construction Office.
 • Conform to the field safety requirements of the Region and the Contractor.
 • Give the project priority but be prudent in the use of time and expense charges.

The above guidelines are generally representative of the scope of services to be provided by the BTA. The BTA’s immediate administrative support on-site will be provided by the Project Engineer. The BTA’s technical responsibility will be to the BTA’s supervisor in the Bridge and Structures Office. Overall determination and monitoring of the assignments will be made by the State Bridge and Structures Engineer.

 (f) BTA summary: Bridge Technical Advisors advise the Project Engineer in their area of expertise, which is structural design. The Project Engineer has the responsibility and authority to administer all aspects of the contract. Therefore, when it comes to contract issues of payment, work methods, material substitution, etc., it will be the Project Engineer’s responsibility to get the proper approval of those aspects of structural changes.

July 2010
1-2.4G Subletting Portions of the Contract

Requests by the Contractor for subletting are submitted to the Project Engineer on Form 421-012 EF (Request to Sublet Work) and are to be approved by the Regional construction manager or designee. The request must be approved prior to the performance of any work on the project by either the subcontractor or a lower-tier sub. A copy of the Statement of Intent to Pay Prevailing Wages, executed by the subcontractor or lower-tier sub and approved by Washington State L&I, must be provided to the Project Engineer by the Contractor prior to payment for any work performed by that subcontractor or lower-tier sub. In addition, for Federal-aid projects, Form 420-004 EF (Contractor and Subcontractor or Lower-Tier Subcontractor Certification for Federal-aid Projects), must be submitted with the Request to Sublet.

Section 1-08.1 of the Standard Specifications defines what is not considered to be subcontracting. By default, any entity performing bid item work on the project is a subcontractor, unless: (1) they are the Prime Contractor, (2) an Owner furnished resource (such as WSP, utility owner or its contractor or consultant), or (3) they are specifically excluded from consideration as a subcontractor in Section 1-08.1.

Do not be confused by the distinction between Professional Services and Subcontractors in the markups for force account work described in Section 1-09.6. Those provisions apply only to how the markup for overhead and profit is applied to force account work, and they have no relationship to the requirement for a Request to Sublet.

If a subcontractor wishes to further sublet a portion of its work to a lower-tier firm, the Contractor must submit the name of the lower-tier firm along with the request to sublet the work to the subcontractor. If more than one subcontractor on a project wants to utilize the same firm as a lower-tier subcontractor, separate requests are required. Section 1-08.1 of the Standard Specifications sets limitations on the amount of work a lower-tier sub may perform for each subcontractor. Section 1-08.1 of the Standard Specifications also sets forth the procedure for subletting portions of the project, and the percentage of the contract which may be sublet. The dollar value to be used for determining the amount of work that must be performed by the Prime Contractor is the total original contract amount less the amount of any specialty items which have been subcontracted. In order to ensure proper tracking and reporting of sublet information, the Project Office shall enter data from each request to sublet into the CCIS database. When the Project Office is in a situation where the CCIS database is not utilized during the administration of a project (i.e. Emergency Contracts, State Aid Contracts, etc.), and requires the “hand calculation” of the percentage of amount sublet, the percentage will be calculated for all items except specialty items, using the amount shown on the Request to Sublet or the bid amount whichever is smaller.

When Condition of Award items are sublet, ensure that the total amount is equal to or greater than the amount in the Condition of Award letter and that the Condition of Award items will be sublet to the proper Condition of Award subcontractor. If a bid item shown on the Condition of Award letter is not sublet to the proper D/M/WBE, then the request cannot be approved until the contract is changed.

1-2.4G(1) Owner-Operators of Trucks and Other Hauling Equipment

Bona fide owner-operators of trucks and similar construction hauling equipment, who are independent contractors performing bid item Work, are considered to be subcontractors and shall adhere to all requirements of Standard Specification 1-08.1 and FHWA 1273.

WSDOT has received requests from Prime Contractors to use a sub-contracted owner-operator to “broker” or “rustle-up” other owner-operators to perform contract Work. From a business standpoint, this may be practical. However, in order to comply with 23 CFR 633, 23 CFR 635.116 and Standard Specification 1-08.1, a Prime Contractor or a subcontractor shall perform a defined percentage of the Work with their own organization.

A “broker” is identified as “one who acts as an intermediary in a sale or other business transaction between two parties.” An approved subcontracted owner-operator may act as a “broker” and can certainly “rustle-up” additional owner-operators to perform portions of the Work, however, those other owner-operators can only be one of three entities: 1) a lower tiered subcontractor to the original sub-contracted owner-operator, 2) another subcontractor to the Prime Contractor, or, 3) an employee to the Prime or the original owner-operator subcontractor. All required contractual obligations would be the same depending upon the relationship. A true “broker” may not own tools and equipment and therefore would not be considered a subcontractor since they would not be performing any portion of the Work other than the required documentation. Individual owner-operators operating leased trucks can be considered owner-operators if they provide evidence, satisfactory to the Project Engineer, that they have a bona fide lease agreement. If the vehicle is being leased, ask to see the lease agreement. Existence of a bona fide lease agreement depends on evidence that the individual claiming to be an owner-operator is independently established in his/her own trucking business and that he/she bears ultimate responsibility for operation of the unit and is wholly responsible for cost items such as:

- Maintenance.
- Insurance (Comprehensive, collision, liability, etc.)
- Permits, base plates, licenses and taxes
- Fuel
- Oil
- Major and minor repairs
- Ferry charges and tolls
- Other Driver’s remuneration

It also must be demonstrated that there is no close or continued supervision of the operation of the truck by the company leasing the truck. This means that the owner-operator may not work on a project upon which the lessor is a Prime or subcontractor.
1-2.4H Contractors' Shop Plans and Working Drawings

In general, all shop drawings and supplemental details submitted by the Contractor should be checked, in detail, for conformance to all contract requirements before forwarding on for approval or further actions by others. A Change Order is required for any deviation from the contract plans. Any conflicts with the contract plans that have been detected or revisions that may be desired by the Project Engineer should be noted on one copy of the drawings being forwarded to Headquarters for approval. If Change Orders to cover any deviations from the contract plans have been issued, or are being processed, those changes should also be noted.

Figure 1-6 is a list of many of the most common shop plans and drawings, and includes references to the specifications that require them and the section of this manual that covers the procedures for processing them. Use Form 410-025 to transmit all listed bridge and structure plans to the Bridge and Structures Engineer.

The Project Engineer should maintain a log of all shop plans or other drawings received for each contract.

Shop plans for items that conform to the contract plans or a standard plan, except those listed in Figure 1-6, should be checked and approved by the Project Engineer.

1-2.4I Relief of Responsibility for Completed Work and Relief of Responsibility for Damage by Public Traffic

Section 1-07.13(1) specifically designates the Contractor as being solely responsible for the completed work or material until the entire improvement has been completed. All work and material, including change order work, is at the sole risk of the contractor and when damaged must be rebuilt, repaired, or restored. When these damages occur to either the permanent or temporary work, and have occurred prior to the contract Completion Date, the costs for these repairs shall be entirely at the Contractor’s expense. However, the specification does provide the contractor exceptions for causes that are generally beyond the contractor’s control.

While the Contractor is fully responsible for the work and materials, the section does provide the contractor some options for relief. Relief is broken into 2 categories. The first category being relief of maintenance and protection for portions of works that have been completed. The second category is for relief of damage caused by the public when it is necessary that the public use the facility during construction. Both options for relief have specific criteria in order to exercise them. While a brief explanation of each option is provided, the Project Engineer should review the entire Section 1-07.13 of the Standard Specifications to ensure that the extent of responsibilities are understood and that any relief from responsibility is granted in accordance with those provisions.

Section 1-07.13(2) provides relief to the Contractor from maintaining and protecting specific portions of contract work as they are completed. The Contractor must submit a written request for relief to the Project Engineer. Before granting any relief, the Project Engineer will review the request to ensure that the items of work noted conform to the requirements and limitations outlined in Section 1-07.13(2) of the Standard Specifications and have been fully completed in all respects of the contract. The Regional Construction Manager or designee may approve these requests for relief. Relief may be granted for several specific items, for example: “Item 17, Beam Guardrail, Type I; Item 18, Beam Guardrail Anchor Type I; etc.” Relief may also be granted for all work except certain items, for example: “All work except Item 38, Electrical.” The approval of the Contractor’s request must be in writing.

When it is necessary for public traffic to utilize a highway facility during construction, Section 1-07.13(3) of the Standard Specifications provides relief of responsibility to the Contractor for damage caused to the permanent work by the public traffic. When the conditions specified in this section are met, the Contractor is automatically relieved of this responsibility. However, this section does not provide relief for damage caused by vandalism or other causes. The Contractor will resume full responsibility for both temporary and permanent work if traffic is relocated to another section of roadway. This responsibility will again continue until contract completion unless the section is reopened to public traffic or the Contractor is granted relief under 1-07.13(2).

The first paragraph of Section 1-07.13(3) refers to damage to “permanent work”. This refers to work included in the contract that is being constructed in accordance with the requirements noted in the plans and specifications and is damaged. The intent is to exclude equipment, temporary facilities and temporary materials such as formwork and falsework and “Temporary Traffic Control Devices”.

1-2.4J Protested Work

Occasions may arise where the contract may not have fully or clearly defined a work activity or financial responsibility. In these cases, the Project Engineer may determine that, in order to avoid delay of other critical work, protect the traveling public, or other critical circumstances, it may be necessary to direct the Contractor to proceed immediately to complete the work. In some instances, this order may be against the Contractor’s wishes. While acknowledging the Contractor’s verbal protest, the Project Engineer should again direct the contractor to proceed with the work in accordance with Section 1-04.5 of the Standard Specifications. The Contractor should also be advised that, as a separate action, they should follow the guidance in this same section for protest and protest resolution. While these provisions require the Contractor to keep accurate records for completing the protested work, it is not advisable for the Project Engineer to rely on these records to determine what may have taken place when trying to verify costs for protested work many months later. In order to help document the Contractor’s work, the form “Report of Protested Work” (DOT Form 422-007) was developed as a tool for the Project Engineer’s use.
<table>
<thead>
<tr>
<th>Working Drawing, Shop Plan or Submittal Type</th>
<th>Const Manual References</th>
<th>Standard Spec or Other References</th>
<th>Number of Paper Copies (Contact Bridge & Structures to discuss the option of electronic Submittals)</th>
<th>Reviewer Prior to Approval</th>
<th>Approving Authority</th>
<th>PE Distribution of approved drawings (surplus copies stay @ PE)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplemental Drawings (Shop Plans for Contract or Standard Plan Item)</td>
<td>1-2.4H</td>
<td>1-01.3</td>
<td>6 sets to Project Engineer</td>
<td>Project Engineer</td>
<td>2 sets to Contractor 1 set to Fabrication Inspector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculations for Overload of Structure</td>
<td>None</td>
<td>1-07.7(2) 6-01.6 6-01.9</td>
<td>3 set to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor PE Stamp required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg. Specification for Portable Temporary Traffic Control Signal</td>
<td>None</td>
<td>1-10.3(3)K</td>
<td>3 set to Project Engineer</td>
<td>Project Engineer</td>
<td>2 sets to Contractor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefabricated Vertical Drainage Wick Submittals</td>
<td>None</td>
<td>2-03.3(14)H</td>
<td>3 set to Project Engineer</td>
<td>Project Engineer</td>
<td>2 sets to Contractor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculation for Backfilling Abutment Prior to Superstructure Placement</td>
<td>None</td>
<td>2-03.3(14)I</td>
<td>3 set to Project Engineer</td>
<td>Bridge & Structures Engineer & Geotechnical Engineer</td>
<td>2 sets to Contractor PE Stamp Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blasting Plan</td>
<td>None</td>
<td>2-03.3(2)</td>
<td>3 set to Project Engineer</td>
<td>Project Engineer</td>
<td>2 sets to Contractor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavation Slope Working Drawings and Calculations</td>
<td>None</td>
<td>2-09.3(3)B</td>
<td>3 set to Project Engineer</td>
<td>Geotechnical Engineer</td>
<td>2 sets to Contractor PE Stamp Required for Temporary Slopes Greater than 20 Feet in Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cofferdams, Shoring, Gabions, and Trench Boxes</td>
<td>6-1.5</td>
<td>2-09.3(3)D 6-01.9 6-02.3(16)</td>
<td>6 sets to Bridge & Structures Engineer TRENCH BOXES 3 sets to Project Engineer</td>
<td>Bridge & Structures Engineer & Geotechnical Engineer</td>
<td>2 sets to Contractor 1 set to Region Const PE Stamp is Required. 4 additional sets to Bridge if RR is involved (per RR) 6 additional if US Bureau of Reclamation is involved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falswork, Forming, and Bracing Plans (including design calculations)</td>
<td>6-1.5</td>
<td>6-02.3(16) 6-02.3(17)F</td>
<td>6 sets to Bridge & Structures Engineer 2 sets to Project Engineer FOR PREAPPROVAL 1 set Plans & 2 sets design calculations to Bridge & Structures 1 set Plans & 1 set design calculations to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor 1 set to Region Const PE Stamp is Required. 4 additional sets to Bridge if RR is involved (per RR) 6 additional if US Bureau of Reclamation is involved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Girder Erection Plans (Including falswork and stress calculations)</td>
<td>None</td>
<td>6-02.3(16) and 6-02.3(25)N 6-03.3(7)A</td>
<td>6 sets to Bridge & Structures Engineer 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor 1 set to Region Const PE Stamp is Required. 4 additional sets to Bridge if RR is involved. (per RR)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **Figures:**
 - Figure 1-6: Shop Plans & Working Drawings
<table>
<thead>
<tr>
<th>Working Drawing, Shop Plan or Submittal Type</th>
<th>Const Manual References</th>
<th>Standard Spec or Other References</th>
<th>Number of Paper Copies (Contact Bridge & Structures to discuss the option of electronic Submittals)</th>
<th>Reviewer Prior to Approval</th>
<th>Approving Authority</th>
<th>PE Distribution of approved drawings (surplus copies stay @ PE)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding Reinforcing Steel</td>
<td>6-2.6D</td>
<td>6-02.3(24)E</td>
<td>5 welding procedures to Bridge & Structures 2 welding procedures to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor 2 sets to Fabrication Inspector</td>
<td>No mention in spec of Bridge & Structures or number of drawings</td>
</tr>
<tr>
<td>Shop Detail Plans of Prestressed Concrete Girders, Prestressed Structures, Prestressed & Precast Conc Piles</td>
<td>6-2.7A</td>
<td>None for Piles</td>
<td>5 sets to Bridge & Structures 2 sets to Project Engineer SPLICED GIRDERS 7 sets to Bridge & Structures 1 set to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>PE approval standard series I girders and concrete piling on standard plans E-4 & E-4a - all other prestressed concrete products and precast piles to Bridge & Structures for approval</td>
<td>1 set to Contractor 2 sets to Fabrication Inspector</td>
<td>6-02.3(16)B is for the formwork plans for preapproval</td>
</tr>
<tr>
<td>Post-Tension Shop Drawings</td>
<td>6-2.8</td>
<td>6-02.3(26)A</td>
<td>7 sets to Bridge & Structures 2 set to State Bridge Const. Engineer 2 sets to Project Engineer</td>
<td>State Bridge Const. Engineer & Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>1 set to State Const. 2 sets to Contractor 1 set to Region Const.</td>
<td></td>
</tr>
<tr>
<td>Precast Concrete Panels</td>
<td>None</td>
<td>6-02.3(28)A 6-12.3(1)</td>
<td>7 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>1 set to State Const. Engr. 2 sets to Contractor 1 set to Fabrication Inspector</td>
<td>Additional sets for RR not mentioned in spec.</td>
</tr>
<tr>
<td>Welding Structural Steel (Submitted with Shop Drawings)</td>
<td>6-3.6C</td>
<td>6-03.3(25)</td>
<td>8 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>1 Set to Region Const. 2 sets to State Materials Lab 2 sets to Contractor</td>
<td>4 additional sets to Bridge if RR is involved. (per RR)</td>
</tr>
<tr>
<td>Shop Plans for Structural Steel for Bridges (Expansion Joints, Metal Bridge Rails, Bridge Drains, Etc.)</td>
<td>6-3.1</td>
<td>6-03.3(7) 6-06.3(2) Special Provisions</td>
<td>8 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>1 set to Region Const. 2 sets to State Mat’ls Lab 2 sets to Contractor</td>
<td>4 additional sets to Bridge if RR is involved. (per RR)</td>
</tr>
<tr>
<td>Treated Timber Structures</td>
<td>6-4.1</td>
<td>6-04.3(3)</td>
<td>6 sets to Bridge & Structures 1 set to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor 1 set to Fabrication Inspector</td>
<td></td>
</tr>
<tr>
<td>Welding Steel Piling</td>
<td>6-5.6</td>
<td>6-05.3(6) 6-03.3(25)</td>
<td>8 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor 2 sets to Fabrication Inspector</td>
<td>Weld splices of steel casing for cast-in-place conc. Piles shall be the Contractor’s responsibility 4 additional sets to Bridge if RR is involved. (per RR)</td>
</tr>
<tr>
<td>Pile Driving Equipment Adequacy Submittals</td>
<td>6-05.3(9)</td>
<td></td>
<td>8 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Geotech. Engr., Bridge & Structures and State Construction Engr. (Bridge)</td>
<td>Bridge & Structures Engr.</td>
<td>2 sets to Contractor</td>
<td></td>
</tr>
<tr>
<td>Working Drawing, Shop Plan or Submittal Type</td>
<td>Const Manual References</td>
<td>Standard Spec or Other References</td>
<td>Number of Paper Copies (Contact Bridge & Structures to discuss the option of electronic Submittals)</td>
<td>Reviewer Prior to Approval</td>
<td>Approving Authority</td>
<td>PE Distribution of approved drawings (surplus copies stay @ PE)</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Painting Plan</td>
<td>None</td>
<td>6-07.3(2)</td>
<td>3 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer, State Construction Engr. (Bridge)</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor</td>
<td></td>
</tr>
<tr>
<td>Modified Concrete Overlays (Mix Design, Equipment Specifications and Procedures)</td>
<td>None</td>
<td>6-09.3(2)</td>
<td>3 sets to State Bridge Const. Engineer 2 sets to Project Engineer</td>
<td>State Bridge Const. Engr.</td>
<td>State Bridge Construction Engr.</td>
<td>2 sets to Contractor</td>
<td></td>
</tr>
<tr>
<td>Shaft Installation Plan for Noise Walls, Soldier Pile Walls, Signal Standard Foundations, and Luminaire Bases</td>
<td>6-2.3E, 6-12.3(1), 6-16.3(2)</td>
<td></td>
<td>4 sets to Bridge & Structures 1 set to Project Engineer</td>
<td>Bridge & Structures Engineer, State Construction Engr. (Bridge), & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 Sets to Contractor</td>
<td></td>
</tr>
<tr>
<td>Structural Earth Wall Submittals</td>
<td>None</td>
<td>6-13.3(2)</td>
<td>3 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer, & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor</td>
<td>PE Stamp Required</td>
</tr>
<tr>
<td>Geosynthetic Retaining Wall Plans (Includes Std. Plan Type 1-6 Walls)</td>
<td>None</td>
<td>6-14.3(2)</td>
<td>3 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer, & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor</td>
<td></td>
</tr>
<tr>
<td>Soil Nail Walls</td>
<td>None</td>
<td>6-15.3(3)</td>
<td>3 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer, & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor</td>
<td>Include State Bridge Const. Engr. if shotcrete facing is permanent (6-18.3(1)) Experience criteria to be verified by Project Engineer</td>
</tr>
<tr>
<td>Soldier Pile Walls</td>
<td>None</td>
<td>6-16.3(2)</td>
<td>3 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer, & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor</td>
<td>PE Stamp Required</td>
</tr>
<tr>
<td>Permanent Ground Anchor Submittals</td>
<td>None</td>
<td>6-17.3(3)</td>
<td>3 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer, & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor</td>
<td>PE Stamp Required</td>
</tr>
<tr>
<td>Roadside Plant/Weed & Pest Control Plan</td>
<td>None</td>
<td>8-02.3(2)</td>
<td>4 sets to Project Engineer</td>
<td>Project Engineer</td>
<td>Project Engineer</td>
<td>2 sets to Contractor 1 set to Region Const.</td>
<td>Signed by Licensed Chemical Pest Control Consultant</td>
</tr>
<tr>
<td>Shop Plans for Light Standard and Traffic Signal Standards</td>
<td>8-20.2B, 8-20.2(1)</td>
<td></td>
<td>6 sets to Bridge & Structures 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor 2 sets to Fabrication Inspector</td>
<td>Shop drawings are required for all signal standards and for those light standards without pre-approved plans. (per Std. Spec)</td>
</tr>
<tr>
<td>Working Drawing, Shop Plan or Submittal Type</td>
<td>Const Manual References</td>
<td>Standard Spec or Other References</td>
<td>Number of Paper Copies (Contact Bridge & Structures to discuss the option of electronic Submittals)</td>
<td>Reviewer Prior to Approval</td>
<td>Approving Authority</td>
<td>PE Distribution of approved drawings (surplus copies stay @ PE)</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Shop Plans for Sign Structures</td>
<td>8-21.3</td>
<td>8-21.3(9) A refers to Section 6-03.</td>
<td>8 sets to Bridge & Structures Engineer, 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>Project Engineer for Standard Plans G2 through G9a Bridge & Structures for special design sign structures or sign fittings</td>
<td>2 sets to Contractor, 2 sets to Fabrication Inspector</td>
<td>4 additional sets to Bridge if RR is involved. (per RR)</td>
</tr>
<tr>
<td>Column Jacket Shop Drawings & Installation Plans</td>
<td>None</td>
<td>See BSP 02300403. GB6 02300404. GB6</td>
<td>8 sets to Bridge & Structures Engineer, 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer, & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor, 1 set to Fabrication Inspector</td>
<td>PE Stamp required.</td>
</tr>
<tr>
<td>Form Liners (Various patterns per GSP)</td>
<td>None</td>
<td>See GSP 0231405.GB6</td>
<td>2 sets to Bridge & Structures Architect, 2 sets to Project Engineer</td>
<td>Bridge & Structures Architect</td>
<td>Bridge & Structures Architect</td>
<td>1 Set to Region Const, 2 sets to Contractor</td>
<td>Include 2ft X 2ft sample with drawing to Bridge & Struct. Architect</td>
</tr>
<tr>
<td>3-Sided Structures</td>
<td>None</td>
<td>See GSP 023281.GR6</td>
<td>8 sets to Bridge & Structures Engineer, 2 sets design calculations to Bridge & Structures</td>
<td>Bridge & Structures Engineer, & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor, 1 set to Fabrication Inspector</td>
<td>PE Stamp required.</td>
</tr>
<tr>
<td>Project Specif Powder Coating Plan and Materials Submittals</td>
<td>None</td>
<td>See Special Provision</td>
<td>3 Sets to Bridge & Structures Engineer, 1 Set to Project Engineer</td>
<td>State Materials Engineer (Fabrication Inspection), Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>2 Sets to Contractor, 1 set to Fabrication Inspector</td>
<td></td>
</tr>
<tr>
<td>Bridge Demolition Plans</td>
<td>None</td>
<td>See Special Provisions</td>
<td>6 sets to Bridge & Structures Engineer, 1 set to Project Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor, 1 set to Region Const</td>
<td>PE Stamp is Required.</td>
</tr>
<tr>
<td>Shaft Installation Plan and Construction Experience for Bridges and Permanent Signing Structures</td>
<td>None</td>
<td>See Special Provisions</td>
<td>3 sets to Bridge & Structures Engineer, 1 set to Project Engineer</td>
<td>Bridge & Structures Engineer, & Geotech. Engr. & State Construction Engr. (Bridge).</td>
<td>Bridge & Structures Engineer</td>
<td>2 Sets to Contractor</td>
<td>Construction Manual does not mention approval – only mentions meeting of all parties.</td>
</tr>
<tr>
<td>Precast Vaults</td>
<td>None</td>
<td>See Special Provisions</td>
<td>3 sets to Bridge & Structures Engineer, 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer, & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor, 1 set to Fabrication Inspector</td>
<td></td>
</tr>
<tr>
<td>Pipe Jacking Plans</td>
<td>None</td>
<td>See Special Provisions</td>
<td>3 sets to Bridge & Structures Engineer, 2 sets to Project Engineer</td>
<td>Bridge & Structures Engineer, & Geotech. Engr.</td>
<td>Bridge & Structures Engineer</td>
<td>2 sets to Contractor</td>
<td></td>
</tr>
</tbody>
</table>
1-2.7F(9) Consulting with the Office of Equal Opportunity

The Department’s DBE program is managed by the External Civil Rights Branch of the Office of Equal Opportunity (OEO) at Headquarters. The Project Engineer must communicate extensively and continuously with that office about any aspect of the DBE activities on the project. Any questions received from the Contractor or subcontractor about DBE provisions or enforcement should be answered only with full knowledge of the opinions and directions of the OEO. The OEO phone number at Headquarters is 360-705-7085. The Office of Equal Opportunity is also required to approve DBE firms that are manufacturers and regular dealers (suppliers).

The State Construction Office must execute any change orders that revise the COA commitment. When preparing the change order in CCIS pending CO’s menu option 3, “Condition of Award Items.” Include the first three items listed above in the change order document. When submitting the change order to the Contractor for signature, the Project Engineer should also send copies to the affected DBE firms and should advise the Contractor that this has been done.

1-2.7G On-the-Job Training (OJT)

1-2.7G(1) On-the-Job Training Special Provisions — General

The requirements for training are made a part of the contract by the special provision, Special Training Provisions. The amount of training is set by the WSDOT Office of Equal Opportunity based on the opportunities presented by the work and the needs in the geographical area involved. The requirements for trainee, training plan approval, and trainee payment are all specified in the contract special provisions.

1-2.7G(2) OJT Required Reports

The contract provisions allow the Contractor to accomplish training as part of their work activities, or through the activities of their subcontractors or lower-tier subcontractors. However the prime contractor is designated as being solely responsible for the completion of the training requirements as they are outlined in the contract provisions.

- Form DOT 272-049 Training Program — A training program is to be completed by the Contractor. The program must be submitted to the Engineer for approval prior to commencing contract work. The Project Engineer’s office may approve Office of Apprenticeship, Training, Employer and Labor Services (OATELS) or Washington the State Apprentice and Training Council (WSATC) programs provided they meet the requirements specified in the contract provisions. The Region will review any non-OATELS/WSATC training plans submitted under section III of the form for compliance. If the plan appears to be in compliance, the Region will sign it, check “Approval Recommended”, and submit it to the WSDOT Office of Equal Opportunity (OEO) for concurrence. If concurrence is granted, OEO will note this on the plan and will submit the plan to FHWA for approval.

- Form 272-050 Apprentice/Trainee Approval Request — Approval of an individual trainee cannot be authorized until an approved Training Program is filed with the Region. This form is to be submitted by the Contractor for each trainee to be trained on the project. When an OATELS/WSATC apprentice/trainee is first enrolled, a copy of the apprentice/trainee’s certificate showing apprenticeship/training registration must accompany the Trainee Approval Request. Trainees are approved by the Project Engineer’s office based on the criteria in the special provisions. If the contractor submits a request for approval of trainee who is neither female, nor a minority, the region must obtain concurrence from the WSDOT Region EEO Officer or the WSDOT Office of Equal Opportunity prior to approval of the requested trainee.

- Form 226-012 EF Trainee Interview Questionnaire — One trainee interview is to be conducted for each craft designated on an approved training program for contracts which have 600 or more training hours or on projects otherwise designated by the Region EEO. The Region EEO shall designate additional contracts on which trainee interviews are to be completed in conjunction with those that meet the criteria above to insure that trainee interviews are conducted on at least one fourth of all the contracts that have training hours established for any given construction season. The intent of these training interviews is to document that the trainees are working and receiving proper training consistent with their approved programs. DOT form 226-012EF should be used to document these spot checks.

- Form DOT 272-060 Federal-aid Highway Construction Annual Training Report — This report is to be completed annually by the Project Engineer summarizing the training accomplished by the individual trainees during the reporting period beginning January 1 and ending December 31 of the calendar year. This report is due at the Regional EEO Office by December 20th of the same calendar year as the reporting period. The “gap” between the reporting deadline (December 20) and the end of the reporting period (December 31) is not significant enough to adversely affect the data, and should not be a source of concern for the project staff.

1-2.7G(3) Payment for “Training”

At progress estimate cutoff time, the Contractor shall submit a certified invoice requesting payment for training. The invoice must provide the following information for each trainee:

- The related weekly payroll number
- Name of trainee
- Total hours trained under the program
- Previously paid hours under the contract
- Hours due for current estimate
- Dollar amount due for current updated estimate
Retroactive payment may be allowed provided:
- The Training Program is approved
- There are no outstanding issues or circumstances that would have prevented approval of the apprentice/trainee

Increases in training hours are allowable and may be approved on a case by case basis by the Project Engineer in consultation with the Regional EEO Officer.

1-2.7H Apprentice Participation

1-2.7H(1) Apprentice Participation Special Provision – General

The requirements for apprentice utilization are made a part of the contract by the special provision “Apprentice Utilization”. The use of this provision, and the percentage of required apprentice participation, will be determined by meeting the date and dollar thresholds as follows:

- 10% On contracts advertised on or after July 1, 2007
- 12% On contracts advertised on or after July 1, 2008
- 15% On contracts advertised on or after July 1, 2009

Only apprentices enrolled in an apprenticeship program approved by the Washington State Apprenticeship Council may be counted toward attainment of the apprentice utilization requirement. The Contractor may attain the apprentice utilization requirement as part of their work activities, or through the work activities of subcontractors or lower-tier subcontractors. Attainment of the requirement will be calculated by comparing the total labor hours worked by all the enrolled apprentices performing work for the Contractor and any subcontractors, in all trades, with the total labor hours performed on the project, in all trades.

It is important to note that the Apprentice Utilization Requirement is a separate program from the Federal Training requirements included in all contracts which contain federal monies. The two programs are not mutually exclusive. The intent of the federal program is to increase the availability of women and minorities within the construction trades; whereas as the Apprentice Utilization Requirement (state program) is promoting the use of apprentices in general. A female or minority apprentice enrolled in a program approved by the Washington State Apprenticeship Council meets both requirements.

1-2.7H(2) Apprentice Utilization Plan

The Contractor is required to submit an apprentice utilization plan, on WSDOT Form No. 422-115 EF, to the Project Engineer within 30 days of execution of the contract. This plan is not submitted for approval; but to inform the Project Engineer as to how the Contractor will attain the utilization requirement. The intent of the plan is to provide the Project Engineer with enough information to track the Contractor’s progress in the utilization requirements. If the plan indicates that the Contractor will not attain the requirement, a revised plan should be requested and/or the Contractor should be notified that “Good Faith” documentation will be required, by the physical completion date as specified.

1-2.7H(3) Reporting

For each contract with an apprentice utilization requirement, the Contractor is required to submit a monthly Statement of Apprentice/Journey Participation (WSDOT Form No. 422-110 EF) to the Project Engineer or to enter the information into the Apprenticeship/Journeyman Online Tracking System, which is preferred to the form. This report shall be a consolidated report, and include data from the Contractor’s work activities, as well as from the work activities of all subcontractors. This report will include the total hours and number of apprentices and journeymen working on the contract during the reporting period. The report will list the apprentices by name, registration number, and craft or trade; as well as the name of the Contractor or subcontractor for whom the apprentice is working. The Project Engineer should begin to verify that the report is reasonable and is a complete account of all workers receiving an hourly wage who are directly employed on the project site for both the Contractor and all subcontractors. The hours reported do not need to be checked against payrolls. Instead the Project Engineer should review the report to determine if the number of workers, the contractors listed, and the occupations reported are a fair representation of the work that was performed.

The reports do not need to include hours performed by foremen, superintendents, owners, and workers who are not subject to prevailing wage requirements. The reports should not include off-site workers involved in fabrication or plant operations. Hours for truck drivers should be included only if the driver spends the majority of their shift – four hours or more – at the project site. Do not confuse apprenticeship reporting with Federal Wage Administration or the Special Training Provisions. The reporting period starts on the first day of the month and runs through the last day of the month, and will be reported on the last working day of the following month. During periods of no work, the Project Engineer may suspend the reporting requirement.

Notification of this suspension may be accomplished through the Suspension of Work letter to the Contractor. The Project Office should use the monthly reports and the apprentice utilization plan to measure the Contractor’s progress toward attainment of the utilization requirement. If apprentices are not being reported on the project when the plan shows that they should be working, the Project Engineer should contact the Contractor and request a revised plan. If it appears that the Contractor may no longer be able to meet the apprenticeship requirement the Project Engineer should notify the Contractor that “Good Faith” documentation will be required by the date of physical completion, as specified. The Project Engineer should forward copies of all apprentice utilization plans to the State Construction Office through the Region. The original apprentice utilization plan should be kept in the project file. A copy of each monthly report should also be submitted to the State Construction Office through the Region as the reports are received. If the Contractor is reporting electronically, the Project Engineer is responsible for reviewing and submitting the report in the Filemaker database. Reports should be revised and resubmitted if it is determined that they are incomplete.

Statement of

1-2.7H(4) "Good Faith" Procedures

"Good Faith" is the action taken by the Contractor to meet the Apprentice Utilization requirement. Documentation of the Contractor’s “Good Faith” efforts is only required if the Contractor fails to attain the requirement. “Good Faith” documentation may arrive with the monthly report or at the completion of the contract. The need to provide “Good Faith” documentation should be stressed prior to physical completion if it is determined that the monthly reports show a level of attainment that significantly differs from that in the Apprentice Utilization Plan. If this should occur, the Project Engineer should request a revised Apprentice Utilization Plan and/or “Good Faith” documentation from the Contractor. “Good Faith” documentation should demonstrate that the Contractor took the following steps:

1. Solicit Apprentice(s) from State-approved Apprenticeship Training Program(s).
2. Document the solicitation and, in the event that Apprentice(s) are not available, obtain supporting documentation from the solicited program(s).
3. Demonstrate that the plan was updated as required elsewhere in this section.
4. Provide documentation demonstrating what efforts the Contractor has taken to require subcontractors to solicit and employ Apprentice(s).

The Contractor may also provide supplemental narrative about other factors that prevented them from meeting the apprenticeship requirement, past apprentice utilization and company-wide efforts. The narrative does not substitute for the above listed items, but is addition to them. In unusual circumstances, it is possible that the Contractor would not be able to meet the apprenticeship requirement for a reason that does not fall into the above “Good Faith” process. Some examples of other circumstances that may prevent the Contractor from meeting the apprenticeship requirement are listed below, and should be documented in the “Good Faith” submittal:

- A large amount of rock-scaling or other work specified in the contract where the use of experienced worker is part of the contract requirements.
- A large amount of work in occupations that are not apprentice-able or have few apprentice opportunities, such as flagging.
- Conflicting TERO requirements.
- Competing Federal requirements.
- The use of specialty equipment that no apprentices were able to operate.
- Added or deleted work that significantly altered a Contractor’s workforce and apprentice utilization plan.
- Small crew sizes and the ration of apprentices to journeymen allowed by the apprentice program did not allow a Contractor to meet the requirement.

Any "Good Faith" documentation should be reviewed by the Project Engineer, who will determine if the Contractor met the requirement through "Good Faith". Their determination and a copy of the “Good Faith” documentation should be submitted to the State Construction Office through the Region. If the Contractor fails to meet the apprenticeship requirement and does not submit a "Good Faith" effort, the Project Engineer shall reflect this in the Contractor’s Performance Evaluation. Failure to comply with the apprentice utilization requirement may result in reduction or revocation of prequalification as allowed by WAC 468-16-190.

1-2.7I American Recovery and Reinvestment Act (ARRA) Projects

Projects that are funded in whole or in part by the American Recovery and Reinvestment Act (ARRA) are subject to the same requirements that apply to other federally funded projects. ARRA funded projects also have specified employment reporting requirements that are in addition to the reporting required on all Federal Aid projects.

ARRA Employment Reports shall be submitted by the Contractor to the Project Engineer on Form FHWA 1589. The report shall be completed according to the specifications and coding instructions provided with the report form, and shall contain project specific information as to the numbers, hours worked, and wages paid by the Contractor and all subcontractors for all of their employees. This report shall include all those employees of the Prime Contractor and of all subcontractors working on the ARRA project at the jobsite, in the project office, in the home office, or teleworking from home or an alternative office; and all engineering personnel, inspectors, sampling and testing technicians, and lab technicians who are actively performing work directly in support of the ARRA project.

Within 30-days of execution of the contract, the Contractor shall submit to the Project Engineer an initial report for each ARRA project awarded to the Contractor. Each month thereafter, the Contractor shall submit a monthly report for each ARRA project, submitted no later than the 10th day of each month, reporting employment information for the previous month. In those cases where there is no active work on the project for a specific month, the report will be submitted with “zeros” reported for number of employees, hours and wages.

Do not confuse Employment Reporting with Federal Wage Administration, as they are not the same. WSDOT is not provided with data that would allow for verification, nor is WSDOT required to verify employment data. Because certified payrolls are not required to include the salaried employees, owner-operators, or professional services that are required to be included in the employment report, there is no way to verify the employment data through comparison with certified payrolls. Because employment reports are required to include contractors’ home-office and telework employees, there is no way to verify employment data through field observations. Accordingly, ARRA Employment Reports should be checked only to verify that they are reasonably complete (all subs observed to be active on the project are reported).

Failure on the part of the Contractor to submit these reports by the due date may result in the withholding of all progress payments to the Contractor until reports are received, as provided in Section 1-09.9 of the Standard Specifications. If the report is not received by the due date, the Project
Engineer shall notify the Contractor of intent to defer payment within eight (8) calendar days of the report due date. When payments must be withheld, the Project Engineer must ensure that the Region Construction Manager/Construction Engineer and the State Construction Office are notified.

The original initial report and subsequent monthly reports should be placed in the project file and maintained with the temporary final records for the project. The Project Office will submit copies of the ARRA reports to the Region Construction Office and to the State Construction Office, and must be received by the 15th day of each month. The Project Office may utilize the HQ Construction Sharepoint site for purposes of submitting the monthly Contractor reports to the State Construction Office. The State Construction Office will submit this information to the FHWA Division Office and to FHWA headquarters.

WSDOT is required to report on WSDOT employees, hours and wages for each ARRA funded project. This will be handled at Headquarters by means of our existing systems. The Project Office is not required to submit this information. In addition WSDOT is required to report on amounts paid to DBE subcontractors for each ARRA funded project. This reporting will be handled by means of Form 422-102 EF “Quarterly Report of Amounts Credited as DBE Participation”. This report, which is already required on Fed-Aid projects, must be submitted by the Contractor in a timely manner and submitted to the State Construction Office as soon as it is received by the Project Office. It is recommended that the Project Office utilize the HQ Construction Sharepoint site to insure timely DBE reporting on ARRA projects.

1-2.8 Control of Work

1-2.8A Authority of the Project Engineer

The Project Engineer is given considerable authority to enforce the provisions of the contract under Section 1-05.1 of the Standard Specifications. This authority is tempered by WSDOT’s policies and delegation of authority from the Engineer to the Project Engineer. Accordingly, considerable care and professional judgment must be exercised by the Project Engineer in order to avoid exceeding the authority as delegated and to avoid decisions or actions that may be contrary to WSDOT policy. Should there be any doubts as to the limits of authority, the Project Engineer should consult the Regional Construction Manager.

Standard Specifications Section 1-07.16(1) Private/Public Property restricts the contractor from using Contracting Agency owned or controlled property other than property directly affected by the contract work without the approval of the Engineer. The Engineer has the authority to allow the use of Contracting Agency owned or controlled property within the project limits and any other property specifically listed for use in the contract. The use of any other Contracting Agency owned or controlled property would require a lease agreement as detailed in Chapter 11 of the WSDOT Right of Way Manual, M 26-01.

In many cases, the courts have held that where the Project Engineer has exceeded the authority provided in the plans and specifications or the authority delegated by the Engineer, the actions of the Project Engineer are binding upon WSDOT. Because of this, it is important that the Project Engineer make no instructions, verbally or by written memoranda, that are outside the scope of the plans, specifications, contract provisions, or the authority delegated by the Engineer.

1-2.8B Contractor’s Equipment, Personnel, and Operations

The Contractor is required to furnish adequate equipment for the intended use. The Contractor’s equipment must also be maintained in good working condition. Prior to the start of work, the Project Engineer should ensure, by inspection, that the Contractor’s plant, equipment, and tools comply with the specifications.

Whenever the specifications contain specific equipment requirements, the Project Engineer should verify that the equipment provided meets these specifications. This should be documented in project records such as the Inspector’s Daily Report. The Contractor is required to furnish, upon request, any manuals, data, or specialized tools necessary to check the equipment.

It is most important that the operation of automatically controlled equipment be checked carefully and that the Contractor be advised immediately whenever the equipment is not performing properly.

The Contractor’s supervisory personnel must be experienced, and able to properly execute the work at hand. If, in the Project Engineer’s opinion, the Contractor’s supervisory personnel are not fully competent, the Project Engineer should immediately notify the Regional Construction Manager of the facts in the matter, seeking assistance and advice.

It is expected that, consistent with WSDOT’s policies and delegated authority, the Project Engineer will assist the Contractor in every way possible to accomplish the work under the contract. However, the Project Engineer must not undertake, in any way, to direct the method or manner of performing the work. Contrary to popular legend, this statement is true of force account work as well. Should the Contractor select a method of operation that results in substandard quality of work, non-specification results, a rate of progress insufficient to meet the contract schedule, or that otherwise violates the contract specifications or provisions, the Contractor should be ordered to discontinue that method or make changes in order to comply with the contract requirements. Where cooperation cannot be achieved, the Project Engineer should notify the Regional Construction Manager of the facts in the matter, seeking assistance and advice.

1-2.8C Defective or Unauthorized Materials or Work

Contract Final Acceptance for all work completed on a project is made solely by the Secretary of Transportation acting through the State Construction Engineer. However, the Engineer relies heavily on the actions and professional opinions of others, involved throughout the course of work, in determining acceptability. Because of this, it is expected
that the Project Engineer, working with the assistance of the Regional Construction Manager, as well as making full use of the many resources available at both the Regional level and Headquarters, particularly the office of the State Construction Engineer, will ensure that sufficient inspection is conducted in order to determine that the work performed or the materials utilized to construct the project comply with the requirements included in the contract plans and specifications. When inspections or tests are performed that indicate substandard work or materials, the Project Engineer should immediately notify the Contractor, rejecting the unsatisfactory work or material. When a review of the Contractor’s work or materials used indicate questionable acceptability with regard to the specifications, the Contractor should be notified as quickly as possible so that changes in materials or work methods can be made in order to avoid materials or work being rejected.

1-2.8C(1) Defective Materials

The contract plans and specifications for construction of a project require that specific materials and/or work practices be utilized in completing the work. The Project Engineer may reject any materials not conforming to the requirements of the specifications. The rejected materials, whether in place or not, are to be immediately removed from the site of the work unless the following guidelines for acceptance of non-specification materials are followed:

Material Not in Place

1. Nonconforming materials that are within the defined tolerance limits noted in Section 9-3.6 of this manual may be accepted for use on the project in accordance with the guidance in Section 9-3.5.

2. There may be situations where WSDOT determines the use of nonconforming materials is acceptable. This requires prior approval of the State Construction Engineer and a change order modifying the project specifications. Except for 1 and 2 above, materials that are known in advance as failing to comply with the Specifications are not to be incorporated into the work.

Material in Place

1. Price adjustments have been developed and are referenced in the contract for acceptance of certain materials whose properties cannot be determined until they are in place. Items this policy applies to include: concrete compressive strength, Portland cement concrete pavement thickness, hot mix asphalt mixture and density, and pavement smoothness.

2. Material incorporated into the work that is subsequently found to be in nonconformance with the specifications and for which price adjustments for acceptance are not included in the contract, must be reviewed to determine acceptability. The determination of acceptability should be made only when, in the Project Engineer’s judgment, there is a possible service or benefit to be obtained from its use. If it is determined that no benefit or service is obtained from the material’s use, the Project Engineer may direct that the material be immediately removed and replaced at no cost to WSDOT.

The Project Engineer may consult the State Construction Office, State Materials Laboratory, the State Bridge and Structures Office, or other design organizations for assistance in determining the usefulness of the nonconforming material. If consulted, these offices will offer technical advice to the extent that information is available. It is not intended to enter into extensive research to assess material which could be removed and replaced under the contract terms.

If the material is acceptable for continued use, a determination shall be made by the Project Engineer of the possible reduced service life caused by the material substitution and the resulting credit assessed by change order. This determination of acceptability and the resulting credit must meet with the Region Construction Manager’s approval for execution of the change order. In addition, prior review and approval must be obtained from the State Construction Engineer with a recommendation from the State Materials Engineer for the intended application of the material. With this determination for acceptance of non-specification material, discussions should be initiated with the Contractor and a change order completed.

If it is determined that the specification violation will not compromise the performance of the material and the nature of the violation is considered to be more of a technical infraction of the specification, the material may be accepted with a change order, possibly including a price reduction. If there is sufficient data and if the nature of the material makes analysis feasible, a pay factor may be determined using QC/QA methods similar to those described in the Standard Specifications, Section 1-06.2(2). If QC/QA can not be applied, the Project Engineer may determine an adjustment subjectively, using whatever information is available. This assessment or price adjustment is typically based on the unit bid price and may vary from no price adjustment up to the total contract unit bid price for the item involved. If it is determined that the violation is serious enough that the material can not be accepted for use on the project, the Project Engineer may direct its complete removal and replacement at no cost to WSDOT.

All change orders for acceptance of nonconforming materials are Contractor proposed and WSDOT is under no obligation to accept or approve any of them.

1-2.8C(2) Defective or Unauthorized Work

The following types of activities will be considered unauthorized work and will be completed solely at the risk and expense of the Contractor:

- Work performed contrary to, or regardless of, the instructions of the Project Engineer.
- Work and materials that do not conform to the contract requirements.
- Work done beyond the lines and grades set by the plans or the Engineer.
- Any deviation made from the plans and specifications without written authority of the Project Engineer.

Until all issues of material acceptance and conformity to the contract plans and specifications can be resolved, unauthorized work will not be measured and paid for.
by WSDOT. The Project Engineer may direct that all unauthorized or defective work be immediately remedied, removed, replaced, or disposed of. In correcting unauthorized or defective work, the Contractor will be responsible to bear all costs in order to comply with the Engineer’s order.

For additional guidance, see Section 1-05.7 of the Standard Specifications. If the Contractor fails or refuses to carry out the orders of the Engineer or to perform work in accordance with the contract requirements, the Project Engineer should immediately notify the Regional Construction Manager of the facts in the matter, seeking assistance and advice.

1-2.8C(3) Material Acceptance by Manufacturer’s Certificate

All material is to be accepted for use on the project based on satisfactory test results that demonstrate compliance with the contract plans and specifications. All work demonstrating compliance is to be completed prior to the material’s incorporation into the work. In many cases, this testing has already been completed in advance by the manufacturer.

A Manufacturer’s Certificate of Compliance is a means to utilize this work in lieu of job testing performed prior to each use of the product. While this provides for a timely use of the material upon arrival to the job site without having delay in waiting for the return of test results, it creates potential difficulties in obtaining and assessing the adequacy of a certificate.

Section 1-06.3 of the Standard Specifications describes the procedures for acceptance of materials based upon the Manufacturer’s Certificate of Compliance. Division 9 of the Standard Specifications describes those materials that may be accepted on the basis of these certificates. Since a certificate is a substitute for prior testing, it is intended that all certificates be furnished to the Project Engineer prior to use or installation of the material.

However, there are some circumstances where the Contractor may request, in writing, the Project Engineer’s approval to install materials prior to receipt and submittal of the required certificate. The Project Engineer’s approval of this request must be conditioned upon withholding payment for the entire item of work until an acceptable Manufacturer’s Certificate of Compliance is received. Examples of materials that shall not be approved by the Project Engineer for installation prior to the Contractor’s submittal of an acceptable certificate are: materials encased in concrete (i.e., rebar, bridge drains, etc.); materials under succeeding items where the later work cannot be reasonably removed (i.e., culvert under a ramp to be opened to traffic); etc. The Project Engineer’s approval or denial shall be in writing to the Contractor, stating the circumstances that determined the decision. If the requirements of this provision are followed, including the written request by the Contractor and the written approval by the Project Engineer, then the remedy for failure to provide the Certificate is the withholding of 100% of the cost of the material and the cost of the work associated with the installation of the material.

At the conclusion of the contract, there may still be some items that are lacking the required certificates. These items must be assessed as to their usefulness for the installation, prior to payment of the Final Estimate and subsequent Materials Certification of the contract. The review of these items may include:

- Comparison with the suitability of other shipments to the project or other current projects.
- If possible, sampling and testing of the items involved or residual material from the particular lot or shipment.
- Independent inspection on site of the completed installation.

If it is determined that the uncertified material is not usable or is inappropriate for the completed work that incorporates the material, the Contractor should be directed to immediately remove the material, replacing it with other certified materials. If the material is found to be usable and is not detrimental to the installation it was incorporated into, it may be left in place but, if the provisions of Section 1-06.3 were followed, with a reduction to no pay. The reduction in pay will be the entire cost of the work (i.e., unit contract price, portion of lump sum, etc.) rather than only the material cost. The Contractor should continue to have the option of removing and replacing the uncertified material in order to regain contract payment for the installation. If the provisions of Section 1-06.3 were not followed, then there can be no withholding beyond the value of the missing work itself (the preparation and submittal of the Certificate.)

1-2.8D Contractor Submittals

Missing submittals is a principal source of delays in closing out the project and processing the final estimate. As the project proceeds toward completion, the Project Engineer and the Contractor should attempt to obtain all submittals as the need arises. These might include such things as materials certificates, certified payrolls, extension of time requests, or any other item or document that might delay processing the final estimate. Attention is needed to assure the receipt of these items from subcontractors as they complete their work.

1-2.8E Guarantees/Warranties

As specified in Section 1-05.10 and 1-06.5 of the Standard Specifications, the Contractor shall provide to the Project Engineer all guarantees, warranties, or manuals furnished as a customary trade practice, for material or equipment incorporated into the project. The Project Engineer should transmit the originals of any such guarantees / warranties or manuals to the organization that will be maintaining the items covered by the guarantee/warranty or manuals. The Project office should maintain a copy of the guarantee/warranty, and a letter of transmittal for manuals, with the materials documentation file for the project.

1-2.8F Contractor's Performance Reports

The procedures for completing and submitting the Prime Contractor's Performance Report are included with the report, Form 421-010, and the Prime Contractor's Performance Report Manual, M 41-40. The requirement for this report and other direction can also be found in WAC 468-16-150 and WAC 468-16-160.

Should the Contractor’s typical performance on a contract become below standard, the Project Engineer should immediately notify the Regional Construction Manager of the facts in the matter, seeking assistance and advice.
1-3 Estimates and Records

1-3.1 Estimates

1-3.1A General

Payment for work performed by the Contractor and for materials on hand must be made in accordance with Section 1-09 of the Standard Specifications. To facilitate payments to the Contractor and ensure proper documentation, WSDOT utilizes an automated computer system to record project progress in terms of bid item quantity accomplishment. This is then used to pay the Contractor for actual work performed during each designated pay period or for materials on hand. The automated system that completes this task is called the Contract Administration and Payment System (CAPS). CAPS utilizes an electronic tie between each project office’s computer system and the mainframe computer. This system provides access to a large volume of corporate data and facilitates the maintenance of this data by different groups in different locations. Some of these different activities include:

- Contract Initiation — A Headquarters action whereby new contracts are created and stored in a computer file. The information consists of the names of the Contractor and the Project Engineer, project descriptive data, accounting identifier numbers, preliminary estimate, proposal date, bid opening date, award date, execution date, accounting groups and distributions, and an electronic ledger.

- Project Ledger — An updating process by the Project Office which keeps track of work performed on the contract as it is completed.

- Estimate Payments — A Project Office action whereby progress estimates and Regional final estimates are processed directly from the Project Office. The Headquarters Final Estimate process activates the Region Final when all the required paperwork is in place. Supplemental final estimates are processed by Headquarters only. Complete instructions for use of the CAPS computer system are included in the manual titled Contract Administration and Payment System (M 13-01).

1-3.1B Progress Estimates

Progress estimates are normally processed on the 5th of the month for odd numbered contracts and on the 20th of the month for even numbered contracts. Where the Project Engineer deems it appropriate, estimates may also be run on other dates.

Estimates may also be run on other dates if the progress estimate or parts of the progress estimate were withheld to encourage compliance with some provision of the contract and the Contractor resolves the issue that caused the withholding. These estimates should be paid immediately upon resolution by the Contractor.

Within the CAPS system, the basis for making any estimate payment is information from the project ledger. Every entry in the ledger is marked by the computer as either paid, deferred, or eligible for payment. Before an estimate can be paid, a Ledger Pre-Estimate Report (RAKD300C-PE) must be produced. In constructing this report, the CAPS system gathers all the ledger entries that are identified as eligible for payment, prints them on the report summarized by item, and shows the total amount completed to date for that item but not yet paid for by progress estimate. The report also shows any deferred entries or exceptions if they exist and includes a signature block for the Project Engineer’s approval.

If there are errors or omissions in this report, the ledger must be changed to reflect the correct data. After corrections are made, the Ledger Pre-Estimate Report must be run again in order to get the corrections into the report and made available for payment by progress estimate. Once the Ledger Pre-Estimate Report is correct, an actual estimate can be paid. The report containing the Project Engineer’s signature should be retained in the project files.

The estimate process is then accomplished with a few keystrokes in option 2, estimate payments, in the CAPS main menu. At this point, the CAPS system will automatically calculate mobilization, retainage (on projects containing no Federal funds), and the sales tax. The warrant will be produced, signed, and sent to the Contractor along with the Contract Estimate Payment Advice Report and two different sales tax summary reports. Copies of these reports will also be sent to the Project Office. When the Project Office receives their copy of the Contract Estimate Payment Advice Report, the total amount paid for contract items should be checked against the Pre-Estimate Report. This helps to verify that the amount paid was what the Project Engineer intended to pay. In addition, the ledger records that produced the estimate will now be marked by the CAPS system as being paid.

Up to the point of actually producing the warrant, the entire process for making a progress estimate payment is initiated and controlled by the Project Office.

Particular attention should be given to the comparison of the plan quantities and the estimate quantities for the various groups on the project as shown on the Ledger Pre-Estimate Report. Overpayments on intermediate progress estimates are sometimes difficult to resolve with the Contractor at the conclusion of the project.

New groups which do not change the termini of the original contract or changes in groups should be accomplished by memorandum from the Region to the State Accounting Services Office.

An additional estimate may be prepared if considerable work has been done between the date of the last progress estimate and the date of physical completion when the Engineer anticipates delays in preparing the final estimate. Should this circumstance occur, the additional estimate should show the work done to date no later than the day before the date of physical completion.

1-3.1B(1) Payment for Lump Sum Items

The Contractor is required to submit a detailed Lump Sum price breakdown for those items specified as Lump Sum for which there is no specified payment described in the payment clause of the applicable specification. Estimate payments for items specified as Lump Sum will be a percentage of the price in the Proposal, based on the Project Engineer’s determination of the amount of work performed.
Consideration will be given to, but payment will not be based solely on, the Contractor’s Lump Sum breakdown. The Project Engineer should verify that the price breakdown is based upon a reasonable proportioning of the work, and detailed enough to allow a determination of the work performed on a monthly basis.

Payment of the first 80 percent of the Lump Sum price for Type B Progress Schedules will be made on the next progress estimate following the submittal and approval of the Type B Progress Schedule. The payment will be increased to 100 percent of the Lump Sum price when the Contractor has attained 80 percent of the Original Contract Award amount, as shown on the CAPS Pre-Estimate Report (inclusive of payments made for Material on Hand).

On WSDOT contracts for which payment is made through CAPS (Contract Administration and Payment System), payment for mobilization is calculated and paid automatically by the system. On contracts that do not use CAPS, the Project Office must calculate, and make payment for, the Contract item “Mobilization.” Payment will be made in accordance with Standard Specification 1-09.7 - Mobilization. Based on the lump sum Contract price for “Mobilization,” partial payment will be made as follows:

1. When 5-percent of the original Contract amount has been earned from other Contract items, excluding any amounts paid for materials on hand, the Contractor is also entitled to a partial payment of the Bid item “Mobilization”. This payment, which is in addition to payment for contract work performed, will be calculated as 50-percent of the amount bid for “Mobilization” or 5-percent of the original Contract amount, whichever is the least.

2. When 10-percent of the original Contract amount has been earned from other Contract items, excluding any amounts paid for materials on hand, the Contractor will be paid 100-percent of the amount bid for “Mobilization” or 10-percent of the original Contract amount, whichever is the least. This payment is in addition to payment for contract work performed.

3. When the Substantial Completion date has been established for the project, payment of any remaining portion of the lump sum item “Mobilization” will be made.

1-3.1B(2) Payment for Material on Hand

Payment for material on hand (MOH) may be considered for materials intended to be incorporated into the permanent work. The requirements for payment of MOH are noted in Section 1-09.8 of the Standard Specifications. Payments for MOH are made under the 900 series of item numbers as ledger entries and need to be backed out as items are utilized such that 900 series entries are zeroed at close out of the contract. Therefore logically payment for MOH shall not exceed the value of the corresponding bid item. It is the responsibility of the project engineer to devise procedures that assure this is done correctly.

Payments may be made provided the contractor submits documentation verifying the amounts requested, the materials meet the requirements of the contract and the materials are delivered to a specified storage site or stored at the suppliers/ fabricators as approved by the project engineer. Materials shall be segregated, identified and reserved for use on a specific contract or project. Payments commensurate with the percentage of completion may be paid for partially fabricated items.

All materials paid for as MOH must be readily available for inspection by the owner. Steel materials must be available for inspection but this availability need not be immediate. Reasonable notice should be given to allow the contractor to locate and make the material available for inspection. The project engineer may accept a higher level of risk that steel material may not be reserved for our use. The contractor’s obligation to perform the work and the surety’s guarantee of this obligation serve to offset the risk that reserved materials are diverted to other projects.

When materials paid for as MOH are stored in areas outside the general area the region shall make arrangements for inspection as deemed necessary prior to making payment. The region may utilize other regions or the State Materials Laboratory in doing so.

When contracts are estimated to cost more than $2 million and require more than 120 working days to complete, a General Special Provision (GSP) will be included in the contract provisions, requiring documentation from the contractor as the basis for MOH payments and deductions. When this GSP is included in the contract provisions, the following procedure is used to determine how much of the MOH payment should be deducted from an estimate:

- Each month, no later than the estimate due date, the contractor will submit a document and the necessary backup to the Project Engineer that clearly states:
 - The dollar amount previously paid for MOH,
 - The dollar amount of the previously paid MOH incorporated into the various work items during the month, and
 - The dollar amount that should continue to be retained in MOH items.

If work is performed on the items and the contractor does not submit a document, all previous associated MOH payments may be deducted on the next progress estimate.

1-3.1B(3) Payment for Falsework

On those projects which include a lump sum item for bridge superstructure, payment may be made on request by the Contractor for falsework as a prorated percentage of the lump sum item as the work is accomplished. The Project Engineer may require the Contractor to furnish a breakdown of the costs to substantiate falsework costs. For any given payment request, the Contractor may be required to furnish invoices for materials used and substantiation for equipment and labor costs.

1-3.1B(4) Payment for Shoring or Extra Excavation

When Shoring or Extra Excavation Class A is included as a bid item, payment must be made as the work under the bid item is accomplished, the same as for any other lump sum bid item. When Shoring or Extra Excavation Class B is included as a bid item, measurement and payment shall be made in accordance with Sections 2-09.4 and 2-09.5 of the
Standard Specifications. RCW 39.04 provides that the costs of trench safety systems shall not be considered as incidental to any other contract item, and any attempt to include the trench safety systems as an incidental cost is prohibited. Accordingly, when no bid item is provided for either Shoring or Extra Excavation Class A or Shoring or Extra Excavation Class B and the Engineer deems that work to be necessary, payment will be made in accordance with Section 1-04.4 of the Standard Specifications.

1-3.1B(5) Payment for Asphalt, CRS-2P, Steel, and Fuel Cost Adjustment

Some projects may include the specifications for Asphalt Cost Adjustment, CRS-2P Cost Adjustment, Steel Cost Adjustment, or Fuel Cost Adjustment (one or more) as a General Special Provision. Not all projects will contain these provisions, since their use depends on the type of work, the duration of the contract, and Region preference. For those contracts containing one or more of the cost adjustment bid items, an adjustment (payment or credit) will be calculated monthly for qualifying changes in the index price of the commodity. No adjustment (payment or credit) shall be made if the ‘Current Reference Cost’ is within the percentage of the ‘Base Cost’ specified in the contract, and only those items that are included in the provision are eligible for adjustment. Worksheets are available, in the “Shared Documents” folder of the “HQ Construction” Sharepoint site (http://sharedot/rp/hqconstr/default.aspx), to assist the Project office in computing these price adjustments.

It is important to understand that the adjustments provided by these provisions are not a guarantee of full compensation for changes in the contractors cost, and that they are intended only to absorb some of the risk of severe cost escalation during contract performance. Because of this, the method of computing the adjustment has been simplified to eliminate tedious considerations that would otherwise be required to provide precise reimbursement of actual costs.

Payment for “Asphalt Cost Price Adjustment,” “CRS-2P Cost Adjustment,” and “Fuel Cost Adjustment” is based on quantities of the eligible material(s) incorporated during the period covered, as demonstrated by pay notes for those items. Payment for “Steel Cost Adjustment” is based on the quantity of eligible steel items incorporated or paid as Materials on Hand for the period covered. The Contractor is required to provide documentation of the quantities and the date shipped from the producing mill to the manufacturer. If the Contractor fails to provide the required documentation, any adjustment credit will be unilaterally computed by the Project Office using a shipment date determined by the Engineer. If the Contractor wishes to protest this adjustment, it must be done in accordance with Section 1-04.5 of the Standard Specification.

The provisions for these items are prescriptive, and should result in the correct adjustment if they are followed to the letter. Regardless of whether the estimate cutoff is the 5th of the month or the 20th of the month, any adjustment will apply the most current reference cost to the entire current quantity of each eligible item paid (or deferred) in the current estimate. When a portion of the payment for an eligible item is deferred, a similar portion of the price adjustment for that item should be deferred.

The provisions for these cost adjustments are silent in regard to changed work because there are other contract clauses that address how the Department will pay for changed work. Should changes occur in bid items that are eligible for adjustment, equitable adjustments should adhere to the guidance provided in Chapter 1-2.4C of this Manual. Under no circumstances should eligible items that were not included in the specifications at the time of bid be added by change order after award and execution of the contract. Likewise, these provisions should not be added by change order. FHWA will not participate in the cost of retroactive price adjustments.

1-3.1B(6) Payment for Surplus Processed Material

When excess aggregate is produced by the Contractor from a WSDOT furnished source, the Contractor will be reimbursed actual production costs if the excess materials meet the requirements of Section 1-09.10 of the Standard Specifications. If more than one type of aggregate is involved, the provisions of Section 1-09.10 apply to each type.

If WSDOT has a need for the excess aggregate for either maintenance or future construction contracts, the material may be purchased into the appropriate inventory account. The Project Engineer should contact Region Maintenance and Accounting for guidance. If aggregates are to be disposed of as surplus, the Project Engineer should contact the State Administrative Services Office, Purchasing and Inventory Section, for additional assistance.

1-3.1B(7) Liquidated Damages

Liquidated Damages and Direct Engineering, or other related charges, are to be addressed as described in the contract specifications, Section 1-08.9 of the Standard Specifications, and Chapter 1-2.5G of this manual. Direct Engineering charges are a form of Liquidated Damages and must be listed on the monthly progress estimates on the line for Liquidated Damages. Traffic related damages as described in Chapter 1-2.5G(2) of this manual are to be listed under Miscellaneous Deductions. The Project Engineer must evaluate potential Liquidated Damages that have accrued as a result of the expiration of contract time before the damages are withheld from moneys due the Contractor. The work and circumstances that have occurred over the course of the project should be reviewed to determine if there is potential entitlement for granting additional contract time. Liquidated Damages that have accrued should be adjusted for this evaluation. Liquidated Damages deemed chargeable should then be withheld from moneys due the Contractor each monthly progress estimate as Liquidated Damages accrue. While the Project Engineer takes the action to withhold damages as the work progresses, only the State Construction Office may actually assess those damages.
1-3.1B(8) Credits

Dollar amounts may be deducted as a “Below the Line Miscellaneous Deduction” from progress or final estimates when WSDOT is due a credit from the Contractor. Routine credits from the Contractor to WSDOT include, but are not limited to, the following items:

- Engineering labor costs when due to Contractor error or negligence, additional engineering time is required to correct a problem. This includes the costs of any necessary replacement of stakes and marks which are carelessly or willfully destroyed or damaged by the Contractor’s operation.
- Lost and/or damaged construction signs furnished to the Contractor by WSDOT. The Contractor should be given the opportunity to return the signs or replace them in kind prior to making the deductions.
- Assessment to WSDOT from a third party that is the result of the Contractor’s operations causing damage to a third party, for example, damage to a city fire plug. Actual costs will be deducted from the estimate.
- Other work by WSDOT forces or WSDOT materials when the Contractor cannot or will not repair damages that are the responsibility of the Contractor under the contract.
- Liquidated damages not associated with contract time, i.e., ramp closures, lane closures (see Chapter 1-2.5G).
- As provided for in the specifications, specific costs or credits owed WSDOT for unsuccessful contractor challenged samples and testing.

The authority to withhold and assess routine “Below the Line Miscellaneous Deduction” on progress and final estimates has been delegated to the Regional Construction Manager, and may be further subdelegated to the Project Engineer. The Project Engineer must give written documentation to the Contractor describing the deduction and provide sufficient notice of the impending assessment.

Credit items which are specifically provided for by the Standard Specifications or contract provisions, such as non-specification density, non-specification materials, etc. may be taken through the contract items established for those purposes. A change order is required for credit items which are not specifically provided for by the contract provisions.

Occasionally a Contractor will send a check directly to a Project Office for payment of money due WSDOT. (The Project Office should not request payment.) Whenever a Project Office or WSDOT employee receives a check or cash directly from a Contractor, it is very important that the guidance found in the Accounting Manual (M 13-82), Chapter 2-1, Control of Cash Receipts, be followed.

1-3.1B(9) Railroad Flagging

All dollar amounts actually incurred by the Railroad Company for railroad flagging, under the terms of the typical railroad agreement, will be paid by WSDOT. The Contractor will incur no costs for railroad flagging unless the flagging is for the Contractor’s benefit and convenience. In this case, the Project Engineer will deduct this cost on monthly progress estimates as a below the line item in the Contract Administration and Payment System.

1-3.1B(10) Payment for Third Party Damages

Section 1-2.4I of this manual details when WSDOT assumes responsibility and pays for third party damages. The Risk Management Manual, M 72 01, provides detailed guidance on procedures, including lines of communication. Payment should be made under the item “Reimbursement for Third Party Damages”. This item is only intended to be used for costs that are the responsibility of the contracting agency. If this item was not included in the contract, it may be added by change order using a separate group for each Control Section (as shown in the Plans) in which an incident occurs.

The next step is for the Project Engineer to determine if an incident warrants an attempt to recover costs based on cost effectiveness. If so, a memo is necessary to provide notice and information to the risk management office. Basically, they need the information necessary to investigate the incident, find the responsible party, determine the amount of the damages and obtain reimbursement for the State. The risk management office needs the following information:

- Contract Number, Project Description
- Names of Witnesses
- Documentation Related to the Damage
 - Change Order Number
 - Field Notes
 - Police Reports
 - Work Order Coding
- Summary of Repair Costs

1-3.1B(11) Withholding of Payments

Withholding payments for work the Contractor has performed and completed in accordance with the contract should not be done casually. There must be clear contract language supporting the action. The authority to withhold progress payments is subdelegated to the Regions. Further delegation to the Project Engineers is at the discretion of each Region.

There are very few occasions when it would be appropriate to withhold the total amount of a payment for completed work. If a minor amount of cleanup remains, if a portion of the associated paperwork has not been submitted, or if minor corrective measures are needed, then the correct action is to pay for the work and defer an amount commensurate with the needed remaining effort.

The concept of “allowing the Contractor to proceed at his own risk” and then withholding payment is not often supported by the contract. There is a contractual obligation to finish the work correctly, there would certainly be a “moral obligation” on the part of the Contractor to live up to the bargain, but there is no contract language that allows such an action. Specific exceptions to this rule are listed below.

Once a decision to withhold any part of the monthly payment has been reached, then it is imperative that the Contractor receive fair notice of this action. The method of this notice can be negotiated with the Contractor and could be a listing at the time of estimate cutoff, a copy of the pre-estimate report or other mechanism. Once notice has been provided, then it is also necessary to allow a reasonable time for corrections to be made.
Chapter 1 Administration

No Payment for the Work

Standard Specification 1-06.3, “Manufacturer’s Certificate of Compliance” is unique in that this is a situation, specified as part of the contract, where the contractor may request permission to assume the risk for no certificate and end up never being paid for the related work.

Progress Payment Deferral

In the following situations, the contract specifies that the contracting agency has the authority to defer the entire progress payment:

- The contracting agency may not make any payments for work performed by a Prime/Subcontractor until the contractor performing the work has submitted a Statement of Intent to Pay Prevailing Wages approved by Labor and Industries (RCW 39.12.040)
- Failure to submit the “required reports” by their due dates (Standard Specification 1-07.11(10)B)

Wage Administration in General

The administration of wages and payment for the work are separate issues. Holding a force account payment for certified payrolls is not appropriate. Withholding payments on the contract is suggested as a method to achieve compliance under the Standard Specifications pertaining to wages (1-07.9(1)). This remedy should not be used without approval of the Headquarters Construction Office. Routine enforcement of wage requirements should be done on their own merits utilizing the sanctions specified as follows:

State Wage Administration

Labor and Industries is the enforcement agency for state prevailing wage administration. The State (WSDOT) is protected under the contract from wage claims by reserving 5 percent of the moneys earned as retained percentage. This 5 percent is made available for unpaid or underpaid wages liens among other claims. Contract payments should not be deferred due to a contractor’s failure to pay the State minimum prevailing wage.

Federal Wage Administration

FHWA 1273 specifies that the State Highway Administration (SHA) is in the enrollment role for federal prevailing wage administration. Under Section IV “Payment of Predetermined Minimum Wage” subsection 6., “Withholding,” the State Highway Administration (contracting agency) is authorized to withhold an amount deemed necessary to make up any shortfalls in meeting Davis Bacon prevailing wage requirements. It goes on to authorize the deferral of all payments, under certain conditions, until such violations have ceased. This is only for federal wage requirements and the amount “deemed necessary” must be based on the amount of the underpayment.

Application of the Standard Specifications

Under 1-05.1 Authority of the Engineer reads in part as follows: “If the Contractor fails to respond promptly to the requirements of the contract or orders from the Engineer….. 2. The Contracting Agency will not be obligated to pay the Contractor, and ……..”

Under Section 1-09.9 Payments reads in part as follows: “Failure to perform any of the obligations under the contract by the Contractor may be decreed by the Contracting Agency to be adequate reason for withholding any payments until compliance is achieved”.

Sounds good and we can do so, but withholding of payments owed the contractor must not be done on an arbitrary basis. Other than the previously noted exceptions, money is normally withheld because work/work methods are not in accordance with contract specifications. Also, the amount withheld must have a logical basis. We cannot penalize the contractor by withholding more than the out of compliance work is worth.

Withholding payments should not be used routinely as a tool for forcing compliance on general contract administration requirements. The State is protected against nonperformance by requiring a performance bond. In the event that lack of contract compliance puts the State at substantial risk monetarily or safety wise, it may be appropriate to inform the contractor of the compliance problem and suspend work under Standard Specification 1-05.1 “Authority of the Engineer” until corrections are made.

When withholding money, remember that delaying the contractor’s cash flow may damage the contractor’s ability to perform work. Before doing so, the State should be able to demonstrate:

- specifically what was not in accordance with the contract and where the requirement is specified in the documents
- that the amount withheld is commensurate with the amount of the unauthorized, uncompleted or defective work
- that the contractor was notified in a timely manner (within 8 days per prompt pay laws) and given a chance to make corrections
- that the State has worked with the contractor to mitigate corrections to non-specification work in order to minimize the cost

The State is required to pay the contractor in a prompt manner within 30 days after receipt of the work or after recognition of entitlement to additional compensation. The Project Engineer must keep an eye on the calendar when scheduling monthly estimate payments.

Regions are not authorized to withhold amounts that are greater than the estimated cost of the missing or incorrect portion of the work. Any such excess withholding must be approved by the Headquarters Construction Office.

1-3.1C Final Estimates — Regions

The final estimate for a project is processed in the same manner as a routine monthly progress estimate. The Work Done to Date entry on a final estimate is the physical completion date. When the Region final estimate is completed and is run in CAPS at the Region, it will not generate a warrant for the Contractor. Instead, the Region final estimate will produce several reports: a final Comparison of Quantities; the Contract Estimate Payment Advice; the Contract Estimate Payment Total; and the Sales Tax Summary.
These reports should be carefully checked to verify the accuracy of items, quantities posted, and the costs that have accumulated through various progress estimates during the life of the contract. Where necessary, corrections can be made to the ledger and the Region final estimate rerun as many times as it takes to make it correct before proceeding with the final estimate process.

If the final estimate shows an overpayment has been made to the Contractor, the estimate should still be processed in the same manner as a normal final estimate. If this occurs, the Contract Estimate Payment Totals report will show a minus amount due the Contractor. When the State Accounting Services Office receives the accepted final estimate package, that office will request any reimbursement due from the Contractor. The Project Engineer should not request reimbursement from the Contractor.

Once the Project Engineer has validated the final estimate amounts, a copy of the Comparison of Quantities Report, the Contract Estimate Payment Advice Report, and the Contract Estimate Payment Totals Report should be forwarded to the Contractor along with the Final Contract Voucher Certification. The Project Engineer might remind the Contractor that the person signing the Final Contact Voucher Certification must be authorized to do so. Authorized signatures are submitted by the contractor at the beginning of each contract.

Once the project has been physically completed, the final estimate package described above should be submitted to the Contractor for signature as soon as is reasonably possible. The final estimate package and request for the Contractor’s signature should be transmitted to the Contractor formally. The effort to prepare the final estimate package will vary in nature and magnitude, depending on the project. In some cases, this work will conflict with field work on other projects. It is expected that final estimate preparation will be scheduled and accomplished as soon as possible, but not later than six months after physical completion.

Once the signatures and all necessary documents have been obtained, the final estimate package should be assembled by the Region and submitted to the State Construction Office. If any needed recommendations for assessment of liquidated damages associated with contract time have not already been submitted, this submittal should include them. The State Construction Office must resolve all issues of liquidated damages before the final estimate can be accepted and submitted to the State Accounting Services Office.

1-3.1D Final Estimates — Headquarters

The final estimate package submitted to the State Construction Office consists of the following:

- Project Status Report — the Project Status Report should address contract time and recommendations for liquidated damages related to contract time, amount of railroad flagging used if any, Miscellaneous Deductions identified, etc. In addition, the report should indicate whether or not all Affidavits of Wages Paid have been received for the Contractor, and all subcontractors, agents or lower-tier subcontractors.
- Final Contract Voucher Certification — Form 134-146, original only.
- If an assessment of liquidated damages has been made previously, include a copy of the letter from the State Construction Engineer to the Contractor assessing these.
- If an assessment of miscellaneous damages or liquidated damages resulting from causes other than time, include copies of letters from the Region to the Contractor for assessment of these.
- Contract Estimate Payment Totals — RAKC300F-EA.

The final estimate package is reviewed by the State Construction Office and submitted to the State Construction Engineer for acceptance of the contract. The date on which the State Construction Engineer signs the Final Contract Voucher Certification becomes the final acceptance date for the contract itself. The final estimate package is then submitted to the State Accounting Services Office.

1-3.1D(1) Final Estimate Claim Reservations

Should the Contractor indicate a claim reservation on the Final Contract Voucher Certification, it must be accompanied by all of the requirements of Section 1-09.11(2) of the Standard Specifications (provided these have not been met in a previous claim submittal). The Project Engineer must assure that the requirements have been met prior to submitting the final estimate package to the State Construction Office. If the claim package is incomplete, return the voucher to the Contractor with notice of the missing parts.

1-3.1D(2) Unilateral Acceptance of Final Estimates

The Project Engineer cannot establish a completion date for the contract if the Contractor is unwilling or unable to submit one or more of the required documents noted in Section 1-08.5 of Standard Specifications. However, the Region can request that the State Construction Engineer accept the contract by signing the Final Contract Voucher Certification (FCVC) in spite of the missing documents.

If the Contractor has not signed the FCVC, the Region can request that the State Construction Engineer accept the contract without the Contractor’s signature. The Region is responsible for notifying the Contractor before such a request is made. The State Construction Office will generate the certified letter notice mentioned in the Standard Specifications, Section 1-09.9. The date of the State Construction Engineer’s signature of the FCVC becomes both the acceptance date and the completion date of the contract, both established unilaterally.

1-3.1E Supplemental Final Estimates

A Supplemental Final Estimate is a payment adjustment made to a contract after the Final Estimate has been processed and the project has been accepted by the State Construction Engineer. A Supplemental Final Estimate may be necessary to correct an inadvertent under payment or where a claim settlement may require additional payment be made to the Contractor. In order to complete a Supplemental Final Estimate, the Project Engineer should complete and assemble the following items, routing them through the Region to the State Construction Office for review and further processing:
1. Complete any corrections or additional postings necessary in CAPS, including any postings to change order items added to CAPS for the settlement of a claim. (Please note, where additional CAPS postings are necessary after the Physical Completion date has been established, the “Work Done To” date in CAPS must be entered as the Physical Completion date or prior.)

2. Complete a Pre-Estimate report including the Project Engineer’s recommendation for payment.

3. Assemble the backup information supporting the necessity and substantiating the cost of the changes to be made.

4. Complete a supplemental Final Contract Voucher Certification (WSDOT Form 134-146 EF) reflecting the changes made and showing the new total “Final Amount”.

After review, the Pre-Estimate report will be signed by the State Construction Engineer authorizing payment to proceed. While postings and corrections to CAPS may continue, once the Completion date has been established for a contract, CAPS will no longer allow the Project Engineer or the Region to process further payments to the Contractor. As a result, payment of the Supplemental Final Estimate will need to be completed for the Project Engineer by the WSDOT HQ Accountability and Financial Services Office.

If this process requires a more timely response, the above documentation may be scanned and e-mailed to the State Construction Office and CAPS; and the contract payments section can be requested to print out the pre-estimate report to be taken to the State Construction Engineer for signature prior to processing the supplemental final estimate. Once the supplemental payment is completed, the signed and executed Pre-Estimate report will be returned to the Project Engineer where it can be maintained as a part of the project payment files and made a part of the Region Temporary Final Records.

While a new Final Contract Voucher Certification is completed as a part of the Supplemental Final Estimate, the Acceptance date will remain the same as established by the State Construction Engineer’s signature on the original Final Contract Voucher Certification.

The above process may not be used when there has been an inadvertent over payment to the Contractor, the Final Estimate has been processed, and the project has been accepted by the State Construction Engineer. In this case, the Project Engineer must work with the Region, the contract payments section of the WSDOT Accountability and Financial Services Office, and the State Construction Office to make the correction. All dates in the system will be deleted, the correction made, and the Final Estimate process will begin again with the Region Final Estimate (see Section 1-3.1C of this manual).

1-3.1F Retained Percentage

Retained percentage withholding is based upon RCW 60.28, which provides that:

- A sum not to exceed 5 percent of the money earned by the Contractor on estimates for projects containing no Federal funds is to be retained by the Contracting Agency.

- The Contractor may submit a bond for all or any portion of the amount of funds retained by WSDOT.

When a contract is awarded, the Division of Accountability and Financial Services (AFS) / Contract Administration and Payments System (CAPS) unit or the Region Plans Office sends a package of contract documents to the Contractor.

This package of contract documents also includes the necessary instructions for the Contractor to make application for a bond to replace all or any portion of the retainage. The bond form will be processed by AFS/CAPS without involvement from Project Engineer’s Office, although the payment system will not allow them to process a payment until some form of retainage is in place.

The Contractor, at any time during the life of the contract, may make a request to the Project Engineer for the release of all or any portion of the amount of funds retained. This request does not need consent of surety since the retainage bond form, for this purpose, requires their consent. The Region must forward this request by transmittal letter to AFS/CAPS, which will furnish the appropriate bond form to the Contractor for execution. The Contractor may return the executed bond form directly to AFS/CAPS for final approval and signature by WSDOT.

- For projects containing no Federal funds that include landscaping work the Contractor may request that, 30 days after completion of all contract work other than landscaping work, WSDOT release and pay in full the amount of funds retained during the life of the contract for all work except landscaping. In order to initiate this release of funds, Form 421-009 EF should be completed by the Contractor and submitted to the Project Engineer. In signing the request, the Project Engineer will confirm that all work, except landscaping work, is in fact physically completed. For any landscaping work that may have been completed, the Project Engineer will designate the amount of landscaping moneys, if any, that have been earned to date by the contractor. In the space designated for remarks the Project Engineer will identify the landscaping or plant establishment work that remains to be completed and its approximate value.

Except for landscaping work, the Project Engineer will determine if all Statements of Intent and Affidavit of Wages Paid have been received for the work that has been physically completed. WSDOT will continue to withhold a 5 percent retainage of any moneys earned for landscaping work that may have been completed to date and will continue to retain 5 percent of the moneys that are to be earned for landscaping that is yet to be completed. A bond is not required.

The completed request along with the Project Engineer’s cover memo confirming receipt of Statement of Intent and Affidavit of Wages Paid for the Contractor, subcontractor, and any lower-tier subcontractors who were involved in the completed work, is then forwarded to the State Construction Office, through the Region Construction Office, for approval. Once approved, the Construction office will submit the request to AFS/
CAPS for further processing. If there are no claims against the retainage still in place and releases have been received from Revenue and Employment Security within the designated 60 day period, AFS/CAPS will release the appropriate portion of retainage to the Contractor.

1-3.2 Final Records for Projects Constructed by Contract

The Project Engineer is responsible for preparing all necessary records in order to document the work performed on the contract. Detailed instructions on the records required and methods of preparing them are covered in Chapter 10 of this manual.

1-3.3 Disputes and Claims

1-3.3A Claims By the Contractor

1-3.3A(1) Disagreement, Dispute, Protest

During the course of a contract, differences of opinion may arise over decisions and plan interpretations that benefit one party at the expense of the other. It is the policy of WSDOT to pursue resolution of these differences at the earliest possible time and to fully recognize all of the contractual rights of the Contractor during the resolution process.

Disagreements, disputes and protests are the responsibility of the Project Engineer until a formal claim is filed in accordance with Section 1-09.11(2). Contact the Headquarters Construction Office for concurrence before taking any issue to a Disputes Review Board. The Project Engineer may employ a variety of techniques and procedures to pursue resolution of these issues. With the high potential for cost impact, it is strongly recommended that all disagreements be identified and tracked.

When a protest occurs during a contract, the Contractor shall pursue resolution through the Project Engineer as outlined in Section 1-04.5 of the Standard Specifications. The Specification contains specific requirements which, if not followed, may result in a waiver of the Contractor’s claim. The Project Engineer should monitor whether the Contractor is meeting these requirements. If all of the requirements have been met, the Project Engineer shall evaluate the merits of the protest and take whatever appropriate action is needed to resolve the issue. If it appears that the Contractor has failed to meet any of the requirements set forth in 1-04.5, the Project Engineer should advise the State Construction Office and request guidance. Pending such guidance, the Project Engineer may continue to discuss the protest with the Contractor with the qualification that no final evaluation of the protest will be made until permission is received from the State Construction Office.

1-3.3A(2) Claims

If the Contractor has pursued and exhausted all the means provided in Section 1-04.5 to resolve a dispute, the Contractor may file a formal claim. A formal claim, filed in accordance with Section 1-09.11(2), is a much more structured device and demands a high level of conformance with the contract requirements. The objective is to utilize the rights that WSDOT has under the contract to identify the issues, obtain a sufficient level of information from the Contractor and limit the discussion to a defined subject matter. To accomplish this, and to maintain the Department’s rights in a situation that may lead to court action and expensive lawsuits, the Project Engineer must insist on rigid conformance with the requirements of the provision. In fact, the first evaluation must not be of the claim’s merit, but rather of the claim’s structure and content. If the package fails the specification requirements in any way, it should be returned to the Contractor immediately with a written explanation. Conversely, if the package meets the contract requirements, then the Project Engineer must comply with the demands for WSDOT actions that are included in the same specification.

The existence of a formal claim does not diminish the responsibility of the Project Engineer to pursue resolution. The only difference is that Headquarters final approval of a proposed settlement is required. The change order settling a formal claim must include waiver language similar to the following:

“The Contractor, (company name), by the signing of this change order agrees and certifies that:

Upon payment of this change order in the amount of $_________, any and all claims set forth in the letter(s) to the Department of Transportation, dated ___________ and signed by ___________ of (company name) in the approximate amount of $_________, have been satisfied in full and the State of Washington is released and discharged from any such claims or extra compensation”.

If the settlement is intended to close out all dispute discussions for the contract, use language similar to:

“The Contractor, (company name), by the signing of this change order agrees and certifies that:

Upon payment of this change order in the amount of $_________, any and all claims in any manner arising out of, or pertaining to, Contract No. ___________, (including but not limited to those certain claims set forth in the letter(s) to the Department of Transportation, dated ___________ and signed by ___________ of (company name) in the approximate amount of $_________, have been satisfied in full and the State of Washington is released and discharged from any such claims or extra compensation in any manner arising out of Contract No. ___________”.

1-3.3A(3) Legal Filing

Once the Contractor has submitted a formal claim in an acceptable form and the State has either denied the claim or failed to respond in the time allowed, the Contractor is free to seek judicial action by filing a lawsuit or, in some cases, demanding binding arbitration. Note that the Contractor must fully comply with the provisions of Section 1-09.11 before it can seek judicial relief. Once any legal action has been started, the Project Engineer may only continue with settlement efforts if the Attorney General’s office has
given specific permission to do so. Such permission may be sought through the State Construction Office. Settlements of claims which have resulted in a judicial filing need review and approval by the Attorney General’s office and different waiver language similar to the following:

“The Contractor, (company name), by the signing of this change order agrees and certifies that:

Upon payment of this change order in the amount of $________, any and all claims in any manner arising out of, or pertaining to, Contract No.________ (including but not limited to those certain claims set forth in the complaint filed under Thurston County Cause No.________ (Contractor’s name) vs. State of Washington), have been satisfied in full and the State of Washington is released and discharged from any such claims or extra compensation in any manner arising out of Contract No.________.”

1-3.3A(4) Final Contract Voucher Certification

In some cases, of course, the Contractor will not have been so cooperative as to participate in resolution efforts. After a protest has been disallowed, there may have been no formal claim filed and the Project Engineer really doesn’t know if there is a continuing problem. The way to resolve this after the project is physically complete is to assemble the final estimate and send it to the Contractor with a Final Contract Voucher Certification (FCVC). The FCVC is the Contractor’s last chance to formally file a claim. If there is no exception above the Contractor’s signature on the FCVC, there is no claim. The contract will be over as soon as the State Construction Engineer accepts it. If the Contractor does not return the FCVC in a reasonable time, WSDOT may unilaterally set the completion date and process the final estimate without the Contractor’s signature. Proposals to unilaterally accept a contract should be discussed with Region managers before any action is initiated.

1-3.3B Claims Against the Contractor — Damage

The Department has a claims office, now known as the Washington State Department of Transportation Risk Management Office (RMO). All receptionist job descriptions, all Region operations manuals, and all telephone training is set up to refer citizens with damage claims related to construction to the RMO and to provide the toll free number (1-800-737-0615). The RMO will react to the call, issuing claims forms, contacting the contractor, and following up on the actions taken. The Project Engineer’s role is to appropriately advise the RMO, if needed. There may be confusion about which contract is involved. Field office knowledge about the incident and the surrounding circumstances may be solicited. The contractor’s insurance and the insurance provided by the Contractor for the State may be involved and information about the policy will, most likely, be requested.

If, in spite of the Department process, the claimant contacts the field office directly, the Project Engineer should refer the claimant to the State Risk Management Office (1-800-737-0615).

1-3.3C Claims Against the Contractor — Money

Claims received by the Region for money owed by the Contractor should be referred to the Contractor. A claimant should be advised of the legal right to file a lien against the retained percentage or performance bond for claims involving labor, equipment, or materials used on the project and be referred to the State Accounting Services Office for obtaining the necessary lien forms.

1-3.3D Claims Against Officials and Employees

The statutes provide that claims may be filed against the State of Washington, State officers and employees, for damages resulting from their conduct and prescribes the manner in which the action must be taken. Whenever this occurs, the state will furnish the legal defense and pay any judgments if the act which caused the alleged damage was within the scope of the person’s duties, was in good faith, and without negligence.

1-3.4 Stewardship

Webster defines “steward” as “one who acts as a supervisor or administrator, as of finances and property, for another or others.” The designated steward of all federal highway funds is the United States Department of Transportation, acting through the Federal Highway Administration. In Washington State, FHWA is represented by its Washington Division. Washington Division has delegated a portion of its stewardship responsibility (and the corresponding authority) to the Washington State Department of Transportation through the Federal-Aid Highway Program Stewardship and Oversight Agreement, signed on February 19, 2008.

This section describes further agreement between FHWA and WSDOT concerning the details of the part of the stewardship agreement that applies to construction (Section V c. Construction and Contract Administration and VII Appendix B Construction Monitoring Plan). The subject matter of this sub-agreement is monitoring of construction performed on behalf of WSDOT by independent contractors.

Scope of Construction Monitoring Plan

This plan deals specifically with federally-financed construction performed under contracts with WSDOT and administered through the WSDOT State Construction Office. It is not intended to be all-encompassing. WSDOT Ferries Division contracts for construction of vessels and facilities are not included. Contracts for work through local agencies are not included. Federally-financed utility agreements are not included. Emergency Relief work performed by contractors and administered by WSDOT Maintenance is not included.

Project Responsibility

FHWA, Washington Division, has delegated to WSDOT (and through the WSDOT delegation of authority to the State Construction Office) stewardship responsibility and authority for all federally-funded construction except new construction and re-construction on the Interstate system and certain specially-selected areas of high interest. The
special selections are made by FHWA and include significant demonstration projects, special funding agreements and projects of very high national interest. Projects with full FHWA oversight are listed on the State Construction Office web site at: www.wsdot.wa.gov/biz/construction/Stewardship/Stewardship.xls.

The Construction Office has further delegated the stewardship reporting responsibility for projects with a contract value less than $6.0 Million to the various WSDOT Regions. The delegation of stewardship authority from Headquarters to the Regions is through the Construction Manual.

FHWA has also delegated to WSDOT the authority to accept projects on the Interstate system that are not new construction or re-construction. This authority has been further sub-delegated to the Regions for projects with a contract value less than $6.0 Million.

FHWA Review/Approval Actions & Related Processes

With the pre-approval of specifications and processes and the extensive delegation of stewardship authority, there are relatively few approval actions needed from FHWA during actual construction.

For new construction and re-construction on the Interstate system, FHWA has retained the oversight role of interim, or project, inspections, final inspections and acceptance, and the approval of certain high-value change orders.

The following processes will apply:

For project inspections, the WSDOT Project Engineer and the FHWA Area Engineer shall agree on the timing of such inspections. Typically, project inspections will take place quarterly, however, the Area Engineer may select other frequencies. The Project Engineer will advise the Area Engineer when agreed milestones or completion stages have been accomplished and the Area Engineer will schedule the review and prepare the report. (A similar process will be followed between the Project Engineer and the Headquarters Construction representative for delegated projects when the delegation has been retained at Headquarters. Regions will develop processes for those jobs delegated to them.)

For final inspections and acceptance, the review will be conducted in two parts. The first part will be a field review of the work and will be conducted at about the time of physical completion, when the contractor is still available to make corrections or changes identified during the review. The second part of the process will be the final acceptance review. This will be conducted after WSDOT has accepted the contract and has assembled all cost and materials documents. The second part of the review (acceptance) may be conducted with an exchange of documents and without a physical visit to the site. The Project Engineer will notify the Area Engineer when these times have arrived and the Area Engineer will schedule the reviews and will prepare one final report summarizing both reviews. (A similar process will be followed between the Project Engineer and the Headquarters Construction representative for delegated projects when the delegation has been retained at Headquarters. Regions will develop processes for those jobs delegated to them.)

Change orders on FHWA stewardship projects (for which FHWA has not delegated stewardship responsibility to WSDOT) may be approved by WSDOT unless they alter the termini, character or scope of work of the contract they have a net value of more than $200,000, or they change contract time by more than 30 days. Note: Changes that adjust quantities without changing the work may be approved by WSDOT regardless of value. FHWA approval will normally be a written formal response, but may be verbal if the public interest is served by the more timely action. In all cases, the FHWA approval of a change order shall be obtained through the State Construction Office.

The FHWA Area Engineer may also choose to accompany the WSDOT reviewer during the review of any federal-aid project. Such participation will be random and will be initiated by the Area Engineer. This participation by the FHWA will not change any delegation of oversight responsibility or authority in any way. When the Area Engineer has participated in a review, a copy of the summary report will be provided directly to the Area Engineer.

Stewardship Summary Reports

It is important to note the difference between a steward and a stewardship reviewer/reporter. Stewardship on WSDOT federal-aid projects is provided by a wide cross-section of employees who make stewardship decisions according to the requirements of the Construction Manual and their own delegated responsibilities and authorities. From the field inspector who observes contract work and prepares pay instructions, to the Project Engineer who reviews and approves a monthly progress payment, to the Region Construction Manager who executes a change order, to the State Construction Engineer who negotiates and approves a claim settlement, all are acting as stewards in their own job descriptions and assignments.

The stewardship reviewer/reporter, on the other hand, is acting as an overseer, observing and collecting information about all of the stewardship activities, evaluating that information, making recommendations concerning the qualification of the covered work for federal funding and preparing reports to summarize the activities. Reviewers may be FHWA Area Engineers, State Construction Engineers, Region Managers or subordinate Region specialists in documentation or contract administration. For the reports that it prepares, WSDOT may assign any person of the classification of Transportation Engineer 3 or above to this duty. The only restrictions are that the reviewer must not have been involved in the project-level administration and the report must be signed by someone with supervisory authority over the Project Engineer or management responsibility over the contract itself.

- Types of Reports
 - Interim Reports (also known as Project Reports) are intermediate summaries of stewardship activities on an uncompleted project. These will be performed on multi-season jobs at least annually. Interim reports may be submitted at a greater frequency or for a special purpose at any time, at the discretion of the stewardship reviewer. Interim reports may be submitted on single-season projects for special purposes, again at the discretion of the reviewer.
Abbreviated Final Inspection/Acceptance Reports are single page closeout reports for projects between $1.00 and $500,000 that summarizes the project in more of a checklist format with opportunity for comments. It will still be necessary for the Stewardship reviewer to evaluate the project documentation and procedures, but the reporting will not be to the same level of detail as a Final Inspection and Acceptance of Federal Aid Project for a project over $500,001. Final Inspection/Acceptance Reports are single close-out reports that summarize the results of reviews conducted in two parts at the completion of all projects. The first part is a review of the field work conducted at a time when the contractor is still available to perform additional work or corrective work. The second part is after acceptance, when the final cost figures are known and the materials certification is available. For FHWA-retained projects, the final inspection and acceptance will be conducted by the FHWA Area Engineer. For delegated projects with a greater value than $6.0 Million, the final inspection and acceptance will be conducted by a representative of the State Construction Office. For projects further delegated to a Region, the final inspection and acceptance will be conducted by a Region representative. The final acceptance portion of the final review may be done without a site visit, working from documents and computer data only.

- Timing of Reports

At least once per year, Headquarters Construction will publish a list of all projects that have been started and not closed out for federal funding. The list will be divided to show the responsibility for stewardship reporting for each project. In the past a Final Inspection and Acceptance of federal-aid project report was required for each project financed in part or in whole with federal dollars. In an effort to expedite contract closure and move unused obligated funds back into the various highway programs sooner, stewardship reporting will take the following course:

- For projects with values between $1 and $500,000: 25% of the projects will be selected from each project office from each Region and an abbreviated Final Inspection and Acceptance of Federal-Aid Project will be required.
- For projects with values between $500,001 and $6,000,000: 50% of the projects will be selected from each project office from each Region and a Final Inspection and Acceptance for Federal-Aid Project (WSDOT Form No. 421-101 EF) will be required.
- For projects with values greater than $6,000,000: 50% of the projects will require a Final Inspection and Acceptance of Federal-Aid Project form.

Interim reports will be performed at times that are appropriate for the nature and progress of the work and the seasonality of the project. These times will be determined through the judgment of the reviewer. The objective for all reviewers will be to prepare and submit interim reports within 30 calendar days after the field review.

For Abbreviated Final Inspection/Acceptance Reports, final inspection will be conducted around the time of physical completion, while the contractor is still mobilized and able to perform corrective or added tasks. Final acceptance review of the project will be conducted after the State Construction Engineer’s final acceptance of the contract itself and after receipt of the Region’s Materials Certification. The objective for all reviewers will be to prepare and submit the Abbreviated Inspection/Acceptance Report within 30 calendar days after project final acceptance. Final inspections for projects over $500,001 will be conducted around the time of physical completion, while the contractor is still mobilized and able to perform corrective or added tasks. The Project Engineer is in the best position to identify this time and shall advise the reviewer that a final inspection is needed. Final acceptance reviews will be conducted after the State Construction Engineer’s final acceptance of the contract itself and after receipt of the Region’s Materials Certification. The objective for all reviewers will be to prepare and submit the final inspection/acceptance report within 60 calendar days after project final acceptance.

Copies of reports prepared by FHWA will be sent to the State Construction Office. Copies of reports prepared by any WSDOT reviewer will be collected by the State Construction Office and forwarded to FHWA.

- Content of Reports:

Stewardship reports provide a high-level overview for those who may not know the project intimately, but may need to be aware of the more significant details of the contract. Communicating those details in a concise and comprehensive manner is a critical aspect of the report. Any individual reading the report should be able to have a reasonable idea of how the project proceeded.

In addition to providing an objective view of the project, a stewardship report should clearly identify what is unique to that project and what circumstances made it unique. Most of our projects are routine and the stewardship reports will reflect that. However, when a project has conditions that are out of the ordinary, the stewardship report should explain what occurred on the project to make those conditions significant.

The ability to write a practical report in a clear and concise manner is a mark of a good engineer.

Job Description: A description of the major elements of the work. Include a narrative about the job. Include the contractor’s name, the award date and the amount of the bid.

Time and Damages: On an interim report, discuss the present status of time and its relationship to the completion status. If behind, describe what is being done to catch up. Describe any suspensions or time extensions. On a final report, discuss the final time result. If overrun, discuss liquidated damages. Subjectively, comment on the amount of time set up. If working days are extended by 10% of the original contract amount, describe the cause(s) that warranted the increase.
Change Orders: Confirm that each change was approved according to the checklist before the work started. Evaluate the preparation of the change order and the justification. For all changes, include a statement of federal participation eligibility. Include more detailed discussions of major or significant changes (e.g. Scope Change, Claim Settlements, Significant Actions, and Changes over $100,000).

Cost: List the final payment, the original amount, the net effect of change orders and the mathematical calculation of net overruns/underruns. Obtain and include a general explanation of the overs and unders.

Materials: On an interim report, review a process in progress by checking for submittals and approvals of RAMs, any drawing or catalog submittals, the testing method and frequency, adjustments to the ROM, observe field tests and include a summary report. Comment on the overall status of materials testing, documentation and adequacy. On a final report, review the Region Materials Certification, comment on any missing items and mention the resolution of the certification for participation purposes. If material deficiencies warrant withholding of Federal participation, define the deficiencies and the amount of Federal participation being withheld. Refer to the following section, “Quality Improvement and Accountability,” in the Stewardship and Oversight Agreement, for a discussion on selection of processes for review.

Disputes, Claims: On an interim report, note any claims or major disputes presently underway. Note how previous issues have been resolved. On a final report, note any exceptions to the final voucher certification and describe the issue.

Traffic Control: Comment on the adequacy of the traffic control plans. Discuss the project’s use of flagging, devices, pilot cars, etc. and any unusual events during the project.

Training: On an interim report, determine that a plan has been submitted and approved. Also, note the comparison between accomplished training and the completion status. Report any efforts to recover if behind. On the final report, list the amount of training originally included, any changes made to this requirement and the total amount of training accomplished.

Subcontracting: Discuss the level and nature of subcontracted work. Note any DBE requirements and any change orders modifying these requirements by deleting, adding or substituting DBE commitments. Make reference to any Condition of Award requirements. Assure that mandatory DBE contracting did happen and that the DBEs performed a commercially useful function (review the On-Site reports). Review on-site reports for any DBE firm utilized, whether or not its utilization was mandatory.

Other: Talk to the Project Engineer. Look for special notes. If there was an experimental specification or process, discuss it. If there was an unusual event or happenstance, discuss that. Describe the overall impression of the contractual relationship. Describe any evidence of successful collaboration between the parties. Include any other information of interest.

Note: As a significant part of any review, the reviewer must visit the jobsite and confirm that a project of approximately the nature and magnitude of that shown on the plans actually does exist. This is true for all stewardship reporting.

Communication

Much of the day-to-day communication between WSDOT and FHWA is informal in nature. Verbal discussions, telephone consultations and e-mail notices (including digital photos when needed for clarity) are used extensively. Except where formal written notices are specifically required, staff from both agencies will attempt to utilize the simplest form of communication that accomplishes the needed communication in the least time. All reports and correspondence related to a project shall bear both the WSDOT contract number and the FHWA project number as identifiers.

1-4 Utility and Railroad Relocation

1-4.1 Work Performed Under Utility Agreements

Utility agreement work associated with a contract exists in two categories. The first is work done for a utility by WSDOT that is included in the contract and performed by the WSDOT contractor. The second is work done, either by the utility or the utility’s contractor, that is associated with and done near the WSDOT project.

If the utility work is included in the contract, the plans will show the work and will include pay items exactly as if the work was part of the transportation improvement. The responsibility of the Project Engineer is to treat this work the same way that “normal” work is handled. There will be a necessity for communication with the utility itself, inviting comments and joint reviews and inspection of the work. In many cases, the utility will provide materials or equipment to be incorporated into the work. The utility will also provide certification that provided material meets the requirements of the contract. If problems arise and changes are considered, there are additional paperwork demands. The Project Engineer should consult with the Utility and the Region Utility Engineer.

If the work is associated with the project, or if unrelated work is being done nearby, and the utility or its contractor is performing the work, the Project Engineer should treat the neighboring work in the same manner that adjacent WSDOT work would be treated. (See Standard Specifications, Section 1-05.14 and Section 1-2.21H of this manual.)

1-4.2 Work Performed Under Railroad Agreements

Railroad work associated with a contract exists in three categories. The first is work done for a railroad by WSDOT that is included in the contract and performed by the WSDOT contractor. The second is work done, either by the railroad or the railroad’s contractor, that is associated with and done near
the WSDOT project. The third category is railroad protective services. Protective services, such as flagging, are typically provided by the railroad.

If the railroad work is included in the contract, the plans will show the work and will include pay items exactly as if the work was part of the transportation improvement. The responsibility of the Project Engineer is to treat this work the same way that “normal” work is handled. There will be a necessity for communication with the railroad itself, inviting comments and joint reviews and inspection of the work. In many cases, the railroad will provide materials or equipment to be incorporated into the work. The railroad will also provide certification that provided material meets the requirements of the contract. If problems arise and changes are considered, there are additional paperwork demands. The Project Engineer should consult with the Railroad Company and the Region Utility Engineer.

If the work is associated with the project, or if unrelated work is being done nearby, and the railroad or its contractor is performing the work, the Project Engineer should treat the neighboring work in the same manner that adjacent WSDOT work would be treated. (See Standard Specifications, Section 1-05.14 and Section 1-2.2H of this manual.)

Protective services may be called for when the Contractor is performing work on railroad facilities (first category above) or when the Contractor’s work is conflicting or adjacent to a railroad facility that is not being changed. Typically, the railroad will determine the need for service, provide the protective services, and send the bill to WSDOT. There may be an agreement in place, or the railroad’s actions may be unilateral. On all projects including railroad flagging, the Project Engineer will notify the Railroad Company when all work involving the railroad is physically complete.

The addition or revision of agreements with the railroad can be lengthy processes. The Project Engineer should stay alert for possible changes and the need for revisions to the agreement. When these arise, the Railroad Company and the Region Utility Engineer should be contacted early and often.

1-5 Surveying

1-5.1 Site Surveying

1-5.1A Permanent Monuments

Most permanent monuments which are in the construction zone are relocated by the establishing agency. Normally these monuments are relocated prior to beginning of construction, but if monuments are found within the construction zone, they must be preserved until they can be moved. If the urgency of construction does not allow time for the relocation of the monument, it must be properly referenced so it may be reset or relocated at a later time. When a monument is found within the construction area, the proper agency shall be notified promptly and requested to relocate the monument.

1-5.1B Property Corner Monuments and Markers

It is imperative that land plats and property corners be preserved. The 1973 Legislature enacted a Survey Recording Act, RCW 58.09, to provide a method for preserving evidence of land surveys by establishing standards and procedures for monuments and for recording surveys as a public record. When a general land office corner, plat survey corner, or property line corner exists in the construction zone, it is necessary to properly reference it and reset it after the construction work has been done. RCW 58.09.040 requires that, for all monuments that are set or reset, a record of the monument be filed on a Monumentation Map with the County Engineer in the county in which the corner exists and the original sent to the State Right of Way Plans Branch. Headquarters will forward a copy to DNR for their records.

1-5.1C Alignment Monumentation

During construction, alignment monumentation may be altered to fit field conditions. Such changes may include:

- Normally all PCs and PTs are to be monumented. Additional point on tangent (POT) monuments are necessary where line of sight is, or may in the future be obstructed by the horizontal or vertical alignment, buildings, or other barriers.
- When the right of way and the construction alignment do not coincide, the monumentation shall be such that the exact right of way as acquired can be positioned in the field. This will generally require, as a minimum, that the right of way alignment be monumented.
- When safety of the survey crew or survival of the monuments is an issue, monuments may be offset from the true alignment. An extra effort in accuracy must be made when setting offset monuments to ensure an accurate reestablishment of the true alignment. The monumentation, including monument locations, reference distances, stations, and bearings, is to be shown on the as built plans.

1-5.2 Construction Surveying

1-5.2A Surveying Provided by the State

Unless the contract states otherwise, the Project Engineer is responsible for providing all surveying needed to locate and define the contract work. The staking done in construction surveying must assure that the work will conform to the plans and must also conform to the Contractor’s approach to the work. There are numerous survey techniques that will accomplish these objectives. Prior to each phase of the work, the Project Engineer must reach agreement with the Contractor concerning the method, location, and timing of construction staking. Once this agreement is reached, it must be shared with all WSDOT, Contractor, and subcontractor personnel who place or use construction staking.
1-5.2B Contractor Surveying

If the contract requires the Contractor to provide some or all of the construction surveying, the Project Engineer is required to provide only the primary control points staked, marked, and verified in the field and the coordinate information for the main alignment points in the plans. The plan alignment and the field control points must be referenced to the same grid coordinate system.

The provisions for contractor surveying are intended to provide the stakes needed to inspect the work, as well as the primary function of locating and defining the work. If the survey stakes required by the contract do not provide the reference data needed for inspection, then the Project Engineer will have to provide additional survey work that is needed. As an alternative, a change could be negotiated with the Contractor to perform the added work.

The Contractor’s survey work is a contract item, just like all other contract items. It must be inspected for adequacy and conformance with the contract. Once it is performed and inspected, it must be paid for.

The wise Project Engineer will inspect the survey efforts and check as much of the contractor’s work as is practical. Any errors should be brought to the Contractor’s attention for corrective action. The inclusion of contractor surveying in a project transfers the risk of survey errors to the Contractor. The Project Engineer must assure that the survey work of the Contracting Agency does not relieve the Contractor of that risk.

1-5.2C Grade Control

1-5.2C(1) Subgrade Tolerance

The finish required on roadway subgrades shall ensure a final grade in as close conformity to the planned grade and cross-section as is practicable, consistent with the type of material being placed. Subgrade blue tops shall be set 0.05 foot below subgrade elevation and be accurate to + or - 0.01 foot. The finished subgrade surface shall not deviate from the plan subgrade elevation by more than +0.00 to -0.05 foot. Where excessively rocky materials are being placed, deviations in excess of the above may be accepted where, in the opinion of the Engineer, closer conformance cannot be achieved by normal procedures and with a reasonable amount of effort and care on the part of the Contractor. Conformance to grade shall be checked by rod and level, straight-edging, or other appropriate engineering method as selected by the Engineer.

Conformance should be checked by use of rod and levels from blue tops and/or by string-line or straight edge methods as determined appropriate by the Engineer. The above schedule refers to conformance both longitudinally and transversely to the traveled way. The outer shoulder line finished grades shall not exceed double the deviations outlined for the traveled way.

In the event that additional blue tops are not set for setting grade of surfacing courses, the grade of the surfacing shall be referenced to the earthwork subgrade blue tops and adequate controls shall be used to ensure the placement of the required thickness of surfacing and a final surface meeting the requirements outlined above.

1-6 Inspection of Course Thicknesses

Tabulated below are the permissible deviations in measured thickness for specified depths of surfacing and paving. While these are the maximum deviations that can be allowed, the Project Engineer may impose tighter requirements for conforming to the plan dimensions where there is a reason to do so.

<table>
<thead>
<tr>
<th>Material</th>
<th>Specified Depth</th>
<th>Allowable Deviation at Any Point</th>
<th>Average Depth Deviation for Entire Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated Surfacing and ATB</td>
<td>0.00 – 0.25’</td>
<td>-0.03’</td>
<td>-0.05’</td>
</tr>
<tr>
<td></td>
<td>0.26 – 0.50’</td>
<td>-0.06’</td>
<td>-0.04’</td>
</tr>
<tr>
<td></td>
<td>0.51 – 0.75’</td>
<td>-0.08’</td>
<td>-0.05’</td>
</tr>
<tr>
<td></td>
<td>0.76 – 1.0’</td>
<td>-0.08’</td>
<td>-0.04’</td>
</tr>
<tr>
<td></td>
<td>Over 1.0’</td>
<td>-8%</td>
<td>-4%</td>
</tr>
<tr>
<td>Hot Mix Asphalt (HMA)</td>
<td>0.08 – 0.15’</td>
<td>-0.045’</td>
<td>-0.015’</td>
</tr>
<tr>
<td>(single-lift)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 – 0.25’</td>
<td>-0.03’</td>
<td>-0.01’</td>
</tr>
<tr>
<td>(multi-lift)</td>
<td>0.26 – 0.50’</td>
<td>-0.045’</td>
<td>-0.015’</td>
</tr>
<tr>
<td></td>
<td>0.51 – 0.75’</td>
<td>-0.06’</td>
<td>-0.02’</td>
</tr>
<tr>
<td></td>
<td>Over 0.75’</td>
<td>-0.075’</td>
<td>-0.025’</td>
</tr>
</tbody>
</table>

For HMA overlays with a specified depth of less than 0.08 foot, it will be the responsibility of the Project Engineer to ascertain the adequacy of the overlay depth in conformance to the plan.
Chapter 5 Surface Treatments and Pavements

5-1 Cement Concrete Pavement Rehabilitation
 5-1.1 General Instructions
 5-1.2 Replacement of Portland Cement Concrete Panels
 5-1.3 Partial Depth Spall Repair
 5-1.4 Dowel Bar Retrofits
 5-1.5 Sealing Existing Random Cracks, Transverse Joints, and Longitudinal Joints
 5-1.6 PCCP Grinding

5-2 Bituminous Surface Treatment
 5-2.1 General Instructions
 5-2.2 Duties Before Construction
 5-2.3 Inspection of Bituminous Surface Treatment on New Construction
 5-2.4 Inspection of Bituminous Surface Treatment Seal Coats
 5-2.5 Inspection and Sampling of Materials
 5-2.6 Miscellaneous Inspection Duties
 5-2.7 Reports and Records

5-3 Vacant

5-4 Hot Mix Asphalt
 5-4.1 General Instructions
 5-4.2 Inspector Roles and Responsibilities
 5-4.2A Hot Mix Asphalt Plant Inspection
 5-4.2A(1) Inspection of Mixing Plant
 5-4.2A(2) Inspection During Mixing Operations
 5-4.2A(3) Miscellaneous Duties of the Plant Inspector
 5-4.2B Street Inspection
 5-4.2B(1) Duties Before Paving Begins
 5-4.2B(2) Duties During Paving Operations
 5-4.2B(3) Compaction
 5-4.2B(4) Miscellaneous Duties of the Street Inspector
 5-4.2B(5) Multiple Asphalt Plants
 5-4.2B(6) Weed Control Under Asphalt Pavement
 5-4.2C How to ...
 5-4.3 Mix Design

5-5 Cement Concrete Pavement
 5-5.1 General Instructions
 5-5.2 Pre-Pave
 5-5.2A Subgrade Preparation
 5-5.2B Controls
 5-5.2C Equipment
 5-5.3 Paving
 5-5.3A Preparation
 5-5.3B Placing
 5-5.3C Installing Tie/Dowel Bars
 5-5.3D Finishing
 5-5.3E Curing
 5-5.3F Joints
 5-5.3G Smoothness
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-5.4</td>
<td>Post Paving</td>
<td>5-20</td>
</tr>
<tr>
<td>5-5.4A</td>
<td>Repair of Defective Pavement Slabs</td>
<td>5-20</td>
</tr>
<tr>
<td>5-5.4B</td>
<td>Sealing Sawed Contraction Joints</td>
<td>5-21</td>
</tr>
<tr>
<td>5-5.4C</td>
<td>Thickness</td>
<td>5-21</td>
</tr>
<tr>
<td>5-5.4D</td>
<td>Opening to Traffic</td>
<td>5-21</td>
</tr>
<tr>
<td>5-5.5</td>
<td>Stationary Side Forms</td>
<td>5-21</td>
</tr>
<tr>
<td>5-5.5A</td>
<td>Forms</td>
<td>5-21</td>
</tr>
<tr>
<td>5-5.5B</td>
<td>Joints</td>
<td>5-21</td>
</tr>
<tr>
<td>5-5.6</td>
<td>Testing Equipment/Reports</td>
<td>5-21</td>
</tr>
<tr>
<td>5-5.6A</td>
<td>Testing Equipment</td>
<td>5-21</td>
</tr>
<tr>
<td>5-5.6B</td>
<td>Records</td>
<td>5-21</td>
</tr>
<tr>
<td>5-5.7</td>
<td>Check Lists</td>
<td>5-21</td>
</tr>
</tbody>
</table>
5-1 Cement Concrete Pavement Rehabilitation

5-1.1 General Instructions

Rehabilitation of Portland Cement Concrete Pavement is undertaken in order to repair damage to the roadway, extend the life of the pavement, prevent further damage to the pavement, and to provide a smoother ride to the traveling public. The various types of rehabilitation each have specific methods and requirements for performing the work. The Project Engineer and the inspection team must be familiar with the specifications, contract requirements, and techniques to be employed to accomplish the work. In addition, all personnel must be familiar with and adhere to the traffic control plans.

Prior to beginning work, the Project Engineer must ensure that the project personnel are properly qualified in the test procedures to be employed and familiar with the testing requirements; and that the equipment is calibrated and available.

When saw cutting or diamond grinding is required, pay special attention to environmental requirements for the removal and disposal of concrete slurry.

In addition to the requirements of Section 5-05.3(3) of the Standard Specifications, equipment used in PCCP rehabilitation must meet the requirements of Section 5-01.3(1)B of the Standard Specifications.

5-1.2 Replacement of Portland Cement Concrete Panels

When a PCCP panel is damage too severely, the only repair possible is replacement of all or a portion of the panel. This is accomplished by saw cutting and removing the PCCP panel and placing new PCCP, dowel bars and tie bars.

The Inspector must ensure that panels to be removed are laid out according to the plan or as designated by the Engineer. All saw cuts must be full depth. In order to prevent damage to adjacent slabs that are to remain, a second full depth relief cut is required 12 to 18 inches inside the panel in both the transverse and longitudinal directions. If these full depth relief cuts are not made the energy imparted lifting out and or break up the panel may be transmitted to the adjacent panels that are to remain and cause damage.

Once the panel has been removed, the Inspector should inspect the subgrade material and the adjacent panels for any damage. The subgrade should be compacted to grade prior to placement of new concrete. Crushed surface base course or hot mix asphalt may be needed to provide a level and firm surface. This is already included in the standard bid price of the work. If the material is not compactable remove it, place a geotextile and place crushed surfacing base course as detailed in Standard Specifications section 5-01.3(4). Should the material need to be removed, this work, as detailed in items 1 through 5 of the Standard Specification, is to be paid by force account.

If new concrete pavement is to be placed against existing concrete pavement, epoxy-coated dowel bars and tie bars shall be drilled and grouted into the existing concrete pavement. The Inspector should verify that placement and tolerances of dowel bars and tie bars are in accordance with Section 5-01.3(4) of the Standard Specifications.

Note: Placement of bond breaking material such as polyethylene film, roofing paper or other material approved by the Engineer between the replacement panel and adjacent concrete and under the panel will reduce the likelihood that cracks will form in the replacement panels. The bond breaking material under the panel is only required when placed over a treated base (Cement Treated, Asphalt Treated, etc.). Bond breading material will not be required between crushed surfacing and a new panel.

Materials

Ready Mix Concrete

Portland Cement Concrete mixes used in concrete panel replacement have to meet the following additional requirements:

- The mix design must have been designed to have an average flexural strength of 650 psi at 14 days and,
- The concrete must have obtained a compressive strength of 2,500 psi before the panel can be opened to traffic.

The Inspector should ensure that the mix design has been approved prior to use. Acceptance of the mix is verified on the grade by testing the air content and taking 28-day compressive strength cylinders for testing. Acceptance testing for air content and compressive strength should be performed once per shift.

Pre-Packaged Concrete Patching Materials

The Contractor may use patching materials for panel replacement.

Materials

The Contractor shall use concrete patching materials meeting the requirements of Section 9-20 of the Standard Specifications. The Inspector should inspect and document all prepackaged cementitious materials to ensure that they are properly labeled and that the Contractor mixes them to the correct proportions, as specified by the manufacturer.

Ensure that dowel bars and tie bars are placed in accordance with the plan, and meet the requirements of Sections 9-07.5 and 9-07.6 of the Standard Specifications. The Inspector should collect Manufacturer’s Certificate of Compliance documentation (and Certificates of Materials Origin on federally funded projects) for all dowel bars and tie bars prior to use on the project.

Equipment

The Inspector should verify that all equipment used is in good working order and can produce a panel to the correct grade and in compliance with the Contract specifications.
5.1-3 Partial Depth Spall Repair

This work consists of removing and replacing a relatively small portion of a concrete panel.

The Inspector must ensure that removal of existing pavement does not cause damage to any pavement that is to remain. Make sure that a saw cut to a minimum depth of 2-inches is made around the area to be removed. The pavement shall be removed to a depth of 2-inches or to sound concrete as determined by the Engineer.

Materials

The Contractor shall use concrete patching materials meeting the requirements of Section 9-20 of the Standard Specifications. The Inspector should inspect and document all prepackaged cementitious materials to ensure that they are properly labeled and that the Contractor mixes them to the correct proportions, as specified by the manufacturer.

Equipment

The Inspector should verify that all equipment used is in good working order, and meets the requirements of the contract. The Inspector should verify that jackhammers weigh no more than 30-pounds and chipping hammers weigh no more than 15-pounds.

5.1-4 Dowel Bar Retrofits

Dowel bar retrofitting is employed to insure the transfer of loads between adjacent roadway panels and is combined with pavement grinding to extend the service life of the pavement. This increases the stability of the roadway by restricting differential movement of the panels and reducing vertical movement. Dowel bar retrofits are accomplished by cutting slots in the pavement, placing dowel bars, and filling with concrete patching material.

The Inspector should verify that the slots are located per the plan and cut parallel to the centerline of the roadway and to each other, and that they are centered over the transverse joint. All exposed surfaces and cracks in the slot must be sand blasted to a clean concrete surface. All grout residue and debris must be removed form the slot, using either an air compressor or, if approved, a high pressure water blast.

The Inspector should ensure that dowel bars are as specified and are placed per plan. Foam core inserts shall be placed at the middle of the dowel, in line with the transverse joint, and must fit tightly to the sides and bottom of the slot.

Concrete patching material shall be placed in the slots in a manner that does not disturb the dowel bar and to a level slightly above the level of the surrounding roadway.

Within 10 working days of placement of the concrete patching material, diamond grinding of the roadway surface should be done in order to provide a smooth surface.

Materials

The Contractor shall use concrete patching materials meeting the requirements of Section 9-20 of the Standard Specifications. The Inspector should inspect and document all prepackaged cementitious materials to ensure that they are properly labeled and that the Contractor mixes them to the correct proportions, and follows any placement restrictions, listed on the packages.

Ensure that dowel bars and tie bars are placed in accordance with the plan, and meet the requirements of Sections 9-07.5 and 9-07.6 of the Standard Specifications. The Inspector should collect Manufacturer’s Certificate of Compliance documentation (and Certificates of Materials Origin on federally funded projects) for all dowel bars and tie bars prior to use on the project.

Equipment

The Inspector should verify that all equipment used is in good working order, and meets the requirements of the contract. Ensure that air compressors are of sufficient size and capacity to perform the work.

5.1-5 Sealing Existing Random Cracks, Transverse Joints, and Longitudinal Joints

Sealing existing random cracks, transverse joints, and longitudinal joints in a PCCP panel helps restrict the infiltration of water into the subgrade beneath the panel.

Random cracks are sealed by routing, cleaning, and filling with an approved joint sealant material.

Transverse and longitudinal joints are sealed by removing all old sealant material with a diamond blade saw, cleaning the joint and sealing with an approved joint sealant material.

Prior to commencing sealing of random cracks, the Engineer must indicate which cracks are to be sealed. The Inspector must ensure that random cracks are routed to the proper width and depth prior to sealing, and that the top of the sealant material is placed ¼-inch below the surface of the roadway. If the material is not placed at least a ¼-inch below the surface, traffic passing over the joint will remove the sealant.

When sealing transverse and longitudinal joints, the Inspector must verify that the proper depth of the old sealant has been removed from the joint. Immediately prior to sealing, all joints shall be blown clean with dry oil-free compressed air. Sealant materials shall be placed in conformance with the manufacturer’s recommendations and in accordance with Section 5-05.3(8)B of the Standard Specifications.

Materials

Joint sealant shall meet the requirements of Section 9-04.2 of the Standard Specifications.

Equipment

The Inspector should verify that all equipment used is in good working order, and meets the requirements of the contract. Ensure that air compressors are of sufficient size and capacity to perform the work.

5.1-6 PCCP Gridding

Diamond grinding of PCCP panels is employed to increase ride smoothness and to reduce bumps following dowel bar retrofitting and will increase the PCCP pavements life.

The Inspector should ensure that grinding begins within 10-working days of dowel bar placement and once begun is a continuous operation until completed. Pavement shall be ground in a longitudinal direction, with a minimum overlap of 2-inches, removing a minimum of ½-inch from 95-percent of the surface to be ground.
Equipment
The Inspector should verify that all equipment used is in good working order, and meet the requirements of the contract. Ensure that only diamond grinders of sufficient size and capacity are used to perform the work.

5-2 Bituminous Surface Treatment

5-2.1 General Instructions
Refer to Chapter 5-4.1 for a general discussion of responsibilities and attitude of the Inspector on bituminous paving work.

It is very important that the Inspector on construction of a Bituminous Surface Treatment be entirely familiar with the specifications and methods applicable to the work, as construction of these types of surfaces proceeds very rapidly. If the work is begun without proper preparation and planning, it is entirely possible that a major portion of the job will be completed before correction of any improper methods or procedures can be made. Project inspectors should thoroughly review Section 5-02 of the Standard Specifications, the contract plans and the contract special provisions well in advance of Bituminous Surface Treatment construction.

Careful review of Section 5-02.3(10) of the Standard Specifications concerning unfavorable weather and calendar cutoff dates should be made well in advance of any bituminous paving work. In no case should bituminous surface treatments be placed before May 1 or after August 31 of any year except upon written order of the Project Engineer.

To correct the volume of the material to 60°F, the Inspector may use 240 gallon per ton @ 60°F for all grades of emulsified asphalts.

When payment for asphaltic materials is by the ton, they should be measured by weighing. When it is impractical to weigh the materials, the quantity of asphaltic material used may be measured by the gallon and the number of gallons converted to tons with the appropriate temperature volume correction.

5-2.2 Duties Before Construction
See Chapter 5-4 for preliminary duties of the Inspector.

Traffic Control
Refer to Chapters 1-2.3 and 5-4 of this manual for instructions concerning preliminary arrangements to be made for control of traffic.

Inspection Tools and Equipment
Before construction begins, the Inspector shall secure from the Project Engineer all equipment necessary to carry out the inspection duties. This equipment shall include air and asphalt thermometers, a device to measure surface temperature, wind gage, sieves and scale, tapes and rules, canvas sample sacks, containers for sampling asphalt, notebooks, ticket books and diary book.

Inspection of Contractor’s Equipment
Prior to construction of the bituminous surface, the Inspector shall make an inspection of the Contractor’s equipment. The Inspector shall check to see that all required equipment is available, in good condition, and is properly adjusted.

A careful check of the asphalt distributor shall be made to ensure that it meets the requirements of the specifications. The Inspector shall verify the capacity of the distributor, and ensure that the volume gauge is calibrated to correctly indicate quantities in the tank.

Special attention should be given to the condition and adjustment of the asphalt pump, spray bar and spray nozzles. The nozzles should be set uniformly at the proper angle from the axis of the spray bar, normally 15 to 30 degrees, to eliminate interference of the sprayed material from one nozzle with that from an adjoining nozzle. Each nozzle should be set at the same angle. The height of the spray bar must be checked to see that the correct overlap of the spray from each nozzle is obtained. This can be accomplished by plugging alternate nozzles and adjusting the height of the spray bar until the edges of the spray fans from the unplugged nozzles just meet at the roadway surface. When all nozzles are spraying, an exact coverage of asphalt will be obtained, resulting in an application of asphalt free from longitudinal streaking.

The asphalt pump must be checked to ensure that the manufacturer’s required pressure can be maintained uniformly.

The Inspector must check the motor patrol graders, rollers, spreader boxes, etc., to ensure that they are in good operating condition. The Inspector should see that the motor patrols are equipped with the required moldboard brooms. The capacity of hauling trucks and water tanks must be determined, by the Inspector, from measurement obtained on the job, the results being recorded for future reference.

5-2.3 Inspection of Bituminous Surface Treatment on New Construction

Preparation of Roadway
The roadway surface shall be shaped and compacted to a smooth, uniform grade and cross-section before application of the asphalt. No traffic will be allowed on the prepared surface until the prime coat of asphalt emulsion and aggregate is applied. It is essential that the grading of the surfacing material be uniform over the area to be treated to allow uniform penetration of the asphalt. This is different work than that associated with shaping and compacting of crushed surfacing as required in Section 4-04.3(5) of the Standard Specifications. The quality and smoothness of the finished roadway depends to a great extent on the quality of the work done in preparing the roadway. Careful inspection during this operation will lay the groundwork for a smooth riding and uniform appearing finished project.

In many instances, the surfacing course upon which the bituminous surface treatment is to be placed will be segregated, rutted and pot-holed by traffic using the roadway prior to oiling. Such a surface must be completely processed to the depth of the ruts or potholes, and re-laid. Do not allow the Contractor to merely lightly blade the surfacing course, filling the holes with loose, segregated material. Such
procedures are sure to result in a rough uneven pavement, due to differential compaction and penetration.

The surfacing must be damp, bladed, and thoroughly rolled to obtain a dense, unyielding base for the bituminous surface treatment. If additional water is required, it shall be applied in the amount and at the locations designated by the Project Inspector. The final coverage must be with a steel-wheeled roller to produce a smooth surface upon which to apply the prime coat. The blading and rolling of the surfacing shall be coordinated so the asphalt will be applied while the surfacing material is still damp. If the surfacing material compacts to a very tight surface, the asphalt material will not penetrate as much as if the material is more open. If this is the case, the inspector should be careful to not apply too heavy a coat of asphalt.

Application of Asphalt and Aggregate

When beginning a BST section, the Inspector shall require that the Contractor provide a minimum 1,000-foot test strip. This test strip will be used to verify that the Contractor’s equipment is functioning according to specification. Building paper shall be placed at the joint, each time the distributor starts, in a manner that assures a uniform asphalt spread across the area of the joint.

During the application of the asphalt, the Inspector shall maintain a close inspection of the roadway to see that the asphalt is applied in a uniform manner. Longitudinal joints will be allowed only at the centerline of the roadway, the center of the driving lanes, or the edge of the driving lanes. If any evidence of improper application is apparent, the operation must be stopped at once and required corrections be made to eliminate the trouble. The Inspector must check to see that the asphalt pump pressure and the speed of the distributor are maintained at uniform rates to ensure even application of the asphalt. A record shall be made of each distributor load applied, showing area treated, gallons spread, temperature of asphalt, etc. The Inspector should compute the yield of each spread in gallons per square yard depending on diluted or undiluted emulsion.

Part of the prime shot asphalt applied to the surfacing penetrates the material and the rest remains on the surface and surrounds the aggregate, usually ½ inch screenings. Constant checking is necessary to ensure that enough asphalt product is being applied to fill the voids and stick the aggregate. This may change during the day because of weather or the preparation crew’s efforts to stay ahead of the oiling crew. Some bleed can be tolerated on the prime shot as it can be corrected on the second (seal coat) shot if uniform in nature. The final mat will be thicker and better if the maximum amount of asphalt possible, without excessive bleed, is shot on the first (prime) shot. Succeeding shots are placed as seal coats described in Chapter 5-2.4 of this manual.

Stockpiled aggregate shall be inspected to ensure that the grading of the material meets specification, and to see that it is damp at the time of loading onto trucks for hauling to the roadway. If dry or dusty, the material in the stockpile must be watered to produce a surface damp condition. The asphalt does not readily coat a dry dusty surface. During good warm weather, the moisture on the surface of the aggregate will quickly evaporate after the aggregate is spread the asphalt applied to the roadway.

The Inspector must frequently check the truckloads of aggregate at the point of delivery, to see that the trucks are completely loaded and that the material is damp. Tickets shall be issued for each load of material received or a receiving report record made as the loads of material are received. A record shall be made of the quantities of material used on each section.

Following the application of asphalt, the Inspector is responsible for ensuring that the aggregate is applied in accordance with the specifications, watching especially that the aggregate is applied at the correct rate within the time limit allowed. The roadway shall be inspected for signs of skips or omissions in the application of the cover stone. Any omissions shall be immediately covered by re-spreading with the chip spreader or by hand-spotting methods. The Inspector must not allow excessive amounts of aggregate to be applied, as this will result in waste of the material and require harmful excessive brooming.

Careful inspection and control of the rolling operation must be made to ensure that the requirements of the specifications are met. It is important that rolling be conducted as soon as possible following application of the aggregate in order to properly imbed the aggregate in the asphalt. Chips are broomed the day following the shot because loose chips are of no value in protecting the mat and any loose aggregate on the roadway promotes wheel tracking. Areas of severe bleed will need to be blotted with ¼-inch material during the cure period. Cutback asphalts are curing as long as you can smell the volatiles on a warm day. Emulsions do not really cure except to shed water when they break. Either asphalt will be tender for awhile, although probably ready for the next construction step.

When the asphalt has started to cure and the chances of it bleeding are remote, the excess aggregate on the edge of the roadway should be broomed off as it is a hazard to traffic and reduces the usable width of the roadway.

5-2.4 Inspection of Bituminous Surface Treatment Seal Coats

Preparation of Roadway

Prior to the application of the seal coat, the Inspector shall ensure that the existing surface is broomed clean and that holes and breaks are patched as required. The Inspector should inspect the existing surface carefully over the length of the job, noting the surface characteristics of the roadway, so that the rate of application of asphalt best suited to the conditions can be determined. The Inspector should make note of varying conditions and plan to vary the application of asphalt accordingly.

Any areas of the roadway showing failure caused by soft subbase or poor drainage must be removed and the cause of the failure corrected.

If any open or porous surfaces, particularly on recently constructed bituminous pavements, are found in the area to be treated, the Inspector shall require the application of a “fog seal” to be applied before construction of the seal coat. If this fog seal is not shown on the plans, the Inspector will inform the Project Engineer of the situation, so that a supplemental agreement may be reached with the Contractor.
Chapter 5

The Inspector is responsible to see that a newly constructed bituminous surface be allowed the required time for curing before allowing construction of the seal coat over the affected area.

Construction of Seal Coat

Refer to Chapter 5-2.3 for instructions covering inspection duties during application of asphalt and screenings or cover stone.

In the construction of a seal coat the quantity of asphalt spread is very critical, due to the thinness of the layer of aggregate placed on the asphalt. Constant checking is required to ensure that embedment of the major stone in the asphalt is 50 to 70 percent. Where ½-inch or ¾ to No. 4 chips are used on routes with moderate traffic volumes, choke stone may be used either ahead of or immediately behind the main rollers. Some bleed is inevitable at intersections, on steep hills, and at severe horizontal or vertical curves. This is less objectionable than losing rock on long sections in between, due to insufficient asphalt.

The Inspector must maintain continual inspection of the aggregate application on the freshly spread asphalt, to see that the material is placed within the allowable time. The Inspector must make certain that the spread of asphalt is not extended beyond the area which the Contractor is capable of covering.

Omissions or skips in the spreading of aggregates must be immediately covered by re-spreading with the chip spreader or by the hand spotting crew.

The best seal coats are obtained on those jobs where the time elapsed between spreading of asphalt and application of aggregates is held to the shortest possible time within the allowed time.

The Inspector must see that the rolling operation is not allowed to lag far behind the spreading of aggregates. It is important that the particles of aggregate be rolled into the asphalt film as soon as possible following application.

Spreading Fine Screenings

When constructing Bituminous Surface Treatment Seal Coats, the specifications may require application of choke stone follow the spreading and rolling of the coarse aggregates. The Inspector must exercise judgment in determining the time for applying the choke stone. When using emulsions, the choke stone should be applied immediately, sometimes even before initial rolling.

Fine screenings, applied at the proper time, will key the gaps between the particles of coarse aggregate and provide a smoother riding surface, as well as absorb any free asphalt which might “bleed” to the surface of the coarse particles.

By observing conditions and results carefully, the experienced inspector will determine the procedure which produces the best results under any particular condition.

If the sealed roadway is rained on before the asphalt has cured and the asphalt starts to emulsify under the traffic, the roadway can usually be saved from damage by applying fine screenings on the roadway to prevent the traffic from picking up the asphalt. The spill prevention control and countermeasures plan (SPCC plan) should be referred to for guidance on using Best Management Practices (BMPs) to protect the environment.

5-2.5 Inspection and Sampling of Materials

Asphalt

Each shipment of asphalt arriving on the job by tank truck shall be inspected by the Inspector. Each shipment must be accompanied by a weigh bill and shipper’s certificate. The tank must be inspected after it is unloaded to see that no asphalt remains in the tank.

The Inspector must check and record the temperature of each load of asphalt as it is delivered to the roadway for spreading.

Samples of the asphalt shall be taken as required in Chapter 9-4.2 of this manual, and shall be submitted to the State Materials Laboratory for Testing.

Aggregates

No aggregate shall be used without the approval of the State Materials Laboratory. If any question arises concerning quality of the material, a sample shall be sent to the State Materials Laboratory for testing before use and preferably during plan preparation.

5-2.6 Miscellaneous Inspection Duties

Protection of Structures

When spreading asphalt or aggregate near curbs, bridge rails, drainage inlets, monument covers or other structures, adequate protection must be provided to prevent damage to the structures. The Inspector shall see that any asphalt sprayed, or aggregate spread, on or in a structure is satisfactorily removed by the Contractor.

Control of Traffic

Frequent checks should be made of traffic control operations to see that traffic is being conducted through the job in a safe, orderly manner. When spreading asphalt, traffic should not be allowed to travel past the distributor. Control of the speed of traffic is very important, especially during the early curing stage of the asphalt, so that the aggregate covering the asphalt is disturbed as little as possible. Control of traffic must be maintained as long as required to prevent excessive loss of the aggregate. The Inspector must ensure that all warning signs are properly in place throughout construction. See Chapter 1-2.3 of this manual for further instructions on construction signing.

Maintenance and Finishing Roadway

The Inspector shall see that the newly completed roadway is properly maintained until brooming is completed. The Contractor shall be required to keep sufficient equipment on the job to adequately handle any situation that may develop, including application of a fog seal if a fog seal is deemed necessary by the Engineer. Before the work is accepted, the Contractor shall be required to finish the roadway and clean up any debris resulting from their operations, as required in the *Standard Specifications*.

Measurement of Stockpiles

Before construction begins, the stockpiles from which materials are to be removed shall be measured and quantities computed. Upon completion of the work, the Contractor shall be required to leave the remaining materials in neat, presentable stockpiles. The stockpiles shall again be measured and quantities determined. The difference in quantities obtained by this procedure will aid in checking pay quantities determined by truck volumes. It will also
serve as an accurate basis for reporting quantities withdrawn from stockpiles. Measurement of stockpiles will not be necessary on projects where the aggregate is furnished by the contractor.

Notice to Maintenance Superintendent
The Project Engineer should keep the area Maintenance Superintendent informed of the Contractor’s proposed progress schedule so that maintenance operations can be coordinated to accommodate the construction work. The Project Engineer must also notify the Maintenance Superintendent of the date when the Contractor’s maintenance period will expire so that maintenance of the roadway may be taken over by WSDOT and maintained without interruption. These notices should be given sufficiently in advance to enable the Maintenance Superintendent to provide equipment and organize the work.

5-2.7 Reports and Records
A Daily Report of BST Operations, Form 422-644 EF, shall be made at the end of each day’s work, showing type of work, areas treated, quantities used, etc. This report shall be submitted in duplicate for the Project Engineer and Region.

Records of quantities of asphalt and aggregate used shall be kept in the Inspector’s Daily Report, and shall be checked daily against quantities shown on tickets issued to the Contractor. Accurate, neat records are invaluable to the Project Engineer in preparing estimates and final records. See Chapter 10-2 of this manual for instructions concerning quality control procedures.

The Inspector shall enter in the Inspector’s Daily Report all pertinent information concerning each day’s work.

5-3 Vacant

5-4 Hot Mix Asphalt

5-4.1 General Instructions
The technology of asphalt materials and mixes is continuously changing. It is imperative to study contract documents and specifications prior to the start of any paving contract. There also are many excellent handbooks that can be obtained to assist paving inspectors and testers. It is recommended that the Project Engineer obtain copies of these handbooks as a resource for their office. Recommended books include “Hot Mix Asphalt Materials, Mixture Design and Construction" by the National Center for Asphalt Technology and “Hot-Mix Asphalt Paving Handbook” by the US Army Corps of Engineers.

Good work and a successfully completed job depend on good equipment, skillful operation of the equipment, competent, knowledgeable supervision and inspection, and open lines of communications. Maintaining open lines of communication through informal daily meetings between the project inspector and contractor, can greatly improve the success of any job. Hot mix asphalt (HMA) projects, are not always built as originally scheduled. Changes may occur because of material supply, equipment breakdown, Contractor and subcontractor schedules, and weather conditions. Informal meetings on a regular basis provide a forum for the exchange of information and discussion of problems. To begin the communication process a preparing meeting is recommended. The Project Engineer, paving inspectors and testers together with Contractor superintendents, foremen, screen operators,akers, roller operators and plant operators should be present to go over all activities and plan the entire operation. It is also advisable to include traffic control personnel. The following check list may be used as an outline for the preparing meeting:

Preparing Check List

1. Review the HMA contract requirements with the Contractor. This will include the class of HMA, grade of asphalt binder, evaluation and acceptance procedures, mix design submittal and test section (HMA mixture and only if requested). If warm mix asphalt is proposed the Contractor is required to submit the request (Section 5-04.2).

3. Discuss construction of HMA mixture test section (Section 5-04.3(8)A7).

4. Discuss the communication procedure to be used for weather shut downs, use of mix in trucks and silos, and other potential construction problems.

5. Review what type of material transfer equipment (vehicle or device) the Contractor plans on using?

6. Discuss testing for low cyclic density (Section 5-04.3(10)B2) and what to do if segregation of the mix is occurring.

7. Discuss the preparation of the existing surface (Section 5-04.3(5)A) including cleaning the pavement, application of tack, pickup problems and weather limitations (Section 5-04.3(16).

8. Go over the procedure and timing in obtaining density gauge correlation factors.

10. Mixture sampling and testing: Who, When, and How, notification of results, composite pay factors (CPF) available after three sublots through WSDOT website, and Contractor request for a sublot to be retested.

11. Review sampling of the asphalt binder, the maximum recommended temperature for heating the asphalt binder and the maximum allowable temperature for discharge of the HMA (Sections 5-04.3(1) item 3 and 5-04.3(8) respectively) for the type(s) of asphalt binder being used on the project. The Contractor will supply the information from the manufacturer of the asphalt binder.

12. Traffic control procedures and lines of communication including allowable times for lane closures.

13. Other factors specific to Contract or of concern by those attending.

In the construction of HMA, it is extremely important that the material meets all requirements of the specifications. It should be remembered that specifications are not arbitrarily
arrived at, but have evolved through the years as a result of experience and research.

Experience has shown that pavements that do not meet all specifications will not perform satisfactorily, resulting in high maintenance costs. The responsibility for obtaining a mixture in close conformance with the project mix design and meeting the specification requirements rests with the Contractor. The importance of this cannot be overemphasized, since the best possible construction at the lowest cost to WSDOT cannot be obtained unless the mixture produced at the plant is uniform and of good quality. The key word used to describe quality production of HMA is UNIFORMITY.

- The aggregate in the stockpile must be of UNIFORM quality and gradation;
- Aggregate must be fed into the plant in a UNIFORM, controlled manner;
- The heating and drying of the aggregate must be UNIFORM;
- The separation of the aggregate in the bins must be UNIFORMLY controlled;
- The aggregates and asphalt must be combined and mixed in a UNIFORM, consistent manner.

In order to achieve this uniformity of quality, it is necessary that the entire operation be conducted so that each phase of the production operation is in balance with all other phases. To accomplish this most Contractors have a Quality Control (QC) program.

With the advent of Quality Assurance (QA) specifications and statistical evaluation of HMA, the role of inspection has evolved from one that was highly involved in the operation of the asphalt plant to one that is involved in verification that the material the Contractor produces is in conformance with the job mix formula and in accord with the specifications. Various testing procedures are available to ensure that the component materials and the completed mixture meet the requirements of the specifications. However, since only relatively small samples of each day’s production can be tested, inspection duties and responsibilities involve more than merely performing the required tests. Inspectors and testers must be familiar with the working of the asphalt plant and be observant during the production of the HMA for any changes that may occur in the Contractor’s production of HMA. The Contractor is responsible for the uniform production of HMA so that the end product is of uniform quality. Only when the product is uniform can samples be considered representative of the material produced. The Inspector, through communications and observations of plant operation, can work with the Contractor to assure that the mix is being produced uniformly. If problems are observed, the plant foreman should be notified as the foreman is responsible for making the necessary corrections. If violations or misunderstanding of the specifications arise that cannot be promptly settled, the Project Engineer must be notified immediately.

Instructions in all cases shall be issued to the Contractor’s designated representative rather than the workers. A diary must be kept, showing all instructions received from the Project Engineer and instructions issued to the Contractor. Careful review of Section 5-04.3(16) of the Standard Specifications concerning weather limitations and calendar cutoff dates should be made in advance of any HMA paving work so that paving can be planned and completed prior to any unfavorable weather. Pavement performance is highly dependent on the weather conditions in the first weeks and months following paving. Invariably, when these specifications are not closely adhered to, early pavement performance problems occur. Therefore, beginning October 1st of any year through March 31st of the following year, no paving course is to be placed without written approval of the Project Engineer. The Project Engineer will review this decision with the Region Headquarters prior to approving any paving outside these dates.

In addition, use of a pneumatic tired roller is required from October 1st through March 31st. It has been shown that during warmer weather, traffic will knead the HMA providing a more durable pavement. To duplicate this benefit for late season paving, use of pneumatic tired rollers is part of the specifications. Placement of dense graded mixes of 0.10 foot or less is not recommended between September 1 and April 1. Heat loss in thin lifts is very quick and in most cases inadequate time is available for placement or to achieve needed compaction.

5-4.2 Inspector Roles and Responsibilities

Testing Equipment

Before the production of HMA commences, the Inspector needs to ensure that all of the necessary equipment needed to accomplish all of the test procedures has been obtained. In addition, qualified testers using calibrated or verified equipment are required. The Inspector needs to make sure that this equipment is in good working order and has a current calibrated or verified sticker on it, and that all tester qualifications are current.

The Inspector is charged with responsibility for care and safekeeping of all testing equipment that is issued. The equipment must be maintained in a clean and proper operating condition to ensure accuracy of test results. Special care must be exercised in the use and maintenance of sieves to see that they do not become clogged or damaged. Thermometers must be handled carefully to avoid breakage. Electronic scales are expensive, desirable, and delicate equipment. Particular care should be taken to protect them from theft or voltage spikes.

The ignition furnace is a high temperature oven, care must be exercised in its operation and testers must be qualified in its use.

Given reasonable care, HMA testing equipment will give long and satisfactory service.

Required Tests

The Project Inspector is responsible to the Project Engineer for the required field tests as well as for submission of required samples to the State Materials Laboratory for testing. Testers must be qualified in the “Asphalt Module” or for the particular method of sampling and testing they will be performing. It is the intent of QA specifications that the Contractor is made totally responsible for the maintenance and operation of equipment and the production of the HMA.
It is the Inspector’s role to sample and test the material to assure that WSDOT is getting a uniform and specification product. However, it is not possible or desirable for the WSDOT Inspector to take a “hands off” approach to the production of HMA. If the Inspector notices anything at all that affects the quality of the HMA, this information should be brought to the Contractor’s attention in a cooperative manner so that the situation can be corrected.

5-4.2A Hot Mix Asphalt Plant Inspection

Plant Inspector’s Check List

Some of the most important details of inspection on asphalt plants are listed below:

1. See that testing tools, equipment, and samples are on hand at the plant site and in good condition. Make sure you understand all tests.
2. Inspect all components of the asphalt plant; make sure all deficiencies are corrected before production is begun.
3. Verify that the truck scales are currently certified in accordance with Section 1-09 of the Standard Specifications.
4. Post mix designs, including all revisions to the job mix formula. When a reference mix design is approved the Inspector should verify if any changes to the mix design were approved on another contract.
5. Watch for evidence (dark smoke from plant exhaust and oily coating of aggregate) of incomplete combustion of burner fuel.
6. Check the temperature of the asphalt and volume accumulation from flow meter.
7. Observe plant operator occasionally to see that correct weights and proportions are obtained, including asphalt content.
8. Make frequent visual inspections of mix leaving plant for evidence of non-uniformity or incomplete mixing.
9. Check temperature of mix frequently.
10. Inspect truck beds before loading; see that bed is free of congealed chunks of mix and excess bed release agent.
11. Check frequently with Street Inspector concerning workability and uniformity of mix at the paving machine and density test results.
12. Take samples of mix for field tests and submission to laboratory.
13. Make accurate, complete record of all test results, asphalt used, and other pertinent data.
14. Have copies of all test reports available for review.
15. Fill out the required daily reports.
16. Keep in constant communication with the plant foreman and the street inspector and give immediate notification regarding any problems.

Field Tests

On all projects involving HMA, job site samples shall be obtained, tested, and recorded in accordance with the Standard Specifications, the contract special provisions, and Chapters 9 and 10-3 of this manual. A split of the field sample will be retained by the field tester for further testing if necessary. This sample may be used when the Contractor requests a sublot be retested per Standard Specification Section 5-04.3(8)A5. Asphalt content of the mix shall be determined by use of the Ignition Furnace in accordance with AASHTO T308, and gradation determined in accordance with WAQTC FOP for AASHTO T 27/T 11.

Sampling Methods

Samples of the complete asphalt mixture should be taken from the hauling conveyance in accordance with the current test method and reduced down to the desired size for testing. Remember that the value of material quality testing is dependent on exact parallel tests of identical splits from representative samples.

Verification of the Ignition Furnace Calibration Factor

The Project Engineer shall verify that the “Ignition Furnace Calibration Factor” shown on the asphalt mix design is valid. The verification of the “Ignition Furnace Calibration Factor” shall be determined in accordance with current test methods and should be done prior to beginning the production of any paving mixture using initial mix design. The verification shall be done using the furnace that will be used for acceptance testing. In some circumstances it may be necessary to use production data to verify acceptance results but should be only utilized when all verification procedures have been used and validated.

5-4.2A(1) Inspection of Mixing Plant

Project Inspectors should familiarize themselves with plant operations prior to beginning of paving. A visit to the plant will do this and additionally provide an opportunity to inspect the plant for conformance to WSDOT specifications. Specification violations should be brought to the attention of Contractor so they may be corrected prior to beginning paving.

When doing plant inspection, particular attention should be given to examination of gates, feeders, drier and dust collector, screens and bins, pugmill, and all thermometers, pyrometers, and weighing scales. To assist in this inspection, one of the previously recommended hot mix asphalt paving handbooks will provide excellent guidance. In addition, the manual from the WSDOT Asphalt Concrete Testing Procedures training class provides an excellent resource.

With the increased emphasis on aggregate structure and void content, it may be necessary for the Contractor to use multiple stockpiles.
Allowable methods of heating the asphalt are stated very clearly in the specifications, and the limits of the range of application temperatures are also specified. An asphalt thermometer is required to be installed in the asphalt line. This thermometer should be checked for accuracy before work starts. Close control of variations in temperature of the asphalt binder is very important, as overheating of asphalt oils will cause hardening and may cause substantial decrease in pavement life. When using modified Performance Graded (PG) asphalt, the asphalt manufacturer may recommend a higher mixing temperature. The Project Engineer may approve of increasing the mixing temperature, in accordance with the manufacturer’s recommendation, as allowed in the Standard Specifications.

Section 5-04.3(1) of the Standard Specifications requires that a valve be placed in either the asphalt supply line to the mixer or the storage tank for sampling the asphalt binder. This valve should provide a safe method of obtaining samples of the asphalt binder that are representative of the material being incorporated in the mixture. All samples must be taken by the Contractor in the Inspector’s presence. If for any reason the asphalt binder is suspected to have become mixed or contaminated in the storage tank, additional samples from the asphalt supply line should be taken and noted on sample submittals.

During the preliminary inspection of the asphalt mixing plant, the Inspector should note any violation of safety rules concerning machinery safeguards, such as lack of guards on belts, sprockets and the like. The Inspector should call to the attention of the Contractor any such violations and request that corrections be made. If the violations directly affect the safety of the engineers and inspectors, the Project Engineer should refuse to allow mixing to begin until conditions are safe for sampling, inspecting, etc. Section 1-05.6 of the Standard Specifications requires the Contractor to provide safe facilities for inspection of the plant and the work.

5-4.2A(2) Inspection During Mixing Operations

After the mixing begins and throughout the day, the Project Inspector working with the qualified tester shall make the required tests of the mixture. It is very important, however, that the ProjectInspectors and testers spend some of the time observing the operation of the plant and the condition of the mixture being produced. Changes in the mixture can quickly be detected by observing changes in appearance or color of the mixture.

Periodic checks of the temperature of the liquid asphalt, as well as the mixture produced must be made to ensure that maximum allowable temperatures are not exceeded and a uniform material production is being produced. The Contractor will choose the desired temperature of the mixture within specification limits, depending on weather conditions, length of haul, and other factors. Project inspectors should watch for excessive variation in temperatures, and notify the contractor of any variation that occurs. Variable temperatures of the mix may cause compaction and segregation problems and close monitoring of temperatures is an essential part of HMA paving.

When stockpiled, aggregates may contain a high percentage of moisture. With excess moisture in the aggregate difficulty may be encountered in heating the material to the proper temperature. In some cases, the contractor may try to correct this condition by increasing the amount of fuel oil fed to the burner. This can be done satisfactorily until incomplete combustion of the fuel oil occurs. Black smoke coming from the exhaust stack is an indication that incomplete combustion is occurring. Black smoke is also a sure sign that air quality standards are being violated. The Inspector should watch for this condition, as the unburned fuel will deposit a sooty, oily film on the aggregate particles that is detrimental to proper coating of the material with the asphalt film. A reduction in the amount of aggregate fed to the drier will usually correct the situation and allow proper heating and drying of the material.

Frequent inspections of the condition of the mixture leaving the plant should be made, noting the consistency of the mix, the distribution of asphalt and aggregate throughout the mixture, and the temperature of the mixture. Trucks should be loaded by multiple dumps of three or more as recommended by the National Asphalt Pavement Association (NAPA). If the quality of the mixture varies from truck to truck, an immediate check should be made to locate the source of trouble. Uniform distribution of the asphalt throughout the mix is extremely important. If portions of each truckload vary from rich to lean, the Inspector shall advise the Contractor to correct the problem. It may be necessary to increase the mixing time to correct this situation. By examining the mixture in bright light, the experienced Inspector can quickly detect non-uniformity in the mixture.

5-4.2A(3) Miscellaneous Duties of the Plant Inspector

One of the duties of the Plant Inspector may be to oversee the work of the scale person on truck weighing scales at the plant, and see that the required tests of the scales are performed. The Inspector must see that tickets are properly made out and issued for each truckload of mixture delivered, and shall also see that daily totals are promptly obtained and entered on the daily report. When HMA is produced using a warm mix asphalt (WMA) process the tickets are required to identify the mixture as WMA.

Before trucks are allowed to be loaded at the plant, a check shall be made to see that the truck beds are properly lubricated as required in the specifications. No pools of bed release agent shall be allowed to remain in the truck bed following this operation. The truck bed should be raised to allow any excess material to be drained off.

When the Contractor is using a site furnished by WSDOT, the inspector should see that the Contractor shapes up any remaining aggregate into neat stockpiles, and removes all debris from the plant site when the project is complete.
5-4.2B Street Inspection

General
In the construction of HMA pavements, it is the responsibility of the Street Inspector to see that construction methods and equipment used, as well as the finished pavement, meet the requirements of the specifications. In order that the Inspector may properly discharge this responsibility, it is necessary that the Inspector thoroughly understand the Standard Specifications, the special provisions of the contract, and the instructions set forth herein. The Inspector must also have a good working knowledge of methods and equipment involved in the construction.

A means of communication between the Street Inspector and the Plant Inspector must be established, and the Street Inspector shall keep the Plant Inspector informed of any difficulties encountered in the laying of the mixture or of any faulty mixture received at the paving site.

Street Inspector’s Check List
Some of the most important details of inspection on HMA paving are listed below:

1. Check condition and adjustment of paving machines and rollers.
2. Has width of spread in successive layers been determined?
3. See that traffic control is organized and functioning properly; make sure required signs are in place and document it.
4. Check application of tack coat; do not allow tacking of more base than will be paved each day. Be sure that the pavement is swept and clean ahead of the tack application (Section 5-04.3(5)A).
5. Examine pavement base, see that required patching and/ or pre-leveling is done. Do not be afraid to get the front of your shirt dirty; do a lot of “belly-grading.” Make a check of surfacing depths before paving begins.
6. See that paver guidelines are set and adhered to (Section 5-04.3(3)).
7. Check transverse joint for smoothness and appearance (a straightedge should be used).
8. Watch trucks dumping into paver hopper for adverse effect on paver operation. Pay particular attention to constant uniform paver speed and minimum operation of the hopper wings.
9. Check temperature of HMA occasionally and watch for evidence of incomplete mixing.
10. Maintain constant inspection of mat behind paver for signs of roughness or non-uniformity of mixture.
11. See that longitudinal joint is raked and compacted properly.
12. Make frequent checks of yield and depth.
13. Watch rolling operation and verify that the rollers are operated in accordance with the manufacturers recommendations (Section 5-04.3(4)). See that nuclear density readings are maintained. Check internal temperature of mix to verify that static rolling is used below 175° F.
14. Keep record of truckloads used each day; check with Plant Inspector concerning masses.
15. Make sure the job is in good shape before you leave at the end of the day, that the transverse night joint is properly constructed (Section 5-04.3(12)A) and see that any excess paper is trimmed from the transverse night joint.

5-4.2B(1) Duties Before Paving Begins
The Street Inspector is a key participant in the prepaving meeting and typically oversees all aspects of the operation at the jobsite. The street inspector should be knowledgeable as to the project limits, hours of operations, the direction in which paving is to proceed, methods of performing any unusual features of work peculiar to the project, proposed traffic control methods, etc. The plan of operation agreed upon at the prepaving meeting should be followed faithfully whenever possible.

Traffic Control
The Contractor shall conform to the requirements of Section 1-07.23 of the Standard Specifications. The Project Engineer and the responsible inspector must work closely with the Regional Traffic Engineer and the Contractor to ensure that the proper signs are placed in the best possible manner. All applicable signs shall be installed on the job before paving begins. Chapter 1-2.3 of this manual includes additional sign installation details.

Inspection Tools
Before paving work begins, the Street Inspector must see that all tools and equipment necessary for the inspection work are available. These would include such things as surface probe thermometers, tape measure, depth gauge, tire pressure gauge, 10 foot straightedge, notebooks, diary, report forms, etc.

Inspection of Paving Equipment
It is the duty of the Street Inspector to inspect the Contractor’s paving equipment to verify the equipment meets the contract specifications. In order that the best possible surface finish will be obtained, it is essential that all machines are in good condition and all parts are in proper adjustment. All equipment, including trucks, should be observed for hydraulic and fuel leaks when systems are under pressure.

Listed below are some of the most important details the Inspector should check during the inspection of paving equipment:

(a) Paving machines. Several types and makes of paving machines are in use in this State, all of which are capable of producing satisfactory surface finishes. The differences between types of paving machines are primarily in the methods used in striking off, compacting, and smoothing the mixture. The Inspector should be familiar with the mechanical features of the type of paver to be used on each job. Handbooks of operating instructions are available from each manufacturer, in which the various adjustments and operating details are shown. The Inspector should obtain copies of these instructions from the Contractor or the manufacturer. The requirements for paving machines are in Section 5-04.3(3) of the Standard Specifications. The inspector must be familiar with the specifications.
Extensions may be added to the paving machine to allow the Contractor to pave a wider section. When the extensions are used in the traveled way they are required to have augers and screeds that vibrate and are heated. Most newer paving machines will be equipped with automatic screed extensions.

On all track paving machines, correct adjustment of the track linkage is essential for smooth operation. A poorly adjusted track, or a badly worn one, can produce an uneven, lurching movement in the travel of the machine which will be reflected in an uneven, “choppy” pavement surface. Observation of the machine in motion will usually show up any defects in the track or drive mechanisms.

Some pavers are suspended on rubber-tired wheels. For proper operation of this type of paving machines all tires must be inflated to the correct pressure and the drive system must not have any slack.

The paving machine is required to be equipped with the most current equipment available for the prevention of segregation and the Contractor is required to provide a certification that it properly equipped.

(b) Rollers. The proper operation of the roller is a key factor in quality pavement. When done properly the HMA will be compacted to a dense uniform mat free of defects. Improper operation produces a poor quality mat that may include tears, roughness and low or uneven compaction. All of these will result in a reduced life of the HMA and increased cost.

Steel-wheeled rollers must be inspected to determine that the wheels are capable of rolling a true plane and are in good condition. The Inspector should be especially watchful for flat spots on the wheels. The steering and driving mechanisms must be free of excessive play or backlash. Observation of the roller in motion and reversing direction will disclose any deficiencies in the drive and clutch mechanisms. The manufacturer of the roller provides the maximum rate of travel.

Pneumatic-tired rollers, to function properly, must have tires of equal size and in good condition. All tires must be equally inflated, so that all exert equal unit pressure on the pavement. Tire pressures may be varied to suit conditions on the job, but, in general, should be such that ground contact pressures range between 40 and 80 psi. The Inspector should observe the roller in motion to see that all wheels are rolling true, without wobble or creep. Pneumatic tired rollers should have full skirts as the tires must be warm to prevent “picking.” (When the cool tires roll over the hot HMA mix, the mix tends to stick to the tires, and is “picked” up from the mat onto the tires.)

(c) Other items. The Inspector should be satisfied that the Contractor is properly equipped with portable barricades, cones, or other means of protecting the freshly laid pavement from damage by traffic.

Upon completion of the check of the paving equipment, the Street Inspector should call any deficiencies of equipment to the attention of the Contractor, so that correction can be made.

Preleveling

The Engineer must give careful consideration to the use of a preleveling course over areas of unusual roughness, wheel ruts, or sags in the profile of the pavement base. The Contractor should be given as much advance notice as is possible of the intent to place a preleveling course. The areas that need prelevel should be marked out and reviewed with the contractor prior to the pre-pave meeting. The extent of prelevel and the methods to be used should be discussed at the pre-pave meeting.

There are several methods the contractor is allowed to use for preleveling. One method used for preleveling may be using a motor patrol grader. A paving machine may be used when the Engineer has determined that better results can be obtained by this method and particularly where long undulations occur. When conditions warrant, a reference line may be erected for preleveling and a long multi-footed ski-type reference should be used for placement of subsequent pavement courses. Ruts can be economically prelevel by dragging a paver screed. Because of the possible detrimental effect on the equipment, it should only be done with the consent of the Contractor or if required by the plans. In order to outline areas and amount of preleveling, the Contractor should be encouraged to erect a single reference line along the crown point for the first pass. The practice of directly marking depths and limits of preleveling required on the pavement surface is considered beneficial. When the area is small or irregular the Contractor may choose to use hand methods to prelevel.

The nominal compacted depth of any layer of any course, including preleveling lifts, shall not exceed the depths outlined in the Standard Specifications for the class of mix being used. The purpose of this requirement is to reduce the differential compaction that takes place and to ensure adequate compaction of thick lifts between two humps. Compaction should be accomplished with a pneumatic roller.

To produce a satisfactory riding surface, preleveling, in theory, should continue regardless of quantities until a uniform lift of HMA can be placed by paving machines with the multi-footed ski-type reference. If it appears that the plan quantity of prelevel must be exceeded due to the condition of the existing pavement, the situation should be immediately brought to the attention of the Project Engineer, and the Region Construction staff. The Engineer must take care to clearly distinguish between preleveling operations and paving operations, especially leveling courses.

Preparation of Untreated Roadway

Section 5-04.3(5)B of the Standard Specifications covers the work of preparing the untreated roadway quite thoroughly. When the roadway is carrying traffic, public or construction, it may be necessary to construct the prime coat treatment to maintain the roadway to the desired line, grade and cross-section until the first course of pavement is constructed. When a prime coat is required it will be designated in the plans. If there is no traffic problem, it may be desirable to eliminate the construction of the prime coat treatment.

Weather conditions must be satisfactory for construction of the prime coat treatment and the prime coat must be allowed to cure for a minimum of 5 days before proceeding with paving. When the weather limitations cannot be met or the
minimum curing period would present a hardship and it is desirable to pave the roadway, elimination of the prime coat should be considered.

5-4.2B(2) Duties During Paving Operations

Prior to beginning of paving work each day the Inspector shall see that guidelines are set for the day’s work, that the base is properly prepared, and that the tack coat has been applied through the area to be paved during the day. It is not a good practice to apply the tack coat over more area than can be paved in a day or an hour or two if the weather appears to be questionable. Traffic conditions may also dictate how far the tack coat should be placed ahead of the paving operation.

The specifications require an application of tack coat that is uniform and free of streaks and bare spots. The application rate will depend on several factors and include the condition of the existing pavement, the Contractor’s equipment, the type of asphalt used, if it has been diluted with water and the application temperature. Tack coat is always applied prior to the placement of HMA including projects that have multiple lifts of HMA. For many pavements an application rate of approximately 0.05 gallons per square yard of residual asphalt is adequate. When paving a second lift of HMA a lower application rate is typically applied. Thin lifts of pavement require heavier applications of tack coat to prevent raveling, spalling, and delamination. As a guide, existing surfaces that are coarse, dry or milled require a higher application rate than surfaces that appear rich or bleeding.

Joints

The Standard Specifications provide that butt joints be constructed. The use of heavy paper is recommended to form the butt joint at the end of the day’s work, with a temporary ramp laid on the paper and the paper beyond the joint to assist traffic over the change in elevation. Paper protruding above the pavement shall be carefully trimmed flush with the pavement so that there will not be an illusion of a hazard at night. When the ramp and paper are removed prior to beginning the succeeding day’s paving, a well-constructed joint will require a minimum of cutting back to form the required butt joint. When hand raking is performed on a joint, all segregated coarse aggregate shall be removed, to avoid a coarse, porous surface at the joint.

If the roadway is open to traffic, the transverse joint must be feathered to provide a smooth transition for the traveling public and joints between successive lifts in each lane should not be less than 100 feet apart. The higher the speed on the roadway, the longer the taper on the joint must be to provide an acceptable transition. The required slope ratios is 1 vertical to 50 horizontal or flatter.

This slope will usually require use of more than one width of paper. Sufficient material must be temporarily placed in front of the paver to prevent a deformation from occurring in the permanent ACP behind the joint. Care should be taken to construct a straight line taper without humping.

The open longitudinal joint resulting from any day’s operation should be abutted by paving the adjacent lane on the next day.

At the beginning of the day’s work, special care must be exercised in the construction of the transverse joint joining the freshly laid mixture with the previous day’s work. The paver should be allowed to proceed at a low rate of speed (creep) ahead of the joint, until hand finishing of the joint is completed. The paver should not come to a full stop or the screed may settle and cause a dip at that point. The Inspector should check this work closely, using the 10-foot straightedge to see that the requirement for surface smoothness is met.

Spreading and Finishing

In the construction of HMA pavements, it is extremely important that the paving machine be in good adjustment and that the machine and screed operators be experienced and capable. The Inspector should be quick to note operational practices that have an adverse effect on the work, and request the Contractor to make immediate corrections.

Compaction procedures will be as specified in Section 5-04.3(10) of the Standard Specifications.

During the paving operation, constant inspection must be maintained to see that the machine is producing a smooth pavement having the required characteristics of texture and uniformity. The Inspector must require immediate action be taken to correct any trouble that may develop and should attempt to assist the Contractor in locating the source of the trouble.

Listed below are some common difficulties encountered on HMA paving work, together with the most common causes of the difficulty:

- **Wavy surface (short, choppy waves):** Worn or poorly adjusted tracks or drive train; truck driver setting brakes too tightly; excessive paving machine speed.

- **Wavy surface (long waves):** Excessive variation in amount of mix carried in auger box ahead of screed; over-controlling screed; roller operating too fast.

- **Excessively open surface texture:** Improper adjustment of strike off; screed plate rough or galled; excessive paving machine speed.

- **Varying surface texture:** Insufficient mixing; trucks being loaded improperly at the plant; segregation of mix in truck beds; poor gradation control at mixer; screed not uniform across paving machine.

- **Streaked surface texture:** Insufficient mixing; segregation of mix in trucks; worn or damaged screed plate.

- **Bleeding patches on surface:** HMA not uniformly mixed; excessive moisture in mix.

- **Irregular rough spots on pavement:** Roller standing on fresh surface; abrupt reversing of roller; trucks backing into paver; poor workmanship at transverse joints.

- **Cyclic open texture, that usually matches up with the distance that each truck load of material covers:** This may be caused by a couple of problems. One is the result of thermal segregation. In this case, the differential temperatures in the HMA result in inconsistent compaction and a cyclic open texture.
Surface Smoothness

When a leveling course is being constructed, an attempt must be made to remove all depressions and sags in the grade line by adjusting the depth of the course. The Inspector should work closely with the screed operator to accomplish this result by pointing out irregularities in the base far enough ahead of the machine to allow proper adjustment of the screed to eliminate the irregularity. The objective to be attained during construction of the leveling course is the complete elimination of all irregularities, so that the placing of the wearing course can be accomplished with a minimum of screed adjustments. If the base is excessively rough, pre-leveling should be done prior to construction of the leveling course.

Section 5-04.3(3) of the Standard Specifications require the use of automatic screed controls on the paver. It must be remembered that as the equipment becomes more sophisticated, it also becomes more necessary that it be properly adjusted and operated or satisfactory results will not be achieved. With proper operation, this equipment will give excellent performance.

When reference lines are required, or the Contractor elects to use reference lines, particular attention must be given to see that the line is properly set and tensioned. If the line is offset too far from the paving machine, vibrations of the machine may affect the operation of the automatic controls, which in turn affect the smoothness of the pavement. The reference line for asphalt paving machines normally will not be used when the roadway is under traffic. The specifications provide that if the course that the pavement is to be placed on is superior to established smoothness requirements, the paver may operate from a mat referencing device such as a “multi footed ski” instead of the wire. The inspector must ascertain that smoothness of the pavement continues to be superior to the requirements of the specifications.

Normally, when the surface for paving is properly constructed using a reference line or the first course of pavement is constructed using a reference line, subsequent courses of pavement may be constructed using a mat referencing device with continued improvement in the surface smoothness.

Manual operation of the screed controls will be permitted in the construction of irregular shaped and minor areas, such as gore areas, road approaches, left turn channelization, and tapers.

Surface smoothness and good riding qualities of a pavement are secured only by hard work and strict attention to small details. The Inspector should continually study the conditions peculiar to the job, and strive to obtain the smoothest surface possible. A smooth riding pavement costs no more than an unsightly, poor surface, but it does require constant, careful inspection of all details of construction to obtain the desired results.

Section 5-04.3(13) of the Standard Specifications outlines the smoothness requirements using a 10 foot straight edge oriented in both the longitudinal and transverse directions. Smoothness checks should be made at the starting point of paving, at transverse “night joints”, whenever the paver is stopped for any length of time, or wherever the inspector suspects a smoothness problem.
5-4.2B(3) Compaction

General
Compaction of the HMA is very important in the construction of a durable pavement. When good compaction is coupled with the proper mix design, extended service life of the pavement can reasonably be expected.

The importance of thorough, compaction of HMA cannot be overstressed. Two major factors are working simultaneously in a well-designed mixture to resist good compaction - (A) the stability of the mix in place increases with each pass of the roller, and (B) the viscosity of the asphalt increases as the temperature drops. A temperature-viscosity curve for the type of asphalt used in the mix is a useful tool in determining the ideal compaction temperature of the mix.

Although densities for some HMA may be increased at temperatures below 175°F, vibratory rollers may damage the mat internally in ways that cannot be seen at the time of compaction. To prevent this damage, compaction with static rollers is required when the internal temperature of the mix is below the minimum specification of 175°F. When paving in air temperatures over 90°F, some or all of the compactive effort may have to be delayed, but in no case should it be delayed below 175°F mat temperature.

The desirable end product of a properly compacted HMA is a dense and nearly impermeable mat. Acceptable densities can be obtained if the mix proportions are proper. If not, no reasonable amount of compaction can be modified to produce acceptable density. Without proper density, the HMA will be subject to early distress and failure. Some mixes may be difficult to compact because they will move under the roller instead of compact. This is referred to as a tender mix and may result from several causes including gradation, fracture and asphalt binder properties. Mixes that have a gradation that crosses the max density line in the restricted zone or have excessive natural sand are more likely to be tender. Having available the 0.45 power plot of the design and production mixes will help the Inspector know what to expect in terms of compaction difficulty.

The asphalt binder content in a mix is based on several factors including traffic levels, aggregate structure and asphalt binder properties. The contractor develops the mix design to meet specific volumetric properties. Changes in the mix design asphalt content should only be allowed after careful consideration of all of the impacts. The maximum adjustment the Project Engineer may approve may not exceed 0.3 percent from the approved mix design (Section 9-03.8(7)). The Region Materials Laboratory is a good resource when considering changes in the asphalt binder content. Increasing the asphalt binder content on high traffic volume routes carries more long term performance risk than on low volume roads.

The use of thicker lifts of pavement permits more time for compacting and will increase the effectiveness of the equipment. With careful organization and planning, the production of over 400 tons per hour may be compacted by as few as three rollers on deeper lifts. It is also apparent that high production rates with thin lifts might require twice as many rollers or more. It is the Contractor’s responsibility to determine how many rollers are needed to match the asphalt plants production rate.

Usually the Contractor has a companion group of rollers, pavers, and production equipment for use together on paving projects that have been proven to be compatible. By consulting with the Region Staff, it may be determined if the full complement is present or just what past experience has been. Before production begins, the Regional Materials Engineer should be notified to arrange for the coring of the pavement to correlate nuclear densities to core densities for calculation of a gauge correlation factor.

In general, compaction should begin on the outer edge of the course and progress toward the center of the pavement except on superelavated sections where the initial effort shall be on the lower side with the progressive compaction toward the higher side.

The type of rollers and their relative position in the compaction sequence shall generally be at the Contractor’s option provided specification densities are attained and it’s not specified otherwise in the contract provisions. An exception is that the pneumatic tired roller is required for compaction of the wearing course from October 1 through March 31. Coverage with a vibratory or steel roller may precede pneumatic tired rolling. The maximum speed of rollers shall not exceed the recommendations of the manufacturer of the roller for the compaction of HMA. When requested by the Project Engineer, the Contractor is required to provide a copy of the manufacturer’s recommendations. When the roller reverses direction the vibrators must be turned off momentarily.

The vibratory roller is generally used for the primary compaction on HMA mixes and sometimes for finish rolling in a static mode. Two terms frequently used with vibratory rollers are frequency and amplitude. Frequency is how often the impacts are applied and is normally stated in cycles per second. Amplitude is the greatest vertical movement, up or down, of the drum during a cycle.

Vibratory rollers achieve their compaction effect from the kinetic energy produced by the vibrating components of the roller. Vibratory rollers usually work best when operated with high frequency and low amplitude on dense graded leveling and wearing courses. On hills, it usually works best to operate the vibrators only while traveling uphill. Over vibrating can cause decompaction. Operated in the static mode, despite their apparent bulk, they are less effective than even intermediate size conventional steel wheel rollers due to their lower mass.

Vibratory rollers may not be practical in areas where there are mortar joint concrete or certain other vintage pipe used for utilities or irrigation. In locations with this type of pipe the special provisions will restrict the compaction to static rolling.

With pneumatic roller breakdown it will be necessary to hold in about 6 inches from unsupported edges to avoid lateral displacement. A narrow overlap of successive trips is desirable and the roller should be kept in constant motion. During the initial compaction, the rollers direction should be such that the powered wheel passes over the uncompacted mix first. Breakdown tiller wheels will be turned the least possible amount in the uncompacted area and thereby avoid pushing and shoving the hot mat in a local area. Avoid stopping the roller in the same place. Continue pneumatic...
breakdown rolling until deep tire tracks are ironed out as much as possible and the roller walks out to the top of the mat, and then move ahead. The most desirable arrangement is to have two similar pneumatic rollers about 6 feet wide with the “air-on-the-run” feature and post-traction type differential followed by a tandem steel wheel roller. The steel wheel roller should follow closely behind the pneumatic roller to compact the centerline joint and the edge of the pavement as well as iron out the pneumatic tire marks. The steel wheel roller will exert extra pressure on the uncompacted edge and should have no difficulty in properly compacting this edge if the roller is close behind the pneumatic rollers. Cold rubber tires usually “pick” the mat. Every effort should be made to warm the tires before compacting the mat. Sending the rollers for a drive before the work is fully organized prior to paving will help with the tires.

The axles of the roller are weighted by the use of iron pigs, chain, rivets or other concentrated loading in addition to the usual water and aggregate tank loading to control the total roller weight. Ground contact pressure is determined by the tire inflation pressure, a ground contact pressure of 70 psi is a reasonable pressure to start with. Variation in the mixture and tire pressures will soon determine the most desirable combination of mixture, temperature, contact pressures and number of applications.

Steel wheel rolling is generally used for finish rolling; however, it is sometimes used for breakdown and primary compaction. It is important that vibratory roller operation on pavement with temperatures below 175° F not be permitted. Over-rolling by the steel wheel roller may damage the pavement more than under-rolling.

Preferably, rolling equipment should be wide enough so that a uniform application of compactive effort can be distributed over the entire course without creating hard streaks or leaving narrow porous strips. Breakdown and intermediate rolling should be completed while the mixture is above 185° F with the finish rolling completed above 150° F. With lower temperature mixes and thin lift applications it becomes obvious that the rollers must be kept up close to the paver.

Compaction Control

Compaction is controlled by testing with the nuclear density gauge for all classes of HMA where the paving is in the traffic lanes and compacted course thickness is greater than 0.10 foot. The nuclear gauge testing shall be conducted in accordance with current test methods. The specification requirements shall be a quality level of 1.00 or greater referenced to a minimum density of 91 percent of the maximum density (Rice density) as determined by WSDOT FOP for AASHTO T 209.

Cores of the finished pavement may be substituted for nuclear gauge readings to determine densities, provided they are requested by the Contractor by noon of the next day after the test results have been provided to the Contractor. If this alternate is done at the request of the Contractor, and the CPF for the lot is less than 1.00, WSDOT shall be reimbursed for the coring expenses at the rate of $200 per core. If after coring the CPF for the lot is 1.00 or greater there will be no charge for the cores.

Compaction lots not meeting the prescribed minimum CPF of 0.75 will need to be evaluated for removal and replacement with satisfactory material.

For preleveling mix, the compaction control shall be to the satisfaction of the Engineer. A pneumatic tired roller is required for compacting HMA that is used for preleveling wheel rutting.

Compaction control for longitudinal joints is controlled by testing with the nuclear density gauge in accordance with WSDOT SOP 735. The specification requirements shall be a minimum density of 90.0 percent of the maximum density as determined by WSDOT FOP for AASHTO T 209.

For all other conditions, the Contractor shall construct a test section in accordance with instructions from the Engineer. The number and timing of passes with an approved compaction train that will yield maximum density with the nuclear gauge in the test section shall be used on all succeeding paving. The Inspector should make sure the Contractor is making the required number of passes and reconstruct a test section if conditions change.

5-4.2B(4) Miscellaneous Duties of the Street Inspector

When constructing plant-mixed pavement adjoining gutters, curbs, cold pavement joints, manhole castings, etc., the Inspector shall see that all contact surfaces are painted with an approved asphalt material before placing the adjoining pavement.

A detailed Inspector’s Daily Report (Forms 422-004, 422-004A, and 422-004B) shall be kept by the Inspector, noting all unusual occurrences, orders received from the Project Engineer, orders issued to the Contractor, and other pertinent information.

The Hot Mix Asphalt Compaction Report, Form 350-092, shall be prepared by the Density Inspector and distributed as shown on the form.

5-4.2B(5) Multiple Asphalt Plants

When two or more asphalt plants are used on one project, the mix from each plant must be placed with separate paving machines and compaction equipment. This is necessary because of the required adjustments on each paving operation to accommodate the different mixes and the various rolling patterns that may be necessary.

5-4.2B(6) Weed Control Under Asphalt Pavement

Weeds cause considerable damage to thin asphalt pavements such as sidewalks, shoulder overlays, and asphalt lined ditches. It is typically recommended that chemical weed control be used under all asphalt pavements less than 0.35 foot in depth unless a full depth base preparation was included in the construction. Check the contract requirements to see if soil residual herbicide is required.
Calculate Approximate Paver Speed for Continuous Operation

To assist in working with the Contractor to determine paver speeds, the following formula can be used to calculate approximate speeds required to handle various production rates at varying depths. When the paving machine is operated at a uniform speed consistent with the plant production rate and compaction train capacity, a smooth, continuous paving operation will be obtained.

\[
S = \left[\frac{T \times 0.076}{W \times D} \right] \div 60
\]

where:
\(T \) = Tons per hour
\(W \) = Width in feet
\(D \) = Depth in feet
\(S \) = Paver speed in feet per minute

Based on 2.052 tons per c.y. = 0.076 tons per c.f.

Compute Yield

During the paving operation, a careful record shall be kept, showing truckloads, the weight of each truckload and other pertinent data. Periodically, the Inspector shall compute the quantity of mix placed per square yard, and shall compare the yield against the proposed quantities. Overruns or underruns in quantities may be avoided by making a constant check of quantities placed.

HMA pavements are designed on a weight/volume relationship of 137 pounds for one square yard of pavement at a compacted depth of 0.10 foot. It is the intention in the construction of the pavement to spread the mixture according to an average yield in pounds per square yard.

Remember that the minimum compacted depth of pavement must also be met. If the aggregates are heavier than anticipated when the quantities were computed, or if the surface that the pavement is being constructed on is not true, the average yield can be attained without meeting the minimum thickness requirement.

Weigh tickets shall be collected and a daily total weight of mixture received shall be obtained and entered on the daily report for submission to the Project Engineer. To eliminate possible errors, totals as recorded by the Plant Inspector shall be compared against the total obtained by the Street Inspector. Careful attention given to those details may save argument with the Contractor concerning pay quantities.

Determining Minimum Lift Thickness

On occasion, the thickness of an individual lift of HMA is not specifically indicated on the roadway sections, or a contractor requests permission to place the HMA in more than one lift. Although maximum lift thickness is specified in the Standard Specifications, there is no guidance as to the minimum.

Lift thickness is governed by aggregate size. Adequate lift thickness ensures proper aggregate alignment during compaction, so that density and an impermeable mat can be achieved. Lifts placed too thin can lead to aggregate segregation, tearing, more rapid cooling and it is generally more difficult to achieve proper density and pavement smoothness. As a guide, the following table may be used to determine the minimum lift thickness for the various classes of mix.

<table>
<thead>
<tr>
<th>HMA Class</th>
<th>Minimum Lift Thickness (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾”</td>
<td>0.08</td>
</tr>
<tr>
<td>½”</td>
<td>0.12</td>
</tr>
<tr>
<td>⅜”</td>
<td>0.20</td>
</tr>
<tr>
<td>1”</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Establishing Mix Proportions

The Contractor is required to develop a mix design for the HMA in the contract. When the contractor has completed a mix design it is submitted to the Project Engineer along with representative samples of the mineral materials that will be used for HMA production. The mix design and samples are shipped to the State Materials Laboratory in Tumwater for verification of the mix design.

During production it may be necessary to make adjustments in aggregate gradation and asphalt content on the job to fit field requirements such as workability, compactibility, and volumetric properties (Va, VMA and VFA). Section 9-03.8(2) of the Standard Specifications provides the limits of change, both for the aggregate and the asphalt binder content, that can be approved by the Project Engineer. These changes can be made at the request of the contractor provided the change will produce material of equal or better quality. The Project Engineer may order a change in the asphalt binder content.

Adjustments for asphalt binder content greater than ± 0.3 percent may be approved by the State Materials Laboratory or the State Construction Office. Based on past experience in the Region, the Regional Administrator or the Regional Construction Engineer may wish to change the asphalt content beyond the ± 0.3%. To accomplish this, the Region may direct the Project Engineer to increase or decrease the asphalt content by notifying the Project Engineer in writing, or by e-mail, and sending a copy of this direction to the State Materials Laboratory. It is intended that this action include consultation with the State Materials Laboratory or the State Construction Office to provide the best asphalt paving material possible.

During construction, guidance for adjustments is provided through the use and interpretation of the compaction control and mixture test results.

The Contractor’s plant operator shall be advised of all results of sampling and testing performed so that the proper gate settings may be established at the cold aggregate feeders.

Concrete paving is a highly complex, mechanized operation and proper organization and planning of the work is essential on the part of both Contractors and WSDOT. Cement concrete pavement has a relatively high initial cost and WSDOT expects many years of satisfactory service from this type of pavement. It is imperative that the Project Engineer and Inspectors are thoroughly familiar with the specifications and techniques applying to the work, if this objective is to be attained.
Before construction begins, the Project Engineer should review all phases of the work, and see that all members of the crew are familiar with the duties to which they are to be assigned. Advance planning and organization of the engineering and inspection teams will do much to eliminate the confusion and improper construction sometimes found during the first day’s work. All inspection equipment and testing tools should be on hand, and properly calibrated or certified, in advance of beginning of paving, and WSDOT materials testers properly qualified to perform the necessary concrete testing.

The Project Engineer should make certain that all Inspectors are instructed in the proper methods of keeping notes, records and diaries. Accurate records of construction progress and test results are absolutely essential in evaluating pavement performance through the years.

5-5.2 Pre-Pave

5-5.2A Subgrade Preparation

The subgrade should be shaped and thoroughly compacted. Special attention should be directed to see that all parts of the subgrade are firm and unyielding. Soft spots should be removed and backfilled with suitable material. Standard Specifications, Section 5-05.3(6) requires that the subgrade be prepared and compacted a minimum of 3 feet beyond each edge of the area to receive the concrete pavement in order to accommodate the width of the slip form paving equipment. The 3 foot extensions on each side of the subgrade are tracklines that the slip form paving machines tracks will follow, and the smoothness of the tracklines directly affects the smoothness of the concrete pavement.

The subgrade must be trimmed to the proper subgrade elevation and shape. After trimming, the subgrade shall be thoroughly wetted and compacted to achieve a dense unyielding surface. The subgrade must be kept in this condition until the concrete is placed.

The elevation of the subgrade should be checked either by stretching a stringline between the control wires and measuring down to the surface or by another method that provides for a satisfactory check. Extra checks should be made through crown and super transitions to be sure proper adjustments were made in the machine through this area and that no high spots exist.

5-5.2B Controls

If control stakes have not been set for previous operations, they need to be installed at this time. If the control stakes have previously been set, the installation of the wire shall be checked to verify that it is set to the proper line and grade. This is especially important if the wire is offset from its original position.

5-5.2C Equipment

Batch Trucks

Nonagitating trucks are permitted to haul plant mixed concrete provided the concrete is delivered and discharged within 45 minutes after the introduction of mixing water to cement and aggregates, and the concrete is in a workable condition when placed Paver.

The slip form paving equipment must be self-propelled and capable of placing, spreading, consolidating, screeding, and finishing the freshly placed concrete to the proper pavement elevation and cross-section within the specified tolerances. Sliding forms on the paver must be rigid to prevent spreading of the forms. The paving equipment must finish the surface in a manner which will minimize hand finishing.

Slip form pavers contain various combinations of all or some of the following components: auger spreader, spud vibrators, oscillating screeds, tamping bars, and pan floats. The equipment should be checked for calibration and satisfactory operation in accordance with the manufacturer’s manual before paving is allowed to proceed.

If it is necessary to stop the forward movement of the paver, the vibratory and tamping elements should also be immediately stopped. No tractive force should be applied to the machine except that which is controlled from the machine.

5-5.3 Paving

5-5.3A Preparation

Ahead of the paving operation, the subgrade must be properly prepared with some type of “fixed” control template to accommodate the width of the paver. The subgrade must be properly dampened so as to have no water demand from the mix, but, also, the concrete must not be placed on subgrade on which pools of water have formed. If concrete is delivered by trucks on the grade, subgrade disturbance should be kept at a minimum.

A very important factor in obtaining a superior product with slip form paving is uniformity of operation. The Engineer should ensure that the plant, mixing facilities and hauling units are in quality and quantity balance to supply the paver with an adequate quantity of concrete for continuous operation at the recommended speed, without sacrificing uniform slump. Considerable pavement roughness can be attributed to spasmodic operation, and this should be held to a minimum.

It is very important that uniform consistency of the concrete be maintained with the water/cementitious ratio not exceeding 0.44 and the edge slump not exceeding ¼-inch. The Standard Specifications requirements for the water/cementitious ration is in Section 5-05.3(2) and the edge slump requirement is in Section 5-05.3(11). The current requirements for water/cementitious ratio and edge slump are intended to control consistency.
5-5.3B Placing

As paving progresses, the Inspector should be alert to the wire position just ahead of the machine, since the most precisely set control can be disturbed by workers or equipment hitting it. If you notice anyone or anything bumping, touching, leaning on or otherwise in contact with the control wire, notify the Contractor immediately. It is much easier to correct a misaligned control wire than to repair the pavement after it has been placed.

The unconsolidated concrete in front of the paver should be kept well distributed by spreading or by dumping. As the truck or mixer discharges the mix onto the grade in front of the paver, the forces delivered to the machine should be held to a minimum, with all systems functioning as designed. If the paver is not moving, the vibration should be off. When vibration is in progress, it is important that the concrete becomes uniformly plastic for the full slab width as it passes through the vibration area. A lack of consolidation at one position on the machine could cause a potential fracture line parallel to the direction of movement and also a rough and uneven finished surface. The head of material in front of the paving machine should always be in accordance with the manufacturer’s recommendation.

It is possible that experimentation may be necessary at the beginning of paving. To start, no trailing forms should be used on the machine and all finishing equipment should be engaged. This could then be modified if problems occur. One of the prime contributors to edge slump is high slump concrete. This should not be tolerated. Another is tie bar insertion for abutting lanes, which should be installed ahead of the final finishing. Edge slump of the unsupported sides behind the paver is one of the major problems to be combated on slip form paving. The surface should be immediately straight edged by the Contractor and methods corrected to deliver a consistently true edge. Trailing forms can be used to give support beyond the length of the paver, but this may not be the answer. It is possible that more damage than good is done by trailing forms in some cases, by drag resistance pulling down the edge, or by mechanical vibration transmitted through the paver linkage to the form. This comment is also applicable to a trailing finisher. Remember that the concrete is between the moving forms only a few minutes and does not take its initial set until long after the forms leave it.

If water is added to the surface from a spray bar at the rear of the machine it should be in the form of a fine fog spray to avoid washing of the surface and extreme care must be exercised to see that the amount of water added is held to a bare minimum. Addition of excessive amounts of water during finishing will weaken the surface of the concrete and may result in hair checking or scaling of the pavement surface at an early date. If a considerable amount of water is continually required to finish the concrete, it may be better to add more water to the concrete mix to reduce the need for spraying water on the surface. Rain on a green unformed slab can cause disastrous edge slump and erosion. The Contractor should be encouraged to halt operations previous to this circumstance, and should be prepared to protect the pavement at all times.

Soon after the paving starts, and periodically thereafter, the slab template should be checked to insure that the “dry” template has not changed. This is done by stretching a line over the transverse wires and measuring down. This check should also be made through curves and transitions to ensure that the proper section adjustments are being made.

The slip form paver behaves similarly to an asphalt paver with the front probe approximately ¾-inch higher than the rear. This will probably vary with the machine, due to mass distribution, etc.

Slope of less than this produces an unstable characteristic and an undulating profile, slopes in excess of the correct one cause the machine to repeatedly build up and then slump down. If the symptoms occur, this is one place to check. The machine also has about ¾-inch convergence in the sides, to encourage stability. Hand finishing, water adding, and other surface manipulation should be kept at a minimum.

5-5.3C Installing Tie/Dowel Bars

Tie/dowel bars must be installed where specified in the Standard Plans (See Standard Plan Series A-40 and A-60). Tie bars must be placed so that equal lengths of the bars project into the two lanes of adjoining pavement. When paving two or more lanes at a time, the tie bars are placed at the juncture of the lanes by mechanical means. The Inspector must be alert to see that the bars are set at the proper spacing and depth and are properly centered between the two lanes.

When placing tie/dowel bars in the edge of a slab, the ends of the bars projecting from the forms should be protected against disturbance that might destroy the bond between the concrete and steel. The bars already in place shall be bent to lie close to the slab to permit preparation of the subgrade of the adjoining lane, and carefully straightened to their proper position before placement of concrete.

5-5.3D Finishing

After the concrete has been given the preliminary finish by the paving machine, minimal hand finishing may be required before the Contractor checks the surface with a straightedge device not less than 10 feet in length. High and low areas indicated by the straightedge shall be corrected. The requirements of checking the surface with the straightedge may be waived if it is demonstrated that other means will consistently produce a surface that meets the requirements for surface smoothness.

The pavement shall be given a final finish by texturing with a comb perpendicular to the center line of the pavement. The comb shall produce striations approximately ¾-inch to 1½-inch in depth in the fresh concrete with random spacing of the striations from ½-inch to 1¼-inch. It is important that the comb be used when the concrete is at the proper consistency. If the concrete is too soft, it will not retain the proper texture obtained by the comb, and if the concrete is too hard, the proper texture will not be achieved. The comb should be set up and ready to use well in advance of the time it will be required.
5-5.3E Curing
Immediately following final finishing of the concrete or after free water leaves the surfaces, the curing compound should be applied. The purpose of curing, whatever method is used, is to prevent the loss of moisture required to hydrate the cement so that the concrete will gain its proper strength and durability. It is essential that a complete coverage of curing compound be applied to seal the exposed surface of the pavement.

On most paving work, specifications will call for machine application of the curing compound. It should be seen that the spray nozzle is adequately protected from the wind by shielding so that the compound is not blown off the pavement surface. The Inspector shall check to see that the specified rate of coverage is obtained.

The efficiency of the curing compound in preventing escape of moisture from the concrete is dependent upon the thickness of the membrane. For this reason, it is essential that the compound be evenly applied over the exposed surface at a rate of 1 gallon to not more than 150 square feet. Refer to Standard Specification, Section 5-05.3(13) for additional requirements for curing.

The curing membrane must be protected from damage by foot traffic or equipment. There is a certain amount of foot traffic required in sawing joints, operating the profiler and other operations. This traffic should be held to a minimum, and if damage from undue scuffing or other causes does occur, the area shall be re-sprayed with the required amount of curing compound. Care must be exercised so that curing compound is not sprayed into saw cuts, as the joint sealing compound will not adhere to the concrete in the joints if the curing compound is present.

When pavement is being constructed in early spring or late fall, the Engineer must be alert to predictions of freezing weather, and see that the Contractor is prepared to protect the fresh concrete from freezing, as required in Section 5-05.3(14) of the Standard Specifications.

When special protection against freezing is required, the protective earth or straw covering must be placed against the sides of steel forms, if used, as well as on the surface of the pavement, since steel offers poor insulation to the change in temperature.

5-5.3F Joints
Contraction Joints
As concrete cures and hardens, a change in volume occurs due to loss of moisture and cooling. This shrinkage results in tensile stresses being set up in the pavement, causing cracks to develop. History has shown that transverse cracks will develop at about 15 foot intervals along the length of a slab, and that a slab wider than 15 feet may crack longitudinally. The spacing for transverse contraction joints is a maximum of 15 feet; see Standard Plan A-40.10-00 for more information on spacing of transverse joints.

The purpose of contraction joints is to control the cracking of the concrete, thereby preventing ragged random cracks that spall and require expensive maintenance. Good construction of these joints is of the utmost importance, and inspection of this work is one of the most important phases of the Engineer’s duties.

Contraction joints are weakened planes that collect the cracking into a controlled joint. These joints are made by sawing and pouring a hot or cold filler into the joint. The purpose is to create a maintainable joint in the slab and cause the crack to form along the plane of the joint.

This type of joint is constructed by sawing a groove in the hardened concrete to create a plane of weakness along which the crack will form. The saw cuts are made with the circular saw blades edged with diamonds. On full width construction, a gang sawing machine using several blades simultaneously is generally used to saw the transverse joints. When the gang sawing machine is used, the Inspector must see that the individual blades are properly aligned and set to cut the required depth.

It is necessary to control the time of sawing transverse joints very carefully, so that sawing may be done when concrete has hardened as much as possible without delaying so long as to allow development of random cracks. It is impossible to state a sawing schedule that will be ideal for every job, since curing conditions vary a great deal from job to job. Some generalizations can be made concerning sawing, but the Contractor on each job must determine from experience the most suitable schedule for that job.

It is desirable to delay sawing as long as possible to allow the concrete to gain enough strength to resist raveling adjacent to the saw cut. Sawing green concrete produces excessive wear on the saw blades, and causes washing, raveling, and other structural damages to the concrete near the joint. However, it may be necessary to make some early cuts to control cracking.

In general, a program of sawing control joints should be followed, sawing every fifth joint, not to exceed 64 feet, as soon as the concrete hardens sufficiently to resist excessive raveling. The beginning of sawing may vary depending on the type of base, concrete mix characteristics and weather. Sawing of the intermediate joints should follow the sawing of the control joints. It will usually be found possible to delay sawing the rest of the joints until the day following placement of the concrete (see Standard Plan A-40.10-00 for more information).

By observing the frequency of cracking and opening of joints the next day, it will be possible to lay out a sawing schedule that will give best results. If only the control joints are cracked, the sawing of the intermediate joints can be delayed further, given fairly constant weather conditions.

The Contractor should mark off the locations of the transverse joints and the inspector should check the spacing and frequently check to see that the specified depth of cut is sawed. The locations of the dowel bar baskets need to be marked on the grade prior to the dowel bar baskets being covered by the concrete pavement in order to correctly locate the transverse joint saw cut in the middle of the dowel bars. Since much of the sawing will be done at night, the Inspector should be equipped with a good flashlight to properly examine the condition of saw cuts and to watch for random cracks.
When paving a lane adjacent to a previously paved slab, an early morning examination of joints in the existing lane will show the joints that are open and working. These locations should be marked for sawing control joints in the second lane. Friction at the construction joint and the tie bars will transmit stresses to the new slab and may cause random cracking to occur. For the same reason, uncontrolled cracks in the first lane should be matched with a control joint in the second. In addition, when cement concrete pavement is placed adjacent to existing cement concrete pavement, the vertical face of all existing working joints shall be covered with a bond breaker, such as polyethylene film, roofing paper or other material as approved by the Engineer to prevent uncontrolled migration of the crack into the adjacent slab (See Standard Specifications, Section 5-05.3(8)A for more information). If the Contractor proposes to use material other than polyethylene film or roofing paper as a bond breaker, the Project Engineer shall consult with the State Construction Office on the suitability of the proposed bond breaking material.

Isolation Joints

Drainage features and manholes placed within the concrete pavement are likely to cause a crack to develop in the concrete and need to be isolated from the rest of the concrete pavement by some type of premolded joint filler. Consult the contract plans and or Standard Plans for details. If no details are found contact the State Construction Office for guidance.

Construction Joints

A construction joint shall be made at the end of each day’s paving by placing a header board transversely across the pavement. Uncapped dowel bars should be installed in the joint, seeing that the dowels are parallel with the centerline and profile of the pavement. The ends of the dowels projecting from the header should be protected so that they will not be disturbed or moved from their correct positions.

Prior to beginning paving the following day, any broken curing seal on the end of the previous day’s work must be re-sprayed with curing compound, and exposed dowel bars shall be coated with a parting compound, such as curing compound or grease to allow for future slab movement.

5-5.3G Smoothness

In general, the paving contractor is responsible only for the pavement placed by them. This includes the smoothness of the pavement on both sides of any and all joints constructed. On the other hand, the Contractor would not be responsible for pavement placed by another contractor or if the work abuts a bridge or approach slab constructed on a separate contract. When leaving or approaching such joints, the center of the profiler will be started or stopped on the pavement to be profiled at a point approximately 15 feet from the joint. The remaining areas that are unprofiled would be checked for smoothness with the 10 foot straightedge in accordance with current practices used on bridge decks.

Since the primary goal is to obtain a smooth pavement, it would be advisable to run the profiler over the joints at the beginning and end of the project, as well as any intermediate joints as described above, and exclude these readings from the profile index. Should these areas meet straightedge tolerances, but not that for the profiler, consideration should be given to grinding which would be performed at WSDOT’s expense. Section 5-05.3(12) of the Standard Specifications requires that the pavement smoothness be checked with equipment furnished and operated by the contractor, in the presence of the Engineer, within 48 hours following placement of the concrete to determine whether the equipment and methods used by the contractor are producing a pavement meeting the smoothness required by the specifications. A computerized recording profiler meeting the requirements of Section 5-05.3(3)E of the Standard Specifications, is required to be used. For the purposes of determining the “daily profile index”, two or more profiles may be averaged together (see example in WSDOT Test Method 807). The “daily profile index” may also be used to identify those areas having high points in excess of 0.3 inches which must be reduced by abrasive means until re runs of the profiler indicate the area does not exceed the allowable deviation. The longitudinal “profile index” of the pavement is based on the elevation of any point on the pavement relative to the elevation of points 12.5 feet ahead of and behind the point. This is measured by a 12 wheeled vehicle having a 25 foot wheelbase and a reference wheel, free to move in a vertical direction, suspended midway between the outer wheels. The vehicle is calibrated to record longitudinal travel and vertical variations in elevation on a continuous strip chart as it traverses a section of pavement. The “profile index”, which is determined from the recorded chart of each 0.1 mile section, is defined as the cumulative total of recorded elevation extremes above or below a standard variation of ±0.1 inch.

For example, if the chart for a 0.1 mile section showed all elevation extremes to be within the +0.1 inch standard, except for 2 points which measured +0.2 inch and +0.3 inch respectively, the “profile index” would be 0.3 inch per 0.1 mile, or 3 inches per mile.

The “daily profile index” may be used for acceptance purposes should the various individual indexes used to determine the “daily profile index” not exceed 0.7 inches per any 0.1 mile section or 7 inches per mile.

Grinding depths should be limited to 3/8 inch. If the specifications cannot be met with this, the section should be removed. Low areas which grinding cannot feasibly remedy shall be sandblasted, filled with epoxy bonded mortar and textured by grinding. The epoxy bonding agent shall meet Standard Specification Section 9-26.1(1)B for Type II epoxy. Areas which exhibit improperly finished surfaces and would require extensive patching should be removed at the Engineer’s discretion.

5-5.4 Post Paving

5-5.4A Repair of Defective Pavement Slabs

Broken slabs, slabs with random cracks, nonworking joints near cracks, edge slumping and spalls along joints and cracks must be replaced or repaired prior to completion of joint sealing. Areas of concrete pavement that are identified as needing replacement or repair need to be reviewed by the Project Engineer to determine if a repair or replacement of the concrete is most appropriate in accordance with Section 5-05.3(22) of the Standard Specifications. There are times that small defects or spalls in the concrete should not be repaired as the repair is worse than leaving small defects or spall alone. The Project Engineer shall consult with the State.
Construction Office in making the determination on which areas should be repaired, replaced or leaving small spalls or defects alone.

5-5.4B Sealing Sawed Contraction Joints
Prior to opening of the pavement to traffic, sawed joints must be sealed with an approved type of filler material. Before application of the filler material, the joints must be thoroughly clean and dry. The saw shall be free of dirt and dust and may be cleaned with a jet of compressed air. It is important that the saw cut be completely filled to within ¼ inch to ½ inch below the top of the concrete surface with the joint filler material. The Inspector can check this by probing the joint after sealing with a stiff wire and watching for sagging of the filler below the top of the joint.

5-5.4C Thickness
Section 5-05.5(1) of the Standard Specifications outlines procedures for thickness determinations and provides penalties when prescribed tolerances are exceeded. Before final payment, the pavement thickness will have to be determined in order to calculate the quantities.

5-5.4D Opening to Traffic
Standard Specifications Section 5-05.3(17) covers the requirements for opening concrete pavement to traffic. During the curing period designated for the concrete mix, the pavement must be properly barricaded to close it to all traffic. If necessary, the Contractor may be required to furnish a person to prevent traffic from using the pavement.

When the pavement has developed a compressive strength of 2500 psi, as determined from cylinders made at the time of placement, it may be opened to traffic. The pavement should be cleaned either by brooming or a pickup sweeper prior to opening.

5-5.5 Stationary Side Forms
5-5.5A Forms
Metal side forms or other forms approved by the Engineer, conforming to the requirements of Section 5-05.3(7)B of the Standard Specifications, shall be used for the construction of cement concrete pavement when a slipform paving machine is not used unless the Contractor requests to use an approved slip form machine.

It is essential that the base of the forms used have full, equal bearing upon the subgrade throughout their length and width. The forms should be set true to alignment and grade and firmly staked with steel pins to avoid movement. The forms must never be set on blocks or pedestals. After the forms are firmly staked in place, a final inspection of line and grade should be made by sighting along the tops of the forms. Minor adjustments in grade can be accomplished by tamping additional subgrade material under the form base by an approved mechanical form tamper or by inserting small leveling wedges under the forms. It is important that the leveling wedges do not protrude into the cement concrete pavement so as to prevent uncontrolled cracking in the concrete pavement at the locations of the wedges. A small amount of concrete may seep under the forms and this concrete needs to be removed flush with the vertical face of the existing concrete pavement prior to placing new cement concrete pavement next to existing concrete pavement.

If major changes in alignment or grade are required, the forms should be removed and the subgrade reshaped to the proper elevation and recompacted before resetting the forms.

5-5.5B Joints
Longitudinal and transverse contraction joints will be provided by saw cutting the surface in accordance with Standard Specifications Section 5-05.3(8) to the depth specified in Standard Plan A-40.10-00. The joints shall match transverse joints on adjacent concrete pavement and be at 15 foot intervals transversely on other areas.

5-5.6 Testing Equipment/Reports
5-5.6A Testing Equipment
Specified screens, sieves, and scales
Air meter
Straightedges and stringlines
Thermometers
Cylinder molds for casting concrete test specimens
Stop watch
Flashlights

5-5.6B Records
The Project Engineer is responsible for the keeping of proper records that must include the following information:

- Record of cement received and used
- Screen analysis of aggregates (see Chapter 9)
- Air-entraining agent used, and air meter test results
- Rate of application of curing compound
- Inspector’s diaries

5-5.7 Check Lists
For the convenience of the Inspector, some of the most important inspection duties on concrete paving work are listed below:

Pre-Pave
1. Review contract requirements (plans, standard specifications, amendment to the standard specifications, and special provisions)
2. See that all testing tools and equipment are on hand and in good condition. Working with the Contractor, determine location(s) for the Contractor provided curing box(es) used for initially curing concrete test cylinders (See Standard Specifications Section 5-05.3(4)A).
3. Check preparation of subgrade; watch for soft spots. Check subgrade elevations to ensure there are no high or low spots, Section 5-05.3(6). If HMA pavement placed on subgrade prior to PCCP, refer to Section 5-04 for HMA requirements.

Page 5-21
4. Check that forms are in good condition and are set securely, true to line and grade, Section 5-05.3(7)B. If a slip form paver is used, check position of wire, string line across the wire and check the depth to subgrade or HMA pavement in at least three locations across the proposed paving area at each pin location.

5. Check that subgrade or HMA is moist before the concrete is placed, Section 5-05.3(6).

Paving

6. Watch for variations in slump of mixed concrete batches, Section 5-05.3(2). In the case of slip-form paving, make frequent checks of the condition of the wire and edge slump, Section 5-05.3(11).

7. Make tests of air content, temperature, compressive test cylinders, and make complete, accurate records of test results and computations, Section 5-05.3(4)A, 5-05.3(5)A and Chapter 9. If maturity meters are used, document locations and periodically check output against maturity curve.

8. Check tie bars and dowel bars for rust and defects, that they are installed properly, and secured to the grade if placed in baskets. Ensure that dowel bars receive a bond breaker if they are not precoated, Section 5-05.3(10).

10. Check frequently to see that vibrators are operating properly, Section 5-05.3(7). If a dowel bar inserter is used, check spacing and alignment of dowel bars. Ensure that PCCP is consolidated after the bar is inserted and that slurry does not fill the insertion point.

11. Watch finishing operations to make sure excessive amount of water is not added to surface; allow fine spray only to be used, Chapter 5-5.3B.

12. Check the surface texturing operation to see that proper, uniformly textured surface is obtained, Section 5-05.3(11).

13. See that curing compound is placed uniformly, at the required rate, and at the proper time. The curing compound needs to completely coat the surface of the concrete, Section 5-05.3(13)A. Note other curing methods are allowed in Standard Specifications.

14. See that concrete is consolidated properly at night headers, Section 5-05.3(8)C.

Post Pave

15. Inspect joint sawing operation to see that required depth is cut, and that the best possible saw cuts are obtained, Section 5-05.3(8)A.

16. Watch removal of forms; see that damage to pavement does not occur; require curing compound to be applied on edge of slab immediately following form removal, Section 5-05.3(7)B.

17. See that additional curing compound is applied over areas scuffed by foot traffic.

18. Check that pavement is protected from traffic with necessary barricades, lights, etc, Section 5-05.3(16).

19. Check that sawed contraction joints are sealed properly with joint sealant filler. Fill to between ¼-inch and 5/8-inch below the surface of the concrete and minimize any overflow, Section 5-05.3(8)B.

20. Review surface smoothness tests each day, Section 5-05.3(12).

Note: “Section” references are to the Standard Specifications and “Chapter” references are to the Construction Manual.
is begun. The lengths as measured in the shop seldom vary more than 1/6 inch (6 mm) to 3/8 inch (10 mm) from the design drawings, and there is sufficient play in the anchor bolt sleeves for this tolerance.

Allowance will be made on the design drawings for stretch of the span due to loss of camber. The Project Engineer shall compute camber elevations from the shop camber measurements taken by the shop. Elevations shall be set above the falsework at each panel point for the camber blocking. Most erectors set the camber blocks high to allow for settlement of the falsework. The amount of allowance for settlement should be decided by the erector. The Project Engineer shall give the exact elevations for the finished camber. Elevations shall be given and carefully checked as an error means that an unnecessary amount of jacking and adjusting may be required.

The adjustment of spans is often a source of argument between erectors and engineers. Accurate work on the part of the Engineer will do much to avoid such arguments. Elevations set on the falsework before the load is applied may not be correct after the load is applied. It is the responsibility of the Contractor to determine the allowance that may be necessary to compensate for settlement in the falsework. It is easier to lower the span than to raise it.

6-3.3 Handling and Storing Material

Structural steel members shall be handled carefully to prevent twisting, bending, or scraping the member. The material shall be supported on suitable skids or platforms to keep it off the ground or out of water and it shall be protected from deterioration by rust.

Structural steel members should not be unloaded and stored on adjoining concrete approach spans. If the Contractor proposes to use the concrete approach spans to support the structural steel members, the proposal must be submitted in writing to the Bridge and Structures Office for review and approval. This proposal shall include drawings describing the support locations, loads, and supporting stress calculations. The structural steel members shall be placed on timber blocking, spaced so that the weight (mass) will be carried on the girders (load carrying members) and not on the comparatively thin concrete deck slab. Bridge decks are designed for carrying traffic and not as storage or dock space. This is especially true for concrete sidewalk slabs. Sidewalk concrete slabs shall not be overloaded by loads such as building material, tool sheds, or paint sheds.

6-3.4 Straightening Bent Material

Methods for straightening of plates, angles, other shapes, and built-up members shall not produce fracture or other injury to the metal, and shall be approved by the State Construction Office. Distorted members shall be straightened by mechanical means or by the carefully planned and supervised application of a limited amount of localized heat. The temperature of the heated area shall not exceed 1,100 °F (593°C) (a dull red) and shall be controlled by temperature indicating crayons, liquids or bimetal thermometers.

Following the straightening of a bend or buckle, the surface of the metal shall be tested for evidence of fracture.

6-3.5 Setting Anchor Bolts and Masonry Plates

Anchor bolts are usually plain round bolts with the head and plate washer on the lower end and the thread and nut at the top end. These bolts are set in pipe sleeves to allow room for adjustment of the span. Location of anchor bolt sleeves is very critical and must be verified by the inspector. Also, the exposed length of anchor bolts should be checked to ensure enough thread is exposed out of the pier cap to tie down the lower bearing assembly.

Anchor bolt sleeves, when anchor bolts will not be grouted until after freezing weather, must be protected against damage from expanded ice by filling the sleeves with an approved nonevaporating antifreeze solution. Without exception, when piers and superstructures are constructed under separate contracts, the anchor bolt sleeves shall be filled with an approved nonevaporating antifreeze solution by the substructure Contractor. Before the bolts are grouted, the antifreeze solution shall be removed, the space well cleaned and the holes then filled with grout. The antifreeze solution shall be diluted with water and completely removed from the sleeves or it will have a detrimental effect on the filler grout. See Section 6-02.3(18) of the Standard Specifications.

It is important to set bearings level on all piers. Bridge plan bearing details usually show a leveling method. Bearings shall be set so that they are at zero movement at 64 °F (18°C) after the total load is applied and the span is released. The amount of offset varies with the length of the span and the temperature at time of erection.

Anchor bolt holes and the void underneath masonry plates shall be grouted, after all structural steel is erected and adjusted for length and camber, and at least seven days before the deck concrete is placed. Portland cement shall be used for grouting and the procedure should be as outlined in Section 6-03.3(36) of the Standard Specifications.

Do not grout underneath masonry plates with dry mortar unless specifically shown in the plans. The Contractor shall build forms around the masonry plate about 4 inches (100 millimeters) high and pour grout in the form from one side until the whole area is well filled. Use a wire or steel band to keep the grout flowing. After the grout has taken its initial set, remove the form and cut the edges of the grout with a trowel to about a 45 degree bevel from the bottom of the shoe to top of the pier. Do not allow the finished grout to extend above the bottom of the masonry plate.

6-3.6 Erection of Steel

6-3.6A Assembling

Before erection of the steel is commenced, the structural steel members shall be inspected for damage during shipping and handling. Any members that have been damaged must be repaired or replaced before being erected.

All members should have been match-marked and shall be assembled in accordance with the erection drawings from the Contractor. As the erection progresses, the Inspector should compare assembled members against the erection plans to see that proper members are in correct positions.
If during assembling, it is discovered that various members do not fit together, do not allow undue force to be applied to make them fit. The application of such a force can introduce stresses in several components of the structure. These stresses can be of a magnitude high enough to cause serious structural problems. The structure has not been designed to take these stresses. In such cases, the Assistant State Construction Engineer, Bridges, shall be informed.

Structural steel members that are improperly fabricated, or do not fit, shall be rejected and either repaired or replaced with new. If the Contractor elects to repair the structural member, the proposed repair procedure shall be reviewed and approved by the Assistant State Construction Engineer, Bridges, prior to any repair work.

Unless otherwise shown or specified, structural steel connections shall be bolted. Simple truss spans shall be completely erected with all field-bolted connections and/or splices held in place with the minimum number of drift pins and bolts as specified in Section 6-03.3(32) of the Standard Specifications. Once the minimum number of drift pins and bolts are installed in all the connections, final adjustments for span length and camber shall be made prior to completion of bolting and release of falsework. The assembly and bolting sequence for all structural steel structures shall strictly follow the approved erection plan. Erection and bolting sequences, especially cantilever and arch spans, are usually detailed in the contract documents.

Field connections shall be pinned and bolted in accordance with the requirements of Section 6-03.3(32) of the Standard Specifications. This section applies to connections and splices made in the field. Connections are when one structural steel member is bolted directly to another structural steel member; such as, cross-members and braces. Splices utilize structural steel plates to connect two structural steel members; such as, a plate girder. It also requires all connections and splices be securely drift-pinned and bolted before the weight of the member can be released or the next member is added. The field erection drawings must specify pinning and bolting requirements. Section 6-03.3(32) then specifies the required minimum number of pins and bolts for field connections and splices.

All bolted connections are designed by WSDOT to be friction connections. A friction connection transfers the stress by friction between surfaces in contact and does not depend on shear or bearing between members and bolts. The friction is provided when the connection or splice members are compressed through tension on the bolts (measured by turn-of-nut or direct-tension-indicator method). To develop design contact surface friction, all bolts in a bolted connection must be properly tightened to the minimum specified tension. The Standard Specifications recognize that final design loads are not present during erection of the structural steel members. Therefore, during erection, all the bolts are not needed in order to develop the friction necessary in the connection or splice for erection loads. The Standard Specifications recognize this and require a minimum percentage of the holes to be filled during erection; for instance, 50 percent for normal structures and 75 percent for cantilevered structures. These holes are filled with a combination of drift pins and bolts. Drift pins are required to properly align the members since bolts are usually smaller in diameter than the holes. Bolts are required to develop the minimum friction required to transfer erection loading. The minimum friction or load-carrying capacity is not developed until the bolts are tightened to the specified minimum tension.

Once the member is released from its support (support falsework or crane), the Standard Specifications specify the procedure required to complete bolting of each connection. Sometimes fabricators will temporarily bolt-splice plates to the appropriate member. The fabricator will usually use the minimal number of bolts to secure the splice plate during shipping and handling. These temporary bolts shall be removed and replaced with approved high-strength bolts.

6-3.6B High-Strength Bolts

Structural steel field connections are made with high tensile strength bolts conforming to the requirements of Section 9-06.5(3) of the Standard Specifications and Special Provisions. A special heat treatment gives these bolts a high tensile strength.

WSDOT designed bolted connections generally operate by a transfer of stresses by friction between surfaces in contact and do not depend on shear or bearing between the members and the bolts. Therefore, it is imperative that the contact surfaces of the metal shall be properly cleaned and the required minimum tension be obtained in the bolts.

The required tension in the bolts may be obtained by using either the Turn-of-Nut method or the Direct Tension Indicator (DTI) Method unless the specifications for the project state otherwise. If required because of bolt-entering and wrench operation, tightening by either procedure may be done by turning the bolt while the nut is prevented from rotating. Section 6-03.3(33) requires a hardened washer under the turned element. Therefore, if the bolt is turned, a hardened washer is required under the bolt head. A hardened washer is also required with the DTI Method.

Bolted parts shall fit solidly together when assembled. Where an outer face of the bolted parts has a slope greater than 1:20, with respect to a plane normal to the bolt axis, a beveled washer shall be used to compensate for the lack of parallelism. See Figure 6-6. Bolts shall be tightened beginning from the center of each connection towards the edges of the connection. All joint surfaces, including those adjacent to the bolt heads, nuts or washers, shall be free of scale, except tight mill scale, and shall also be free of burrs, dirt, and other foreign material that would prevent solid seating of the parts.

![Beveled Washer](image-url)
AASHTO specifications require that bolts bear specific identification marks. The following identification is marked on the top of the bolt heads:

<table>
<thead>
<tr>
<th>Type</th>
<th>AASHTO M 164</th>
<th>AASHTO M 253</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>A 325</td>
<td>A 490</td>
</tr>
<tr>
<td></td>
<td>8S</td>
<td>10S</td>
</tr>
<tr>
<td>Type 2</td>
<td>A 325</td>
<td>A 490</td>
</tr>
<tr>
<td></td>
<td>8S</td>
<td>10S</td>
</tr>
<tr>
<td>Type 3*</td>
<td>A 325</td>
<td>A 490</td>
</tr>
<tr>
<td></td>
<td>8S3</td>
<td>10S3</td>
</tr>
</tbody>
</table>

*At the manufacturer’s option, Type 3 bolts may have additional distinguishing marks to indicate the bolt is atmospheric corrosion resistant and of weathering type.

Nuts of all classes, in nominal diameter M5 and larger, shall be marked with the property class designation (5, 9, 10, 12, 8, 10S, 8S, 8S3, 10S3) on the top or bearing surface, on the top of flange, or on one of the wrenching flats. Additionally, nuts of Classes 10, 12, 8, 8S, 8S3, 10S, and 10S3 shall be marked with a symbol to identify the manufacturer. For Classes 8S3 and 10S3 nuts, the manufacturer may add other distinguishing marks to indicate the nut is atmospheric corrosion resistant and of a weathering grade of steel.

Type 3 bolts must be used when the structure is not being painted (WSDOT rarely utilizes unpainted structural steel for new structures). Nuts and washers used with Type 3 bolts must also have weathering characteristics.

Each fastener shall be tightened to provide, when all fasteners in the joint are tight, at least the minimum tension shown in the Standard Specifications for the size and grade of fastener used.

Turn-of-Nut Method

When the turn-of-nut method is used to provide the specified bolt tension, all of the required minimum number of bolts within a bolted connection or splice shall be brought to a “snug tight” condition. The bolts shall be tightened to “snug tight” in a systematic order to ensure that all parts of the joint are brought into full contact with each other. This usually requires that the bolts located near the center of the connection or splice be tightened first. Then all remaining bolts shall be tightened from the center progressing toward the outer edges. “Snug tight” is defined as the tightness attained by (1) a few blows from an impact wrench, or (2) the full effort of a man using an ordinary spud wrench. This method uses a direct-tension-indicator washer that has formed protrusions on one face, leaving a gap. As the bolt is tightened, the formed gap is reduced. The measurement of this gap verifies the bolt tension. Section 6-03.3(33) of the Standard Specifications addresses the maximum gap opening for direct tension indicators.

WSDOT has two concerns associated with the use of direct-tension-indicator washers. These concerns are (1) potential corrosion within the washer gap and (2) undetected bolt loosening as bolt tightening of a connection or splice proceeds. Following is a brief discussion of each item:

1. **Potential Corrosion**: The Specifications address this potential corrosion problem by limiting the maximum gap opening for painted and unpainted structures. These gap opening limits are governed by both tension requirement and required corrosion protection. The direct tension indicator manufacturers address only the minimum bolt tension requirement. It is, therefore, very important that the Inspector be aware of this additional concern of potential corrosion.

2. **Undetected Bolt Loosening**: The manufacturers of the direct-tension-indicator washers emphasize the ease and reliability of their product. They claim, and it is true, that if the gap is reduced to the specified maximum opening, the respective bolt is properly tensioned. The concern we have is that through the process of tightening all the bolts in a connection or splice, a warped plate may be progressively flattened, potentially loosening the initially tightened bolts. If this happens, the indicator washer still indicates the bolt(s) are fully tensioned. For this reason, WSDOT requires that bolt tension inspection, usually with a calibrated torque wrench, be performed. The Inspector should be aware of this potential problem and observe the tightening procedure with this in mind.

Contractors often suggest a tightening method that eliminates marking the bolt as required in the turn-of-nut method. This suggested method requires calibration of the air impact wrench(es) and the inspection torque wrench. After calibration, the Contractor wants to snug tighten each bolt, then tighten to minimum tension using the air impact wrench without marking the nut and bolt. This method is heavily dependent upon the torque wrench test and is not accepted by WSDOT.

Direct Tension Indicator Method (DTI)

When the direct tension indicator method is used to provide the specified bolt tension, all of the required minimum number of bolts within a bolted connection or splice shall be brought to a “snug tight” condition. The bolts shall be tightened to “snug tight” in a systematic order to ensure that all parts of the joint are brought into full contact with each other. This usually requires that the bolts located near the center of the connection or splice be tightened first. Then all remaining bolts shall be tightened from the center progressing toward the outer edges. “Snug tight” is defined as the tightness attained by (1) a few blows from an impact wrench, or (2) the full effort of a man using an ordinary spud wrench.

This method uses a direct-tension-indicator washer that has formed protrusions on one face, leaving a gap. As the bolt is tensioned, the formed gap is reduced. The measurement of this gap verifies the bolt tension. Section 6-03.3(33) of the Standard Specifications addresses the maximum gap opening for direct tension indicators.

WSDOT has two concerns associated with the use of direct-tension-indicator washers. These concerns are (1) potential corrosion within the washer gap and (2) undetected bolt loosening as bolt tightening of a connection or splice proceeds. Following is a brief discussion of each item:

1. **Potential Corrosion**: The Specifications address this potential corrosion problem by limiting the maximum gap opening for painted and unpainted structures. These gap opening limits are governed by both tension requirement and required corrosion protection. The direct tension indicator manufacturers address only the minimum bolt tension requirement. It is, therefore, very important that the Inspector be aware of this additional concern of potential corrosion.

2. **Undetected Bolt Loosening**: The manufacturers of the direct-tension-indicator washers emphasize the ease and reliability of their product. They claim, and it is true, that if the gap is reduced to the specified maximum opening, the respective bolt is properly tensioned. The concern we have is that through the process of tightening all the bolts in a connection or splice, a warped plate may be progressively flattened, potentially loosening the initially tightened bolts. If this happens, the indicator washer still indicates the bolt(s) are fully tensioned. For this reason, WSDOT requires that bolt tension inspection, usually with a calibrated torque wrench, be performed. The Inspector should be aware of this potential problem and observe the tightening procedure with this in mind.
Inspection

The Inspector shall determine that the requirements of the Standard Specifications are met in the work. The Inspector shall observe the installation and tightening of bolts to determine that the selected tightening procedure is properly used and shall determine that all bolts are tightened and, in the case of the direct-tension-indicator method, that the correct indication of tension (gap) has been achieved. Bolts may reach tensions substantially higher than the value in Table 3 of the Standard Specifications, Section 6-03.3(33), but this condition may not cause rejection.

The condition of the bolts is critical to the bolt-up operation and inspection. Bolts to be installed in the structure shall be lubricated in accordance with the Standard Specifications. A good check is a nut that is easily turned on the entire threaded portion of the bolt.

The following inspection procedure shall be observed for:

1. Bolts tightened using the turn-of-nut method: The Contractor, in the presence of the Engineer, shall use an inspection wrench which may be a torque wrench. Calibration of the inspection torque wrench is explained in a following section.

 Bolts that have been tightened using the turn-of-nut method shall be inspected by applying, in the tightening direction, the inspecting wrench and its job-inspecting torque to 10 percent of the bolts, but not less than two bolts, selected at random in each connection. If no nut or bolt head is turned by this application of the job inspection torque, the connection shall be accepted as properly tightened. If any nut or bolt head is turned by the application of the job inspecting torque, this torque shall be applied to all bolts in the connection, and all bolts whose nut or head is turned by the job inspecting torque shall be tightened and re-inspected. As an alternate, the Contractor may retighten all of the bolts in the connection, and then resubmit the connection for the specified inspection.

2. Bolts tightened using the direct-tension-indicator method: The Contractor, in the presence of the Engineer, shall use a feeler gauge to verify that each bolt has been properly tensioned to the maximum specified gap.

 If a bolt that has had its direct-tension-indicator washer brought to full load loosens during the course of bolting the connection, the bolt shall have a new direct-tension indicator washer installed and be re-tensioned. Reuse of the bolt and nut are subject to the provisions in the Standard Specifications.

Calibration of Inspection Torque Wrench

Five bolts of the same grade, size, and condition as those under inspection shall be placed individually in a calibration device capable of indicating bolt tension at least once each working day. There shall be a washer under the part turned in tightening each bolt. Each bolt shall be tightened in the calibration device by any convenient means to the specified minimum tension. The inspecting wrench then shall be applied to the tightened bolt and the torque necessary to turn the nut or head 5 degrees (approximately 1 inch (25 millimeters) at a 12-inch (300 millimeter) radius) in the tightening direction shall be determined. The job-inspection torque shall be taken as the average of three values, thus determined after rejecting the high and low values.

If the bolts to be installed are not long enough to fit in the state-furnished tension calibrator, five bolts of the same grade, size, and condition as those under inspection shall be tested using Direct-Tension-Indicator (DTI) to measure bolt tension. This tension measurement test shall be done at least once each inspection day. The DTI shall be placed under the bolt head. A washer shall be placed under the nut, which shall be the element turned during the performance of this tension measurement test. Each bolt shall be tightened by any convenient means to the specified minimum tension as indicated by the DTI. The inspecting wrench shall then be applied to the tightened bolt and the torque necessary to turn the nut 5 degrees (approximately 1 inch (25 millimeters) at a 12-inch (300 millimeter) radius) in the tightening direction shall be determined. The job-inspection torque shall be taken as the average of three values, thus determined after rejecting the high and low values.

Figure 6-7 shows the operator calibrating a hand-indicator torque wrench. The bolt is brought to the proper tension by either method described above. The dial on the wrench was set at “zero” and sufficient torque applied to rotate the nut 5 degrees in the tightening direction. At this point, the wrench dial shows the kips (kilonewtons) required to further rotate the nut or bolt head. The torque wrenches used by inspectors of both the Contractor and WSDOT should be tested and compared at the same time for purposes of uniformity.

6-3.6C Welding

Welding of structural steel shall be in accordance with the requirements in Section 6-03.3(25) of the Standard Specifications. Welding will not be accepted as a substitute for bolting and should be done only where indicated in the plans. Adding even small welds not shown in the plans can induce high stresses in the members. This could seriously impair the strength and structural capability of the structure involved. The structure has been designed assuming that no additional welding will be done. The approval of the Assistant State Construction Engineer, Bridges, is required before doing any welding not shown in the plans.

Good workmanship and proper materials are essential. Welding operators should be qualified for the type of welding they are required to do. Welding procedures shall be approved by the Bridge Engineer before starting to weld on the structure.

Welding defects should be corrected as indicated in the Standard Specifications.

Low hydrogen type electrodes must be dry when used. The care and use of these electrodes as given in the Standard Specifications should be completely observed. No relaxation of these requirements can be tolerated.
Chapter 9 Materials

9-1 General

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1.1</td>
<td>PE Authority for Materials Approval and Acceptance</td>
<td>9-1</td>
</tr>
<tr>
<td>9-1.1A</td>
<td>Sampling and Testing for Small Quantities of Materials</td>
<td>9-1</td>
</tr>
<tr>
<td>9-1.1B</td>
<td>Reducing Frequency of Testing</td>
<td>9-3</td>
</tr>
<tr>
<td>9-1.1C</td>
<td>Project Engineer Discretionary Materials Acceptance</td>
<td>9-3</td>
</tr>
<tr>
<td>9-1.1D</td>
<td>Optional Approval/Acceptance for Materials</td>
<td>9-4</td>
</tr>
</tbody>
</table>

9-2 Control of Materials

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-2A</td>
<td>Materials Management Computer Programs</td>
<td>9-4</td>
</tr>
<tr>
<td>9-2B</td>
<td>Materials Forms</td>
<td>9-6</td>
</tr>
<tr>
<td>9-2C</td>
<td>Record of Materials (ROM)</td>
<td>9-6</td>
</tr>
<tr>
<td>9-2D</td>
<td>Materials Tracking Program, MTP</td>
<td>9-7</td>
</tr>
<tr>
<td>9-2E</td>
<td>Certification of Materials Origin</td>
<td>9-7</td>
</tr>
<tr>
<td>9-2F</td>
<td>Project Material Certification</td>
<td>9-7</td>
</tr>
<tr>
<td>9-2F(1)</td>
<td>Definitions</td>
<td>9-7</td>
</tr>
<tr>
<td>9-2F(1)a</td>
<td>Certification</td>
<td>9-7</td>
</tr>
<tr>
<td>9-2F(1)b</td>
<td>Variance</td>
<td>9-8</td>
</tr>
</tbody>
</table>

9-3 Approval of Materials

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-3A</td>
<td>Qualified Products List — Submittal</td>
<td>9-11</td>
</tr>
<tr>
<td>9-3B</td>
<td>Request for Approval of Material — Submittal</td>
<td>9-12</td>
</tr>
<tr>
<td>9-3B(1)</td>
<td>Project Engineer’s Office Approval Coding</td>
<td>9-12</td>
</tr>
<tr>
<td>9-3B(1)a</td>
<td>QPL Reference Materials</td>
<td>9-12</td>
</tr>
<tr>
<td>9-3B(1)b</td>
<td>Aggregates</td>
<td>9-12</td>
</tr>
<tr>
<td>9-3B(1)c</td>
<td>Optional Approval/Acceptance</td>
<td>9-13</td>
</tr>
<tr>
<td>9-3B(1)d</td>
<td>Proprietary Materials</td>
<td>9-13</td>
</tr>
<tr>
<td>9-3B(1)e</td>
<td>Agency Supplied Materials</td>
<td>9-13</td>
</tr>
<tr>
<td>9-3B(1)f</td>
<td>Concrete and Asphalt Batch Plants</td>
<td>9-13</td>
</tr>
<tr>
<td>9-3B(1)g</td>
<td>Recycle Materials for Aggregate</td>
<td>9-13</td>
</tr>
</tbody>
</table>

9-4 Low Risk Materials

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-4A</td>
<td>Testing</td>
<td>9-14</td>
</tr>
<tr>
<td>9-4A(1)</td>
<td>Reference Test Report</td>
<td>9-14</td>
</tr>
<tr>
<td>9-4A(2)</td>
<td>Statistical Acceptance with SAM</td>
<td>9-14</td>
</tr>
<tr>
<td>9-4A(2)a</td>
<td>Initial Material Set-up</td>
<td>9-14</td>
</tr>
<tr>
<td>9-4A(2)b</td>
<td>Inputting Test Results</td>
<td>9-15</td>
</tr>
<tr>
<td>9-4A(2)c</td>
<td>Review work</td>
<td>9-15</td>
</tr>
<tr>
<td>9-4A(2)d</td>
<td>Contractor Access</td>
<td>9-15</td>
</tr>
</tbody>
</table>

9-5 Fabricated Items

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-5A</td>
<td>Stamp/Tag</td>
<td>9-15</td>
</tr>
<tr>
<td>9-5B(1)</td>
<td>Signing Decal</td>
<td>9-15</td>
</tr>
<tr>
<td>9-5B(2)</td>
<td>Concrete Pipe Acceptance Report</td>
<td>9-15</td>
</tr>
</tbody>
</table>

9-6 Visual Acceptance

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

9-7 Manufacturer’s Certificate of Compliance

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

9-8 Miscellaneous Certificate of Compliances

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

9-9 Shop Drawings

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

9-10 Catalog Cuts

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

9-11 Field Verification of Materials

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

WSDOT Construction Manual M 41-01.10

January 2011
9-2 Materials Fabrication Inspection Office — Inspected Items Acceptance
 9-2.1 General
 9-2.1A Acceptance of Fabricated Items
 9-2.2 Inspected Items, Stamps and Tagging Identification
 9-2.2A Inspected Stamp Identification
 9-2.2B Inspected Stamp and Tag Identification
 9-2.2C Inspected Tag Identification
 9-2.2D Inspected Casting Stamp Identification
 9-2.3 Sign Fabrication Inspection
 9-2.4 Concrete Pipe Acceptance Report

9-3 Guidelines for Job Site Control of Materials
 9-3.1 General
 9-3.2 Sample Types
 9-3.2A Preliminary Samples and Tests
 9-3.2A(1) Sampling and Testing for Aggregate Source Approval
 9-3.2A(2) Sampling and Testing for Preliminary Hot Mix Asphalt Mix Design
 9-3.2B Acceptance Samples and Tests
 9-3.2C Verification Samples and Tests
 9-3.3 Test Numbering
 9-3.4 Point of Acceptance
 9-3.4A State Owned Source
 9-3.4B Contractor’s Source
 9-3.5 Basis for Acceptance
 9-3.5A Basis for Acceptance — Statistical Evaluation
 9-3.5A(1) Contractor HMA Challenge
 9-3.5B Basis for Acceptance — Non-Statistical Evaluation
 9-3.5B(1) Hot Mix Asphalt
 9-3.5B(2) Aggregate
 9-3.5C Basis for Acceptance — Performance Graded Asphalt Binder and Emulsified Asphalt
 9-3.6 Tolerance Limits
 9-3.7 Acceptance Sampling and Testing Frequency Guide

9-4 Specific Requirements for Each Material
 9-4.1 Portland Cement, Blended Hydraulic Cement, Fly Ash, and other Cementitious Materials
 9-4.2 Bituminous Materials
 9-4.3 Pavement Marker Adhesive
 9-4.4 Concrete Aggregates
 9-4.5 Surfacing Aggregates (Crushed Screening, Crushed Cover Stone, Ballast, Permeable Ballast, Crushed Surfacing Base and Top Course)
 9-4.6 Aggregates for Hot Mix Asphalt (HMA) and Asphalt Treated Base
 9-4.7 Hot Mix Asphalt (HMA) and Asphalt Treated Base
 9-4.8 Mineral Filler
 9-4.9 Gravel Base, Bank Run Gravel for Trench Backfill and Gravel Borrow for Geosynthetic Wall
 9-4.10 Miscellaneous Aggregates (Gravel Backfill for Foundation CL. B, Walls, Pipe Zone Bedding, Drains and Drywells; Backfill for Sand Drains, Sand Drainage Blanket, Bedding Material for Rigid Pipe and Thermoplastic Pipe; Foundation Material Class A, B, and C, Gravel Borrow, Common Borrow, Select Borrow)
 9-4.11 Vacant
 9-4.12 Premolded Joint Filler for Expansion Joints
 9-4.13 Elastomeric Expansion Joint Seals
 9-4.14 Poured Rubber Joint Sealer – Two Component
 9-4.15 Hot Poured Joint Sealant and Crack Sealing – Rubberized Asphalt
 9-4.16 Concrete Drain, Perforated Underdrain, Culvert and Storm Sewer Pipe
9-4.17 Corrugated Galvanized Steel, Aluminized Steel, Aluminum:
 Drain, Perforated Underdrain, Culvert Pipe Arch, and Storm Sewer Pipe 9-35
9-4.18 Polyvinyl Chloride (PVC) and Corrugated Polyethylene (PE) Drain, Perforated
 Underdrain, Culvert, and Storm Sewer Pipe 9-36
9-4.19 Structural Plate Pipe, Pipe Arch, Arch, and Underpass 9-36
9-4.20 Steel Castings, Gray-Iron Castings, Ductile-Iron Castings:
 Manhole Rings and Covers, Catch Basin and Inlet Frames, Grates, and Covers 9-36
9-4.21 Sanitary Sewers 9-37
9-4.22 Structural Steel for Bridges 9-38
9-4.23 Unfinished Bolts (Ordinary Machine Bolts), Nuts, and Washers 9-38
9-4.24 High Strength Bolts, Nuts and Washers 9-38
9-4.25 Anchor Bolts, Nuts & Washers 9-39
9-4.26 Reinforcing Bars for Concrete 9-39
9-4.27 Epoxy Coated Reinforcing Steel Bars for Concrete 9-40
9-4.28 Mechanical Splices 9-40
9-4.29 Rebar Chairs, Mortar Blocks (Dobies), and Spacers 9-41
9-4.30 Dowels and Tiebars for Concrete Pavement, Incl. Epoxy Coated 9-41
9-4.31 Wire Reinforcement for Concrete 9-41
9-4.32 Bridge Approach Slab Anchors 9-41
9-4.33 Prestressing/Post Tensioning Reinforcement — Strand 9-42
9-4.34 Prestressing/Post Tensioning Reinforcement — Bar 9-42
9-4.35 Painting, Paints, Coating, and Related Materials 9-42
9-4.36 Timber and Lumber 9-43
9-4.37 Vacant 9-44
9-4.38 Piling – All Types 9-44
9-4.39 Vacant 9-44
9-4.40 Vacant 9-44
9-4.41 Precast Concrete Manholes, Catch Basins, Inlets, Drywells, and Risers 9-44
9-4.42 Riprap, Quarry Spalls, Slope Protection, and Rock for Rock Wall 9-45
9-4.43 Semi-Open Slope Protection 9-45
9-4.44 Plant Material 9-45
9-4.45 Topsoil 9-46
9-4.46 Seed 9-46
9-4.47 Fertilizer 9-46
9-4.48 Mulch 9-47
9-4.49 Irrigation System 9-47
9-4.50 Fencing & Gates 9-48
9-4.51 Beam Guardrail, Guardrail Anchors, and Glare Screen 9-48
9-4.52 Guardrail Posts and Blocks 9-49
9-4.53 Miscellaneous Precast Concrete Products (Block Traffic Curb, Precast Traffic Curb) 9-49
9-4.54 Prestressed Concrete Girders 9-49
9-4.55 Pavement Marking Materials 9-50
9-4.56 Sign Materials and Mounting Hardware 9-50
9-4.57 Liquid Concrete Curing Compound 9-51
9-4.58 Admixtures for Concrete 9-51
9-4.59 Plastic Waterstop 9-51
9-4.60 Epoxy Systems 9-52
9-4.61 Resin Bonded Anchors 9-52
9-4.62 Gabion Cribbing, Hardware and Stone 9-53
9-4.63 Steel Sign Structures – Cantilever, Sign Bridge, Bridge Mounted, Roadside 9-53
9-4.64 Conduit 9-54
9-4.65 Electrical Conductors and Fiber Optic Cable 9-54
9-4.66 Steel Poles – ITS, Pedestrian, Light, Signal Standards, and High Mast Light Poles 9-54
9-4.67 Vacant 9-55
9-4.68 Luminaires, Lamps and Light Emitting Diodes (LED)
9-4.69 Water Distribution System
9-4.70 Elastomeric Bearing Pads
9-4.71 Bridge Bearings – Cylindrical, Disc, Fabric Pad, Pin, Spherical
9-4.72 Precast Concrete Barrier
9-4.73 Vacant
9-4.74 Metal Bridge Rail
9-4.75 Construction Geosynthetics
9-4.76 Concrete
9-4.77 Water for Concrete
9-4.78 Expansion Joints
9-4.79 Traffic Signal Controller Assembly
9-4.80 Miscellaneous Temporary Erosion and Sediment Control Items
9-4.81 Concrete Patching Material, Grout and Mortar
9-4.82 Streambed Aggregates
9-4.83 Temporary Traffic Control Materials
9-4.84 Modular Expansion Joint
9-4.85 Junction Boxes, Cable Vaults and Pull Boxes
9-4.86 Precast Bridge Deck Panels, Floor Panels, Marine Pier Deck Panels, Noise Barrier Walls, Pier Caps, Retaining Walls, Roof Panels, Structural Earth Walls, Wall Panels, and Wall Stem Panels
9-4.87 Precast Reinforced Concrete Three Sided Structures
9-4.88 Precast Concrete Vaults (Utility, Drainage etc.) and Box Culverts
9-4.89 Miscellaneous Metal Drainage Items (Frame and Grate for Grate Inlet and Drop Inlet, Flow Restrictors, Oil Separators, Safety Bars)
9-4.90 Miscellaneous Steel Structures (Cattle Guards, Handrail, Retrofit Guardrail Posts with Welded Base Plate, Seismic Retrofit Earthquake Restainers, Column Jackets)
9-4.91 Miscellaneous Welded Structural Steel
9-4.92 Wood Bridges
9-4.93 Electrical Service Cabinets
9-4.94 Monument Case, Cover and Riser
9-4.95 Steel Bollards
9-4.96 Metal Trash Racks and Debris Cages
9-4.97 Flow Restrictors and Oil Separators
9-4.98 Concrete Blocks
9-4.99 Parting Compound for Concrete Forms

9-5 **Quality Assurance Program**

9-5.1 General
9-5.2 Quality Assurance Program Structure and Responsibilities
9-5.3 Qualified Tester Program

9-5.3A Types of Qualifications
9-5.3A(1) Module Qualified Tester
9-5.3A(2) Method Qualified Tester

9-5.3B Qualification Process
9-5.3B(1) Frequency of Qualification
9-5.3B(2) Preparation for Initial Qualification

9-5.3C Initial Qualification Examination Requirements
9-5.3C(1) Written Examinations
9-5.3C(2) Proficiency Examinations

9-5.3D Documentation of Initial Qualification
9-5.3E Failure of Examination
9-5.4 Requalification of Testing Personnel 9-73
 9-5.4A Requalification Examination 9-73
9-5.5 Lapse in Qualification 9-73
9-5.6 Suspension of Qualification 9-73
9-5.7 Report of Deviation from Specified Sampling and Testing Procedures 9-74
9-5.8 Calibration/Standardization/Check of Equipment 9-74
9-5.9 Qualified Laboratories 9-74
 9-5.9A Qualification of Region or other subordinate laboratories 9-74
 9-5.9B Qualification of Private Laboratories 9-74
9-5.10 Independent Assurance Program (IAP) 9-74
 9-5.10A Comparison Evaluation of the Independent Assurance Sample 9-75
 9-5.10B Assurance and Acceptance Test Results 9-75
 9-5.10C Independent Assurance Report 9-75

9-6 Radioactive Testing Devices 9-76
 9-6.1 Administration and Safety 9-76
 9-6.2 Radiation Administration Officer (Region Materials Engineer) 9-77
 9-6.3 Radiation Safety Officer 9-78
 9-6.4 Authorized Operators 9-78

9-7 WSDOT Testing Methods and Field Operating Procedures Included In This Manual 9-79
Chapter 9 Materials

9-1 General

The quality of materials used on the project will be evaluated and accepted in various ways, whether by testing of samples, visual inspection, or certification of compliance. This chapter details the manner in which these materials can be accepted. Requirements for materials are described in Section 1-06 and Division 9 of the Standard Specifications for Road, Bridge and Municipal Construction (M 41-10).

The State Materials Engineer is responsible for the State’s materials approval and acceptance program, and the Quality Assurance Program. Any changes or deviations to the approval or acceptance of materials, or the Quality Assurance Program beyond what is allowed in this chapter will require approval from the State Materials Engineer or the State Materials Laboratory Construction Materials Engineer.

It is the Project Engineer’s responsibility to accept materials in accordance with this Chapter. For materials that do not meet specification requirements, the Project Engineer shall contact the State Construction Office which will coordinate with the State Materials Laboratory to determine the appropriate action.

9-1.1 PE Authority for Materials Approval and Acceptance

This chapter covers the Project Engineer’s authority to approve and modify the acceptance of certain materials while maintaining normal approval and acceptance by the State Materials Laboratory and Region. The use of these processes mentioned within this section are to be implemented prior to work being performed and not to retroactively justify deficiencies discovered after the completion of work, with the exception that Reducing Frequency of Testing is implemented during the work. It is recommended that the Project Engineer Office review the original Record of Material to determine if items can be accepted per 9-1.2C of this manual. Materials accepted in accordance with these options shall be identified in the Project Engineer’s preparation of the Certification of Materials under Chapter 9-1.2F of this manual.

The options that are available to the Project Engineer for approving and modifying the acceptance of materials are:

- Section 9-1.1A - Sampling and Testing for Small Quantities of Materials
- Section 9-1.1B - Reducing Frequency of Testing
- Section 9-1.1C - Project Engineer Discretionary Materials Acceptance
- Section 9-1.1D - Optional Approval/Acceptance for Materials

The Reduced Acceptance Criteria Checklist – DOT Form 350-120 EF shall be completed and retained in the materials file when Reducing Frequency of Testing, Sampling and Testing for Small Quantities of Materials and Project Engineer Discretionary Materials Acceptance are invoked. All information requested on the checklist shall be filled in completely. Any items that do not require approval from the State Materials Laboratory and the State Construction Office may be approved at the Project Engineer level.

For approval of changes beyond the Project Engineer’s authority (items marked with a “yes” and an “x” on the DOT Form 350-120 EF), a request must be transmitted to the State Materials Laboratory and may require approval from the State Construction Office as well. The completed checklist shall accompany the request and represents the minimum information required to process the modification. The State Materials Laboratory and the State Construction Office have final authority to approve or reject any request for modification. Written approval by the State Materials Laboratory and State Construction Office constitutes agreement with the proposal. The signed checklist and all supporting documentation are to be placed in the project Materials File.

For approval contact the following:

State Materials Laboratory:
- Areas of responsibility: All changes to materials approval and acceptance, and to Division 9 of the Standard Specifications.
- Initial contact: State Materials Documentation Engineer

State Construction, Bridge:
- Areas of responsibility: Division 6 of the Standard Specifications.

State Construction, Roadway:
- Areas of responsibility: Division 2, 3, 4, 5, 7 and 8 of the Standard Specifications.

9-1.1A Sampling and Testing for Small Quantities of Materials

The Project Engineer may elect to accept small quantities of materials without meeting minimum sampling and testing frequencies using the following criteria. The use of this process is to be implemented prior to work being performed and not to retroactively justify deficiencies discovered after the completion of work.

An item can be accepted as a small quantity if the proposed quantity for a specific material is less than the minimum required testing frequency

Materials that will not be considered under the small quantity definition are:

- Concrete with a 28 day compressive strength of 4000 psi or greater

Some issues that the Project Engineer may consider prior to use of small quantity acceptance are:

- Has the material been previously approved?
- Is the material certified?
- Do we have a mix design or reference mix design?
- Has it been recently tested with satisfactory results?
- Is the material structurally significant?
Reduced Acceptance Criteria Checklist

This checklist is required to be filled out for individual materials and be put in the Materials File. If the material is listed in the CM Section 9-1.3C - 'Low Risk Materials' or this material qualifies for Visual Acceptance per 9-1.4C, then you do not need to proceed with this form.

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Contract Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bid Item Number</td>
<td>Plan Quantity</td>
<td>Material Description</td>
</tr>
</tbody>
</table>

Description of Change to Materials Acceptance: Explain the work being performed and the proposed changes to the normal materials acceptance, and/or inspection criteria. Explain why this is being proposed, what is the justification for the change, is this a 'critical' item of work and has proper approval (RAM/QPL) been performed?

<table>
<thead>
<tr>
<th>Acceptance Criteria per RAM/QPL</th>
<th>Proposed Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = Region Materials Engineer</td>
<td>M = State Materials Laboratory</td>
</tr>
<tr>
<td>M = State Materials Laboratory</td>
<td>R = State Construction Office</td>
</tr>
<tr>
<td>C = State Construction Office</td>
<td>Required Approvals</td>
</tr>
</tbody>
</table>

I. Sampling and Testing for Small Quantities of Material (CM 9-1.1A)

<table>
<thead>
<tr>
<th>Is the proposed quantity greater than the minimum required frequency?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>For concrete, is the concrete Cl 4000 psi or greater?</td>
<td>STOP if 'Yes'</td>
<td></td>
</tr>
<tr>
<td>Is the material structurally 'significant'?</td>
<td>M</td>
<td>C</td>
</tr>
</tbody>
</table>

II. Reduce Frequency of Testing: (CM 9-1.1B)

<table>
<thead>
<tr>
<th>Is the material running well within specification limits?</th>
<th>STOP if 'No'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have ten consecutive samples been taken at normal frequency that indicate complete conformance within specification requirements?</td>
<td>STOP if 'No'</td>
</tr>
<tr>
<td>Is the proposal for deviation greater than 10% and less than 20%?</td>
<td>R</td>
</tr>
<tr>
<td>Is the proposal for deviation greater than 20% or elimination of test?</td>
<td>M</td>
</tr>
<tr>
<td>For Quarry Sites, is 'fracture' being eliminated?</td>
<td>R</td>
</tr>
</tbody>
</table>

III. Project Engineer Discretionary Materials Acceptance (CM 9-1.1C)

<table>
<thead>
<tr>
<th>Is the work 'within' the vertical limits of the roadway?</th>
<th>M</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the dollar amount over $20,000 for this Bid Item? $</td>
<td>M</td>
<td>C</td>
</tr>
<tr>
<td>Is the total dollar amount over $50,000 for the entire project? $</td>
<td>M</td>
<td>C</td>
</tr>
</tbody>
</table>

State Materials Laboratory and Headquarters Construction concurrence documentation must be attached.

Approvals

Project Engineer Approval By: ___________________________ Date ___________________________

Region Materials Laboratory: Date of Concurrence ___________________________

State Materials Laboratory: Date of Concurrence ___________________________

State Construction Office: Date of Concurrence ___________________________

Distribution: □ Region Materials Lab □ State Materials Lab □ State Construction Office
Small quantity acceptance could be visual, by certification, or other methods and the basis of acceptance shall be documented on DOT Form 350-120 EF. For visual documentation, an entry should be made in the project records as to the basis of acceptance of the material, and the approximate quantity involved. The small quantity acceptance may be used for any quantity approximate quantity involved.

Where jobsite mixing of concrete occurs in accordance with *Standard Specification* Section 6-02.3(4)B, Jobsite Mixing, small quantity acceptance can be used for acceptance of packaged concrete meeting the requirements of ASTM C 387. The packaged concrete bag must state that the concrete meets the requirements of ASTM C 387.

9-1.1B Reducing Frequency of Testing

Reducing the frequency of testing of materials is intended for WSDOT projects with a high volume of materials. In instances of uniform material production where the statistical acceptance testing data shows the material is running well within specification limits deviations from the testing frequency schedule may be instituted. Sampling frequency reduction may be considered only after ten consecutive samples taken at the normal testing frequency indicate full conformance with the specifications. The sampling and testing frequency will revert back to the normal frequency if there are any failing tests. The use of this process is to be implemented prior to work being performed and not to retroactively justify deficiencies discovered after the completion of work.

The Statistical Analysis of Materials (SAM) program will be utilized to develop and support approvals to reduce testing frequency and/or to eliminate selected test properties. Testing on selective materials may be reduced or eliminated without statistical data on select material, for example selective relief would be reduction/elimination of fracture determinations and sand equivalent testing for production from quarry sources.

All deviations from the testing frequency must be documented in the project records, and fully explained by the Project Engineer. Lack of personnel, equipment, and facilities will not be considered sufficient reasons for such deviation.

The authority given below to approve deviations to testing frequencies shall not be subdelegated within the Regions.

- The Project Engineer, licensed as a Professional Engineer in the State of Washington, may initiate and approve up to 10 percent deviations from the testing frequency schedule. The Project Engineer does not have the authority to reduce sampling frequencies for the following materials: Hot Mix Asphalt, Warm Mix Asphalt, Structural Concrete and Cement Concrete Pavement.

- The Region Materials Engineer, licensed as a Professional Engineer in the State of Washington, may approve requests from Project Engineers for an additional 10 percent deviation from the testing frequency schedule. The Region Materials Engineer does not have the authority to reduce sampling frequencies for the following materials: Hot Mix Asphalt, Warm Mix Asphalt, Structural Concrete and Cement Concrete Pavement.

- Elimination of fracture and/or SE from a Quarry Site requires approval from the Regional Materials Engineer. Elimination of any other testing will require approval of State Materials Laboratory Construction Materials Engineer.

- Request for sampling frequency deviations exceeding the Project Engineer and Region Materials Engineer reduction authority requires approval from the State Materials Laboratory Construction Materials Engineer.

- Request for sampling frequency deviations for Hot Mix Asphalt, Warm Mix Asphalt, Structural Concrete and Cement Concrete Pavement require approval from the State Materials Laboratory Construction Materials Engineer, or in their absence contact the State Pavement Engineer, or the State Materials Engineer.

A copy of all testing frequency deviations with substantiating data approved by the Project Engineer and/or the Region Materials Engineer will be sent to the State Materials Laboratory Construction Materials Engineer.

9-1.1C Project Engineer Discretionary Materials Acceptance

In advance of or during the course of the project, in the interest of economy and efficiency, noncritical items of work may be identified for which the Project Engineer may choose to modify the normal inspection or testing procedures. In taking these actions, the Project Engineer is acting under the professional responsibility inherent in all actions as a representative of the Department and as a Licensed Professional Engineer. Full accountability of such actions is expected. The scope of such actions should not exceed $20,000 for a single bid item, nor exceed $50,000 for an entire project. Approval above these dollar amounts requires approval from the State Materials Laboratory and the State Construction Office. The use of this process is to be implemented prior to work being performed and not to retroactively justify deficiencies discovered after the completion of work.

The nature of the work to be accepted in this manner will generally be limited to minor and isolated items. Acceptance would typically involve dimensional conformance to the plans and a visual determination that the materials are suitable; however, the Project Engineer may require some testing or other means to support a decision. In such an action, the Project Engineer should be guided by the principle of achieving the intent of the contract, attaining reasonable expectations of service life proportional to cost, and protection of public safety. The changes in acceptance procedures will only be made to work occurring outside of vertical lines through the horizontal limits of the traveled way. Consideration should be given to the
consequences of subsequent failure, ease of replacement, whether or not there is a high variability in the quality of similar work, or any other pertinent facts. Actions taken in accepting such materials should be identified in the project records with acknowledgment by signature of the Project Engineer, licensed as a Professional Engineer in the State of Washington.

9-1.1D Optional Approval/Acceptance for Materials

The materials listed in Table 9-1 may be accepted by ‘visual acceptance’ at the option of the Project Engineer. The Project Engineer’s Office can test or require additional documentation for any of the materials in this section if quality appears to be in question per 1-06.1 of the Standard Specifications. ‘Visual Acceptance’ requires Field Verification per Section 9-1.5 of this manual, unless additional documentation is stipulated in the Contract Documents. The use of this process is to be implemented prior to work being performed and not to retroactively justify deficiencies discovered after the completion of work.

The Project Engineer is allowed to approve the Request for Approval of Material (RAM). If there is a question on the quality or ability of the material to perform its intended use, it is the responsibility of the Project Engineer to determine if it is appropriate to accept the materials by visual acceptance or if additional acceptance testing or certification is required. This includes contacting the Headquarters or Region Subject Matter Expert for assistance in assessing whether additional acceptance testing or certification is required for a material. Other items can be considered for addition to this list. Suggestions are encouraged and may be made to the State Construction Office or the State Materials Laboratory.

The “Buy America” requirements apply to all federally funded projects.

9-1.2 Control of Materials

The succeeding parts of this chapter outline the detailed method to be used in the control of materials. The expenditure made for materials is a large portion of construction costs. If faulty materials are permitted to be incorporated into the project, the cost of replacement may exceed the original cost.

Chapter 9-2, Materials Fabrication Inspection Office – Inspected Items Acceptance – explains the process for the acceptance of fabricated items, and the types of Fabrication acceptance markings used to identify approved fabrication items.

Chapter 9-3, Guidelines for Job Site Control of Materials – provides the Engineer with additional information to assist in determination of the point of acceptance for materials from WSDOT and Contractor sources, the basis of acceptance, verification sampling and testing, tolerance limits, and the sampling and testing frequency guide.

Chapter 9-4, Specific Requirements for each Material – provides specific requirements about each material that includes the following information:

1. Approval of Material
2. Preliminary Samples
3. Acceptance or Acceptance/Verification
4. Field Inspection
5. Specification Requirements
6. Other Requirements

Chapter 9-5, Quality Assurance Program - defines the requirements for the materials tester to become qualified. The requirements for the Independent Assurance Program are also included.

Chapter 9-6, Radioactive Testing Devices – explains policy on the administration of radioactive testing devices.

Chapter 9-7, WSDOT Test Methods/Field Operating Procedures – defines the testing procedures and lists the equipment that are used in the field.

9-1.2A Materials Management Computer Programs

There is a series of material management computer programs that have been developed to aid the Project Engineer Office’s in tracking, approving, accepting, and testing materials.

- **Record of Materials (ROM)** is a listing of the construction items generated by the State Materials Laboratory that has been identified from the plans and specifications for each project. The ROM identifies the kinds and quantities of materials, the standard Acceptance Methods and the number of acceptance and verification samples required for each material that will be used on the project. It also lists the acceptance requirements for materials requiring other actions, such as fabrication inspection, manufacturer’s certificate of compliance, shop drawings or catalog cuts.

- **Materials Tracking Program (MTP)** is a program to provide a process for the Project Offices to maintain the ROM and the bid item list. It also provides for a standardized material document tracking process with an electronic centralized data management storage system, to manage the approvals, acceptance and other material documentation associated with WSDOT construction contracts.

- **Aggregate Source Approval (ASA)** is a program that tracks aggregate sources, approvals and expiration dates for the different aggregate material types that could be used on a construction project. This application is designed to allow the user to query the database for the intended source of aggregate to be used, determine if it is approved, and print the ASA report.

- **Qualified Product List (QPL)** is a program that lists products that have been found capable of meeting the requirements of the Standard Specifications or General Special Provisions under which they are listed and, therefore, have been ‘Approved’. These may be ‘Accepted’ in the field by fulfilling the requirements of the Acceptance Code and any notes that apply to the product.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Relief Valve</td>
<td>9-15.16</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Automatic Control Valves</td>
<td>9-15.7(2)</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Automatic Control Valves With Pressure Regulator</td>
<td>9-15.7(3)</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Automatic Controller</td>
<td>9-15.3</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Bark or Wood Chips</td>
<td>9-14.4(3)</td>
<td>9-4.48</td>
</tr>
<tr>
<td>Bonded Fiber Matrix (BFM)</td>
<td>9-14.4(9)</td>
<td>9-4.48</td>
</tr>
<tr>
<td>Chain Link Gates</td>
<td>9-16.1(1)E</td>
<td>9-4.50</td>
</tr>
<tr>
<td>Check Valves</td>
<td>9-15.12</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Chemical Pesticides</td>
<td>8-02.3(2)A</td>
<td></td>
</tr>
<tr>
<td>Clear Plastic Covering</td>
<td>9-14.5(3)</td>
<td>9-4.80</td>
</tr>
<tr>
<td>Coir Log</td>
<td>9-14.5(7)</td>
<td>9-4.80</td>
</tr>
<tr>
<td>Compost</td>
<td>9-14.4(6)</td>
<td>9-4.48</td>
</tr>
<tr>
<td>Compost Sock</td>
<td>9-14.5(6)</td>
<td>9-4.80</td>
</tr>
<tr>
<td>Concrete</td>
<td>9-16.1(1)F & 9-16.1(2)J</td>
<td>9-4.76</td>
</tr>
<tr>
<td>Detectable Marking Tape</td>
<td>9-15.18</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Drain Valves</td>
<td>9-15.9</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Drip Tubing</td>
<td>9-15.2</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Electrical Wire and Splices</td>
<td>9-15.17</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Erosion Control Blanket</td>
<td>9-14.5(2)</td>
<td>9-4.80</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>9-14.3</td>
<td>9-4.47</td>
</tr>
<tr>
<td>Fittings and Hardware</td>
<td>9-16(1)D</td>
<td>9-4.50</td>
</tr>
<tr>
<td>Flow Control Valves</td>
<td>9-15.15</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Galvanized Pipe and Fittings (Irrigation System)</td>
<td>9-15.1(1)</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Galvanizing Repair Paint (Fence)</td>
<td>9-08.2</td>
<td>9-4.35</td>
</tr>
<tr>
<td>Gate Valves</td>
<td>9-15.6</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Geotextile-Encased Check Dam</td>
<td>9-14.5(4)</td>
<td>9-4.80</td>
</tr>
<tr>
<td>Gypsum</td>
<td>9-14.4(6)</td>
<td></td>
</tr>
<tr>
<td>Hose Bibs</td>
<td>9-15.10</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Inlet Protection</td>
<td>8-01.3(9)D</td>
<td>9-4.80</td>
</tr>
<tr>
<td>Irrigation Heads</td>
<td>9-15.4</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Lime</td>
<td>9-14.4(5)</td>
<td></td>
</tr>
<tr>
<td>Manual Control Valves</td>
<td>9-15.7(1)</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Mechanically-Bonded Fiber Matrix (MBFM)</td>
<td>9-14.4(10)</td>
<td>9-4.48</td>
</tr>
<tr>
<td>Miscellaneous Fence Hardware</td>
<td>9-16.2(1)H</td>
<td>9-4.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulch and Amendments</td>
<td>9-14.4 & SP</td>
<td>9-4.48</td>
</tr>
<tr>
<td>Pipe, Tubing, and Fittings (Irrigation System)</td>
<td>9-15.1</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Polyacrylamide (PAM)</td>
<td>9-14.5(1)</td>
<td></td>
</tr>
<tr>
<td>Polyethylene Pipe (Irrigation System)</td>
<td>9-15.1(3)</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Polyvinyl Chloride Pipe and Fittings (Irrigation System)</td>
<td>9-15.1(2)</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Pressure Regulating Valves</td>
<td>9-15.13</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Quick Coupling Equipment</td>
<td>9-15.8</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Rock Check Dam</td>
<td>8-01.3(6)B</td>
<td></td>
</tr>
<tr>
<td>Sandbag Check Dam</td>
<td>8-01.3(6)C</td>
<td></td>
</tr>
<tr>
<td>Semi-Open Concrete Masonry Units Slope Protection</td>
<td>9-13.5(1)</td>
<td>9-4.43</td>
</tr>
<tr>
<td>Silt Fence</td>
<td>8-01.3(9)A</td>
<td>9-4.80</td>
</tr>
<tr>
<td>Sod</td>
<td>9-14.6(8)</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Stakes, Guys, and Wrapping</td>
<td>9-14.7</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Staples and Wire Clamps</td>
<td>9-16.2(1)D</td>
<td>9-4.50</td>
</tr>
<tr>
<td>Straw</td>
<td>9-14.4(1)</td>
<td>9-4.48</td>
</tr>
<tr>
<td>Tackifier</td>
<td>9-14.4(7)</td>
<td>9-4.48</td>
</tr>
<tr>
<td>Temporary Curb</td>
<td>8-01.3(13)</td>
<td></td>
</tr>
<tr>
<td>Temporary Pipe Slope Drain</td>
<td>8-01.3(14)</td>
<td></td>
</tr>
<tr>
<td>Three-Way Valves</td>
<td>9-15.14</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Topsoil Type A</td>
<td>9-14.1(1)</td>
<td>9-4.45</td>
</tr>
<tr>
<td>Topsoil Type B</td>
<td>9-14.1(2)</td>
<td>9-4.45</td>
</tr>
<tr>
<td>Topsoil Type C</td>
<td>9-14.1(3)</td>
<td>9-4.45</td>
</tr>
<tr>
<td>Valve Boxes and Protective Sleeves</td>
<td>9-15.5</td>
<td>9-4.49</td>
</tr>
<tr>
<td>Vertical Cinch Stays</td>
<td>9-16.2(1)G</td>
<td>9-4.50</td>
</tr>
<tr>
<td>Wattles</td>
<td>9-14.5(5)</td>
<td></td>
</tr>
<tr>
<td>Weed Control (Herbicides)</td>
<td>8-02.3(2)B</td>
<td></td>
</tr>
<tr>
<td>Wire Gates</td>
<td>9-16.2(1)I</td>
<td>9-4.50</td>
</tr>
<tr>
<td>Wood Cellulose Fiber</td>
<td>9-14.4(2)</td>
<td>9-4.48</td>
</tr>
<tr>
<td>Wood Fence Posts and Braces</td>
<td>9-16.2(1)B</td>
<td>9-4.36</td>
</tr>
<tr>
<td>Wye Strainers</td>
<td>9-15.19</td>
<td>9-4.49</td>
</tr>
</tbody>
</table>

Table 9-1
Materials

• Statistical Analysis of Materials (SAM) is a program that is used for the statistical acceptance of materials according to Section 1-06 of the Standard Specifications. The testing data will be kept electronically for quality and compliance audits and for historical references. The program will generate the reports showing the composite pay factors and project totals.

• Materials Testing System (MATS) is a testing program where all materials testing will be recorded. This includes the testing performed at the State Materials Laboratory, the Region Materials Laboratory, and the project office acceptance testing. The program will generate the transmittal, provide for tracking the samples throughout the testing process, and automatically bills for the testing performed. The program will also provide a report detailing the test results, and distribute the reports according to the established distribution list.

9-1.2B Materials Forms

A number of form letters have been prepared as an aid to the Project Engineer in transmitting information to the State Materials Laboratory. In order to minimize delays to completion of material testing, transmittal letters should include all the information that is pertinent to the sample in question. In order to assist the State Materials Laboratory, copies of the transmittal letters should be retained in the Project Engineers Office. The following is a list of the forms that may be used for transmittal of samples and/or information to the State Materials Laboratory:

- 350-016 Asphalt Emulsion Sample Label
- 350-023 EF Pit Evaluation Report
- 350-040 EF Concrete Mix Design
- 350-041 EF Request for Reference HMA Mix Design
- 350-042 EF HMA Mix Design Submittal
- 350-067 EF Thickness Measurements Pavement & Treated Base Cores Transmittal/Report
- 350-071 EF Request for Approval of Material
- 350-072 EF Transmittal of Catalog Cuts
- 350-073 EF Hot Mix Asphalt Test Section Report
- 350-074 EF Field Density Test
- 350-074A EF Field Dry Density Test
- 350-092 EF Hot Mix Asphalt Compaction Report
- 350-114 EF Summary Report of Acceptance Sampling and Testing
- 350-115 EF Contract Materials Checklist
- 350-572 EF Manufacturer Certification of Compliance Check List
- 350-015 EF Daily Compaction Test Report
- 410-025 EF Project Engineer Transmittal

9-1.2C Record of Materials (ROM)

A Record of Materials (ROM) listing of all major construction items is provided by the State Materials Laboratory for each project. For these major construction items, the ROM identifies the kinds and quantities for all materials deemed to require quality assurance testing. It further identifies the minimum number of acceptance and verification samples that would be required for acceptance of those materials. The minimum number of acceptance tests is based on the planned quantities for the project and should be adjusted on the project ROM for the actual quantities used. Also listed are those materials requiring other actions, such as Fabrication Inspection, Manufacturer’s Certificate of Compliance, Miscellaneous Certificates of Compliance, Shop Drawings, Catalog Cuts and Field Acceptance.

The acceptance action and/or numbers of samples listed are the minimum requirements for the Project Engineer’s acceptance of those materials and the minimum requirements necessary for the Region’s certification for the materials used on that project. The State Materials Laboratory will forward the Record of Materials electronically to the Regional Materials Engineer, and Project Engineer shortly after the contract is awarded. The copy submitted to the Project Engineer is intended as a tool to assist the project office in tracking the materials approved, samples tested, Manufacturer’s Certificate of Compliance, Shop Drawings, Catalog Cuts received, Field Acceptance, Field Verification and other pertinent data necessary for the Project Engineer’s and the Region’s certification of materials.

The acceptance requirements shown on the Record of Material may be modified by the Contractor’s specific Requests for Approval of Material or submitted Qualified Products List page. In addition the ROM is based on the State Material Laboratory’s review of the major items of construction identified by the contract Summary of Quantities. Reviewing the contract plans and provisions may identify additional materials documentation requirements as well as major construction items that require additional materials not accounted for in the State Material Laboratory’s initial review of the project. These additional materials documentation requirements should be added to the project ROM and tracked for completion throughout the course of the project work.

The accuracy of the ROM and Certification of Materials is largely the responsibility of the Project Engineer.

Where the ROM is not clear or there appear to be opportunities to adjust the acceptance requirements that have been identified, the Project Engineer is encouraged to contact the Region Materials Engineer or the State Materials Laboratory Documentation Section for assistance.

In order to ensure clarity upon completion of the work and to allow for easy certification of the project by both the Project Engineer and the Region, it is important that the project ROM (maintained in the Materials Tracking Program) be accurately and actively maintained throughout the course of the project. Any changes to the acceptance requirements, additional materials used other than stated on the original Summary of Quantities or any additional materials added to the project by Change Order should be accurately documented and tracked in the project Record of Materials.
9-1.2D Materials Tracking Program, MTP

The Project Engineer Office shall use the Materials Tracking Program (MTP) to maintain the materials documentation information for each State Contract that is administered by that office.

The MTP is a program that is an electronic ‘filing cabinet’ to assist the Project Engineer Office in managing and tracking required documentation. This will allow for easy certification of the project by both the Project Engineer and the Region.

The MTP is organized by Bid Item – Sub Item as generated by the original Record of Materials. Materials documentation such as approval, acceptance, field verification, CMO and other documentation for each item is required to be maintained for each permanently incorporated material. The Project Engineer Office is expected to keep up to date entries for accurate tracking of materials placed on the jobsite and update the MTP to reflect the actual materials and quantities placed. The program also tracks deficiencies and has various reports available for tracking documentation.

The program is located at: http://webprod2.wsdot.wa.gov/Materials/Tracking/

9-1.2E Certification of Materials Origin

On projects that include FHWA Federal funding, the requirements of “Buy America” apply (23 CFR 635.410, 23 U.S.C. 313). This provision, incorporated into the contract by General Special Provision, applies to all manufactured products containing steel or iron permanently incorporated into the project. The Contractor may choose to utilize minor quantities of foreign steel or iron, as described in the General Special Provision. Minor amounts of foreign steel and iron may be used in the project provided the cost of the foreign material used does not exceed one-tenth of one percent of the total contract cost or $2,500.00, whichever is greater. Included in this amount is State supplied materials, Proprietary items and Contractor provided materials.

In all cases Certification of Materials Origin (CMO), must be completed and signed prior to incorporation of the steel or iron materials into the project. It is the responsibility of the Project Office to ensure that the CMO is on file prior to placing or paying for steel or iron materials.

Fabricated Items

- WSDOT Fabrications Inspection Offices will review the supporting documentation; i.e. Mill Certificates and CMOs prior to inspecting and Stamping/Tagging the fabricated material. The Fabricator/Plant is required to supply the Fabrications Inspector the DOT Form 350-109 EF EF completed and signed with each item prior to inspection.

- The project field inspector is required to document in their IDR prior to placement that the fabricated material is identified with a ‘D’ – Domestic or ‘F’ – Foreign per 9-1.5 of this manual. Fabricated items bearing an ‘F’ or not bearing any Stamp when delivered to the job site requires that the Project Engineer Office obtain the WSDOT Form 350-109 EF from the Contractor and retain this form in the project records.

Non-Fabricated Items

- The Project Office is required to obtain, and place in the materials file, a completed Certification of Materials Origin for any materials containing iron or steel. This certification may be supplied using WSDOT Form 350-109 EF or another form containing all the same information as required by WSDOT Form 350-109 EF.

In all cases Certification of Materials Origin must be completed, signed and filed prior to incorporation of any materials containing steel or iron into the project. The Contractor will provide the Certification of Materials Origin to the Project Engineer upon request.

9-1.2F Project Material Certification

The Project Engineer is responsible for obtaining all required materials documentation or otherwise ensuring that all required materials testing is completed, all with satisfactory results, prior to the materials being incorporated into the project. The Project Engineer is also responsible for maintaining a comprehensive accounting for the materials incorporated into the project in order to support the Region’s Certification of Materials. Managing and accounting for materials used in the construction of a project are to be administered in the same manner regardless of its funding source; Federal, State, or a combination of both.

The Region is responsible for periodic reviews of each project’s materials documentation at the Project Engineer’s Office. Upon completion of the project the Region will prepare a Region Materials Certification letter listing all variances that were identified and their resolution. On projects that involve Federal participation where material deficiencies are documented, these deficiencies must be resolved with the State Construction Office through the Region before the Region Certification of Materials can be completed. On projects that involve State Funds only, documented deficiencies must be resolved with the Region prior to the Region Certification of Materials. The Regional Administrator or their designee is responsible for signing and distributing the certification letter.

The State Materials Laboratory will also perform compliance reviews on a sampling of completed projects statewide where the materials have been certified.

9-1.2F(1) Definitions

9-1.2F(1)a Certification

A Region Materials Certification based on a documented evaluation of the project’s materials inspection, sampling, testing, and other materials acceptance activities for their conformance to the contract documents, Standard Specifications and this manual. The certification reflects the project’s conformance with the Record of Materials as adjusted by the Project Engineer for:

1. Actual project quantities utilized,
2. Acceptance practices as provided for in this Chapter,
3. Adjusted sampling/testing frequencies as provided for in Chapter 9-3, and
4. Work added by Change Order.
9-1.2F(1)b Variance

An identified difference between the materials acceptance requirements noted in this manual, the contract documents, the Standard Specifications, and a review of the completed projects Record of Materials. All variances must be noted. Such notations must include the basis by which the material was accepted and how the requirements for that material were met. Any variance between the recognized acceptance requirements and the Project Engineer’s use of the material must be resolved with the Region, State Construction Office, and/or State Materials Laboratory, as appropriate.

9-1.2F(2) Project Material Certification Process

9-1.2F(2)a Environmental and Engineering Programs Division (EEDP)

1. State Materials Laboratory (Documentation Section)
 a. Prepare the initial Record of Material for all major items of materials listed in the contract.
 b. Provide technical support, certification guidelines, format, and suggested documents. See Figure 9-1 for Contract Materials Checklist (DOT Form 350-115 EF, latest version). See Figure 9-2 for examples of the Region Materials Certification letter and its distribution.
 c. Conduct Compliance Reviews on a sampling of completed projects statewide where the Region has certified the materials.

2. State Construction Office (Documentation Engineer)
 a. Receives variances for federal aid projects identified during the Region’s materials certification review.
 b. Coordinates with FHWA and Region to determine funding eligibility for variances.
 c. Prepares response to Region identifying degree of participation (Letter of Resolution).

3. Accounting Office
 a. The federal aid section will make the appropriate transaction as necessary upon receipt of the Letter of Resolution.
 b. Voucher a federal project only after receiving a copy of the Project Materials Certification, the Letter of Resolution and assure that the appropriate credit has been made to FHWA.
 c. Attach a copy of the Letter of Resolution to the Journal Voucher sent to FHWA.

9-1.2F(2)b Region

1. Project Engineer
 a. Sets up and maintains a materials documentation system.
 b. Maintains and monitors a working Record of Material (ROM) ensuring materials certification throughout the course of the project.
 c. Identify, document, and justify all materials variances including determination and acceptance of noncritical items in accordance with Chapter 1-2.8 of this manual. Justification may be any of the following:
 1. Follow requirements of Section 1-2.8C(3) if the deficiency is a lack of manufacturer’s certification.
 2. Satisfy the deficiency through additional testing or documentation.
 3. Demonstration that the existing documentation is adequate (for example, 19 out of 20 test were taken).
 4. Demonstration that the cost of obtaining the missing documentation will not be justified by the benefits received.
 d. Identify and document the determination and acceptance of all non-critical items in accordance with Section 9-1.1 of this Manual.
 e. Prepares the Region Materials Certification package, which includes the Region Materials Certification letter, identified variances, Letters of Resolution for all identified variances on federal aid projects and resolution actions taken. This package also includes a completed Contract Materials Checklist (DOT Form 350-115 EF). The certification package is submitted to the Region Construction Manager for review. The certification letter is to be addressed to the State Construction Engineer.

2. Regional Operations/Construction Office
 a. The Region shall review projects according to Chapter 10-5 of this manual for documentation requirements including materials.
 b. Resolve materials variances identified by the Project Engineer and the Region’s review of materials documentation at the Region level for State funds only projects. Resolve materials variances on Federal aid projects through contact with the State Construction Office.
 c. Review certification package for completeness.
 d. Submit certification letter to Regional Administrator for signature.
 e. Distribute signed Region Materials Certification letter. The original is submitted to the State Construction Engineer, with copies sent to FHWA (for F.A. Projects) and the State Materials Engineer. A copy of the Letter of Resolution shall be attached if there are any variances.

3. Regional Administrator, or designee
 a. Signs the certification letter.

4. State Construction Administration and Support Accounting Office
 a. Completes the necessary paperwork.
Contract Materials Checklist

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Sign Route</th>
<th>Federal Aid Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No*</th>
<th>N/A</th>
<th>Item No(s.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>All materials/products used in the construction of this project, including items added by Change Order, have been approved & are listed on the Record of Materials.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>The actual materials/products used along with the actual basis for acceptance of those materials and products has been documented.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>All uses of proprietary items, including those listed in the Special Provisions and/or contractor provided QPL items, are documented.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>When required, change of material/product letters and a revised RAM were initiated by the contractor.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>A Change Order has been completed for all materials accepted and incorporated into the project, but which failed to meet the required specifications when tested.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>An appropriate credit has been received for all non-specification materials used.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Modifications to testing/inspection procedures, including CM 9-1.1, have been explained and documented by the Project Engineer prior to construction of the item.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Acceptance based on Sampling and Testing for Small Quantities has been documented. CM Chapter 9-1.1A.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Where Manufacturers Certifications were not provided prior to material or product installation, the Project Engineer has provided specific prior approval for the work to continue in accordance with 1-06.3 of the Standard Specifications.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>All required acceptance actions and documentation were completed and satisfactory test results demonstrated before payment was made on each item.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Acceptance sampling & testing frequencies for each item accepted is adequate for the total quantities of those items incorporated into the project.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>All Acceptance Sampling and Testing completed by the Project Engineer utilized Qualified Testers and Certified Testing Equipment in accordance with the Qualified Tester program.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>All fabrication inspected items have been accepted in accordance with CM 9-2.1A</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>The contractor has submitted all required Manufacturer Certifications and Mill Certifications, the Certifications represent the specification requirements noted in the contract, and quantities represented by the certifications match or exceed the final quantities used.</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>All required catalog cuts have been approved and are on file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>All required Certificates of Materials Origin have been received and are on file. **</td>
<td>**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Fed Aid projects only)

* Checklist items marked "No" constitute a Materials Certification deficiency. Each "No" requires the contract item number for the affected item to be shown along with an attachment to the Materials Checklist detailing the circumstances of use, the method used for acceptance of the material, the Project Engineer's evaluation of the material, suitability for it's application, and determination as to whether or not it may have met the specification in spite of the materials documentation oversight. If the project is Federally funded, the Project Engineer should also include a recommendation for Federal participation in light of the use of undocumented materials.

** These specific materials deficiencies on Federal Aid projects must be resolved through State Construction Office and may result in the loss of Federal participation.

<table>
<thead>
<tr>
<th>Project Engineer’s Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region Construction Engineer/Operations Engineer/Area Engineering Manager Signature</td>
<td>Date</td>
</tr>
</tbody>
</table>

DOT Form 350-115 EF
Revised 02/2010

Figure 9-1
Date:

Jeff Carpenter, P.E.
State Construction Engineer
P.O. Box 47354
Olympia, WA 98504-7354
MS: 47354

Cont. No.: SR-
F.A. No:
Section:

Completion Date: (may be substantial, physical, or completion date)

Dear Jeff:

This is to certify that:

The results of acceptance sampling and testing completed for the project referenced above, confirm that the materials incorporated into the project were found to have met the requirements as outlined in the contract plans, provisions, and Standard Specifications.

There were no exceptions

OR:

This is to certify that:

The results of the tests on acceptance samples indicate that the material incorporated in the construction operations controlled by sampling and testing were in conformance with the approved plans and specifications.

Exceptions to the plan and specifications are explained on the attached sheet(s).

Very truly yours,

Regional Administrator or designee

XX:xx
Attachment

cc: FHWA, 40943 (F.A. Projects Only)
State Materials Engineer, 47365
Regional Oper./Const. Engineer
Project Engineer

Figure 9-2
9-1.2F(2)c State Materials Laboratory - Compliance Review for Materials Certification Process

Compliance reviews will be performed by the State Materials Laboratory to document conformance of project records to materials certification standards.

The compliance review will normally be conducted at the Project Engineer Office unless arrangements are made for it to be conducted elsewhere.

The goal is to perform a compliance review on at least one project per Project Engineer Office every two years. Compliance reviews may be conducted more frequently as appropriate. Projects will be selected with consideration given to project size and complexity.

Reviews may be performed either prior to or after receipt of the Region Certification of Materials letter. Compliance reviews are performed in order to assist the Project Engineer Office in verifying that all required materials documentation and testing has been completed in accordance with established requirements and standards. If the review is to be performed at the receipt of the Region Materials Certification Letter, the State Materials Laboratory will notify the Region within 60 days of intent to perform a compliance review on that project. Compliance reviews performed prior to receipt of the Region Materials Certification Letter will occur at any time after Substantial Completion.

The records maintained and developed by the Project Engineer for approval, acceptance and field verification of materials placed and paid for on the contract and any variances will be reviewed.

Upon completion of the review, the findings will be discussed with the Project Engineer and/or their representative. Deficiencies not rectified or meeting the requirements of CM 9-1.2F shall be noted during the Materials Certification. A copy of the final report will be sent to the Regional Documentation Engineer, Construction Manager, State Construction Office, and the FHWA Division Office.

In addition to addressing material documentation deficiencies, the Project Engineer/Construction Manager will correct any such discrepancy in the Project Engineer Office material documentation process noted during the Compliance review.

The following items of documentation must be made available for the review:

1. Record of Materials, as revised and amended by the Project Engineer Office (ref. 9-1.2C)
2. **Approval Documents:**
 a. Request for Approval of Material (ref. 9-1.3B)
 b. Qualified Products List pages (ref. 9-1.3A)
3. **Acceptance Documents:**
 a. Test Results
 1. Acceptance Test Reports
 2. Assurance Test Reports (where applicable)
 3. Independent Assurance Test Reports (where applicable)
 4. Verification Test Reports (Cement and Liquid Asphalt)
 b. Manufacturer’s Certificate of Compliance (ref. 9-1.4D)
 c. Miscellaneous Certificates of Compliance (ref. 9-1.4E)
 1. Lumber Grading Certificate
 2. Certification of Cement Shipment
 3. Notice of Asphalt Shipment or Certified Bill of Lading
 4. Any other certificates required by the contract documents
 d. WSDOT Fabrications Inspected Items (ref. 9-1.4B)
 e. Concrete Pipe Acceptance Report (ref. 9-1.4B(3))
 f. Catalog Cuts (ref. 9-1.4G)
 g. Proprietary or Agency Supplied Items (ref. 9-1.3B(1d) & 9-1.3B(1e))
 h. Visual Acceptance Items (ref. 9-1.4C)
 i. Reduced Acceptance Criteria Checklist (ref. 9-1.1)
4. Field Verification Documentation (ref. 9-1.5)
 a. Inspectors Daily Reports
 b. Field Note Records
5. Inspectors Daily Reports
6. Field Note Records
7. Comparison/Summary of Quantities
8. List of Change Orders
9. Project Engineer Office Signature/Initial List

9-1.3 Approval of Materials

Prior to use, the Contractor must notify the Engineer of all proposed materials to be permanently incorporated into the project in accordance with Section 1-06.1 of the Standard Specifications. Some temporary items may require approval if required by the Contract Documents. This may be accomplished by a Qualified Product List (QPL) submittal or by submitting a Request for Approval of Material (RAM) (DOT Form 350-071 EF). When materials are approved, it does not necessarily constitute acceptance of the materials for incorporation into the work. All additional acceptance actions, as noted by the code on the RAM or QPL must be completed prior to the materials being used in the work.

9-1.3A Qualified Products List — Submittal

Products listed in the QPL have been found capable of meeting the requirements of the Standard Specification, General Special Provision, Bridge Special Provision and Standard Plans under which they are listed and, therefore, have been “Approved.” These products may be “Accepted” by fulfilling the requirements of the Acceptance Code and any notes that apply to the product. If the Contractor elects to use the QPL, the most current list available at the time the product is proposed for use, shall be used. During the life of the contract, acceptance methods for materials in the QPL...
may change, becoming more stringent or less stringent. The acceptance method detailed on the originally submitted QPL page will continue to be the acceptance method for the life of the contract, unless the Contractor submits a new QPL page for the material. This is the case regardless of whether the acceptance method becomes more stringent or less stringent. Instructions are given in the QPL for processing QPL submittals. Contractors and Project Engineer Offices are encouraged to use the QPL database for submittals. The QPL database is constantly updated with additions and/or deletions and can be accessed at wsdot.wa.gov/biz/mats/QPL/QPL.cfm.

The Project Engineer Office shall review the material submittal for consistency with the Bid Item and shall promptly notify the Contractor of any concerns, working with the Contractor toward resolving these issues. QPL submittals inconsistent with the intended use for the Bid Item should be marked “unacceptable for intended use” and returned to the Contractor. Copies of QPL pages for materials that are to carry a WSDOT Fabrication Inspection ‘Stamp/Tag’ or Sign Inspection ‘Decal’ shall be forwarded to the WSDOT Headquarters Fabrication Inspection Office.

9-1.3B Request for Approval of Material — Submittal

The Contractor shall submit all Request for Approval of Materials (RAM) to the Project Engineer Office using the WSDOT RAM form (DOT 350-071 EF).

If a RAM is submitted with a material found on the QPL, the Project Engineers office may code the RAM as defined in Section 9-1.3B(1).

If a RAM is submitted with a material not identified under the ‘Project Engineer’s Office Approval Coding’ (9-1.3B(1)), the Project Engineer’s Office shall submit the RAM to the State Materials Laboratory Documentation Section for coding.

The coding of the RAM is to determine if the proposed material on the RAM is capable of meeting the established standards and defining the acceptance method. Acceptance determines if the material being placed on the contract does meet the established standards.

When unable to approve a RAM as outlined below, the Project Engineer or delegated representative will sign, date, and code the items with a “7” – “Approval Pending” and forward it to the State Materials Laboratory Documentation Section. If the RAM is not filled out correctly it will be returned to the Project Engineer’s Office prior to any action being taken. It is recommended that the RAM be submitted in a timely manner. The RAM may be forwarded by mailing, electronically transferring or faxing. A copy should also be returned to the Contractor at this point to inform them that the RAM has been sent to the State Materials Laboratory for approval. Submit any additional documentation, including appropriate transmittals that may assist the RAM Engineer in approving the proposed material; such as Test Reports, Catalog Cuts, Manufacturer’s Certificate of Compliance, etc.

The page number of the Special Provision or Plan Sheet will appear on the RAM form. This is the case regardless of whether the acceptance method becomes more stringent or less stringent. The remarks in the ASA Report also need to be reviewed to make sure that there are no additional requirements or restrictions on the material that you intend to use. If you are using concrete aggregate, review the ASR values to see if ASR mitigation is required for the concrete mix design.

The State Materials Laboratory Documentation Section may elect to delegate approval of some specialty items.

All RAMs shall be signed and dated by the Engineer. Copies of all RAM’s processed through the Project Engineer’s Office shall be sent to the State Materials Laboratory Documentation Section. Copies shall be distributed as indicated at the bottom of the RAM form. Acceptance requirements should be noted on the maintained ROM and/or Materials Tracking Program (MTP). This is especially important since the maintained ROM and/or MTP will be used for auditing purposes.

9-1.3B(1) Project Engineer’s Office Approval Coding

9-1.3B(1)a QPL Reference Materials

The Engineer may code the RAM if the product listed on the RAM is identified in the QPL by make, model, color, size, part no., etc. The product must also be listed in the QPL under the appropriate Standard Specification for the intended use as indicated by the Bid Item and Specification Reference shown on the RAM. The RAM should be coded with the 4-digit QPL acceptance code and any notes and/or restrictions restated as “Remarks” on the RAM.

9-1.3B(1)b Aggregates

Aggregate Sources will be approved by consulting the Aggregate Source Approval database for the use intended. The Project Engineer shall approve the RAM, coding when there is a sampling frequency in Section 9-3.7 of this Manual with a “1” – “Conditionally Approved: Acceptance based upon Satisfactory Test Report”. Aggregates that do not have a sampling frequency should be coded per requirements of the ASA database. Print the ASA Report and attach it to the approved RAM.

The Regional Materials Engineer may have added remarks to the ASA database for aggregate sources having variable quality. Contact the Regional Materials Engineer prior to use. It has been demonstrated that some of these sources can provide quality material through diligent production and stockpile management. The Regional Materials Engineer may approve these aggregate sources by the stockpile(s) or on a project-by-project basis.

Review the approval date on the ASA Report to verify that the approval of the aggregate source has not expired or will not expire before the end of your contract. If the aggregate source is approved at the beginning of your project, it does not mean that it is approved for the duration of the project. If the aggregate source requires evaluation, contact the Regional Materials Office for further direction. If samples are required, the Regional Materials Office will coordinate with the ASA Engineer to obtain the necessary samples in accordance with SOP 128.

The remarks in the ASA Report also need to be reviewed to make sure that there are no additional requirements or restrictions on the material that you intend to use. If you are using concrete aggregate, review the ASR values to see if ASR mitigation is required for the concrete mix design.
9-1.3B(1)c Optional Approval/Acceptance

The Project Engineer may elect to approve some materials by invoking Section 9-1.1D – Optional Approval/Acceptance for Materials. This process allows the Project Engineer to approve the RAM. The PE needs to verify the material being approved meets the requirements listed and is for the same specifications as the material listed in Section 9-1.1D. After verifying concurrence with 9-1.1D, the Project Engineer shall approve the RAM, coding with an “8 – Approved per CM Section 9-1.1D”.

9-1.3B(1)d Proprietary Materials

Where the Contract Documents state “shall be…” and list products by specific name and model, the Contractor needs only to complete the RAM indicating to the Engineer the intended choice. The Engineer shall approve the RAM, coding with an “8” – “Source Approved” and note the page number where it is listed in the Contract Documents as a proprietary product. Occasionally proprietary materials will have additional acceptance criteria and these criteria need to be noted on the RAM. On occasion the Subject Matter Expert for the material being placed may ask for additional documentation.

The “Buy America” requirements apply to Proprietary materials used on all federally funded projects. The “Buy America” requirements should be addressed by the Designer prior to including the material into the Contract Special Provisions. Ultimately it is the responsibility of the Project Engineer to verify that the requirements are met.

9-1.3B(1)e Agency Supplied Materials

An approved RAM is not required for Agency Supplied Materials. If a RAM is submitted to the PEO, the Engineer shall approve the RAM, coding with an “8” – “Source Approved” and note the page number where it is listed in the Contract Documents as an Agency Supplied Material. Additional acceptance criteria may be required by the Contract Special Provisions or Plans.

The “Buy America” requirements apply to Agency Supplied materials used on all federally funded projects. The “Buy America” requirements should be addressed by the Designer prior to including the material into the Contract Special Provisions. Ultimately it is the responsibility of the Project Engineer to verify that the requirements are met.

9-1.3B(1)f Concrete and Asphalt Batch Plants

For Concrete Batch Plants, the Project Engineer Office shall ensure requirements of 6-02.3(4)A of the Standard Specification are met prior to approving the RAM.

For Asphalt Mixing Plants, the Project Engineer Office shall ensure requirement of Section 5-04.3(1) of the Standard Specification are met. There is no approval on the RAM required for Asphalt Mixing Plants, however coding the RAM with an “8” – “Source Approved” would be appropriate.

9-1.3B(1)g Recycle Materials for Aggregate

Requirements for recycled materials in aggregates are described in Section 9-03.21 of the Standard Specifications for Road, Bridge and Municipal Construction (M 41-10). Section 9-03.21 applies to recycled hot mix asphalt, portland cement concrete rubble, glass aggregates and steel furnace slag. The Project Engineer is required to verify that recycled material imported to the job site is not classified as a Dangerous Waste per the Dangerous Waste Regulations WAC 173-303. Recycled materials obtained from the Contracting Agency’s roadways will not require testing and certification for toxicity testing or certification for toxicity characteristics.

The Project Engineer needs to do the following in order to determine and document the recycled material is not classified as a Dangerous Waste and is acceptable for use on a WSDOT project:

- Have the Contractor provide documentation identifying what recycled materials the contractor is proposing to use and sampling documentation.
- Have the Contractor provide testing information from representative samples of the recycled material and check to ensure the recycled material is below the Maximum Concentration of Contaminates for the Toxicity Characteristics in the Toxicity Characteristics List in WAC 173-303-090.
- Have the Contractor certify that the recycled material is not a Washington State Dangerous Waste per WAC 173-303.

The Project Engineer can contact the WSDOT Hazardous Materials Program to help evaluate sample approach, lab results, help in determining if changes in the recycled material warrant additional testing, or other assistance as needed. The Hazardous Material Program can be reached at 360-570-6656.

The contractor is required to do sampling and testing for toxicity of the recycled material at the frequency specified in Standard Specification 9-03.21(1) prior to combining with other materials and not less than one sample and test from any single source. If the Project Engineer suspects the recycled material may be contaminated based on a change in odor, appearance, or knowledge of the source of material, the WSDOT Hazardous Materials Program should be contacted to determine if a verification sample should be tested for toxicity. Sample results are expected to exhibit the average properties of the stockpile of material being proposed for use. The final blended product shall meet the acceptance requirements for the specified type of aggregate.

The RAM should be coded an “8” and noted as “certification and approval testing per Standard Specification 9-03.21” in the remarks field.

9-1.3C Low Risk Materials

There are low risk materials that may be used in the project without contractor identification per Section 1-06 of the Standard Specifications or any other documentation unless stipulated in the Contract Documents. The “Buy America” requirements apply to all federally funded projects. Table 9-2 is a listing of these materials. Other items can be considered for addition to this list. Suggestions are encouraged and may be made to the State Construction Office or the State Materials Laboratory.
Adhesive for Butyl Rubber Sheetings
Asphaltic felt for bridge approach slabs
Butyl Rubber Sheetings
Colloidal copper compound
Duct tape for bridge approach slab anchors
Electrical pull string
Electrical tape
Expanded polystyrene for bridge approach slab anchors
Friction tape, and moisture proof varnish for friction tape
Fasteners for Mailbox Supports (bolts, nuts & washers)
Galvanized wire mesh and hardware for screens on sign bridges and cantilever sign structure bases
Grout for cosmetic purposes
High Visibility Fence including hardware and stakes
Locknuts for terminating conduit
Log Weirs and Root Wads with associated hardware
Loose Woody Debris with associated hardware
Nails
Oxide Inhibitors for Aluminum Conductors
Pea gravel for decorative purposes
Pipe wrap and spacers for electrical conduit
Polypropylene rope for induction loop centralizers
Premolded joint filler for expansion joints in sidewalks
PVC pipe for bridge approach slab anchors
PVC solvent cement
Rebar tie wire (plain and epoxy-coated)
Silicone sealant for electrical service cabinets
Spacers for electrical conduit duct bank
Spacers for rebar columns
Straw bales not used as mulch
Woody Debris with associated hardware

<table>
<thead>
<tr>
<th>Table 9-2</th>
</tr>
</thead>
</table>

9-1.4 Acceptance Methods for Materials

Materials acceptance is accomplished by several different methods. Once a material is approved and has demonstrated the ability to meet the applicable specification, a proper method of acceptance is determined for that type of product. The approved Request for Approval of Material or submitted Qualified Product List page will state the acceptance method.

Types of Acceptance methods are Sampling and Testing, WSDOT Fabrications Inspection, Manufacturer’s Certificate of Compliance, Miscellaneous Certificates of Compliance, Shop Drawings, Catalog Cuts, Optional Approval/ Acceptance for Materials, Visual Acceptance or Reduced Acceptance Criteria. Sampling and testing is the highest level of acceptance method showing conformance to the requirements. All designated acceptance documentation is to be approved and retained prior to material being placed except for verification samples and Manufacturer’s Certificate of Compliance within the restraints of Standard Specification 1-06.3.

9-1.4A Testing

Project Engineer Offices are responsible for tracking the acceptance/verification tests performed on their contracts. Refer to Standard Specification 1-06.2(1) – ‘Samples and Tests for Acceptance’ and this Chapter of the Construction Manual for testing criteria and frequency information.

Chapter 9 also includes a large variety of test procedures that may be performed in the field office lab or at the jobsite by a qualified tester. All testers shall be qualified to perform sampling/testing for those acceptance tests found in the WSDOT Construction Manual.

9-1.4A(1) Reference Test Report

When a Satisfactory Test Report is required, a Reference Test Report may be used if allowed in Section 9-4 for that specific material. A Reference Test Report as listed below will not be allowed for HMA Mix Designs or other materials unless allowed per Section 9-4.

A Reference Test Report shall consist of a printed copy of the current electronic QPL database page showing ‘referenced’ lots previously tested during the current calendar year. The lot number in the QPL must match the lot number of the material used. The information will be listed in the ‘description’ field for specific materials in the QPL. The QPL page used as the ‘Reference Test Report’ shall be within the same calendar year that the material is used on the project. The QPL page must reflect the same specification as the material to be used and be received prior to installation of the intended material.

The use of a test report from another contract is no longer acceptable as a Reference Test Report.

9-1.4A(2) Statistical Acceptance with SAM

The Statistical Analysis of Materials program, (SAM), has been developed to calculate the percent within limits of materials being statistically accepted per 1-06.2(2) of the Standard Specifications. When the test results for at least 3 samples has been entered, the program will calculate the percent within limits based on the upper and lower acceptance limits, calculate the pay factor for each, and calculate the composite pay factor, (CPF), for the material being evaluated.

9-1.4A(2)a Initial Material Set-up

When a contract requires statistical analysis to be used, the “lot” acceptance criteria for the material needs to be entered into SAM. A lot is defined as 15 sublots; the final lot may be increased to 25 sublots. All samples from a material type, i.e., gravel backfill for walls, CSBC or gravel borrow shall be evaluated collectively. For concrete, each concrete mix design shall be evaluated collectively. For hot mix asphalt, each job mix formula, and all changes to that job mix formula shall be evaluated collectively.
Make sure that this information is correct. Once test data has been entered, the lot acceptance criteria cannot be altered. There are three ways to establish the lot acceptance criteria:

1. Select the material. The appropriate specifications will be automatically retrieved.
2. For HMA, you can enter the mix design number, and the JMF, the acceptance specifications, the tolerances, price adjustment factors, and the upper and lower acceptance limits will be automatically retrieved.
3. Pick User Define and you will be able to add new requirements, or edit existing requirements. For HMA, make sure that you calculate the upper and lower acceptance criteria based on the tolerance limits.

If there is a change to the HMA job mix formula, (JMF), the program allows you to copy existing lots. The original mix design and a “-1, -2, -3…” number is added, and you are allowed to edit the JMF. These JMF’s will be evaluated collectively.

It is important to delete lots that are not used from the program. The statistical acceptance results are used by other programs to evaluate the material.

9-1.4A(2)b Inputting Test Results

Once the testing has been completed, the test results need to be entered into the program for the material being tested as soon as possible. Once the office starts using the Materials Testing Program for the field testing, the test results will be retrieved into the statistical program.

9-1.4A(2)c Review work

As with all materials documentation, this information entered into the statistical program needs to be reviewed regularly to make sure that there are no mistakes. If an error has been found in the test data, the original data can be revised. If an error has been found in the lot acceptance criteria, all of the test data will have to be deleted and re-entered under the new lot.

9-1.4A(2)d Contractor Access

The PEO documentation engineer will give the contractor access to the statistical program. This will allow the contractor access to the statistical program for the work order they are working on to view the acceptance results. They will not be able to change the lot acceptance criteria or any test results. They will be able to access the acceptance portion of the program, and view the gradation report, the compaction report, and the contract detail report.

9-1.4B Fabricated Items

9-1.4B(1) Stamp/Tag

Items that are inspected and found to meet contract document requirements by the WSDOT Materials Fabrication Inspection Office are identified by a Stamp or Tag. This type of inspection is generally performed at the manufacturing or fabrication plants. There are various types of Stamps or Tags used for acceptance of inspected items, which attest that the item was in full conformance with the specifications at the time of inspection. The inspected items, along with the type of Stamp or Tag designation, are covered under Section 9-2 of this manual.

It is the responsibility of the Project Engineer Office to notify the WSDOT Materials Fabrication Inspection Office when their inspection services are needed by sending a ‘cc’ of the approved RAM or submitted QPL page to WSDOT Fabrications at fabinspect@wsdot.wa.gov. The Contractor or the Fabricator may also contact WSDOT Materials Fabrication Inspection Office for needed inspection.

To schedule a fabrication inspection contact:

Fabrication Inspection – 360-709-5407

Mail Stop to send hardcopy documents – MS 47365
Attn: Fabrication Inspection

Email Address: -- fabinspect@wsdot.wa.gov

Physical Address – 1655 S 2nd Ave. SW, Tumwater, WA 98504-7365

WSDOT Materials Fabrication Inspection Office can be contacted at:

• State Materials Laboratory (Tumwater): 360-709-5407
• Seattle Inspection: 206-464-7770
• Vancouver Inspection: 360-905-2230
• online at www.wsdot.wa.gov/biz/mats/Construction/fabinspTEST.htm

If there are no Stamps or Tags present, inform the Contractor that the item is not acceptable and contact the Materials Fabrication Inspection Office to determine the status of the inspection. Items lacking Stamps or Tags and those items damaged during shipping should be rejected and the material tagged or marked appropriately.

9-1.4B(2) Signing Decal

Signing items that are inspected and found to meet contract document requirements by the WSDOT Materials Fabrication Inspection Office are identified by a Decal. This type of inspection is performed at the sign fabrications plant. The Decal present attests that the item was in full conformance with the specifications at the time of inspection. The Decal designation is covered under Section 9-2 of this manual.

It is the responsibility of the Project Engineer Office to notify the WSDOT Materials Fabrication Inspection Office when their inspection services are needed by sending a ‘cc’ of the approved RAM or submitted QPL page to WSDOT Fabrications at fabinspect@wsdot.wa.gov. The Contractor or the Fabricator may also contact WSDOT Materials Fabrication Inspection Office as listed in 9-1.4B(1) for needed inspection.

9-1.4B(3) Concrete Pipe Acceptance Report

Concrete Pipe less than 30 inches in diameter that are inspected and found to meet contract document requirements by the WSDOT Materials Fabrication Inspection Office are identified by a Concrete Pipe Acceptance Report. The Concrete Pipe Acceptance Report will indicate the date and original test results as performed by the Fabrication Inspector and will bear the appropriate certification from the fabricator.
It is the responsibility of the Project Engineer Office field inspector to verify material delivered to the jobsite is represented by the Concrete Pipe Acceptance Report delivered with the pipe. The Concrete Pipe Acceptance Report is only valid for a 90 day period starting from the manufacturing date of the tested pipe.

The field inspector is required to verify the following:
- Manufacturing date of the pipe is within the 90 day ‘window’ on the report.
- Pipe is at the ‘age’ of the specified days or older as stated on the concrete pipe acceptance report.

Note: Concrete Pipe greater than 30 inches require different acceptance per section 9-4 of this manual.

The WSDOT Materials Fabrication Inspection Office can be contacted as listed in section 9-1.4B(1).

9-1.4C Visual Acceptance

Visual Acceptance is appropriate for material that has the lowest risk and consequence of failure. The field inspector is required to verify that proper ‘Approval’ has been performed per 9-1.3 of this manual. No further documentation is required for acceptance unless the Contract Documents mandate additional information.

9-1.4D Manufacturer’s Certificate of Compliance

As designated by the specifications and contract special provisions, certain materials may be accepted on the basis of a Manufacturer’s Certificate of Compliance. This acceptance is an alternative to job site sampling and testing. The submitted Qualified Products List page or approved Request for Approval of Material shall stipulate the items for which a compliance certification is an acceptable basis of acceptance. The Manufacturer’s Certificate of Compliance is required prior to installation of the material. See Section 1-2.8C(3) of this manual for guidance on allowing material to be placed without certification.

The form of the Manufacturer’s Certificate of Compliance will vary considerably based on both the material and the origin, and may take the form of standard certificate form, individual letter from manufacturers, or overstamp on bill of lading. Certain information is required and is designated by the specifications. This information includes the identity of the manufacturer, the type and quantity of material being certified, the applicable specifications being affirmed, and the signature of a responsible representative of the manufacturer. Supporting mill tests or documents may also be required. A Manufacturer’s Certificate of Compliance is required for each delivery of material to the project and the lot number, where lot numbers apply, of material being certified shall be identified.

Upon receipt of the Manufacturer’s Certificate of Compliance at the project office, it shall be reviewed for compliance with the specification requirements using the preceding guidelines and the checklist for Transmittal of Manufacturer’s Certificate of Compliance Check List – DOT Form 350-572 EF. The manufacturer of the material must make the certification. A supplier certificate is not acceptable except as evidence for lot number and quantity shipped and can only be accepted when accompanied by a certificate from the manufacturer, which meets the requirements of Section 1-06.3 of the *Standard Specifications*. The Project Engineer’s Office is required to retain the signed and dated Manufacturer’s Certificate of Compliance Check List Form for each submittal.

9-1.4E Miscellaneous Certificate of Compliances

As designated by the specifications and contract special provisions, certain materials may be accepted on the basis of a Certificate of Compliance. Various Certificates of Compliance, such as a Lumber Grading Certificate, Lumber Grading Stamp, Certificate of Treatment, Bag Label, Concrete Delivery Ticket, Asphalt Certification of Shipment (BOL), Supplier’s Certificate and Contractor’s Certificate, may be required for acceptance on different types of materials.

Standard Specifications, Contract Provisions and Section 9 of this manual may require written verification or retention of the Certificate of Compliances by the Project Engineer Office Field Inspector.

9-1.4F Shop Drawings

As designated by the specifications and contract special provisions, certain materials may be accepted on the basis of a Shop Drawing. Shop drawings are generally manufacturer’s or fabricator’s drawings that show details about an item being built for a specific job. Approval of Shop Plans and Working Drawings is per Table 1-2.4H of this manual.

The Shop Drawing shall be retained and placed in the Materials Files for acceptance.

9-1.4G Catalog Cuts

As designated by the contract documents, certain materials may require the acceptance method be based on a Catalog Cut. A Catalog Cut may also be required in support of approving a Request for Approval of Materials (RAM) per 9-1.3B. The approved Catalog Cut is required prior to installation of the material.

Upon receipt of the Catalog Cut information at the project office, an initial review for compliance with the established specifications and contract documents should be performed. All information shall be accompanied by the ‘Transmittal of Catalog Cuts’ form generated with the Record of Materials. The project office shall follow the directions on the ‘Transmittal of Catalog Cuts’ form DOT 350-072 EF and submit the package to the State Materials Lab Documentation Section for approval, or as per the original Record of Material. The ‘Transmittal of Catalog Cuts’ form and catalog cuts for those materials listed in Section 9-14 and 9-15 of the *Standard Specifications*, and accepted based on approved catalog cuts, should be submitted to the Region or State Roadside and Site Development Office for approval.

The Catalog Cut may be forwarded by mailing, electronically transferring or faxing.
9-1.5 Field Verification of Materials
All material permanently incorporated into a contract shall be field verified by the inspector. Field Verification shall occur prior to or during placement of the material. When the field inspector signs/initials a Field Note Record for payment, they are affirming that items requiring field verification have been checked and have been found to be acceptable.

The field inspector shall inspect the product, material and construction processes for conformity to the contract requirements. The field inspector shall also inspect the product or material for shipment and handling damage.

The field inspector is required to verify that the material being placed is the same material that was submitted on the Qualified Products List (QPL) page or as listed on the approved Request for Approval of Material (RAM). The field inspector is also required to verify that the material being installed is the same lot/heat number/roll of material that was tested or certified for acceptance.

For WSDOT Fabrications Inspected items, the field inspector shall document in the IDR the quantity, WSDOT Tag/Stamp/Decal and Material Origin Foreign or Domestic (F or D) designation.

If the placement of the materials has occurred prior to approval or acceptance, the field inspector is required to document in their Inspector’s Daily Report (IDR) all information that can be gathered such as Quantity, Manufacturer, Lot, Heat Number, Model or Type. The note in the IDR will ‘link’ what was placed once the Approval and Acceptance documents have been received. The field inspector should immediately notify the Project Engineer Office documentation person of the deficiency to ensure missing documentation is obtained.

Photos with dates are good supporting documentation and are highly recommended for all permanently placed materials.

9-2 Materials Fabrication Inspection Office — Inspected Items Acceptance

9-2.1 General
All fabrication inspection of construction materials is performed by the WSDOT Materials Fabrication Inspection Office, unless otherwise delegated by the State Materials Laboratory Construction Materials Engineer.

Items that are inspected and found to meet contract requirements by the WSDOT Materials Fabrication Inspection Office are identified by a tag or stamp. This type of inspection is generally performed at the manufacturing or fabrication plants; however, there are items that are inspected at the job site as identified in Section 9-4 of this manual. There are various types of Stamps or Tags used for acceptance of inspected items, which attest that the item was in full conformance with the specifications at the time of inspection. The inspected item along with the type of stamp designation is covered under Section 9-2.2 of this manual.

9-2.1A Acceptance of Fabricated Items
The following is the process for the acceptance of inspected items.

1. The manufacturing or fabrication plant must be approved via the “Request for Approval of Material,” (RAM) or the Qualified Products List (QPL)

2. The Materials Fabrication Inspection Office Inspector will obtain the necessary mill certifications, Certificate of Material Origin, or other documentation from the manufacturer. After asuring the inspected item and documentation meets contract provisions the inspector will identify approved material by applying a stamp or tag shown in Figures 9-3 through 9-7.

Items containing Foreign steel and iron, and coating or other processes performed outside the USA will be stamped with an “F” identifier, and items containing steel that has been determined to be of domestic origin will be stamped with a “D” identifier. See Figure 3A and 3B. This stamp is in addition to the appropriate acceptance tag or stamp in Figures 9-3, 9-4, 9-5, and 9-7. The “F” or “D” identifier will be stamped next to the acceptance stamp. For those items with an acceptance tag, the “F” or “D” stamp will be stamped on the back of the Tag.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for foreign steel from the Contractor, track the quantity and retain these documents in the project records.

9-2.2 Inspected Items, Stamps and Tagging Identification
The following are examples of the types of Stamps and Tags used by the WSDOT Materials Fabrication Inspection Office. The letter or letter number combination on the Stamp or Tag identifies inspection and the inspector who performed the inspection. (In Figure 9-3, the inspector identification is denoted ‘M’ and ‘G’. In Figure 9-4, the inspector identification is denoted ‘N’, and the ‘001234’ is the inspection identification number.)

9-2.2A Inspected Stamp Identification
The Stamp shown in Figure 9-3 identifies inspection and the inspector of the following items:• Expansion Joints (Excluding Modular Expansion Joints)
• Precast Concrete Barrier
• Precast Concrete Catch Basins
• Precast Concrete Drywell
• Precast Concrete Inlets
• Precast Concrete Junction Boxes Type 1, 2, and 8
• Precast Concrete Manholes
• Precast Concrete risers and adjustment sections 4 inch and above
• Signing Hardware
• Steel Culvert Pipe and Pipe Arch (Treated)
• Other items per the contact

All documentation associated with the Stamp in Figure 9-3 will be reviewed and approved by the WSDOT Materials Fabrication Inspection Office and kept at the point of Manufacture. Quantities of foreign steel used on the project will not be tracked by the WSDOT Materials Fabrication Inspection Office.

<table>
<thead>
<tr>
<th>W.S.D.O.T.</th>
<th>INSPECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td>W.S.D.O.T.</td>
</tr>
<tr>
<td></td>
<td>INSPECTED</td>
</tr>
</tbody>
</table>

Stamps Figure 9-3

9-2.2B Inspected Stamp and Tag Identification

The Stamp shown in Figure 9-4 or Tag shown in Figure 9-5 identifies inspection and the inspector of the following items:

- Anchor Bolts (ASTM A449 & ASTM F1554)
- Bridge Bearings (Disc, Spherical, Cylindrical, and Fabric Pad)
- Cattle guard
- Coated Steel Piling
- Concrete Drain, Perforated Underdrain, Culvert, and Storm Sewer Pipe (30” and above in diameter)
- Concrete Sanitary Sewer Pipe (30” and above in diameter)
- Epoxy Coated Steel Reinforcing Bars
- Grates (Grate Inlets & Drop Inlets)
- Handrail
- High Mast Light Poles (Contract Provisions)
- High Strength Bolts (shop provided)
- Light and Signal Standards
- Metal Bridge Railing (Steel & Aluminum)
- Miscellaneous Welded Shop Items
- Modular Expansion Joint
- Piles (Structural & Soldier)
- Precast Concrete Block Walls
- Precast Concrete Bridge Deck Panels
- Precast Concrete Box Culvert
- Precast Concrete Cable Vault’s
- Precast Concrete Floor Panels
- Precast Concrete Junction Boxes Type 4, 5, and 6
- Precast Concrete Marine Pier Deck Panels
- Precast Concrete Noise Barrier Walls
- Precast Concrete Pier Caps

9-2.2C Inspected Tag Identification

The Tag in Figure 9-6 identifies inspection and the inspector of Treated Timber, Piling and Poles.

All documentation associated with the tag in Figure 9-6 will be reviewed and approved by the WSDOT Materials Fabrication Inspection Office and kept at the WSDOT Materials Fabrication Inspection Office.
9-2.2D Inspected Casting Stamp Identification

The Stamp shown in Figure 9-7 identifies inspection and the inspector of the following items:
• Gray-Iron Castings
• Steel Castings
• Ductile-Iron Castings (Catch Basin Frame and Grates, Manhole Ring and Covers, etc.)
• Other items per the contact

For Rectangular Frames and Grates, each set shall be stamped aligning the adjacent mating surfaces to each other. This alignment is critical as the leveling pads are ground to prevent rocking of the grates in the frames.

All documentation associated with the Stamp in Figure 9-7 will be reviewed and approved by the WSDOT Materials Fabrication Inspection Office and kept at the WSDOT Materials Fabrication Inspection Office. Quantities of foreign steel used on the project will not be tracked by the WSDOT Materials Fabrication Inspection Office.

WSDOT-A Stamp

(This Stamp is impressed on the casting and will be circled with spray paint for ease of visibility of the Stamp.)

9-2.3 Sign Fabrication Inspection

The WSDOT Materials Fabrication Inspection Office is responsible for inspection of all permanent Signs detailed in the Contract Plans. Construction and temporary signs are not inspected by the WSDOT Materials Fabrication Inspection Office. The Materials Fabrication Inspector will verify that signs meet the requirements of the contract. The inspector will attach a “Fabrication Approved” decal (see Figure 9-8) to all approved signs prior to shipment of the sign to the job site (except double sided signs). Sign mounting hardware provided by the Sign Fabricator will be inspected and approved by the Materials Fabrication Inspector prior to shipment to the job site. The inspector will stamp each box of hardware “WSDOT INSPECTED” (see Figure 9-3).

Pre-approval of the Sign Fabricator by Traffic Operations and the WSDOT Materials Fabrication Inspection Office is required.

9-2.4 Concrete Pipe Acceptance Report

The WSDOT Materials Fabrication inspection Office periodically inspects and witnesses testing of concrete pipe less than 30 inches in diameter at approved fabricators. During this inspection, samples of each type, size, and class of pipe are inspected and tested to verify compliance with the Standard Specifications.

For a 90-day period from the date of manufacture, concrete pipe less than 30 inches in diameter may be shipped and accepted based on “Concrete Pipe Acceptance Reports.” The concrete pipe that ships must be at the age or older than the concrete pipe tested and represented by the Concrete Pipe Acceptance Report. This report is prepared by the Materials Fabrication Inspector and copies are thereafter supplied by the fabricator to accompany each shipment of pipe.
9-3 Guidelines for Job Site Control of Materials

9-3.1 General

The intent of sampling and testing is to ensure that the material provided to the project conforms to the specifications. The frequency schedule in Chapter 9-3.7 of this manual covers the minimum requirements for sampling and testing at the project level. The Project Engineer is responsible for obtaining the number of samples necessary to ensure adequate control of the material being produced under the circumstances and conditions of the particular project. There may be cases where production is just getting under way, where source material is variable or marginal in quality. Also operations from commercial sources when small lots of material are being sampled (as for barge loads of aggregate) or when stockpiles are built and depleted may require more frequent sampling and testing. A minimum of one acceptance test is required unless the Project Engineer reduces materials acceptance per Section 9-1.1 of this manual.

When in doubt as to sampling requirements, refer to Record of Materials (ROM), Request for Approval of Material (RAM), and Chapter 9-4 of this manual.

In some instances, items usually sampled by Project Engineers representative may be sampled and tested by representatives of the State Materials Laboratory or other representatives. Such items as shown in this Chapter, when properly identified with an “APPROVED FOR SHIPMENT” Tag, may be accepted for use by the Project Engineer without any further sampling or testing.

9-3.2 Sample Types

9-3.2A Preliminary Samples and Tests

Preliminary samples are intended to show the general character of the materials available or proposed for use. The sample may be taken from a natural deposit, the general stock of a dealer, or elsewhere. The material sampled may require further treatment before it will meet the specification requirements. Preliminary samples are a basis for approving which aggregate site or brand of material will be considered for use. Deliveries cannot be accepted on the basis of preliminary samples unless the samples represent an identified lot of materials.

Unless specified for a particular purpose, preliminary sampling and testing of materials from a potential source are not mandatory functions. It is to be performed when requested by the Project Engineer, Region Materials Engineer or the State Materials Laboratory on the Request for Approval of Material (DOT Form 350-071 EF).

9-3.2A(1) Sampling and Testing for Aggregate Source Approval

A pit or quarry source owner may contact the State ASA Engineer directly to request an ASA source approval and will pay all sampling and testing charges. If the Region or project offices elect to sample a pit or quarry for source approval for a project and this is paid by project funds, the samples will have to be obtained by the Regional Materials Engineer’s designated representative according to WSDOT SOP 128 and include all of the required documentation.

9-3.2A(2) Sampling and Testing for Preliminary Hot Mix Asphalt Mix Design

These samples are used to determine if the aggregate source is capable of meeting the mix design specification requirements. Preliminary samples shall be made up of 200 pounds of rock or pit run gravel and 25 pounds of blend sand (if utilized). Contact the Regional Materials Office if preliminary samples are required. Give full details of type of construction proposed. The sample is to be shipped in increments, using satisfactory containers, not exceeding 30 pounds per WSDOT SOP 128.

9-3.2B Acceptance Samples and Tests

Acceptance samples and tests are defined as those samples tested for determining the quality, acceptability, and workmanship of the materials prior to incorporating the materials into the project. The results of these tests are used to determine conformance to the contract requirements. The minimum frequency for sampling and testing of acceptance samples is detailed in Chapter 9-3.7 of this manual.

The Code of Federal Regulations, 49 CFR, has listed certain materials to be hazardous. When shipping hazardous materials using a common carrier, i.e. UPS or Fed Ex, the USDOT and the carrier have special requirements that need to be followed. The following is a list of hazardous materials that we commonly sample and test on our projects; paint, epoxy part B, pigmented sealer, form release oil, and polyester resin. When these materials or other hazardous materials need to be sent for testing, contact the Region Materials Laboratory for shipping instructions. The Region Materials Laboratory needs to contact the shipper for proper shipping requirements.

9-3.2C Verification Samples and Tests

Verification samples and tests are used for verifying the reliability of a manufacturer’s test results when acceptance of the material is based upon a Manufacturer’s Certificate of Compliance. In the event of a failing verification test, the Project Engineer Office will be notified by the State Materials Laboratory or the State Construction Office. The Project Office needs to verify whether the material has been used. If the material was used, the Project Engineer Office shall contact the State Construction Office which will coordinate with the State Materials Laboratory to determine the appropriate action.
9-3.3 Test Numbering

A separate series of numbers, starting with ‘No. 1’ in each instance, shall be used for acceptance, independent assurance, and verification samples for each type of material for which there is a separate bid item. Verification samples shall be referenced to the corresponding Manufacturer’s Certificate of Compliance.

9-3.4 Point of Acceptance

9-3.4A State Owned Source

Material produced from a State owned source may be accepted either as it is placed into stockpile or as it is placed in hauling vehicles for delivery to the roadway. The sampling and testing frequency during stockpiling shall be in conformance with Chapter 9-3.7 of this manual.

In the event sample testing during stockpiling shows the material to be outside of specification limits, but within the tolerance limits, acceptance testing will be performed as the material is being used.

9-3.4B Contractor’s Source

If stockpiled material is set aside exclusively for use on WSDOT projects it may be accepted the same as a state-owned source. If stockpiles are constructed for general use, materials for WSDOT projects shall be tested for acceptance from samples taken by the Project Engineer representative in accordance with WSDOT FOP for AASHTO T 2. The Engineer will determine the exact point of acceptance. If an existing stockpile was built without acceptance testing during material production, and later set aside exclusively for use on state projects, the material may be accepted with satisfactory test results from samples taken by the Project Engineer representative in accordance with WSDOT FOP for AASHTO T 2. The sampling and testing frequency shall conform to Chapter 9-3.7 of this manual.

9-3.5 Basis for Acceptance

The basis of acceptance of Hot Mix Asphalt and aggregates may be either by statistical evaluation or non-statistical evaluation methods. The method to be used is specified in Standard Specifications or Contract Documents.

The testing tolerances shown in Chapter 9-3.6 of this manual apply exclusively to the appropriate specifications as listed in the Standard Specifications.

9-3.5A Basis for Acceptance — Statistical Evaluation

For materials being accepted using statistical evaluation procedures, random samples will be evaluated to determine quality level within a defined tolerance band. Acceptance, bonus, and dis-incentive procedures are defined in the contract documents.

Test results with acknowledged errors or equipment deficiencies are to be immediately discarded without recourse and another sample run.

9-3.5B Basis for Acceptance — Non-Statistical Evaluation

If statistical acceptance procedures are not specified non-statistical acceptance method will be used.

Individual samples taken for acceptance by this method may be subject to certain tolerance limits as defined in Section 9-3.6. The tolerance acceptance procedures below shall be followed in these cases. Test results with acknowledged errors or equipment deficiencies are to be immediately discarded without recourse and another sample run.

9-3.5B(1) Hot Mix Asphalt

When the test results for Hot Mix Asphalt fall outside the control points the material will be evaluated according to the Standard Specifications Section 5-04.5(1)A.

9-3.5B(2) Aggregate

a. Prior to completion of placement – During the production and placement of aggregate materials and when an acceptance test indicates the material is outside specification limits, the following actions shall occur:

1) Take the following actions any time a sample falls outside the specification limits, but within tolerance bands:

a) Immediately take two separate additional samples representing current production in accordance with Chapter 9-4 of this manual.

b) Production will be accepted until the second sample is checked for properties that were out of specification in the first sample.

c) Do not accept any additional material if the second sample is also out of specification.

9-3.5A(1) Contractor HMA Challenge

Test results for Hot Mix Asphalt may be challenged by the Contractor, as defined in the Standard Specifications Section 5-04.3(8)A. These specifications allow the Contractor to challenge results of any individual acceptance sample test in writing and within seven calendar days from receipt of the specified test results.

When the Contractor challenges a test, a split of the original field sample must be tested utilizing different equipment and a different qualified tester. It therefore is necessary that a split of every field sample (i.e., opposite quarter from acceptance test) be saved in a secure area, accurately marked, and be available for challenge sample testing. The specifications require that the challenge sample testing be done in the Regional Materials Laboratory or the State Materials Laboratory. When the Contractor makes a challenge it is expected that the split sample be sent and tested as quickly as possible. This will require that testing of these samples be prioritized. By expediting the challenge sample testing, problems that may exist in testing or with the material being produced can be identified and corrected, lessening the impact to both the Contractor and WSDOT.
Materials Chapter 9

9-3.5C Basis for Acceptance — Performance Graded Asphalt Binder and Emulsified Asphalt

The basis for acceptance of asphalt binder and emulsified asphalts is compliance with existing specifications as modified to include the tolerance as follows:

1. If a binder or emulsion sample fails to meet the required specifications, the binder or emulsion samples prior to and subsequent to the failed sample will be tested. Samples of asphalt binder or emulsified asphalt will continue to be tested until samples taken both prior to and subsequent to the failing samples meet the specifications. The quantity of out of specification HMA is determined based on the tons of HMA represented by each of the asphalt binder samples that failed to meet the specifications.

2. If a binder or emulsion sample does not meet the specifications but is not more than 10 percent outside the specification limits and the binder or emulsion sample prior to and subsequent to the out of specification binder or emulsion both meet the specifications, there will be no price adjustment.

3. If the binder or emulsion sample is more than 10 percent out of specification or if the binder or emulsion sample is less than 10 percent out of specification and the binder or emulsion sample prior to or subsequent to the out of specification sample does not meet the specifications, the HMA or emulsion will be rejected.

b. After completion of placement - Tolerance limits do not apply when all of the material has been placed on the project prior to completion of the testing. For materials that do not meet specifications, the Project Engineer Office shall contact the State Construction Office which will coordinate with the State Materials Laboratory to determine the appropriate action.
9-3.6 Tolerance Limits

Crushed Screenings ¾" — ½" for B.S.T.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 1"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing ¾"</td>
<td>95-100</td>
<td>90-100</td>
</tr>
<tr>
<td>% Passing ½"</td>
<td>0-20</td>
<td>0-25</td>
</tr>
<tr>
<td>% Passing ¼"</td>
<td>0-5</td>
<td>0-10</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-1.5</td>
<td>0-2.0</td>
</tr>
<tr>
<td>Fracture</td>
<td>90% Min.</td>
<td>85% Min.</td>
</tr>
</tbody>
</table>

Crushed Screenings ⅝" — No. 4 for B.S.T.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing ¾"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing ⅝"</td>
<td>95-100</td>
<td>90-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>0-10</td>
<td>0-15</td>
</tr>
<tr>
<td>% Passing No. 10</td>
<td>0-3</td>
<td>0-7</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-1.5</td>
<td>0-2.0</td>
</tr>
<tr>
<td>Fracture</td>
<td>90% Min.</td>
<td>85% Min.</td>
</tr>
</tbody>
</table>

Crushed Screenings ½" — No. 4 for B.S.T.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing ⅝"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing ½"</td>
<td>97-100</td>
<td>92-100</td>
</tr>
<tr>
<td>% Passing ¼"</td>
<td>0-15</td>
<td>0-10</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>0-5</td>
<td>0-6</td>
</tr>
<tr>
<td>% Passing No. 10</td>
<td>0-2</td>
<td>0-7</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-1.5</td>
<td>0-2.0</td>
</tr>
<tr>
<td>Fracture</td>
<td>90% Min.</td>
<td>85% Min.</td>
</tr>
</tbody>
</table>

Crushed Screenings ⅜" — US No. 4

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing ½"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing ⅜"</td>
<td>70-90</td>
<td>65-95</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>0-10</td>
<td>0-7</td>
</tr>
<tr>
<td>% Passing No. 8</td>
<td>0-3</td>
<td>0-12</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-1.5</td>
<td>0-2.0</td>
</tr>
<tr>
<td>Fracture</td>
<td>90% Min.</td>
<td>85% Min.</td>
</tr>
</tbody>
</table>

Crushed Screening ⅜" — No. 10

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing ½"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing ⅜"</td>
<td>95-100</td>
<td>90-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>0-35</td>
<td>0-40</td>
</tr>
<tr>
<td>% Passing No. 10</td>
<td>0-10</td>
<td>0-12</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-1.5</td>
<td>0-2.0</td>
</tr>
<tr>
<td>Fracture</td>
<td>90% Min.</td>
<td>85% Min.</td>
</tr>
</tbody>
</table>

Crushed Screenings No. 4 — 0" for B.S.T.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing ⅜"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>76-100</td>
<td>71-100</td>
</tr>
<tr>
<td>% Passing No. 10</td>
<td>30-60</td>
<td>26-64</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-10.0</td>
<td>0-11.0</td>
</tr>
<tr>
<td>Fracture</td>
<td>90% Min.</td>
<td>85% Min.</td>
</tr>
</tbody>
</table>
Ballast

<table>
<thead>
<tr>
<th>Specification Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 2½”</td>
<td>100</td>
</tr>
<tr>
<td>% Passing 2"</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing 1"</td>
<td>85-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>60-100</td>
</tr>
<tr>
<td>% Passing No. 40</td>
<td>21-49</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>10.0 Max.</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>30 Min.</td>
</tr>
<tr>
<td>Dust Ratio</td>
<td>⅔ Max.</td>
</tr>
</tbody>
</table>

Permeable Ballast

<table>
<thead>
<tr>
<th>Specification Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 2½"</td>
<td>100</td>
</tr>
<tr>
<td>% Passing 2"</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing ¾"</td>
<td>60-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>45-85</td>
</tr>
<tr>
<td>% Passing No. 100</td>
<td>0-2.9</td>
</tr>
<tr>
<td>Fracture</td>
<td>75% Min.</td>
</tr>
</tbody>
</table>

Crushed Surfacing Base Course

<table>
<thead>
<tr>
<th>Specification Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 1¼"</td>
<td>100</td>
</tr>
<tr>
<td>% Passing 1"</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing ⅝"</td>
<td>65-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>35-85</td>
</tr>
<tr>
<td>% Passing No. 40</td>
<td>0-6</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>20 Max.</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>70% Min.</td>
</tr>
<tr>
<td>Fracture</td>
<td>75% Min.</td>
</tr>
</tbody>
</table>

Streambed Sediment

<table>
<thead>
<tr>
<th>Specification Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 2½"</td>
<td>100</td>
</tr>
<tr>
<td>% Passing 2"</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing 1"</td>
<td>80-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>50-80</td>
</tr>
<tr>
<td>% Passing No. 40</td>
<td>25-45</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>3-18</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>40 Min.</td>
</tr>
<tr>
<td>Fracture</td>
<td>75% Min.</td>
</tr>
</tbody>
</table>

Crushed Surfacing Top Course

<table>
<thead>
<tr>
<th>Specification Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing ¾"</td>
<td>100</td>
</tr>
<tr>
<td>% Passing ½"</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>65-95</td>
</tr>
<tr>
<td>% Passing No. 40</td>
<td>5-85</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>26-44</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>16 Max.</td>
</tr>
<tr>
<td>Fracture</td>
<td>70% Min.</td>
</tr>
</tbody>
</table>

Maintenance Rock

<table>
<thead>
<tr>
<th>Specification Limits</th>
<th>Tolerance Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing ¼"</td>
<td>100</td>
</tr>
<tr>
<td>% Passing ½"</td>
<td>90-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>45-66</td>
</tr>
<tr>
<td>% Passing No. 40</td>
<td>10-25</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>7.0 Max.</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>40 Min.</td>
</tr>
<tr>
<td>Fracture</td>
<td>75% Min.</td>
</tr>
</tbody>
</table>

Sand Equivalent

- 35 Min. for Ballast
- 30 Min. for Permeable Ballast
- 40 Min. for Crushed Surfacing Base Course
- 35 Min. for Streambed Sediment
- 35 Min. for Crushed Surfacing Top Course
- 30 Min. for Maintenance Rock

Fracture

- 75% Min. for Ballast
- 70% Min. for Permeable Ballast
- 75% Min. for Crushed Surfacing Base Course
- 70% Min. for Streambed Sediment
- 75% Min. for Crushed Surfacing Top Course
- 70% Min. for Maintenance Rock
Gravel Base

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 2"</td>
<td>75-100</td>
<td>70-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>22-100</td>
<td>17-100</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>10.0 Max.</td>
<td>11.0 Max.</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>30 Min.</td>
<td>35 Min.</td>
</tr>
<tr>
<td>Dust Ratio</td>
<td>½ Max.</td>
<td></td>
</tr>
</tbody>
</table>

Gravel Backfill for Walls

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 4"</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>% Passing 2"</td>
<td>75-100</td>
<td>70-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>22-66</td>
<td>17-71</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>5.0 Max.</td>
<td>6.0 Max.</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>60 Min.</td>
<td>55 Min.</td>
</tr>
<tr>
<td>Dust Ratio</td>
<td>⅔ Max.</td>
<td></td>
</tr>
</tbody>
</table>

Gravel Backfill for Pipe Zone Bedding

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 1½"</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>% Passing 1"</td>
<td>75-100</td>
<td>70-100</td>
</tr>
<tr>
<td>% Passing ¾"</td>
<td>50-100</td>
<td>45-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>20-80</td>
<td>15-85</td>
</tr>
<tr>
<td>% Passing No. 40</td>
<td>3-24</td>
<td>2-29</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>10.0 Max.</td>
<td>11.0 Max.</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>35 Min.</td>
<td>30 Min.</td>
</tr>
</tbody>
</table>

Gravel Backfill for Drains

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 1"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing ¾"</td>
<td>80-100</td>
<td>75-100</td>
</tr>
<tr>
<td>% Passing ¾"</td>
<td>0-40</td>
<td>0-45</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>0-4</td>
<td>0-5</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-2</td>
<td>0-2.5</td>
</tr>
</tbody>
</table>

Gravel Backfill for Drywells

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 1½"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing 1"</td>
<td>50-100</td>
<td>45-100</td>
</tr>
<tr>
<td>% Passing ¾"</td>
<td>0-20</td>
<td>0-25</td>
</tr>
<tr>
<td>% Passing ¾"</td>
<td>0-2</td>
<td>0-3</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-1.5</td>
<td>0-2.0</td>
</tr>
</tbody>
</table>

Backfill for Sand Drains

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing ¾"</td>
<td>90-100</td>
<td>85-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>57-100</td>
<td>52-100</td>
</tr>
<tr>
<td>% Passing No. 10</td>
<td>40-100</td>
<td>35-100</td>
</tr>
<tr>
<td>% Passing No. 50</td>
<td>3-30</td>
<td>2-35</td>
</tr>
<tr>
<td>% Passing No. 100</td>
<td>0-4</td>
<td>0-5</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-3.0</td>
<td>0-3.9</td>
</tr>
</tbody>
</table>
Sand Drainage Blanket

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 2½"</td>
<td>90-100</td>
<td>85-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>24-100</td>
<td>18-100</td>
</tr>
<tr>
<td>% Passing No. 10</td>
<td>14-100</td>
<td>9-100</td>
</tr>
<tr>
<td>% Passing No. 50</td>
<td>0-30</td>
<td>0-35</td>
</tr>
<tr>
<td>% Passing No. 100</td>
<td>0-7</td>
<td>0-8</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>0-3.0</td>
<td>0-3.9</td>
</tr>
</tbody>
</table>

Gravel Borrow

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 4"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing 2"</td>
<td>75-100</td>
<td>70-100</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>50-80</td>
<td>45-85</td>
</tr>
<tr>
<td>% Passing No. 40</td>
<td>30 Max.</td>
<td>33 Max.</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>7.0 Max.</td>
<td>9.0 Max.</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>50 Min.</td>
<td>45 Min.</td>
</tr>
</tbody>
</table>

Select Borrow

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 6"</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>% Passing 3"</td>
<td>75-100</td>
<td>70-100</td>
</tr>
<tr>
<td>% Passing No. 40</td>
<td>50 Max.</td>
<td>55 Max.</td>
</tr>
<tr>
<td>% Passing No. 200</td>
<td>10.0 Max.</td>
<td>12.0 Max.</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>30 Min.</td>
<td>25 Min.</td>
</tr>
</tbody>
</table>

Foundation Material Class A

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 2½"</td>
<td>98-100</td>
<td>93-100</td>
</tr>
<tr>
<td>% Passing 2"</td>
<td>92-100</td>
<td>87-100</td>
</tr>
<tr>
<td>% Passing 1½"</td>
<td>72-87</td>
<td>67-92</td>
</tr>
<tr>
<td>% Passing 1¼"</td>
<td>58-75</td>
<td>53-80</td>
</tr>
<tr>
<td>% Passing ⅜"</td>
<td>27-47</td>
<td>22-52</td>
</tr>
<tr>
<td>% Passing ⅝"</td>
<td>3-14</td>
<td>2-16</td>
</tr>
<tr>
<td>% Passing No. 4</td>
<td>0-1</td>
<td>0-2</td>
</tr>
</tbody>
</table>

Foundation Material Class B

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Passing 2½"</td>
<td>95-100</td>
<td>90-100</td>
</tr>
<tr>
<td>% Passing 2"</td>
<td>75-100</td>
<td>70-100</td>
</tr>
<tr>
<td>% Passing 1½"</td>
<td>30-60</td>
<td>25-65</td>
</tr>
<tr>
<td>% Passing 1¼"</td>
<td>0-15</td>
<td>0-17</td>
</tr>
<tr>
<td>% Passing ⅜"</td>
<td>0-1</td>
<td>0-2</td>
</tr>
</tbody>
</table>

Hot Mix Asphalt

<table>
<thead>
<tr>
<th>Specification</th>
<th>Limits</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Binder-Performance Grade (PG)</td>
<td>AASHTO M320</td>
<td>±10% of spec</td>
</tr>
<tr>
<td>Fracture</td>
<td>90% min.</td>
<td>85% min.</td>
</tr>
<tr>
<td>Uncompacted Void Content of Fine Aggregate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 3 million ESAL's</td>
<td>40% min</td>
<td>35% min</td>
</tr>
<tr>
<td>≥ 3 million ESAL's</td>
<td>44% min</td>
<td>39% min</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>45 min.</td>
<td>40 min.</td>
</tr>
</tbody>
</table>
9-3.7 Acceptance Sampling and Testing Frequency Guide

<table>
<thead>
<tr>
<th>Item</th>
<th>Test</th>
<th>Acceptance Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel Borrow</td>
<td>Grading & SE</td>
<td>1 – 4000 Ton</td>
</tr>
<tr>
<td>Select Borrow</td>
<td>Grading & SE</td>
<td>1 – 4000 Ton</td>
</tr>
<tr>
<td>Sand Drainage Blanket</td>
<td>Grading</td>
<td>1 – 4000 Ton</td>
</tr>
<tr>
<td>Gravel Base</td>
<td>Grading, SE & Dust Ratio</td>
<td>1 – 4000 Ton</td>
</tr>
<tr>
<td>CSTC</td>
<td>Grading, SE & Fracture</td>
<td>1 – 2000 Ton</td>
</tr>
<tr>
<td>CSBC</td>
<td>Grading, SE & Fracture</td>
<td>1 – 2000 Ton</td>
</tr>
<tr>
<td>Streambed Sediment</td>
<td>Grading</td>
<td>1 – 500 tons</td>
</tr>
<tr>
<td>Maintenance Rock</td>
<td>Grading, SE & Fracture</td>
<td>1 – 2000 Ton</td>
</tr>
<tr>
<td>Ballast</td>
<td>Grading, SE & Dust Ratio</td>
<td>1 – 2000 Ton</td>
</tr>
<tr>
<td>Permeable Ballast</td>
<td>Grading & Fracture</td>
<td>1 – 2000 Ton</td>
</tr>
<tr>
<td>Backfill for Sand Drains</td>
<td>Grading</td>
<td>1 – 2000 Ton</td>
</tr>
<tr>
<td>Crushed Coverstone</td>
<td>Grading, SE & Fracture</td>
<td>1 – 1000 Ton</td>
</tr>
<tr>
<td>Crushed Screening</td>
<td>Grading & Fracture</td>
<td>1 – 1000 Ton</td>
</tr>
<tr>
<td>⅜ – No. 4</td>
<td>Grading & Fracture</td>
<td>1 – 1000 Ton</td>
</tr>
<tr>
<td>½ – No. 4</td>
<td>Grading & Fracture</td>
<td>1 – 1000 Ton</td>
</tr>
<tr>
<td>No. 4 – 0</td>
<td>Grading & Fracture</td>
<td>1 – 1000 Ton</td>
</tr>
<tr>
<td>Gravel Backfill for Foundations</td>
<td>Grading & SE</td>
<td>1 – 1000 Ton</td>
</tr>
<tr>
<td>Walls</td>
<td>Grading, SE & Dust Ratio</td>
<td>1 – 1000 Ton</td>
</tr>
<tr>
<td>Pipe Zone Bedding</td>
<td>Grading & SE</td>
<td>1 – 1000 Ton</td>
</tr>
<tr>
<td>Drains</td>
<td>Grading</td>
<td>1 – 500 Ton</td>
</tr>
<tr>
<td>Dry Wells</td>
<td>Grading</td>
<td>1 – 500 Ton</td>
</tr>
<tr>
<td>PCC Paving</td>
<td>Grading</td>
<td>1 – 2000 CY</td>
</tr>
<tr>
<td>Coarse Aggregate See Note 7</td>
<td>Grading</td>
<td>1 – 2000 CY</td>
</tr>
<tr>
<td>Fine Aggregate See Note 7</td>
<td>Grading</td>
<td>1 – 2000 CY</td>
</tr>
<tr>
<td>Combined Aggregate See Note 7</td>
<td>Grading</td>
<td>1 – 2000 CY</td>
</tr>
<tr>
<td>Air Content</td>
<td>Air</td>
<td>1 – 500 CY</td>
</tr>
<tr>
<td>Cylinders (28-day)</td>
<td>Compressive Strength</td>
<td>1 – 500 CY</td>
</tr>
<tr>
<td>Core</td>
<td>Density</td>
<td>1 – 500 CY</td>
</tr>
<tr>
<td></td>
<td>Thickness</td>
<td>1 – 500 CY</td>
</tr>
<tr>
<td>Cement</td>
<td>Chemical & Physical Certification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Note 5</td>
<td></td>
</tr>
<tr>
<td>PCC Structures</td>
<td>Grading</td>
<td>1 – 1000 CY</td>
</tr>
<tr>
<td>Coarse Aggregate See Note 7</td>
<td>Grading</td>
<td>1 – 1000 CY</td>
</tr>
<tr>
<td>Fine Aggregate See Note 7</td>
<td>Grading</td>
<td>1 – 1000 CY</td>
</tr>
<tr>
<td>Combined Aggregate See Note 7</td>
<td>Grading</td>
<td>1 – 1000 CY</td>
</tr>
<tr>
<td>Consistency</td>
<td>Slump</td>
<td>1 for every 5 trucks, See Note 8</td>
</tr>
<tr>
<td>Air Content</td>
<td>Air</td>
<td>1 for every 5 trucks, See Note 8</td>
</tr>
<tr>
<td>Cylinders (28-day)</td>
<td>Compressive Strength</td>
<td>1 for every 5 trucks, See Note 8</td>
</tr>
<tr>
<td>Cement</td>
<td>Chemical & Physical Certification</td>
<td></td>
</tr>
<tr>
<td>Grouts</td>
<td>Compressive Strength</td>
<td>1 set per day</td>
</tr>
<tr>
<td></td>
<td>See Note 5</td>
<td></td>
</tr>
</tbody>
</table>
Hot Mix Asphalt

<table>
<thead>
<tr>
<th>Completed Mix, See Note 3 and 4</th>
<th>Grading & Asphalt Content</th>
<th>1 – 800 Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compaction</td>
<td>1 – 80 Ton</td>
</tr>
</tbody>
</table>

Hot Mix Asphalt Aggregate

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>SE, Fracture, Uncompacted Void Content of Fine Aggregate, See Note 3</th>
<th>1 – 1600 Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blend Sand See Note 1</td>
<td>SE</td>
<td>1 – Project</td>
</tr>
</tbody>
</table>

Asphalt Treated Base

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Grading, See Note 1 & SE</th>
<th>1 – 1000 Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed Mix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Note 4</td>
<td>Grading & Asphalt</td>
<td>1 – 1000 Ton</td>
</tr>
<tr>
<td></td>
<td>Compaction, See Note 2</td>
<td>5 – Control Lot</td>
</tr>
</tbody>
</table>

Asphalt Materials Certification

<table>
<thead>
<tr>
<th>Four categories listed above</th>
<th>Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder Asphalt (AR, PG, Etc.)</td>
<td>Verification: 2-1 quart every other mix acceptance sample, see Note 6</td>
</tr>
<tr>
<td>liquid Asphalt (Cutback, Emulsion)</td>
<td>Verification: 2-1 quart every other shipment</td>
</tr>
<tr>
<td>Emulsion for ACP Tack Coat</td>
<td>Verification: None required</td>
</tr>
<tr>
<td>Rubberized Asphalt</td>
<td>Verification: 2-1 quart every other mix acceptance sample</td>
</tr>
</tbody>
</table>

Compaction

<table>
<thead>
<tr>
<th>Embankment</th>
<th>1 – 2500 CY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Section</td>
<td>1 – 500 LF</td>
</tr>
<tr>
<td>Surfacing</td>
<td>1 – 1,000 LF (per layer)</td>
</tr>
<tr>
<td>Backfill</td>
<td>1 – 500 CY</td>
</tr>
</tbody>
</table>

Note 1 Tests for grading will be performed only when aggregates are being produced and stockpiled for use on a future project.

Note 2 A control lot shall be a normal day’s production.

Note 3 For projects under statistical acceptance, the sampling shall be performed on a random basis and the sublot size shall be determined to provide not less than three uniform-sized sublots with a maximum sublot size of 800 tons. Should a lot contain less than three sublots, acceptance will be in accordance with nonstatistical evaluation. For projects under nonstatistical acceptance, sample frequency shall be one sample per sublot, and the sublots shall be approximately uniform in size with a maximum sublot size of 800 tons.

Note 4 Mix design conformance samples shall be submitted to the State Materials Laboratory Bituminous Concrete Section. For all projects, submit one sample per day from the first five days of production for each plant and one sample every fifth day of production thereafter. The conformance samples should be taken in conjunction with and be a representative quarter, of the acceptance samples taken for the project as described in WSDOT Test Method 712. If no acceptance sample is required for any day of production no conformation sample will be required either.

Note 5 Cement may be accepted by the Engineer based on the Manufacturer’s Mill Test Report number indicating full conformance to the Specifications. The Engineer has the option of taking samples at the job site for submission to the State Materials Laboratory for testing.

Note 6 The first sample of asphalt binder will be taken with the second Hot Mix Asphalt (HMA) mix sample. For nonstatistical HMA, take one sample for every 1,600 tons of mixture.

Note 7 The frequency for fine, course, and combined concrete aggregate samples for PCC Paving and PCC Structures shall be based on the cubic yard (CY) of concrete.

Note 8 Sample the first truck, and each load until two successive loads meet specifications, and then randomly test one load for every five loads. If at any time one load fails to meet specifications, continue testing every load until two successive loads meet specifications, and then randomly test one load for every five loads.

Note 9 For materials placed in a non-structural application outside the roadway prism such as slope flattening or shoulder dressing, acceptance for compaction may be based on visual inspection to the satisfaction of the engineer.
9-4 Specific Requirements for Each Material

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Specific Requirements for Each Material Alphabetical Listing</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-4.58</td>
<td>Admixtures for Concrete</td>
<td>9-51</td>
</tr>
<tr>
<td>9-4.6</td>
<td>Aggregates for Hot Mix Asphalt (HMA) and Asphalt Treated Base</td>
<td>9-32</td>
</tr>
<tr>
<td>9-4.25</td>
<td>Anchor Bolts, Nuts & Washers</td>
<td>9-39</td>
</tr>
<tr>
<td>9-4.51</td>
<td>Beam Guardrail, Guardrail Anchors, and Glare Screen</td>
<td>9-48</td>
</tr>
<tr>
<td>9-4.2</td>
<td>Bituminous Materials</td>
<td>9-31</td>
</tr>
<tr>
<td>9-4.32</td>
<td>Bridge Approach Slab Anchors</td>
<td>9-41</td>
</tr>
<tr>
<td>9-4.71</td>
<td>Bridge Bearings – Cylindrical, Disc, Fabric Pad, Pin, Spherical</td>
<td>9-56</td>
</tr>
<tr>
<td>9-4.76</td>
<td>Concrete</td>
<td>9-58</td>
</tr>
<tr>
<td>9-4.4</td>
<td>Concrete Aggregates</td>
<td>9-31</td>
</tr>
<tr>
<td>9-4.98</td>
<td>Concrete Blocks</td>
<td>9-67</td>
</tr>
<tr>
<td>9-4.16</td>
<td>Concrete Drain, Perforated Underdrain, Culvert and Storm Sewer Pipe</td>
<td>9-34</td>
</tr>
<tr>
<td>9-4.81</td>
<td>Concrete Patching Material, Grout and Mortar</td>
<td>9-60</td>
</tr>
<tr>
<td>9-4.64</td>
<td>Conduit</td>
<td>9-54</td>
</tr>
<tr>
<td>9-4.75</td>
<td>Construction Geosynthetics</td>
<td>9-58</td>
</tr>
<tr>
<td>9-4.17</td>
<td>Corrugated Galvanized Steel, Aluminized Steel, Aluminum: Drain, Perforated Underdrain, Culvert Pipe Arch, and Storm Sewer Pipe</td>
<td>9-35</td>
</tr>
<tr>
<td>9-4.30</td>
<td>Dowels and Tiebars for Concrete Pavement, Incl Epoxy Coated</td>
<td>9-41</td>
</tr>
<tr>
<td>9-4.70</td>
<td>Elastomeric Bearing Pads</td>
<td>9-56</td>
</tr>
<tr>
<td>9-4.13</td>
<td>Elastomeric Expansion Joint Seals</td>
<td>9-34</td>
</tr>
<tr>
<td>9-4.65</td>
<td>Electrical Conductors and Fiber Optic Cable</td>
<td>9-54</td>
</tr>
<tr>
<td>9-4.93</td>
<td>Electrical Service Cabinets</td>
<td>9-66</td>
</tr>
<tr>
<td>9-4.27</td>
<td>Epoxy Coated Reinforcing Steel Bars for Concrete</td>
<td>9-40</td>
</tr>
<tr>
<td>9-4.60</td>
<td>Epoxy Systems</td>
<td>9-52</td>
</tr>
<tr>
<td>9-4.78</td>
<td>Expansion Joints</td>
<td>9-59</td>
</tr>
<tr>
<td>9-4.50</td>
<td>Fencing & Gates</td>
<td>9-48</td>
</tr>
<tr>
<td>9-4.47</td>
<td>Fertilizer</td>
<td>9-46</td>
</tr>
<tr>
<td>9-4.97</td>
<td>Flow Restrictors and Oil Separators</td>
<td>9-67</td>
</tr>
<tr>
<td>9-4.62</td>
<td>Gabion Cribbing, Hardware and Stone</td>
<td>9-53</td>
</tr>
<tr>
<td>9-4.49</td>
<td>Gravel Base, Bank Run Gravel for Trench Backfill and Gravel Borrow for Geosynthetic Wall</td>
<td>9-33</td>
</tr>
<tr>
<td>9-4.52</td>
<td>Guardrail Posts and Blocks</td>
<td>9-49</td>
</tr>
<tr>
<td>9-4.24</td>
<td>High Strength Bolts, Nuts and Washers</td>
<td>9-38</td>
</tr>
<tr>
<td>9-4.7</td>
<td>Hot Mix Asphalt (HMA) and Asphalt Treated Base</td>
<td>9-32</td>
</tr>
<tr>
<td>9-4.15</td>
<td>Hot Poured Joint Sealant and Crack Sealing – Rubberized Asphalt</td>
<td>9-34</td>
</tr>
<tr>
<td>9-4.49</td>
<td>Irrigation System</td>
<td>9-47</td>
</tr>
<tr>
<td>9-4.85</td>
<td>Junction Boxes, Cable Vaults and Pull Boxes</td>
<td>9-63</td>
</tr>
<tr>
<td>9-4.57</td>
<td>Liquid Concrete Curing Compound</td>
<td>9-51</td>
</tr>
<tr>
<td>9-4.68</td>
<td>Luminaires, Lamps and Light Emitting Diodes (LED)</td>
<td>9-55</td>
</tr>
<tr>
<td>9-4.28</td>
<td>Mechanical Splices</td>
<td>9-40</td>
</tr>
<tr>
<td>9-4.74</td>
<td>Metal Bridge Rail</td>
<td>9-57</td>
</tr>
<tr>
<td>9-4.96</td>
<td>Metal Trash Racks and Debris Cages</td>
<td>9-67</td>
</tr>
<tr>
<td>9-4.8</td>
<td>Mineral Filler</td>
<td>9-33</td>
</tr>
<tr>
<td>9-4.10</td>
<td>Miscellaneous Aggregates (Gravel Backfill for Foundation CL. B, Walls, Pipe Zone Bedding, Drains and Drywells; Backfill for Sand Drains, Sand Drainage Blanket, Bedding Material for Rigid Pipe and Thermoplastic Pipe; Foundation Material Class A, B, and C, Gravel Borrow, Common Borrow, Select Borrow)</td>
<td>9-33</td>
</tr>
<tr>
<td>9-4.89</td>
<td>Miscellaneous Metal Drainage Items (Frame and grate for grate inlet and drop inlet, FlowRestrictors, Oil Separators, Safety Bars)</td>
<td>9-64</td>
</tr>
<tr>
<td>9-4.53</td>
<td>Miscellaneous Precast Concrete Products (Block Traffic Curb, Precast Traffic Curb)</td>
<td>9-49</td>
</tr>
<tr>
<td>9-4.90</td>
<td>Miscellaneous Steel Structures (Cattle Guards, Handrail, Retrofit Guardrail Posts with Welded Base Plate, Seismic Retrofit Earthquake Restrainters, Column Jackets)</td>
<td>9-65</td>
</tr>
<tr>
<td>9-4.80</td>
<td>Miscellaneous Temporary Erosion and Sediment Control Items</td>
<td>9-60</td>
</tr>
<tr>
<td>9-4.91</td>
<td>Miscellaneous Welded Structural Steel</td>
<td>9-65</td>
</tr>
<tr>
<td>9-4.84</td>
<td>Modular Expansion Joint</td>
<td>9-62</td>
</tr>
<tr>
<td>9-4.94</td>
<td>Monument Case, Cover and Riser</td>
<td>9-66</td>
</tr>
<tr>
<td>9-4.48</td>
<td>Mulch</td>
<td>9-47</td>
</tr>
<tr>
<td>9-4.35</td>
<td>Painting, Paints, Coating, and Related Materials</td>
<td>9-42</td>
</tr>
<tr>
<td>9-4.99</td>
<td>Parting Compound for Concrete Forms</td>
<td>9-68</td>
</tr>
<tr>
<td>9-4.3</td>
<td>Pavement Marker Adhesive</td>
<td>9-31</td>
</tr>
<tr>
<td>9-4.55</td>
<td>Pavement Marking Materials</td>
<td>9-50</td>
</tr>
<tr>
<td>9-4.38</td>
<td>Piling – All Types</td>
<td>9-44</td>
</tr>
<tr>
<td>9-4.44</td>
<td>Plant Material</td>
<td>9-45</td>
</tr>
<tr>
<td>9-4.59</td>
<td>Plastic Waterstop</td>
<td>9-51</td>
</tr>
<tr>
<td>9-4.18</td>
<td>Polyvinyl Chloride (PVC) and Corrugated Polyethylene (PE) Drain, Perforated Underdrain, Culvert, and Storm Sewer Pipe</td>
<td>9-36</td>
</tr>
<tr>
<td>9-4.1</td>
<td>Portland Cement, Blended Hydraulic Cement, Fly Ash, and other Cementitious Materials</td>
<td>9-30</td>
</tr>
<tr>
<td>9-4.14</td>
<td>Poured Rubber Joint Sealer – Two Component</td>
<td>9-34</td>
</tr>
<tr>
<td>9-4.86</td>
<td>Precast Bridge Deck Panels, Floor Panels, Marine Pier Deck Panels, Noise Barrier Walls, Pier Caps, Retaining Walls, Roof Panels, Structural Earth Walls, Wall Panels, and Wall Stem Panels</td>
<td>9-63</td>
</tr>
<tr>
<td>9-4.72</td>
<td>Precast Concrete Barrier</td>
<td>9-57</td>
</tr>
<tr>
<td>9-4.41</td>
<td>Precast Concrete Manholes, Catch Basins, Inlets, Drywells, and Risers</td>
<td>9-44</td>
</tr>
<tr>
<td>9-4.88</td>
<td>Precast Concrete Vaults (Utility, Drainage etc.) and Box Culverts</td>
<td>9-64</td>
</tr>
<tr>
<td>9-4.87</td>
<td>Precast Reinforced Concrete Three Sided Structures</td>
<td>9-64</td>
</tr>
<tr>
<td>9-4.12</td>
<td>Premolded Joint Filler for Expansion Joints</td>
<td>9-33</td>
</tr>
<tr>
<td>9-4.54</td>
<td>Prestressed Concrete Girders</td>
<td>9-49</td>
</tr>
</tbody>
</table>
9-4.34 Prestressing/Post Tensioning Reinforcement—Bar
9-4.33 Prestressing/Post Tensioning Reinforcement—Strand
9-4.29 Rebar Chairs, Mortar Blocks (Dobies), and Spacers
9-4.26 Reinforcing Bars for Concrete
9-4.61 Resin Bonded Anchors
9-4.42 Riprap, Quarry Spalls, Slope Protection, and Rock for Rock Wall
9-4.21 Sanitary Sewers
9-4.46 Seed
9-4.43 Semi-Open Slope Protection
9-4.56 Signing Materials and Mounting Hardware
9-4.95 Steel Bollards
9-4.20 Steel Castings, Gray-Iron Castings, Ductile-Iron Castings: Manhole Rings and Covers, Catch Basin and Inlet Frames, Grates, and Covers
9-4.66 Steel Poles – ITS, Pedestrian, Light, Signal Standards, and High Mast Light Poles
9-4.63 Steel Sign Structures – Cantilever, Sign Bridge, Bridge Mounted, Roadside
9-4.82 Streambed Aggregates
9-4.19 Structural Plate Pipe, Pipe Arch, Arch, and Underpass
9-4.22 Structural Steel for Bridges
9-4.45 Surfacing Aggregates (Crushed Screening, Crushed Cover Stone, Ballast, Permeable Ballast, Crushed Surfacing Base and Top Course)
9-4.83 Temporary Traffic Control Materials
9-4.36 Timber and Lumber
9-4.45 Topsoil
9-4.79 Traffic Signal Controller Assembly
9-4.23 Unfinished Bolts (Ordinary Machine Bolts), Nuts, and Washers
9-4.69 Water Distribution System
9-4.77 Water for Concrete
9-4.31 Wire Reinforcement for Concrete
9-4.92 Wood Bridges
9-4.11 Vacant
9-4.37 Vacant
9-4.39 Vacant
9-4.40 Vacant
9-4.67 Vacant
9-4.73 Vacant

9-4.1 Portland Cement, Blended Hydraulic Cement, Fly Ash, and other Cementitious Materials

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: Preliminary samples will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance/Verification
 a. Acceptance:
 (1) Bulk Cement: Acceptance shall be by receipt of a Manufacturer’s Mill Test Report. The Mill Test Report Number shall be reported on each certified concrete delivery ticket.
 (2) Bagged Cement:
 a) Less than 400 Bags: Visual Acceptance per Section 9-1.4C of this manual. Verify each Bag is labeled meeting the requirements of AASHTO M 85 or ASTM C150.
 b) 400 Bags and greater: Acceptance shall be by “Satisfactory” test reports from the State Materials Laboratory. Obtain a 10-pound sample from one of every 400 bags and ship to the State Materials Laboratory for testing.
 (3) Fly Ash: Acceptance shall be by receipt of a Manufacturer’s Mill Test Report submitted with Mix Design.
 (4) Ground Granulated Blast Furnace Slag: Acceptance shall be by receipt of a Manufacturer’s Mill Test Report submitted with Mix Design.
 (5) Microsilica Fume: Acceptance shall be by receipt of a Manufacturer’s Mill Test Report submitted with Mix Design.
 b. Verification: Cement producers, importers/distributors, and suppliers that certify Portland cement or blended cement will provide samples directly to the State Materials Laboratory on a quarterly basis for comparison with the manufacturer’s mill test report per WSDOT Standard Practice QC-1. The Project Engineer Office will be notified in the event of a failing test report. The PEO will be required to check Concrete Delivery Tickets for failing mill test numbers to ensure that the failing cement from that mill test was not placed.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. For Bagged cement, verify each Bag is labeled meeting the requirements of AASHTO M 85 or ASTM C150.
5. **Specification Requirements:** See Standard Specifications Section 9-01, 9-23.9, 9-23.10, and 9-23.11. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** Allow a minimum of 14 days from receipt of the sample at the Laboratory for testing. DO NOT permit the use of bagged cement until a “Satisfactory” test report has been received from the State Materials Laboratory.

9-4.2 Bituminous Materials

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance/Verification**
 a. Acceptance: Acceptance shall be by the Asphalt Supplier’s Certification of Compliance incorporated in their Bill of Lading with the information required by Section 9-02 of the Standard Specifications.

 Verification: Samples for verification conformance will be taken based on the frequencies stated in Section 9-3.7 of this manual. Because the entire sample may be used in testing, it is necessary to take a backup for each sample. The samples shall be taken and labeled in duplicate by the Engineer with both samples forwarded promptly to the State Materials Laboratory. Consult the FOP for AASHTO T40 for detailed sampling procedures.

 Enter complete data on gummed label (DOT Form 350-016) and attach to each of the two cans. Complete a Sample Transmittal (DOT Form 350-056 EF) and attach it, in its envelope, to the container. If tape is used to attach envelope to container, or the containers together, be sure the tape is not contacting the label(s).

 The Project Engineer Office will be notified in the event of a failing test report. The PEO shall refer to Section 9-3.5C of this manual and contact WSDOT Roadway Construction Office for possible price adjustment.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check the “Bill of Lading” to confirm that the liquid asphalt delivered complies with the requirements of the mix design verification report.

5. **Specification Requirements:** See Standard Specifications Section 9-02. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** None

9-4.3 Pavement Marker Adhesive

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). Submit Manufacturers Certificate of Compliance meeting the requirements of Standard Specifications Section 1-06.3, including supporting tests reports to State Materials Laboratory for evaluation.

3. **Acceptance:**
 a. Bituminous Adhesive: If the lot is listed on the QPL, it may be used without testing on current projects per Section 9-1.4A(1) of this manual. If the lot is not on the QPL, submit a sample taken by, or in the presence of, an agency representative for each lot. Samples must be submitted for testing 10 days prior to use of adhesive. Samples submitted shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.
 b. Epoxy Adhesive: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

4. **Field Inspection:** Field Verify per Section 9-1.5 of this manual.
 a. Bituminous Adhesive: Verify correct heating of product per manufacturer’s recommendations.
 b. Epoxy Adhesive: Check for set and hardness prior to opening to traffic. Epoxies shall be mixed and applied in conformance to manufacturer’s written instructions unless otherwise modified in writing by the manufacturer’s agent.

5. **Specification Requirements:** See Standard Specifications Section 9-02.1(8) and 9-26.2. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** There may be special shipping requirements for adhesive. These samples shall be transported to the Region Materials Laboratory for proper shipping.

9-4.4 Concrete Aggregates

1. **Approval of Material:** Approval of materials is required prior to use. Consult the Aggregate Source Approval (ASA) database for approval status of the material for each source.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). If the ASA database indicates that the aggregate source has expired, or will expire before the end of the project, a source evaluation may be required. Contact the Regional Materials Office for further direction. If samples are required, the Regional Materials Office will coordinate with the ASA Engineer to obtain the necessary samples according to SOP 128.
3. **Acceptance:** Acceptance shall be based on “Satisfactory” laboratory test report. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** See Standard Specifications Sections 3-02 and 9-03.1. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** None

9-4.5 Surfacing Aggregates (Crushed Screening, Crushed Cover Stone, Ballast, Permeable Ballast, Crushed Surfacing Base and Top Course)

1. **Approval of Material:** Approval of materials is required prior to use. Consult the Aggregate Source Approval (ASA) database for approval status of the material for each source.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). If the ASA database indicates that the aggregate source has expired, or will expire before the end of the project, a source evaluation may be required. Contact the Regional Materials Office for further direction. If samples are required, the Regional Materials Office will coordinate with the ASA Engineer to obtain the necessary samples according to SOP 128.

3. **Acceptance:** Acceptance shall be based on “Satisfactory” laboratory test report. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** See Standard Specifications Sections 3-02, 9-03.6 and 9-03.8. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** None

9-4.6 Aggregates for Hot Mix Asphalt (HMA) and Asphalt Treated Base

1. **Approval of Material:** Approval of materials is required prior to use. Consult the Aggregate Source Approval (ASA) database for approval status of the material for each source.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). If the ASA database indicated that the aggregate source has expired, or will expire before the end of the project, a source evaluation may be required. Contact the Regional Materials Office for further direction. If samples are required, the Regional Materials Office will coordinate with the ASA Engineer to obtain the necessary samples according to SOP 128.

3. **Acceptance:** Acceptance shall be based on “Satisfactory” laboratory test report. Acceptance samples shall be obtained, tested, and recorded in accordance with the Standard Specifications, the contract special provisions, and Chapters 9-3 and 9-7 of this manual. The requirements for fracture, sand equivalent and uncompacted void content of fine aggregate shall apply at the time of its introduction to the cold feed of the mixing plant. Acceptance of the aggregate for gradation shall be based on samples taken from the HMA.

 Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** See Standard Specifications Sections 3-02, 9-03.6 and 9-03.8. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** None

9-4.7 Hot Mix Asphalt (HMA) and Asphalt Treated Base

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the ASA Database and Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** Not required.

3. **Acceptance:** Acceptance samples shall be obtained, tested, and recorded in accordance with the Standard Specifications, the contract special provisions, and Sections 9-3 and 9-7 of this manual.

 a. Statistical: Acceptance shall be administered under Section 5-04 of the Standard Specifications.

 b. Non-statistical: Acceptance shall be based on “Satisfactory” laboratory test report.

 c. Commercial: Acceptance shall be at the option of the Project Engineer.

 d. Asphalt Treated Base: Acceptance shall be based on “Satisfactory” laboratory test report.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** See Standard Specifications Sections 5-02, 5-04, 9-03.6, and 9-03.8. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** The Project Engineer should perform a plant inspection prior to production. Contact the Regional Materials Office for assistance with this inspection.
9-4.8 Mineral Filler

1. **Approval of Material**: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Sample**: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). If required, ship 3 pounds in a polyethylene bag.

3. **Acceptance**: Acceptance of mineral filler (commercial stone dust) shall be based on “Satisfactory” laboratory tests only for each lot of 50 tons or less. Portland cement may be accepted without test if it is furnished in original factory sacks and is not lumpy.

4. **Field Inspection**: Field verify per Section 9-1.5 of this manual. Verify that the mineral filler does not contain foreign material or lumps.

5. **Specification Requirements**: See Standard Specifications Section 9-03.8(5). Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements**: None

9-4.9 Gravel Base, Bank Run Gravel for Trench Backfill and Gravel Borrow for Geosynthetic Wall

1. **Approval of Material**: Approval of materials is required prior to use. Consult the Aggregate Source Approval (ASA) database for approval status of the material for each source.

2. **Preliminary Samples**: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). If the ASA database indicates that the aggregate source has expired, or will expire before the end of the project, a source evaluation may be required. Contact the Regional Materials Office for further direction. If samples are required, the Regional Materials Office will coordinate with the ASA Engineer to obtain the necessary samples according to SOP 128.

3. **Acceptance**:
 a. **Gravel Base and Bank Run Gravel**: Material shall be accepted on receipt of “Satisfactory” test report. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.
 b. **Gravel Borrow for Geosynthetic Walls**: Material shall be accepted on receipt of “Satisfactory” test report meeting the requirements for grading, SE, and pH. The pH shall be tested once per source per contract.

4. **Field Inspection**: Field verify per Section 9-1.5 of this manual.

6. **Other Requirements**: Gravel Borrow for Geosynthetic Walls shall not contain any recycled materials.

9-4.10 Miscellaneous Aggregates (Gravel Backfill for Foundation CL. B, Walls, Pipe Zone Bedding, Drains and Drywells; Backfill for Sand Drains, Sand Drainage Blanket, Bedding Material for Rigid Pipe and Thermoplastic Pipe; Foundation Material Class A, B, and C, Gravel Borrow, Common Borrow, Select Borrow)

1. **Approval of Material**: Approval not required; prior to incorporating the material into a job, Gradation and Sand Equivalent tests shall be performed to determine if the material does in fact meet specification for the intended use.

2. **Preliminary Samples**: Not Required.

3. **Acceptance**: Acceptance shall be based on “Satisfactory” laboratory test report. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.

4. **Field Inspection**: Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements**: See Standard Specifications Section 3-02, 9-03. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements**: None

9-4.11 Vacant

9-4.12 Premolded Joint Filler for Expansion Joints

1. **Approval of Material**: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples**: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). When a preliminary sample is required, it shall consist of a 1 square foot section of the proposed material. Submit sample to the State Materials laboratory for testing.

3. **Acceptance**: Visual Acceptance per Section 9-1.4C of this manual.

4. **Field Inspection**: Field verify per Section 9-1.5 of this manual. Check for accuracy in cutting, stapling, and care in handling.

6. **Other Requirements**: None
9-4.13 Elastomeric Expansion Joint Seals

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). When a preliminary sample is required, it shall consist of a 2 feet section from each lot of material used. Submit sample to the State Materials Laboratory for testing.

3. **Acceptance:** If the lot is listed on the QPL, it may be used without testing on current projects per Section 9-1.4A(1) of this manual. If the lot is not on the QPL, submit a sample taken by, or in the presence of, an agency representative for each lot. Samples must be submitted for testing 10 days prior to use of joint seal. Samples submitted shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.

 Sample: The sample shall consist of a 2 feet section from each lot of material used.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

6. **Other Requirements:** None

9-4.14 Poured Rubber Joint Sealer – Two Component

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** If the lot is listed on the QPL, it may be used without testing on current projects per Section 9-1.4A(1) of this manual. If the lot is not on the QPL, submit a sample taken by, or in the presence of, an agency representative for each lot. Samples must be submitted for testing 10 days prior to use of joint sealer. Samples submitted shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.

 Sample: The sample shall consist of an unopened container of each component (kit) from each lot, mixing instructions, and MSDS sheets. Submit sample to the State Materials Laboratory for testing.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Make certain that application is in accordance with requirements of Standard Specifications and manufacturer’s written recommendations. In order to obtain satisfactory adhesion of the sealer, joints must be thoroughly cleaned before the sealer is applied.

5. **Specification Requirements:** See Standard Specifications Section 9-04.2(2). Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** None

9-4.15 Hot Poured Joint Sealant and Crack Sealing – Rubberized Asphalt

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** If the lot is listed on the QPL, it may be used without testing on current projects per Section 9-1.4A(1) of this manual. If the lot is not on the QPL, submit a sample taken by, or in the presence of, an agency representative for each lot. Samples must be submitted for testing 10 days prior to use of joint sealant. Samples submitted shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.

 Sample: When a sample is required, submit a one box sample to the State Materials Laboratory for testing.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Ensure that application is in accordance with requirements of the Standard Specifications Section 5-04.3(5C), 5-05.3(8)B and the manufacturer’s recommendation.

5. **Specification Requirements:** See Standard Specifications Section 9-04.2(1) for joint sealant and 9-04.10 for crack sealing – rubberized asphalt. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** None

9-4.16 Concrete Drain, Perforated Underdrain, Culvert and Storm Sewer Pipe

1. **Approval of Material:** Approval of the Fabricator is required prior to fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use, and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).
3. **Acceptance:**
 a. Concrete pipe less than 30 inches in diameter is accepted based on “Concrete Pipe Acceptance Reports” which shall accompany the pipe to the job site.

 b. Concrete pipe 30 inches in diameter and larger are individually inspected and stamped for approval by the Materials Fabrication Inspector at the fabrication facility prior to shipment. Acceptance is based on “APPROVED FOR SHIPMENT” Stamp (Figure 9-4). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

4. **Field Inspection:**
 a. Concrete pipe less than 30 inches in diameter:
 1. Verify that the “Concrete Pipe Acceptance Report” is current and covers the diameter, quantity and class of pipe delivered.
 2. Inspect the manufacture date marked on each pipe to verify that it was made within the period covered by the “Concrete Pipe Acceptance Report”. Also verify the pipe is at the age or older than the test pipe represented on the “Concrete Pipe Acceptance Report”.
 3. Verify that the pipe is free from handling and shipping damage.
 4. Concrete sewer pipe requires testing after installation in conformance with the *Standard Specifications* Section 7-04.3.
 5. Complete the upper portion of the “Concrete Pipe Acceptance Report” and forward to the contract files.

 b. Concrete pipe 30 inches in diameter and larger:
 1. Verify that each pipe in the shipment is stamped “APPROVED FOR SHIPMENT.”
 2. Check that “APPROVED FOR SHIPMENT” Stamp (Figure 9-4) exhibits the “F” or “D” Stamp for foreign or domestic steel and document it.
 3. Verify that pipe is free from handling and shipping damage.
 4. Concrete sewer pipe requires testing after installation in conformance with the *Standard Specifications* Section 7-04.

5. **Specification Requirements:** See *Standard Specifications* Section 9-05. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:**
 a. Materials Fabrication Inspected CMO (30 Inches in Diameter and larger): Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.
 For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

 b. Non-Fabrication Inspected CMO (less than 30 inches in Diameter): For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.17 Corrugated Galvanized Steel, Aluminized Steel, Aluminum: Drain, Perforated Underdrain, Culvert Pipe Arch, and Storm Sewer Pipe

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). An on-site inspection of the fabricating facilities prior to approval will be required only if a new manufacture is requested on the Request for Approval of Material (DOT Form 350-071). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 a. Treated: Acceptance shall be by the Manufacturer’s Certificate of Compliance with supporting Mill Certification per Section 9-1.4D of this manual.

 The Project office is required to inspect treated culvert pipe for uniformity of coating, no hanging treatment drips inside the pipe or other problems with the coating. Upon request the State Materials Laboratory Fabrication Inspection office can come inspect the treated metal culvert pipe at the jobsite if there are concerns about the thickness of the treatment, and uniformity of the coating. WSDOT Fabrication inspectors are able to measure the thickness using non-destructive testing.

 b. Untreated: Acceptance shall be by Visual Acceptance per Section 9-1.4C of this manual. Verify that the appropriate AASHTO specification for the steel sheet, gauge thickness, and heat number is stamped on the pipe. Pipe not bearing this stamp shall not be installed. Any pipe, which is damaged in any way from shipping or handling, should not be accepted. If the manufacturer of the pipe delivered to the job site cannot be identified, a Bill of Lading showing the manufacturer should be requested prior to accepting or installing the pipe.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check each delivery for fabrication details and quality of workmanship. Check for shipping damage and ensure that the galvanized coating is intact. Obtain documentation for all pipes not accepted under provisions established in the QPL.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.18 Polyvinyl Chloride (PVC) and Corrugated Polyethylene (PE) Drain, Perforated Underdrain, Culvert, and Storm Sewer Pipe

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance shall be on the basis of Manufacturer’s Certificate of Compliance, with accompanying mill test reports per Section 9-1.4D of this manual. The mass of zinc coating for each heat number in the shipment must be present on the “Manufacturer’s Certificate of Compliance”. The mill test report will contain both chemical and physical analysis of the base metal.

All suppliers of structural plate pipe, arches and underpass are to transmit four copies of the certification to the Project Engineer. At least one copy must accompany the shipment; the others may be forwarded through the Contractor. Two copies of the certification are to be retained in the Project Engineer’s files.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for breaks of the galvanized or asphalt coating and for damage from shipment. Material in the shipment must be properly identified as to heat number.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.20 Steel Castings, Gray-Iron Castings, Ductile-Iron Castings: Manhole Rings and Covers, Catch Basin and Inlet Frames, Grates, and Covers

1. Approval of Material: Approval of the Fabricator is required prior to fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use, and the product is listed under the appropriate specification.

Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance shall be on the basis of Manufacturer’s Certificate of Compliance, with accompanying mill test reports per Section 9-1.4D of this manual. The mass of zinc coating for each heat number in the shipment must be present on the “Manufacturer’s Certificate of Compliance”. The mill test report will contain both chemical and physical analysis of the base metal.

All suppliers of structural plate pipe, arches and underpass are to transmit four copies of the certification to the Project Engineer. At least one copy must accompany the shipment; the others may be forwarded through the Contractor. Two copies of the certification are to be retained in the Project Engineer’s files.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for breaks of the galvanized or asphalt coating and for damage from shipment. Material in the shipment must be properly identified as to heat number.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for “WSDOT-A” Stamp (Figure 9-7) and the “F” or “D” Stamp for foreign or domestic steel and document it. Check for damage caused by shipping and handling.

5. **Specification Requirements:** See *Standard Specifications* Sections 9-05.15, and 9-22.1. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Material Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.21 Sanitary Sewers

1. **Approval of Material:** Approval of materials and or the Fabricator is required prior to use or fabrication depending on the method of acceptance detailed below. The Materials or Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). If approval is by the QPL, be certain to verify that the product is in fact qualified for its intended use, and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071).

3. **Acceptance:** Material may be accepted upon receipt of an “Approved” document in lieu of sampling as shown below:

 a. Concrete pipe less than 30 inches in diameter: Acceptance shall be based on “Concrete Pipe Acceptance Reports” which shall accompany the pipe to the job site.

 b. Concrete pipe 30 inches in diameter and larger: Acceptance is based on “APPROVED FOR SHIPMENT” Stamp (Figure 9-4). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin. Pipes are individually inspected and stamped for approval by the Materials Fabrication Inspector at the fabrication facility prior to shipment.

 c. Vitrified Clay Sewer Pipe and Ductile Iron Sewer Pipe: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

 d. PVC Sewer Pipe and ABS Composite Sewer Pipe: Visual Acceptance per Section 9-1.4C of this manual.

4. **Field Inspection:**

 a. Non-Concrete Pipe:

 (1) Field verify per Section 9-1.5 of this manual. Check material delivered to the project for damage, and conformance to the contract documents.

 b. Concrete pipe less than 30 inches in diameter:

 (1) Verify that the “Concrete Pipe Acceptance Report” is current and covers the diameter, quantity and class of pipe delivered.

 (2) Inspect the manufacture date marked on each pipe to verify that it was made within the period covered by the “Concrete Pipe Acceptance Report”. Also verify the pipe is at the age or older than the test pipe represented on the “Concrete Pipe Acceptance Report”.

 (3) Verify that the pipe is free from handling and shipping damage.

 (4) Concrete sewer pipe requires testing after installation in conformance with the *Standard Specifications* Section 7-04.3.

 (5) Complete the upper portion of the “Concrete Pipe Acceptance Report” and forward to the contract files.

 c. Concrete pipe 30 inches in diameter and larger:

 (1) Verify that each pipe in the shipment is stamped “APPROVED FOR SHIPMENT.”

 (2) Check for “APPROVED FOR SHIPMENT” Stamp (Figure 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it.

 (3) Verify that pipe is free from damage caused by shipping and handling.

 (4) Concrete sewer pipe requires testing after installation in conformance with the *Standard Specifications* Section 7-04.

5. **Specification Requirements:** See *Standard Specifications* Section 7-17. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:**

 a. Materials Fabrication Inspected CMO: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

 For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

 b. Non-Fabrication Inspected CMO: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
9-4.22 Structural Steel for Bridges

1. Approval of Material: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use, and the product is listed under the appropriate specification. Approval of material sources through the QPL or RAM process for materials used by the Fabricator is not required. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

The Materials Fabrication Inspector will provide a weekly Fabrication Progress Report to the Project Engineer while the structural steel is being fabricated.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Tag or Stamp (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it. Check for shipping and handling damage.

6. Other Requirements:
 a. Materials Fabrication Inspected CMO: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1.A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

b. Non-Fabrication Inspected CMO: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.23 Unfinished Bolts (Ordinary Machine Bolts), Nuts, and Washers

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance of unfinished bolts, nuts, and washers shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.24 High Strength Bolts, Nuts and Washers

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). If approval is by QPL, be certain to verify that the product is in fact qualified for its intended use, and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:
 a. Materials Fabrication Inspected Item: Acceptance for high strength bolts, nuts, and washers associated with items receiving Materials Fabrication Inspection shall be an “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) stamped on the container of bolts, nuts and washers. The Materials Fabrication Inspector will inspect hardware if it is available at the time of inspection at the point of manufacture. High strength bolts, nuts and washers not present during Materials Fabrication Inspection and delivered to the job site without an approval stamp shall be accepted by ‘Non-Fabrication Inspected Items’ (See below). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

 b. Non-Fabrication Inspected Items:
 1) Fabrication Inspection Sampled: Acceptance shall be by the Manufacturer’s Certificate of Compliance for each heat number or manufacturing lot per Section 9-1.4D of this manual. When the materials are received on the job site stamped “WSDOT Sampled”, the material shall also be accepted by the PEO on receipt of “Satisfactory” test reports from the State Materials Laboratory.
2) PEO Sampled: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual for each heat number or manufacturing lot. Acceptance shall also be by a “Satisfactory” test report from the State Materials Laboratory when samples are required for each consignment lot as defined by Section 9-06.5(3) of the Standard Specifications. A separate transmittal and materials certification shall accompany each sample of bolts, nuts, and washers.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it.

6. Other Requirements:
 a. Materials Fabrication Inspected CMO: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

 For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

 b. Non-Fabrication Inspected CMO: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.25 Anchor Bolts, Nuts & Washers

1. Approval of Material: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use, and the product is listed under the appropriate specification. Approval of material sources through the QPL or RAM shall be by a “Satisfactory” test report from the WSDOT Materials Fabrication Inspector as defined in Section 9-2.1A of this manual and it will be the responsibility of the contractor to supply the certifications to the Project Engineer’s Office prior to use.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:
 a. Materials Fabrication Inspected Item: Acceptance for ASTM A 449 and ASTM F 1554 Grade 105 anchor bolts and associated nuts and washers receiving Materials Fabrication Inspection shall be an “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) on each bundle and the Materials Fabrication Inspectors inspection ID number randomly stamped on a representative number of anchor bolts. An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

b. Non-Fabrication Inspected Items: Acceptance for ASTM A 307 and ASTM F 1554 Grade 36 and Grade 55 anchor bolts, nuts and washers shall be based on receipt of Manufacturer’s Certificate of Compliance.

9-4.26 Reinforcing Bars for Concrete

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).
3. **Acceptance/Verification:**
 a. Acceptance: Shall be by the Manufacturer’s Certification of Compliance and Certified Mill Test Reports that will accompany each shipment per Section 9-1.4D of this manual.
 b. Verification: A representative of the Materials Fabrication Inspection Office may take random samples at the point of manufacture or fabrication for testing. The Project Engineer Office will be notified in the event of a failing test report. The PEO will be required to check reinforcing bars for failing heat numbers to ensure that the failing reinforcing bars from that heat number was not installed.

 Note: If Mill Test reports are not available, do not incorporate steel into the project.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for the removal of excess rust and mill scale before using. Check steel fabrication and bends for compliance with contract documents.

5. **Specification Requirements:** See Standard Specifications Section 9-07. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.27 Epoxy Coated Reinforcing Steel Bars for Concrete

1. **Approval of Material:** Approval of the materials and coating facility is required prior to application of the coating. The materials and coating facility will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the coating facility. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the coating facility.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071).

3. **Acceptance:** Acceptance shall be by an “APPROVED FOR SHIPMENT” Tag (Figure 9-5) attached to a representative number of bundles of epoxy coated reinforcing steel bars. An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Tag (Figure 9-5) attached to a representative number of bundles of epoxy coated reinforcing steel bars shipped to the job site, and the “F” or “D” Stamp for foreign or domestic steel and document it. Check for damage caused by shipping and handling.

5. **Specification Requirements:** See Standard Specifications Section 9-07.3. Review contract document to determine if supplemental specifications apply.

6. **Other Requirements:** Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.28 Mechanical Splices

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Sample:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). Required preliminary samples shall include a made up splice for each size bar to be used and the manufacturer’s product information. The overall length of the sample shall be 6 feet plus the length of the splice.

3. **Acceptance:** Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory. The sample shall be from Contractor’s assembled samples (see Note) taken from the project. A Manufacturer’s Certificate of Compliance and other technical data MUST be submitted with the samples. The overall length of the sample shall be 6 feet plus the length of the splice, and shall consist of one made up splice for each size bar to be used.

 Note: This is a test of the Contractor’s ability to properly assemble the splice as much as it is a test of the quality of the materials. For this reason the spliced bars must be assembled by the contractor’s personnel, witnessed by the inspector and transmitted intact to the State Material Lab for testing.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. The PEO inspector shall verify that the splice is assembled per the Manufacturer’s Instructions.

5. **Specification Requirements:** See Standard Specifications Section 6-02.3(24)F and G. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
9-4.29 Rebar Chairs, Mortar Blocks (Dobies), and Spacers

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

RAM Submittal:

a. Mortar Blocks (Dobies): Attach test results showing material meets the requirements of Standard Specifications Section 6-02.3(24)C to assist in the approval process.

b. Rebar Chairs and Spacers: Submit sample of each size and type with the Request for Approval of Material.

2. Preliminary Sample: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:

a. Mortar Blocks (Dobies): Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

b. Rebar Chairs and Spacers: Visual Acceptance per Section 9-1.4C of this manual.

4. Field Inspection: Field verify per Section 9-1.5C of this manual.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.30 Dowels and Tiebars for Concrete Pavement, Incl. Epoxy Coated

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Sample: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance shall be by the Manufacturer’s Certificate of Compliance and Certified Mill Test Reports that will accompany each shipment per Section 9-1.4D of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for excessive rust on wire, and check the spacing of the wires and weight per square yard.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.31 Wire Reinforcement for Concrete

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance shall be by the Manufacturer’s Certificate of Compliance and Certified Mill Test Reports that will accompany each shipment per Section 9-1.4D of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.32 Bridge Approach Slab Anchors

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Sample: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:

a. Anchors Type A: Acceptance for the Steel Rod and Plate shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

b. Anchors Type B: Acceptance for the Threaded Steel Rod and Steel Plate shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

c. Other Anchor Rod materials: Plastic pipe, polystyrene, and duct tape are identified as Low Risk Materials per Section 9-1.3C of this manual.
4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** See Standard Plans A-40.50.00 and Standard Specifications Section 6-02.3(10). Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.33 Prestressing/Post Tensioning Reinforcement — Strand

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance/Verification:**
 a. Acceptance: Acceptance shall be by the Manufacturer’s Certificate of Compliance, Certified Mill Test Reports and the stress/strain curve that will accompany each shipment.
 b. Verification: The strand shall be tested for verification prior to placement. Samples for verification of conformance will be taken randomly at a frequency of 1 sample for every 5 reeils. Sample per AASHTO M203. The samples shall be 6 to 7 feet in length. All samples must include the Manufacturer’s Certificate of Compliance, a mill certificate with supporting test report, and the stress/strain curve.

 Submit 1 sample for each 5 reeils to the State Materials Laboratory for testing. A copy of the Manufacturer’s Certificate of Compliance, a mill certificate with supporting test report, and the stress/strain curve MUST accompany each sample submitted for testing. If the submitted sample fails the testing, submit two additional samples from the same heat number for additional testing.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check the strand for dirt, grease or rust.

5. **Specification Requirements:** See Standard Specifications Section 9-07.10. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.34 Prestressing/Post Tensioning Reinforcement — Bar

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory. Send two samples from each heat number. If supplemental requirements apply, send additional samples of two bars from each heat number. See contract documents. Sample per AASHTO T244. The samples must be a minimum of 6 feet in length. A copy of the Manufacturer’s Certificate of Compliance and Certified Mill Test Reports shall accompany each heat number of reinforcing bar.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** Review contract documents to determine specification requirements.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.35 Painting, Paints, Coating, and Related Materials

1. **Approval of Material:** Approval of the materials and painting/coating facility is required prior to the application of the paint/coating. The materials and painting/coating facility will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials/coating facility(s) used to produce the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Materials listing for the painting/coating facility.

 - Materials for Painting/Coating preparation (i.e. abrasive blast media, bird guano treatment, fungicide treatment, filter fabric, foam backer rod) do not require approval documentation. It is within the inspector’s authority to ask for additional documentation if the products are not performing satisfactorily.

2. **Preliminary Samples**: Preliminary Samples will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance**:
 a. Shop/Fabrications Coated Materials for items delivered to the jobsite: Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). See Section 9-4 of this manual for individual materials acceptance.
 b. Jobsite Coated Materials:
 A) 20 gallons or less: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual. The Manufacturer’s Certificate of Compliance shall include a list of materials and quantities used.
 B) Greater than 20 gallons: If the lot is listed on the QPL, it may be used without testing on current projects per Section 9-1.4A(1) of this manual. If the lot is not on the QPL, a one-quart sample for each lot is required. The WSDOT Fabrication Inspection Office will pick up the sample from the Manufacturer/Distributor. Samples must be submitted for testing 10 days prior to use. Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.
 3) Pigmented Sealer Materials for Coating of Concrete Surfaces: If the lot is listed on the QPL, it may be used without testing on current projects per Section 9-1.4A(1) of this manual. If the lot is not on the QPL, submit a one-quart sample taken by, or in the presence of, an agency representative for each lot. Samples must be submitted for testing 10 days prior to use. Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.
 4) Single-Component Urethane Sealant: Visual Acceptance per Section 9-1.4C of this manual.
 5) Repair material for Powder Coated Items: Visual Acceptance per Section 9-1.4C of this manual that the repair material is per Contract Documents and is as specified in the Contractor’s powder coating plan as specified by the Engineer.
 6) Galvanizing Repair Paint (High Zinc Dust Content): Visual Acceptance per Section 9-1.4C that the spray can label states that the material meets “Federal Specification MIL-P-21035”.

4. **Field Inspection**: Field verify per Section 9-1.5 of this manual.

See that paint is not caked in the container; it is free from skins and is well stirred before withdrawing portions for use.

6. **Other Requirements**: There may be special shipping requirements for paints and coatings. These samples shall be transported to the Region Materials Laboratory for proper shipping.

9-4.36 Timber and Lumber

1. **Approval of Material**: Approval of the Treatment Facility for treated lumber 6 inch by 6 inch and larger is required prior to the start of treatment. The Treatment Facility will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the Treatment Facility do not require approval through the Project Engineer Office. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the Treatment Facility.

The Project Engineer is responsible for obtaining approval for all untreated lumber and treated lumber less than 6 inch by 6 inch prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples**: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance**:
 a. Untreated: Acceptance shall be by a Lumber Grading Stamp or Grading Certificate for Timber and Lumber. The Grading Certificate will be issued by the grading bureau whose authorized stamp is being used, or by the mill grading the timber or lumber under the supervision of one of the following lumber grading agencies: West Coast Lumber Inspection Bureau (WCLIB), Western Wood Products Association (WWPA), or the Pacific Lumber Inspection Bureau (PLIB). Check that all lumber and timber has the proper lumber grade stamps. Typically Lumber Grade Stamps, as used by the various inspection agencies are shown in the QPL, Appendix B:
 b. Treated:
 1) Acceptance for Treated Timber and Lumber 6 inches x 6 inches and greater shall be an “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5)
2) Acceptance for Treated Timber and Lumber less than 6 inches x 6 inches shall be by a Lumber Grading Stamp or Grading Certificate and Certificate of Treatment.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

6. **Other Requirements:** Aquatic use requires additional documentation per 9-09.3 of the **Standard Specifications**.

9-4.37 Vacant

9-4.38 Piling – All Types

1. **Approval of Material:** Approval of the Fabricator, Coating Facility and Treatment Facility is required prior to the start of fabrication. The Fabricator or Treatment Facility will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

 The Project Engineer is responsible for obtaining the approval of materials prior to use. Materials listed as ‘PEO accepted’ will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 a. WSDOT Fabricated Inspected:
 1) Treated Wood Piling: Acceptance shall be by an “APPROVED FOR SHIPMENT” Tag (Figure 9-6). Aquatic use requires additional documentation per 9-09.3 of the **Standard Specifications**.
 2) Coated Steel Piling: Acceptance shall be by an “APPROVED FOR SHIPMENT” Stamp (Figure 9-4). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.
 3) Prestressed Concrete Piling: Acceptance shall be by an “APPROVED FOR SHIPMENT” Stamp (Figure 9-4). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

 b. PEO Accepted:
 1) Untreated Wood Piling: Visual Acceptance per Section 9-1.4C of this manual and by field inspection per Section 9-10.1(1) of the **Standard Specifications**.
 2) Steel Piling: Acceptance shall be by the Manufacturer’s Certificate of Compliance and Certified Mill Test Reports that will accompany each shipment per Section 9-1.4D of this manual.
 3) Steel Pile Tips, Shoes and Pile Strapping: Acceptance shall be by the Manufacturer’s Certificate of Compliance and Certified Mill Test Reports that will accompany each shipment per Section 9-1.4D of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** See **Standard Specifications** Section 9-10.1(1) and 9-19.1. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:**
 a. Materials Fabrication Inspected CMO: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

 For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

 b. Non-Fabrication Inspected CMO: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.39 Vacant

9-4.40 Vacant

9-4.41 Precast Concrete Manholes, Catch Basins, Inlets, Drywells, and Risers

1. **Approval of Material:** Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing
the Contractor, track the quantity and retain these documents
Materials Origin for all foreign steel or iron materials, from
the Engineer Office is required to obtain the Certificate of
Inspector as defined in
will be the responsibility of the Materials Fabrication
2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).
3. Acceptance: Acceptance shall be a “WSDOT INSPECTED” Stamp (Figure 9-3). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.
4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for “WSDOT INSPECTED” Stamp (Figure 9-3) and the “F” or “D” Stamp for foreign or domestic steel and document it.
5. Specification Requirements: See Standard Specifications Section 7-05 and 9-05.50(2), 9-05.50(3), 9-05.50(4), and 9-05.50(5). Review contract documents to determine if supplemental specifications apply.
6. Other Requirements: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.
For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
9-4.42 Riprap, Quarry Spalls, Slope Protection, and Rock for Rock Wall
1. Approval of Material: Approval of materials is required prior to use. Consult the Aggregate Source Approval (ASA) database for approval status of the material for each source.
When the usage is for non-structural applications, the Region Materials Engineer may approve the source.
2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). If the ASA database indicated that the aggregate source has expired, or will expire before the end of the project, a source evaluation database indicated that the aggregate source has expired, or
3. Acceptance:
 a. Acceptance for quantities less than or equal to 150 cubic yards shall be by a Visual Acceptance per Section 9-1.4C of this manual.
 b. Acceptance for quantities that exceed 150 cubic yards, the Project Engineer shall determine and document that the grading is in conformance with the Standard Specifications and contract special provisions.
 c. Acceptance for non-structural applications shall be by a Visual Acceptance per Section 9-1.4C of this manual.
4. Field Inspection: Field verify per Section 9-1.5 of this manual.
6. Other Requirements: None
9-4.43 Semi-Open Slope Protection
1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.
RAM Submittal:
Attach Catalog Cuts using the Catalog Cut Transmittal (DOT Form 350-072 EF) to assist in the approval process.
2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).
3. Acceptance: Acceptance shall be by the Certificate of Compliance which will accompany each shipment per Section 9-1.4E of this manual.
4. Field Inspection: Field verify per Section 9-1.5 of this manual.
6. Other Requirements: None
9-4.44 Plant Material
1. Approval of Material: Approval of the Nursery is required prior to the start of planting. The Nursery will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.
2. Preliminary Samples: A preliminary Site Inspection will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). Contact the Region or State Roadside and Site Development Office.
3. Acceptance: Visual Acceptance per Section 9-1.4C of this manual.
Check for uniformity of plants within each lot and for representative sample lot based on the following:
(N = total number of plants in lot) (n = number of plants in sample lot)

<table>
<thead>
<tr>
<th>Total Number of Plants (N)</th>
<th>Minimum No. of Plants Required to Make Sample Lot (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 500</td>
<td>All plants</td>
</tr>
<tr>
<td>501 - 1,000</td>
<td>500</td>
</tr>
<tr>
<td>1,001 - 5,000</td>
<td>600</td>
</tr>
<tr>
<td>5,001 - 30,000</td>
<td>850</td>
</tr>
<tr>
<td>Over 30,000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Should 5 percent or less of the sample lot fail, the entire lot may be accepted. Should over 5 percent of the acceptance sample lot fail to meet nominal specification requirements, the entire lot shall be rejected and removed from the job. The Engineer may accept the plants if there is a large percentage of plants that appears to be exceptionally hearty and vigorous after sorting by the Contractor. If done immediately, the Contractor shall be allowed to sort and remove the substandard portion of the plants.

After the contractor has completed sorting, a new sample lot based on the above schedule of the remaining stock will again be selected and inspected. Should 5 percent or less of this sample lot fail, the sorted lot may be accepted.

4. Field Inspection: Field verify per Section 9-1.5 of this manual.

6. Other Requirements: If there is a question on the plant material, contact the Region or State Roadside and Site Development Office at 360-705-7242.

9-4.45 Topsoil

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:
 a) Type A: Acceptance shall be as stated in the Contract Documents.
 b) Type B & C: Visual Acceptance per Section 9-1.4C of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. The material shall be inspected for roots, weeds, subsoil, rocks, and other debris.

6. Other Requirements: If there is a question on the top soil, contact the Region or State Roadside and Site Development Office at 360-705-7242.

9-4.46 Seed

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

 RAM Submittal: Attach Washington State Department of Licensing issued business license with “seed dealer” endorsement.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance shall be by the Certificate of Compliance per Section 9-1.4E of this manual. Material shall be accepted on analysis shown on the label meeting contract requirements.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Each individual sack of seed must include a label (tag) as to the contents, demonstrating conformance to all requirements specified in the special provisions for each component of the seed mix. All bags must be unopened prior to use on the project. Retain label during each placement pay period showing analysis for contract records.

6. Other Requirements: If there is a question on the correct seed for the intended use, or other questions, contact the Region or State Roadside and Site Development Office at 360-705-7242.

9-4.47 Fertilizer

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:
 a. Fertilizer for General Use: Visual Acceptance per Section 9-1.4C of this manual. Verify that the material and chemical content shown on container label meets contract requirements.
 b. Fertilizer for Erosion Control:
 1) Less than 5 acres: Visual Acceptance per Section 9-1.4C of this manual. Verify that the material and chemical content shown on container label meets contract requirements.
 2) 5 acres and greater: Acceptance of fertilizer shall be by receipt of a certified analysis of each component furnished meeting the requirements of a Manufacturer’s Certificate of Compliance (Section 1-06.3 of the Standard Specifications) per 9-1.4D.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. All bags must be unopened prior to use on the project. Retain label during each placement pay period showing analysis for contract records.

Chapter 9

6. **Other Requirements:** If there is a question on the intended use of the fertilizer, contact the Region or State Roadside and Site Development Office at 360-705-7242.

9-4.48 Mulch

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

RAM Submittal: Attach documents as specified in the Contract Provisions to assist in the approval process.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 a. Straw: Acceptance shall be by Visual Acceptance per Section 9-1.4C of this manual.
 b. Wood Cellulose Fiber: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.
 c. Bark or wood chips: Acceptance shall be by the Certification of Compliance per Section 9-1.4E of this manual.
 d. Bonded Fiber Matrix/Mechnically Bonded Fiber Matrix: Acceptance shall be by Visual Acceptance per Section 9-1.4C of this manual.
 e. Tackifier: Acceptance shall be by Visual Acceptance per Section 9-1.4C of this manual.
 f. Compost: Materials shall be accepted on receipt of “Satisfactory” test report from an independent STA program certified laboratory, documentation stating that the compost facility is STA certified, waste handling permit, etc. see contract provisions.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. A visual inspection shall be made to ensure uniformity of the mulch. Also check for detrimental contamination.

5. **Specification Requirements:** See Standard Specifications Section 9-14.4. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** If there is a question on the intended use of mulch, contact the Region or State Roadside and Site Development Office at 360-705-7242.

For Compost only - Samples may be tested using the Solvita Compost Maturity Test by the Contracting Agency at the Engineer’s discretion. To purchase Solvita Compost Maturity Test Kits for field office use contact: Woods End Research Laboratory, Inc. Box 297, Mount Vernon, Maine 04352 (207)-293-2457 E-mail: info@woodsend.org

9-4.49 Irrigation System

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

RAM Submittal: If approval action is being requested via the RAM process, attach Catalog Cuts or other appropriate documents, using proper transmittal, to assist in the approval process. All Irrigation System materials being requested via RAM process will be sent to the Region or State Roadside and Site Development Office, except for Electrical Wire and Splices, which will be sent to the State Materials Laboratory. Atmospheric vacuum breaker assemblies (AVBA), pressure vacuum breaker assemblies (PVBA), double check valve assemblies (DCVA) and reduced pressure backflow devices (RBFD) shall be of a manufacturer and model approved for use by the Washington State Department of Health. When approved, be certain to verify that the product is in fact qualified for its intended use, and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 a. QPL Acceptance:
 1. PVC Pipe and Fittings, Automatic Controllers, Spray Heads, Valve Boxes and Protective Sleeves, Automatic Control Valves with Pressure Regulator, Quick Coupling Equipment, Electrical Wire and Splices: Visual Acceptance per Section 9-1.4C of this manual.
 2. Cross-Connection Control Devices: Visual Acceptance per Section 9-1.4C of this manual. Document that the model number of the device is listed on the current Washington State Department of Health (WSDOH) listing.
 b. Non-QPL Acceptance:
 1. PVC Pipe, Polyethylene Pipe, and Detectable Marking Tape: Visual Acceptance per Section 9-1.4C of this manual.
 2. Galvanized Iron Pipe: Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.
4. Cross Connection Control
 Devices: Manufacturer’s Certificate of Compliance per Section 9-1.4D, indicating device is approved by Washington State Department of Health (WSDOH) listing, and Catalog Cut per Section 9-1.4G of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for damage to the galvanized coatings in shipping and handling. See that damaged areas and field cut threads are protected with an approved galvanized repair paint formula, standard formula A-9-73.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.50 Fencing & Gates

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:
 a. The following materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory or Regional Materials Laboratory. Send acceptance samples as follows:
 1) Chain Link Fabric: One sample consisting of three wires across full width of fabric, from one roll for each 2500 LF of completed fence.
 2) Wire Mesh: One 12-inch sample across full width of roll, from one roll for each 2500 LF of completed fence.
 3) Tension and Barbed Wire: One 3-foot sample from one roll for each 5000 LF of completed fence.
 4) Grade 1 Post Material
 A) Rails and Grade 1 Posts for Chain Link Fence: Sample to consist of one post and 12” sample from each end of the rail, where appropriate, for each 500 post or rails or fraction thereof.
 B) Corner Post or brace posts: One complete post assembly per 10 corner or brace posts.
 5) Wire Fence Line Posts: One complete post with plate for each 500 posts or fraction thereof.

 Above samples are to be taken from properly identified lots of material stored at job site. Be sure samples are numbered and properly identified as to Lot, if applicable, when sent to the Laboratory.
 If first sample fails, two additional samples are to be submitted from same lot. Resamples are to be properly identified as to Lot and referenced to the previous Lab No. for the first sample.
 b. Grade 2 Post Material: Shall be accepted by a Manufacturer’s Certificate of Compliance per Section 9-1.4D.
 c. Gates: Visual Acceptance per Section 9-1.4C of this manual.
 d. Miscellaneous fence hardware: Shall be accepted by Visual Acceptance per Section 9-1.4C of this manual. These materials includes such items as tie wire, hog rings, galvanized bolts and nuts, fence clips, stays, post caps, tension band and bars, rail end caps, etc.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for damage to zinc or other coating on posts, rails, hardware, etc.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.51 Beam Guardrail, Guardrail Anchors, and Glare Screen

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). An on-site inspection by the WSDOT Materials Fabrications Inspection Office of the fabricating facilities prior to approval will be required only if a new manufacture is requested on the Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance shall be by a Manufacturer’s Certificate of Compliance per Section 9-1.4D. A307 bolts, nuts and washers shall be by Visual Acceptance per Section 9-1.4C of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual that the bolt heads are stamped 307A. Check material delivered to the project for damage to galvanizing.
5. **Specification Requirements:** See Standard Specifications Section 9-16.3.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to retain these documents in the project records.

9-4.52 Guardrail Posts and Blocks

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). An on-site inspection by the WSDOT Materials Fabrications Inspection Office of the Fabrication and Treatment Facilities prior to approval will be required only if a new manufacture is requested on the Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 - **Treated Timber Posts and Blocks:** Shall be accepted by a Lumber Grading Stamp or Grading Certificate for Timber and Lumber and Certificate of Treatment.
 - **Steel Post and Blocks:** Shall be accepted by a Manufacturer’s Certificate of Compliance per Section 9-1.4D.
 - **Alternate Block Material:** Shall be accepted by documentation demonstrating conformance to the requirements of NCHRP Report 350.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.53 Miscellaneous Precast Concrete Products (Block Traffic Curb, Precast Traffic Curb)

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). An on-site inspection by the WSDOT Materials Fabrication Office of the fabricating facilities prior to approval will be required only if a new manufacture is requested on the Request for Approval of Material (DOT Form 350-071). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 - **Precast Traffic Curb:** Visual Acceptance per Section 9-1.4C of this manual. Unless the curb sections have been inspected prior to shipping they are to be carefully inspected upon arrival on the project site. Check for surface color and damage, such as cracks, broken corner or edges, contour and alignment. Surface color and texture should match advanced sample provide by the manufacturer. See Standard Plans for details.
 - **Block Traffic Curb:** Visual Acceptance per Section 9-1.4C of this manual. Check exposed faces of curb sections for damage such as chips, cracks, and air holes. See Standard Specifications Section 9-18.3 for details. Compressive strength may be determined in accordance with the FOP for ASTM C 805.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.54 Prestressed Concrete Girders

1. **Approval of Material:** Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

The Materials Fabrication Inspector will provide a weekly Fabrication Progress Report to the Project Engineer while the girders are being fabricated.
4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it. Check for damage caused by shipping and handling.

5. **Specification Requirements:** See Standard Specifications Section 6-02.3(25), 6-05.3(3), 6-02.3(28), and Section 9-19. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual. For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.55 Pavement Marking Materials

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

 RAM Submittal: Pavement Marking Materials that are not listed on the QPL shall require field test documentation from NTPEP (National Transportation Product Evaluation Program).

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 a. **Pavement Markings:**
 1) **Paint, Plastic, and Thermoplastic:** Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory for each lot placed.
 2) **Glass Beads for Pavement Markings:** Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory for each lot placed.
 b. **Raised Pavement Markers:**
 1) **Type 1 Plastic and Thermoplastic:** Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory for each lot placed. A sample shall consist of three markers per job lot (from different boxes) for each color. Allow a minimum of 10 working days for testing to avoid project delays. After use, all emptied boxes shall be destroyed.
 2) **Type 2 and 3 Markers:** Visual Acceptance per Section 9-1.4C of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. A visual inspection shall be made to ensure that cracked or damaged lane markers are not incorporated in the work.

5. **Specification Requirements:** See Standard Specifications Section 9-21 and 9-34. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** There may be special shipping requirements for epoxy and adhesive. These samples shall be transported to the Region Materials Laboratory for proper shipping.

9-4.56 Signing Materials and Mounting Hardware

1. **Approval of Material:** Approval of the Sign Fabricator as well as the manufacturer of the sign blanks, panels and the reflective sheeting is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

 Materials used within the fabricated item do not require approval by Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

 A RAM will not be required for sign mounting hardware provided by the sign fabricator. Mounting hardware from a source other than the sign fabrication facility will require approval by Request for Approval of Material (DOT Form 350-071 EF). Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. **Preliminary Samples:** A preliminary sample of the material may be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF), or as requested by the Sign Fabricator Inspector.

3. **Acceptance:**
 a. **Sign:** Acceptance is based on a “FABRICATION APPROVED” Decal (Figure 9-8).
 b. **Sign Mounting Hardware:** Hardware supplied by the Sign Fabricator will have the mounting hardware certifications verified at the sign fabricator’s facility by the Materials Fabrication Inspector to ensure the materials meet the contract requirements. These records will be kept at the sign fabrication facility. Fabrication inspectors will verify sign mounting hardware as it is packaged for shipment and stamp it “WSDOT INSPECTED” (Figure 9-3). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.
Contractor’s who purchase sign mounting hardware separately from a source other than a WSDOT approved sign fabrication facility will be required to supply a Manufacturer’s Certificates of Compliance per Section 9-1.4D of this manual and it will be the responsibility of the Contractor to supply the certifications to the Project Engineer’s Office prior to use.

4. Field Inspection: Field verify per Section 9-1.5 of this manual that bolt heads are stamped 307A. Check for a “WSDOT INSPECTED” Stamp to the sealed hardware package (Figure 9-3), Document the “F” or “D”. Check for “FABRICATION APPROVED” Decal (Figure 9-8) on the back of the sign and document in Inspector’s Daily Report. Double-faced signs, which do not receive decals, will be approved on visual inspection at the fabricator’s facility and in the field. A list/invoice of all inspected and accepted signs will be kept in the WSDOT Materials Fabrication Inspection Office files. Check that all overhead signs are mounted with stainless steel bolts, u-bolts, washers, nuts, locknuts, mounting brackets and straps. Mounting hardware shall include bolts, nuts, washers, locknuts, rivets, post clips, windbeams, angles, “Z” bar, straps and mounting brackets. If there is not a Decal present, inform the Contractor that the item is not acceptable and contact the WSDOT Materials Fabrication Inspection Office to determine the status of the inspection. Items lacking Decals or Stamps, or which are damaged during shipping, should be rejected and that material tagged or marked appropriately.

6. Other Requirements:
 a. Materials Fabrication Inspected CMO: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

 For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

 b. Non-Fabrication Inspected CMO: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.57 Liquid Concrete Curing Compound

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: If the lot is listed on the QPL, it may be used without testing on current projects per Section 9-1.4A(1) of this manual. If the lot is not on the QPL, submit a one-quart sample taken by, or in the presence of, an agency representative for each lot. Samples must be submitted for testing 10 days prior to use of curing compound. Samples submitted shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.

4. Field Inspection: Field verify per Section 9-1.5 of this manual.

6. Other Requirements: None

9-4.58 Admixtures for Concrete

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Materials shall be accepted on the basis of a Certified Concrete Delivery Ticket indicating the product and dosage of the admixture conform to the concrete mix design.

4. Field Inspection: Field verify per Section 9-1.5 of this manual.

6. Other Requirements: Check Concrete Delivery Ticket for proper admixture dosage.

9-4.59 Plastic Waterstop

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).
Materials

3. **Acceptance:** Material shall be accepted by a Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

6. **Other Requirements:** None

9-4.60 Epoxy Systems

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance**
 a. **Epoxy Bonding Agents:** Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory. For epoxy bonding agents, submit mix ratios, intended use and a representative sample of each component with MSDS sheet for each batch or lot number. Samples shall be submitted to the State Materials Laboratory. A period of 21 calendar days should be allowed for testing.

 Sample: A representative sample shall be a minimum of a 1 pint container of each component or a pre-packaged kit. The sample size shall represent the mixing ratio, (for example; 1 pint of A and 2 pints of B, or 1 pint A and 3 pints of B). Containers shall be identified as “Component A” (Epoxy Resin) and “Component B” (Curing Agent) and shall be marked with the name of the manufacturer, the date of manufacture and the lot number.

 b. **Epoxy Grout/Mortar/Concrete:** Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory. For epoxy grout/mortar/concrete, submit mix ratios, intended use and a representative sample of each component for each batch or lot number. Samples shall be submitted to the State Materials Laboratory. A period of 15 working days should be allowed for testing.

 Sample: A representative sample shall be a minimum of a 1 pint container of each component or a pre-packaged kit. The sample size shall represent the mixing ratio, (for example; 1 pint of A and 2 pints of B, or 1 pint A and 3 pints of B). Containers shall be identified as “Component A” (Epoxy Resin), “Component B” (Curing Agent), and “Aggregate Component” and shall be marked with the name of the manufacturer, the date of manufacture and the lot number.

 Acceptance of non-Prepackaged Epoxy Grout/Mortar/Concrete shall be by the Certificate of Compliance per Section 9-1.4E of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for uniformity of color and conformance to required mix proportions. Streaking is an indication of inadequate mixing. Check for set and hardness with your thumbnail. You should not be able to dent the properly mixed and cured material. Epoxies shall be mixed and applied in conformance to manufacturer’s written instructions unless otherwise modified in writing by the manufacturer’s agent.

6. **Other Requirements**
 - Type IV epoxy bonding agent may be substituted for and be tested to the same criteria as Type I when used in the application identified in Standard Specifications 5-01.3(6) and 5-05.3(10). Ensure that the transmittal states the Standard Specification for which the material is being tested for.
 - Aggregate for non-Prepackaged Epoxy Grout/Mortar/Concrete shall meet the requirements of Standard Specifications Section 9-03.1(2).
 - There may be special shipping requirements for epoxy. These samples shall be transported to the Region Materials Laboratory for proper shipping.

9-4.61 Resin Bonded Anchors

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

 RAM Submittal: If approval is being requested by the Request for Approval of Material process, submit independent laboratory test report indicating resin bonded anchor system, for the specified size rods, meets specification requirements when tested in accordance with ASTM E-488.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance**
 a. **Resin adhesive:** Acceptance shall be by Visual Acceptance per Section 9-1.4C of this manual.
 b. **Threaded rod, nut and washer or other inserts:** Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for proper embedment depths. Check that holes are properly cleaned. Check that the installation is in accordance with the manufacturers written instructions.

5. **Specification Requirements:** Review contract documents to determine if supplemental specifications apply.
6. Other Requirements:
 • For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
 • There may be special shipping requirements for resin adhesive. These samples shall be transported to the Region Materials Laboratory for proper shipping.

9-4.62 Gabion Cribbing, Hardware and Stone
1. Approval of Material:
 Gabion Cribbing and Hardware: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.
 Stone: Approval of materials is required prior to use. Materials will be approved by Request for Approval of Material (DOT Form 350-071 EF). Consult the Aggregate Source Approval (ASA) database for sources with degradation factor of a minimum of 30.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:
 Gabion Cribbing and Hardware: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.
 Stone: Visual Acceptance per Section 9-1.4C of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.63 Steel Sign Structures – Cantilever, Sign Bridge, Bridge Mounted, Roadside
1. Approval of Material: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: The fabricated sign structure and associated hardware will be accepted on the basis of an “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figures 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.
 a. Sign Structure - Cantilever, Sign Bridge, Bridge Mounted, and Roadside Type PLT/PLU: Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.
 b. Roadside – except Type PLT & PLU: Acceptance for Roadside sign structures except for Types PLT & PLU shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) on the sign structure and associated hardware. Check for and the “F” or “D” indicator Stamp for foreign or domestic steel and document it.

6. Other Requirement 9-4.68 s:
 a. Materials Fabrication Inspected CMO: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.
 b. Non-Fabrication Inspected CMO: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
9-4.64 Conduit

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

RAM Submittal: Attach Catalog Cuts using the Catalog Cut Transmittal (DOT Form 350-072 EF) to assist in the approval process.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Visual Acceptance per Section 9-1.4C of this manual is required for Rigid Galvanized Steel, Aluminum, PVC, PE, HDPE, Fiberglass, and Flexible Metal Conduit including hardware such as (fittings, couplings, spacers, adapters, split internal expansion plugs, duct plugs, connectors, clamps, conduit bodies, and conduit supports), Expansion Fittings, Deflection Fittings, Combination Deflection and Expansion Fittings.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for “Nationally Recognized Testing Laboratories” (NRTL) approval labels. Check for damage to coatings caused by shipping and handling, and see that damaged areas and field cut threads are protected with an approved coating.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for “aluminum cable steel reinforced” (ACSR) or other steel and iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.66 Steel Poles – ITS, Pedestrian, Light, Signal Standards, and High Mast Light Poles

1. Approval of Material: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:
 a. Steel Light and Signal Standards Type II – V, ITS, and High Mast Light Poles:

 As determined by the Materials Fabrications Inspection Office, Steel Light, Signal Standards and High Mast Light Poles may be inspected at the point of manufacture prior to shipping or at the jobsite by the Materials Fabrication Inspector. Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

 Steel Light, Signal Standards and High Mast Light Poles delivered to the job site without “APPROVED FOR SHIPMENT” stamps and/or tags require Materials Fabrication Inspection. Contact the WSDOT Materials Fabrication Inspection Office for inspection. Provide the Materials Fabrication Inspector the following documentation for their review prior to their physical inspection of the Steel Light, Signal Standards and High Mast Light Poles.

9-4.66 Electrical Conductors and Fiber optic Cable

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:
 a. Single/Multiple Conductors:
 1) QPL Acceptance: Visual Acceptance per Section 9-1.4C of this manual.
 2) Non-QPL Acceptance: Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory. A sample shall be a length of wire that shall include the complete printed/stamped designation: manufacturer, size, and insulation type.
 b. Fiber Optic Cable: Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory. A sample of the Fiber Optic cables shall be a length of cable (minimum 2 feet) that shall include the complete printed/stamped designation: manufacturer, size, and fiber count.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. A visual inspection shall be made to ensure that no conductors with damaged insulation are incorporated into the project.

• Approved shop drawings not listed in Contract General Special Provisions
• Manufacturer’s Certificate of Compliance for all steel and associated hardware
• Nondestructive test reports generated by the Fabricator for inspection of welds
• Certificate of Material Origin

Note: The Materials Fabrication Inspector will inspect hardware if it is available at the time of inspection at the point of manufacture or at the jobsite. Hardware not present during Materials Fabrication inspection and delivered to the job site without an approval stamp may be accepted by the project office based on Manufacturer’s Certificate of Compliance with supporting material certifications and Certificate of Material Origin. When high strength bolting materials are received on the job site without Fabrications Inspection Stamp, acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual and: Approved shop drawings not listed in Contract General Special Provisions Manufacturer’s Certificate of Compliance for all steel and associated hardware Nondestructive test reports generated by the Fabricator for inspection of welds

High strength bolting materials acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual and: Approved shop drawings not listed in Contract General Special Provisions Manufacturer’s Certificate of Compliance for all steel and associated hardware Nondestructive test reports generated by the Fabricator for inspection of welds

6. Other Requirements:
 a. Materials Fabrication Inspected CMO: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

 For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Material Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

 b. Non-Fabrication Inspected CMO: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Material Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.67 Vacant

9-4.68 Luminaires, Lamps and Light Emitting Diodes (LED)

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

 RAM Submittal: Luminaires and Lamps: Attach Catalog Cuts using the Catalog Cut Transmittal (DOT Form 350-072 EF) to assist in the approval process.

 LED: Submit Independent Test Report verifying compliance with the Contract Document requirements along with Catalog Cuts using the Catalog Cut Transmittal (DOT Form 350-072 EF) to assist in the approval process.

2. Preliminary Samples: Preliminary samples will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Visual Acceptance per Section 9-1.4C of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual.

 a. Luminaires: A visual inspection shall be made to ensure damaged equipment is not installed and that luminaires are mounted level. Confirm the socket position is the same as that noted on the catalog cut.

 b. Lamps for Luminaires: Check that all lamps are of the proper wattage, see contract documents.

 c. LEDs for Signal Heads: Check that LEDs are as specified, see contract documents.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.69 Water Distribution System

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

 RAM Submittal: Attach Catalog Cuts using the Catalog Cut Transmittal (DOT Form 350-072 EF) to assist in the approval process.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 a. **QPL Acceptance**
 1) Ductile Iron Pipe and Fittings, PVC Pipe and Fittings, Restrained Joints, Restrained Flexible Couplings, Gate Valves (3-inches to 16-inches), Butterfly Valves, Saddles, Corporation Stops: Visual Acceptance per Section 9-1.4C of this manual.
 2) Copper Tubing and Polyethylene Tubing: Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

 b. **Non-QPL Acceptance**
 1) Ductile Iron Pipe, Steel Pipe, Polyvinyl Chloride (PVC) Pipe, Polyethylene (PE) Pressure Pipe, Polyethylene Encasement: Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.
 2) Fittings for Ductile Iron, Steel, PVC, and PE Pipe. Restrained Joints, Bolted Sleeve-type Couplings for Plain End Pipe, Restrained Flexible Couplings, Grooved and Shoulder Joints, Fabricated Mechanical Slip-type Expansion Joints, Gate Valves (3-inches to 16-inches), Butterfly Valves, Valve Stem Extensions, Combination Air Release/Vacuum Valves, Tapping Sleeve and Valve Assemblies, Hydrants, End Connections, Hydrant Extensions, Hydrant Restraints, Traffic Flanges, Saddles, Corporation Stops, Copper Tubing, Polyethylene Tubing, Service Fittings, Meter Setters, Bronze Nipples and Fittings, and Meter Boxes: Catalog Cut per Section 9-1.4G of this manual.
 3) Valve Boxes, Valve Marker Posts, and Guard Posts: Visual Acceptance per Section 9-1.4C of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check material delivered to the project for damage to the galvanized coatings caused by shipping and handling and conformance to the contract documents. See that damaged areas and field cut threads are protected with an approved galvanized repair paint formula, standard formula A-9-73.

5. **Specification Requirements:** See Standard Specifications Section 9-30. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:**
 a. Water distribution pipe requires testing after installation in conformance with the Standard Specifications Section 7-09.
 b. For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.70 Elastomeric Bearing Pads

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** Acceptance shall be by a Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual accompanied by a certified test report identifying the specific batch of material and demonstrating conformance to AASHTO M251.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Make certain that material to be used is from the certified batch.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.71 Bridge Bearings – Cylindrical, Disc, Fabric Pad, Pin, Spherical

1. **Approval of Material:** Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office.
Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** As determined by the WSDOT Materials Fabrication Inspection Office, Bridge Bearings may be inspected at the point of manufacture prior to shipping or at the jobsite by the Materials Fabrication Inspector. Contract Provision may provide for job site inspection of the Bridge Bearings by the Engineer. Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

Bridge Bearings delivered to the job site without “APPROVED FOR SHIPMENT” stamps and/or tags require Materials Fabrication Inspection. Contact the WSDOT Materials Fabrication Inspection Office for inspection and required documentation needed prior to their physical inspection of the Bridge Bearing.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it. Contact WSDOT Materials Fabrication Inspection Office for inspection of Bridge Bearings delivered to the jobsite without “APPROVED FOR SHIPMENT” Tag and/or Stamp.

5. **Specification Requirements:** Bearings specifications are currently defined in General Special Provisions and Bridge Special Provisions. Review the contract documents to determine the specification requirements.

6. **Other Requirements:** Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Material Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.73 Vacant

9-4.74 Metal Bridge Rail

1. **Approval of Material:** Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

The “WSDOT INSPECTED” stamp on barrier will include the connecting pins, which will be inspected at the barrier fabricator’s facility.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for “WSDOT INSPECTED” Stamp (Figure 9-3) and the “F” or “D” Stamp for foreign or domestic steel and document it.

5. **Specification Requirements:** See Standard Specifications Section 6-10. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Material Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
6. **Other Requirements:** Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual. For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.75 Construction Geosynthetics

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

 RAM Approval: Submittal requirements for geogrid and geotextile products proposed for use in permanent geosynthetic retaining walls or reinforced slopes, refer to Standard Specification Section 9-33.4(1).

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 a. Underground Drainage:
 1) Less than 600 SY: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.
 2) 600 SY and greater: Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.
 b. Temporary or Permanent Geosynthetic Retaining Walls and Reinforced Slopes: Materials shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.
 c. Soil Stabilization and Separation, Permanent Erosion Control, and Prefabricated Drainage Mat: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.
 d. Temporary Erosion Control Materials: Visual Acceptance per Section 9-1.4C of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check each roll of geotextile fabric for proper identification as shown on either the Manufacturer’s Certificate of Compliance or on the State Materials Laboratory test report.

6. **Other Requirements:** If seams are sown in the field, refer to 9-33.4(5) for sampling and testing requirements.

9-4.76 Concrete

1. **Approval of Material:** Approval of all materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

Cement – see Section 9-4.10 of this manual.

Concrete Aggregate – see Section 9-4.4 of this manual.

Admixtures for Concrete – see Section 9-4.58 of this manual.

Water – see Section 9-4.77 of this manual.

Submittal and approval of the Concrete Mix Design shall be per 6-02.3(2) and 9-03.1(1) of the Standard Specifications and 6-2.1A of this manual. Contractor must submit a concrete mix design on DOT Form 350-040 EF. All concrete except commercial and Lean Concrete must come from a pre-qualified Batch Plant.

For mix designs proposed for cement concrete pavement the contractor is required to submit flexural and compressive strength test results in accordance with Section 5-05 of the Standard Specifications as part of the concrete mix design.

Note: If the Aggregate Source Approval (ASA) database Tracking System requires Alkali Silica Reactivity (ASR) mitigation, the concrete mix design submittal may include the use of either a low alkali cement per Section 9-01.3(3) or fly ash per 9-23.9 of the Standard Specifications, as approved by the Engineer. The contractor shall provide test results for ASTM C 1567 showing the mitigating measures are effective (see Section 9-03 of the Standard Specifications). Contact the State Materials Laboratory Construction Materials Engineer or the State Bridge Construction Engineer if the contractor is proposing to use other mitigating measures.

2. **Preliminary Samples:** Not Required

3. **Acceptance:**
 a. Prepackaged Concrete: Visual Acceptance per Section 9-1.4C of this manual that all bags are labeled meeting the requirements of ASTM C387.
 b. Controlled Density Fill (CDF): Check Concrete Delivery Ticket to verify the mix provide is in accordance with the approved Mix Design.
 c. Commercial and Lean Concrete: Is accepted based on a Certificate of Compliance to be provided by the supplier as described in Section 6-02.3(5) B of the Standard Specifications.
 d. Cement Concrete Pavement: Compressive Strength shall be accepted on receipt of “Satisfactory” test reports. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual. Air Content will be tested at the time of placement and documented on the Concrete Delivery Ticket. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and this Chapter.
e. Structural Concrete: Compressive Strength shall be accepted on receipt of “Satisfactory” test reports. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual. Slump, Air Content and Temperature will be tested at the time of placement and documented on the Concrete Delivery Ticket. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and this Chapter.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check Concrete Delivery Ticket to verify the concrete provide conforms to the approved concrete Mix Design.

5. Specification Requirements: See Standard Specifications Section 2-09.3(1)E, 9-03.1, 5-05 and 6-02.

6. Other Requirements: None

9-4.77 Water for Concrete

1. Approval of Material: Not required.

2. Preliminary Samples: Not required.

3. Acceptance: Acceptance is based on test results provided by the contractor. If the Contractor is using potable water that is clear and apparently clean, then no testing is required.

 a. Physical Requirements: Testing will be conducted on a weekly interval for the first four weeks and thereafter on monthly interval.

 b. Chemical Requirements: Testing will be conducted on a monthly interval.

4. Field Inspection: Field verify per Section 9-1.5 of this manual.

6. Other Requirements: None

9-4.78 Expansion Joints

1. Approval of Material: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

The Project Engineer is responsible for obtaining the approval of materials prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:

The Project Engineer shall collect, review and approve all of the documentation from the fabricator for the various material items used in Manufacturing the expansion joints as listed below.

 a. Gland Strip: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

 b. Steel Plates and shapes: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

 c. Coatings for steel parts: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual.

The Materials Fabrications Inspection Office will inspect the workmanship of the Expansion Joint at the jobsite. Acceptance for the expansion joints is based on a “WSDOT INSPECTED” (Figure 9-3) Stamp.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Contact Materials Fabrication Inspection Office for jobsite inspection.

5. Specification Requirements: Review contract documents to determine specification requirements.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.79 Traffic Signal Controller Assembly

1. Approval of Material:

Signal Controller Assembly: Approval of the Signal Controller Assembly Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

Signal Controller Assembly ‘Pluggable’ Components: The Project Engineer is responsible for obtaining the approval of traffic signal control equipment prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. RAM Submittal: Attach Catalog Cuts for components using the Catalog Cut Transmittal (DOT Form 350-072 EF) and fully dimensioned Shop Drawings to assist in the approval process.
2. **Preliminary Samples:** A preliminary sample of the individual components will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 a. Traffic Signal Controllers: Shall be accepted on receipt of “Satisfactory” test reports. A “Satisfactory” test report is defined as acceptable performance in the following tests:
 - WSDOT Test Method 421, Traffic Controller Inspection and Test Procedure
 - WSDOT Test Method 422, Transient Voltage Test (Spike Test) Procedure (Optional)
 - WSDOT Test Method 423, Conflict Monitor Testing
 - WSDOT Test Method 424, Power Interruption Test Procedure (Only for Type 170 and NEMA Controllers)
 - WSDOT Test Method 425, Environmental Chamber Test
 - WSDOT SOP 429, Method for Determining the Acceptability of Traffic Signal Controller Assembly
 - WSDOT Test Method T427, Loop Amplifier Test (Optional)
 - WSDOT Test Method T428, Compliance Inspection and Test Procedure
 b. Signal Controller Assembly ‘Pluggable’ Components: Visual Acceptance per Section 9-1.4C of this manual. Document functionality of the ‘pluggable’ component at the start up by the Region Traffic Signal inspector.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Verify the controller cabinet assembly received on the job site, has satisfactory test report.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and shall be by Visual Acceptance per Section 9-1.4C of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** See Standard Specifications Sections 8-01, 9-14, and 9-33.

6. **Other Requirements:** None

9-4.81 Concrete Patching Material, Grout and Mortar

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

 RAM Submittal: If the product is not listed on the QPL, submit test data from an accredited independent laboratory confirming that the concrete patching material, grout or mortar meets Standard Specification Section 9-20.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:**
 a. Concrete Patching Materials: Concrete Patching materials shall be accepted on receipt of “Satisfactory” tests report for air content and compressive strength performed once per shift. The Contractor must submit a mix design meeting the requirements of Standard Specification 9-20 for the concrete patching material.
 b. Grout:
 1) Grout Type 1:
 a) Structural Post Tensioning: Materials shall be accepted by Visual Acceptance per Section 9-1.4C of this manual to verify that the grout has achieved initial set, is less than 6 months old from date of manufacturer and that the water cement ratio is 0.45 or less. Initial set shall be determined by making 3 grout cubes per WSDOT TM 813 and documenting that the grout has set in a reasonable amount of time. Afterwards, the cubes may be discarded.
 b) Soils Nails and Ground Anchors: Materials shall be accepted by receipt of “Satisfactory” test report for compressive strength performed once per day, and shall be by Visual Acceptance per Section 9-1.4C of this manual to verify that the grout is less than 6 months old from date of manufacturer and that the water cement ratio is 0.45 or less. Acceptance samples shall be
obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.

2) Grout Type 2: Materials shall be accepted by receipt of “Satisfactory” test report for compressive strength, testing to be performed once per bridge pier or per day. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.

3) Grout Type 3: Materials shall be accepted by receipt of “Satisfactory” test report for compressive strength, testing to be performed once per bridge pier or per day, and shall be by Visual Acceptance per Section 9-1.4C of this manual for conformance to the mix design. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.

4) Grout Type 4:
 a) Structural Applications: Materials shall be accepted by receipt of “Satisfactory” test report for compressive strength, testing to be performed once per bridge pier or per day, and shall be by Visual Acceptance per Section 9-1.4C of this manual for conformance to the mix design. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.
 b) Nonstructural Applications: Acceptance for column jacket pour back or retaining wall shaft CSL access tube pour back will be by Visual Acceptance per Section 9-1.4C of this manual for conformance to the mix design.

 c. Mortar:
 1) Mortar Type 1 for Finishing Applications: Visual Acceptance per Section 9-1.4C of this manual and will require confirmation of Standard Specification blending ratio.
 2) Mortar Type 2 for Masonry Applications: Visual Acceptance per Section 9-1.4C of this manual and will require confirmation of Standard Specification blending ratio.
 3) Mortar Type 3: Shall be accepted on receipt of “Satisfactory” test report for compressive strength, testing to be performed once per day, and shall be by Visual Acceptance per Section 9-1.4C of this manual for conformance to the mix design. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.
 d. Aggregate Extender: Materials shall be accepted on receipt of “Satisfactory” test reports.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Verify that the amount of added water and aggregate extender complies with the mix design or manufacturers recommendations.

6. Other Requirements: Grouts extended with coarse aggregate will require 4” x 8” test specimens per WSDOT FOP for AASHTO T 23. Grouts extended with fine aggregate will require test specimens per WSDOT TM 813.

9-4.82 Streambed Aggregates

1. Approval of Material: Approval of materials is required prior to use. Consult the Aggregate Source Approval (ASA) database for approval status of the material for each source.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF). If the ASA database indicated that the aggregate source has expired, or will expire before the end of the project, a source evaluation may be required. Contact the Regional Materials Office for further direction. If samples are required, the Regional Materials Office will coordinate with the ASA Engineer to obtain the necessary samples according to SOP 128.

3. Acceptance:
 a. Streambed Sediment: Materials shall be accepted on receipt of “Satisfactory” test report. Acceptance samples shall be obtained, tested, and recorded in accordance with the contract documents, and Sections 9-3 and 9-7 of this manual.
 b. Streambed Cobbles, Streambed Boulders and Habitat Boulders: Visual Acceptance per Section 9-1.4C of this manual. Approximate size can be determined per Section 9-03.11 of the Standard Specifications.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Ensure that the gradation for streambed sediment remains constant.

6. Other Requirements: None

9-4.83 Temporary Traffic Control Materials

1. Approval of Materials and Systems: Approval of materials prior to use is required for:
 a. Truck and Trailer Mounted Attenuators: Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.
 b. Streambed Sediment: Materials shall be accepted on receipt of “Satisfactory” test reports.

RAM submittal: The contractor shall provide certification that the unit complies with NCHRP 350 Test Level 3 requirements.
b. Portable Temporary Traffic Control Signal: Material will be approved per Section 1-10.3(3)K of the Standard Specifications.

c. Pavement Markings: refer to Section 9-4.55 of this Manual.

Prior approval is not required for:
- Barricades
- Barrier Drums
- Construction Signs
- Portable Changeable Message Signs
- Sequential Arrow Signs
- Sign Covering
- Stop/Slow Paddles
- Tall Channelizing Devices
- Traffic Cones
- Traffic Safety Drums
- Tubular Markers
- Warning Lights and Flashers
- Wood Sign Posts

2. Preliminary Samples: No preliminary sample required.

3. Acceptance:
 a. Stop/Slow Paddles, Wood Sign Supports, Sign Covering: Visual Acceptance per Section 9-1.4C of this manual to ensure good condition and conformance to the appropriate WSDOT Standard Specification.

 b. Construction Signs, Sequential Arrow Signs, Portable Changeable Message Signs, Barricades, Traffic Safety Drums, Barrier Drums, Traffic Cones, Tubular Markers, Warning Lights and Flashers, Tall Channelizing Devices: Visual Acceptance per Section 9-1.4C of this manual to ensure the signs and traffic control devices are acceptable or marginal as defined in Quality Guidelines for Temporary Traffic Control Device and conform to the appropriate WSDOT Standard Specification.

 c. Portable Temporary Traffic Control Signal: Visual Acceptance per Section 9-1.4C of this manual. All Portable Temporary Traffic Control Signals must be accepted prior to use. Inspect all Portable Temporary Traffic Control Signals to ensure good condition, functionality and conformance to the appropriate WSDOT Standard Specification.

 d. Truck and Trailer Mounted Attenuator (TMA): Visual Acceptance per Section 9-1.4C of this manual. All Truck and Trailer Mounted Attenuators shall be selected from the approved manufacturers and models listed in the QPL and inspected for condition, reflectivity and conformance to the appropriate WSDOT Standard Specification.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Field verify all temporary traffic controls devices to ensure good working order, cleanliness, and appropriate reflectivity.

5. Specification Requirements: See Standard Specification Section 1-10, 8-21.3(3) and 9-35. Review contract documents to determine if supplemental specifications apply.

6. Other Requirements: None

9-4.84 Modular Expansion Joint

1. Approval of Material: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. Preliminary Samples: Preliminary samples of the material will be required by the contract provisions or if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: As determined by the WSDOT Materials Fabrication Inspection Office, Modular Expansion Joints may be inspected at the point of manufacture prior to shipping or at the jobsite by the Materials Fabrication Inspector. Contract Provision may provide for job site inspection of the Modular Expansion Joints by the Engineer. Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

 Modular Expansion Joints delivered to the job site without “APPROVED FOR SHIPMENT” stamps and/or tags require Materials Fabrication Inspection. Contact the WSDOT Materials Fabrication Inspection Office for inspection and required documentation needed prior to their physical inspection of the Modular Expansion Joints.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it.

5. Specification Requirements: Modular Expansion Joints specifications are currently specified in General Special Provisions. Review the contract documents to determine the specification requirements.

6. Other Requirements: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

 For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
9-4.85 Junction Boxes, Cable Vaults and Pull Boxes

1. Approval of Material:
 Fabrication Inspection items: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

 Note: Approved design/shop drawings are available online at www.wsdot.wa.gov/Design/Traffic/shopdrawings.htm. Online drawings represent fabricators designs that have passed initial proof load testing for design approval. The Online drawings maintained by the WSDOT Traffic Design Office are used to inspect Junction Boxes, Cable Vaults and Pull Boxes.

 Non-Fabrication Inspection Items: Approval of the Surface/Barrier Mounted Junction Boxes are required prior to use. The Surface/Barrier Mounted Junction Boxes will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

 RAM Submittal: Attach Catalog Cuts (WS DOT Form 350-072 EF) and/or Shop Drawing to the State Materials Laboratory to assist in the approval process.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:
 a. Type 1, 2, and 8 Junction Boxes:
 1) Concrete: Acceptance is based on “WSDOT INSPECTED” Stamp (Figure 9-3). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.
 2) Non-Concrete: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual including an Independent Test Report from a Nationally Recognized Testing Laboratory.
 b. Type 4, 5, and 6 Junction Boxes: Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.
 c. Cable Vaults and Pull Boxes: Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.
 d. Surface/Barrier Mounted Junction Boxes: Visual Acceptance per Section 9-1.4C of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Check for appropriate “WSDOT INSPECTED” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it.

6. Other Requirements:
 a. Materials Fabrication Inspected CMO: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.
 For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
 b. Non-Fabrication Inspected CMO: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.86 Precast Bridge Deck Panels, Floor Panels, Marine Pier Deck Panels, Noise Barrier Walls, Pier Caps, Retaining Walls, Roof Panels, Structural Earth Walls, Wall Panels, and Wall Stem Panels

1. Approval of Material: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.
4. **Field Inspection**: Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it. Check for damage caused by shipping and handling.

5. **Specification Requirements**: See Standard Specifications Section 6-02.3(25), 6-02.3(28), 6-11, 6-12, and 6-13. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements**: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.87 Precast Reinforced Concrete Three Sided Structures

1. **Approval of Material**: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. **Preliminary Samples**: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance**: Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

4. **Field Inspection**: Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it. Check for damage caused by shipping and handling.

5. **Specification Requirements**: Review the contract documents to determine the specification requirements.

6. **Other Requirements**: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.88 Precast Concrete Vaults (Utility, Drainage etc.) and Box Culverts

1. **Approval of Material**: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. **Preliminary Samples**: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance**: Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

4. **Field Inspection**: Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” stamp for foreign or domestic steel and document it. Check for damage caused by shipping and handling.

5. **Specification Requirements**: Review the contract documents to determine the specification requirements.

6. **Other Requirements**: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.89 Miscellaneous Metal Drainage Items (Frame and Grate for Grate Inlet and Drop Inlet, Flow Restrictors, Oil Separators, Safety Bars)

1. **Approval of Material**: Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.
2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it. Check for damage caused by shipping and handling.

5. **Specification Requirements:** See Standard Specifications Section 9-05.16. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.91 Miscellaneous Welded Structural Steel

1. Approval of Material

Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. Preliminary Samples

A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance

Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

4. Field Inspection

Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it. Check for damage caused by shipping and handling.

5. Specification Requirements

See Standard Specifications Section 6-03. Review contract documents to determine if supplemental specifications apply.

6. Other Requirements

Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.92 Wood Bridges

1. Approval of Material

Approval of the Fabricator is required prior to the start of fabrication. The Fabricator will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification. Materials used within the fabricated item do not require approval through the Project Engineer Office. Provide the WSDOT Materials Fabrication Inspection Office with a copy of the Qualified Products Page or Request for
Approval of Material listing the Fabricator. Review of the Contract Special Provisions is necessary to determine if special qualifications or testing is required for approval of the fabricator.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** Acceptance is based on “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5). An “F” or “D” will be stamped to indicate the steel or iron is of foreign or domestic origin.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Check for “APPROVED FOR SHIPMENT” Stamp and/or Tag (Figure 9-4 or 9-5) and the “F” or “D” Stamp for foreign or domestic steel and document it. Check for damage caused by shipping and handling.

5. **Specification Requirements:** Review contract documents to determine the specification requirements.

6. **Other Requirements:** Certificate of Material Origin for steel components will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.93 Electrical Service Cabinets

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

RAM Submittal: Attach Catalog Cuts for components using the Catalog Cut Transmittal (DOT Form 350-072 EF) and fully dimensioned Shop Drawings to assist in the approval process.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** Acceptance shall be by the Manufacturer’s Certificate of Compliance with supporting Mill Certification per Section 9-1.4D of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual. Verify the Electrical Service Cabinet assembly received on the job site, has a Manufacturer’s Quality Check List.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.94 Monument Case, Cover and Riser

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). An on-site inspection of the fabricating facilities prior to approval will be required only if a new manufacture is requested on the Request for Approval of Material (DOT Form 350-071). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** Acceptance shall be by the Manufacturer’s Certificate of Compliance with supporting Mill Certification per Section 9-1.4D of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** See Standard Specifications Section 9-22. Review contract documents to determine if supplemental specifications apply.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.95 Steel Bollards

1. **Approval of Material:** Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). An on-site inspection of the WSDOT Materials Fabrication Office of the fabricating facilities prior to approval will be required only if a new manufacture is requested on the Request for Approval of Material (DOT Form 350-071). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. **Preliminary Samples:** A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. **Acceptance:** Acceptance shall be by the Manufacturer’s Certificate of Compliance with supporting Mill Certification per Section 9-1.4D of this manual.

4. **Field Inspection:** Field verify per Section 9-1.5 of this manual.

5. **Specification Requirements:** Review contract documents to determine the specification requirements.

6. **Other Requirements:** For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
9-4.96 Metal Trash Racks and Debris Cages

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). An on-site inspection by the WSDOT Materials Fabrication Office of the fabricating facilities prior to approval will be required only if a new manufacture is requested on the Request for Approval of Material (DOT Form 350-071). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance shall be by the Certificate of Compliance per Section 9-1.4E of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Field Verify that hardware included is per the Contract Specifications and Plan.

5. Specification Requirements: Review contract documents to determine the specification requirements.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.97 Flow Restrictors and Oil Separators

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). An on-site inspection by the WSDOT Materials Fabrication Office of the fabricating facilities prior to approval will be required only if a new manufacture is requested on the Request for Approval of Material (DOT Form 350-071). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: Acceptance shall be by the Certificate of Compliance per Section 9-1.4E of this manual.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. Field Verify that hardware included is per the Contract Specifications and Plan.

5. Specification Requirements: Review contract documents to determine the specification requirements.

6. Other Requirements: For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.

9-4.98 Concrete Blocks

1. Approval of Material:

Ecology Blocks: Approval of materials is not required.

Masonry Units: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

Precast Concrete Block: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). An on-site inspection by the WSDOT Materials Fabrication Office of the fabricating facilities prior to approval will be required only if a new manufacture is requested on the Request for Approval of Material (DOT Form 350-071). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance:

a. Ecology Block: Visual Acceptance per Section 9-1.4C of this manual.

b. Masonry Units: Acceptance shall be by the Certificate of Compliance per Section 9-1.4E of this manual.

c. Precast Concrete Block: Acceptance shall be by the Manufacturer’s Certificate of Compliance per Section 9-1.4D of this manual. A cylinder test report is required for each lot of blocks delivered to the job site. The freeze/thaw report shall be acceptable for a period of two years from the date the block was manufactured.

4. Field Inspection: Field verify per Section 9-1.5 of this manual. The field inspector is required to document in their IDR the ‘lot’ number of the precast concrete block as it is delivered to the job site.

6. Other Requirements: Certificate of Material Origin will be the responsibility of the Materials Fabrication Inspector as defined in Section 9-2.1A of this manual.

For projects with the Buy America requirement, the Project Engineer Office is required to obtain the Certificate of Materials Origin for all foreign steel or iron materials, from the Contractor, track the quantity and retain these documents in the project records.
9-4.99 Parting Compound for Concrete Forms

1. Approval of Material: Approval of materials is required prior to use. Materials will be approved by the Qualified Products List or Request for Approval of Material (DOT Form 350-071 EF). Be certain to verify that the product is in fact qualified for its intended use and the product is listed under the appropriate specification.

2. Preliminary Samples: A preliminary sample of the material will be required only if coded on the Request for Approval of Material (DOT Form 350-071 EF).

3. Acceptance: If the lot is listed on the QPL, it may be used without testing on current projects per Section 9-1.4A(1) of this manual. If the lot is not on the QPL, submit a one-quart sample taken by, or in the presence of, an agency representative for each lot. Samples must be submitted for testing 10 days prior to use of parting compound. Samples submitted shall be accepted on receipt of “Satisfactory” test reports from the State Materials Laboratory.

4. Field Inspection: Field verify per Section 9-1.5 of this manual.

6. Other Requirements: There may be special shipping requirements for parting compound. These samples shall be transported to the Region Materials Laboratory for proper shipping.

Quality Assurance Program

9-5 Quality Assurance Program

9-5.1 General

The purpose of the Washington Department of Transportation (WSDOT) Quality Assurance Program (QAP) is to ensure that materials incorporated into any highway construction project are in conformity with the approved plans and specifications, including any approved changes. This program also conforms to the criteria in FHWA regulation for Quality Assurance Procedures for Construction (23 CFR 637).

The QAP includes the following:
- Qualified Tester Program
- Equipment Calibration/Standardization/Check and Maintenance Program
- Qualified Laboratory Program
- Independent Assurance (IA) Program

9-5.2 Quality Assurance Program Structure and Responsibilities

Table 9-3 outlines the structure of the quality program for WSDOT.
State Materials Laboratory (SML) Requirements

<table>
<thead>
<tr>
<th>State Materials Engineer</th>
<th>Oversees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- WSDOT Quality System Program</td>
</tr>
<tr>
<td></td>
<td>- Accreditation of State Materials Laboratory</td>
</tr>
<tr>
<td></td>
<td>- Program compliance reports to FHWA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality Systems Manager</th>
<th>Management of WSDOT’s Quality System Program which includes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Qualified Testers</td>
</tr>
<tr>
<td></td>
<td>- Independent Assurance</td>
</tr>
<tr>
<td></td>
<td>- Qualified Laboratory</td>
</tr>
<tr>
<td></td>
<td>- Maintaining Calibration/Standardization/Check Equipment Procedures</td>
</tr>
<tr>
<td></td>
<td>- Auditing SML and Regions compliance to the requirements of the QAP</td>
</tr>
<tr>
<td></td>
<td>- Supervising Laboratory Review Team</td>
</tr>
<tr>
<td></td>
<td>- Compiling yearly report for FHWA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SML Laboratory Managers</th>
<th>Management of their laboratory’s QAP which includes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Maintaining qualified testers</td>
</tr>
<tr>
<td></td>
<td>- Maintaining calibrated/standardized/checked equipment for their department</td>
</tr>
<tr>
<td></td>
<td>- Maintaining AMRL/CCRL Accreditation</td>
</tr>
</tbody>
</table>

Region Materials Laboratory Requirements

<table>
<thead>
<tr>
<th>Region Materials Engineer</th>
<th>Oversees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Region Quality System Program</td>
</tr>
<tr>
<td></td>
<td>- Qualification of Region Materials Laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region Laboratory Supervisor</th>
<th>Management of the Region Laboratory Quality System Program which includes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Maintaining qualified testers</td>
</tr>
<tr>
<td></td>
<td>- Maintaining calibrated/standardized/checked equipment for the Region Materials Laboratory and field laboratories</td>
</tr>
<tr>
<td></td>
<td>- Participating in biannual laboratory review</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region Independent Assurance Inspector</th>
<th>Management of the Region’s QAP which includes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Qualified Tester</td>
</tr>
<tr>
<td></td>
<td>- Determining how the program will be implemented in the Region within the guidelines of this Section</td>
</tr>
<tr>
<td></td>
<td>- Proctoring written and proficiency examinations</td>
</tr>
<tr>
<td></td>
<td>- Maintaining documentation of tester qualification</td>
</tr>
<tr>
<td></td>
<td>- Independent Assurance</td>
</tr>
<tr>
<td></td>
<td>- Determining frequency of visits</td>
</tr>
<tr>
<td></td>
<td>- Witnessing IA process in the field</td>
</tr>
<tr>
<td></td>
<td>- Investigating excessive deviations on split samples and aiding in the review of reports of deviation from specified sampling and testing procedures</td>
</tr>
<tr>
<td></td>
<td>- Providing yearly report of IA to Quality Systems Manager</td>
</tr>
<tr>
<td></td>
<td>- Other Functions (optional by Region)</td>
</tr>
<tr>
<td></td>
<td>- Conducting initial training for qualification.</td>
</tr>
<tr>
<td></td>
<td>- Mentoring new or newly qualified testers to enhance efficiency and confidence.</td>
</tr>
<tr>
<td></td>
<td>- Assisting in or conducting testing and inspection training in concert with the Regional Construction Trainer.</td>
</tr>
<tr>
<td></td>
<td>- Reviewing materials, test-related records, and forms.</td>
</tr>
<tr>
<td></td>
<td>- Radiation Safety Officer</td>
</tr>
</tbody>
</table>
Project Engineering Office Requirements

| **Project Engineer** | Management of the Project Office QAP which includes:
 • Training of qualifying testers
 • Providing training opportunities
 • Providing opportunity for experience in the field
 • Maintaining qualified testers on projects
 • Maintaining staff of qualified testers to perform the testing on all projects under the management of the Project Engineer |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PE Office Contact</td>
<td></td>
</tr>
</tbody>
</table>
 • Tracking qualification of testers
 • Contacting IAI to schedule tester qualification or requalification
 • Contacting IAI to schedule an IA visit |
| **Individual Tester Requirements** |
 | **Qualified Tester** | Management of personal qualification which includes:
 • Preparing for requalification
 • Notifying office contact of approaching expiration of qualification. Notification should be one month in advance of the expiration of qualification
 • Notifying office contact to schedule an IA review |
| **Unqualified Tester** | Management of personal qualification which includes:
 • Reading test procedure
 • Hands-on practice of test procedure
 • Notifying office contact when ready for written and proficiency examinations |

Table 9-3

9-5.3 Qualified Tester Program

This program provides uniform statewide procedures for sampling and testing personnel qualification to ensure that tests required by the specifications are performed according to the prescribed sampling and testing methods. This program is based on AASHTO R 25.

All personnel who perform acceptance testing on materials must be qualified in the test method they are performing or may work under the direct supervision of a tester qualified as a trainee. An individual may only work as a trainee for one year.

It is the responsibility of the Project Engineer to ensure that all personnel sampling or testing materials on a project or in a field laboratory are qualified.

9-5.3A Types of Qualifications

The Qualified Tester Program has two types of qualifications; Module Qualified Testers and Method Qualified Testers.

9-5.3A(1) Module Qualified Tester

A module qualified tester is an individual that has proficiency in one or more testing modules. There are five modules which represent the majority of the acceptance tests performed on highway projects. Each module contains a defined list of test procedures.

To qualify as a Module Qualified Tester, an individual must pass a written and a proficiency examination for each method in the module. These modules are listed in Table 9-4.
Aggregate Module

<table>
<thead>
<tr>
<th>Procedure Number</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO T-2</td>
<td>WSDOT FOP for AASHTO for the Sampling of Aggregates</td>
</tr>
<tr>
<td>AASHTO T-27/T11</td>
<td>FOP for WAQTC/AASHTO for the Sieve Analysis of Fine & Coarse Aggregates</td>
</tr>
<tr>
<td>AASHTO T-176</td>
<td>WSDOT FOP for AASHTO for Determining the Plastic Fines in Graded Aggregate by Use of the Sand Equivalent Test</td>
</tr>
<tr>
<td>AASHTO T-248</td>
<td>WSDOT FOP for AASHTO for Reducing Field Samples of Aggregates to Testing Size</td>
</tr>
<tr>
<td>AASHTO T-255</td>
<td>WSDOT FOP for AASHTO for Determining the Total Moisture Content of Aggregate by Drying</td>
</tr>
<tr>
<td>AASHTO T-335</td>
<td>FOP for AASHTO for Determining the Percentage of Fracture in Coarse Aggregate</td>
</tr>
<tr>
<td>AASHTO T-304</td>
<td>WSDOT FOP for AASHTO Uncompacted Void Content of Fine Aggregates</td>
</tr>
</tbody>
</table>

Hot Mix Asphalt Module

<table>
<thead>
<tr>
<th>Procedure Number</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO T-168</td>
<td>FOP for WAQTC/AASHTO for the Sampling Bituminous Paving Mixtures</td>
</tr>
<tr>
<td>AASHTO T-209</td>
<td>WSDOT FOP for AASHTO for Determining the Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures</td>
</tr>
<tr>
<td>AASHTO T-27/T11</td>
<td>FOP for WAQTC/AASHTO for the Sieve Analysis of Fine & Coarse Aggregates</td>
</tr>
<tr>
<td>AASHTO T-40</td>
<td>FOP for WAQTC/AASHTO for Sampling Bituminous Materials</td>
</tr>
<tr>
<td>AASHTO T-166</td>
<td>WSDOT FOP for AASHTO Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface Dry Specimens</td>
</tr>
<tr>
<td>AASHTO T-308</td>
<td>WSDOT FOP for AASHTO for Determining Asphalt Content of Hot Mix Asphalt (HMA) by the Ignition Method</td>
</tr>
<tr>
<td>AASHTO T-329</td>
<td>FOP for AASHTO Moisture Content of Hot Mix Asphalt (HMA) by Oven Method</td>
</tr>
<tr>
<td>WSDOT 712</td>
<td>Standard Method of Reducing Bituminous Paving Mixtures</td>
</tr>
<tr>
<td>WSDOT 716</td>
<td>Method of Random Sampling for Location of Testing and Sampling Sites</td>
</tr>
<tr>
<td>AASHTO T 312</td>
<td>FOP for AASHTO for Preparing and Determining the Density of Hot-Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor</td>
</tr>
</tbody>
</table>

Concrete Module

<table>
<thead>
<tr>
<th>Procedure Number</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO T-23</td>
<td>WSDOT FOP for AASHTO for Making and Curing Concrete test Specimens in the Field</td>
</tr>
<tr>
<td>AASHTO T-119</td>
<td>WSDOT FOP for AASHTO for Determining the Slump of Hydraulic Cement Concrete</td>
</tr>
<tr>
<td>AASHTO T-152</td>
<td>FOP for WAQTC/AASHTO for Determining the Air Content of Freshly Mixed Concrete by the Pressure Method</td>
</tr>
<tr>
<td>WAQTC TM-2</td>
<td>Sampling Freshly Mixed Concrete</td>
</tr>
<tr>
<td>AASHTO T-309</td>
<td>WSDOT FOP for AASHTO for Determining the Temperature of Freshly Mixed Portland Cement Concrete</td>
</tr>
<tr>
<td>WSDOT 716</td>
<td>Method of Random Sampling for Location of Testing and Sampling Sites</td>
</tr>
</tbody>
</table>

Embankment and Base Density Module

<table>
<thead>
<tr>
<th>Procedure Number</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO T-310</td>
<td>WSDOT FOP for AASHTO for In-Place Density and Moisture Content of Soil and Soil Aggregate by Nuclear Method</td>
</tr>
<tr>
<td>WSDOT SOP 615</td>
<td>Determination of the % Compaction for Embankment & Untreated Surfacing Materials Using the Nuclear Moisture-Density Gauge</td>
</tr>
</tbody>
</table>

Hot Mix Asphalt Density Module

<table>
<thead>
<tr>
<th>Procedure Number</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAQTC TM-8</td>
<td>FOP for WAQTC for In Place Density of Bituminous Mixtures Using the Nuclear Moisture Gauge</td>
</tr>
<tr>
<td>WSDOT 716</td>
<td>Method of Random Sampling for Location of Testing and Sampling Sites</td>
</tr>
</tbody>
</table>
9-5.3A(2) Method Qualified Tester
A Method Qualified Tester is an individual that has proficiency in one or more test procedures which may partially encompass methods in the qualification modules.

9-5.3B Qualification Process
All persons responsible for sampling of materials and performing acceptance testing on a project are required to be qualified. To become qualified an individual must pass a proficiency examination or a combination of a proficiency and written examination.

9-5.3B(1) Frequency of Qualification
A State Materials Laboratory (SML) qualification is good for one calendar year from the date of qualification. (Example: Qualification on January 2, 2009 expires on January 2, 2010)
A Region Laboratory/Field Testing qualification is good from the date of qualification to December 31 of the year following qualification. (Example: Qualification on January 2, 2009 expires on December 31, 2010)
Qualification may not be granted or maintained by Grandfathering, the acceptance of a Professional Engineer or Engineer-in-Training certificate, or lifetime qualification.

9-5.3B(2) Preparation for Initial Qualification
Prior to an individual taking either the written exam or the proficiency exam it is the responsibility of the Project Engineer to make sure the following requirements have been met by the individual:
- Studied and understands the test method(s) for the method or module
- Has watched the test performed by a qualified tester, attended classroom training or on-line training relevant to the test procedure
- Has practiced the test procedure under the supervision of a qualified tester
- Has successfully completed a hands-on demonstration of the test procedure which conforms to test method checklist(s) without coaching
- Has worked in the field or laboratory under the close supervision of a qualified tester experienced in the test method(s)

These requirements may be waived for individuals with previous testing certification such as; WAQTC or ACI.

9-5.3C Initial Qualification Examination Requirements
Qualification examinations will be either a proficiency examination or a combination of proficiency and written examination. Written and proficiency examinations are given to determine if the tester possesses the knowledge and skills necessary to satisfy the established qualification requirements.

Written and proficiency examinations for qualification of testers will be administered by the one or more of the following WSDOT personnel:
- Region Independent Assurance Inspector (IAI)
- Assistant Regional IAI, Construction Trainer
- Qualified Region Materials Laboratory staff under the direction of the Region Materials Engineer
- Qualified SML laboratory staff under the direction of the State Materials Engineer

Written examinations and checklists for proficiency examinations will be reviewed and updated yearly, under the direction of the Quality Systems Manager. Updated examinations will be published to the Independent Assurance Inspectors share site each year no later than January 30.

The individual administering any proficiency examination shall document the examination using the appropriate test method checklist from the Construction Manual, Materials Manual, AMRL or CCRL.

9-5.3C(1) Written Examinations
Written examinations are required for Module Qualification and are optional for Method Qualification. Written Module Qualification examinations will consist of a series of written examinations based on each test procedure within the modules listed in Table 9-4.

The written examinations will be closed book and will consist of five or more multiple choice questions.

To successfully pass a written examination the individual must have a score of 60 percent or more on any individual method examination and an overall module score of 70 percent or more.

9-5.3C(2) Proficiency Examinations
Using a test procedure checklist from the Construction Manual, Materials Manual, AMRL or CCRL the examiner will document the tester’s conformance to the test procedure. The tester is required to have a current copy of the test procedure available during the proficiency examination. Scoring of the proficiency exam will be on a Satisfactory/Unsatisfactory basis.

A satisfactory performance rating will be given for a performance that consists of the following:
1. Performing the key elements of the procedure correctly and in sequential order as established by the Test Method Checklist.

Note: Incidences of single to several errors as isolated, first-time occurrences, which are acknowledged and corrected on the spot and discussed with the proficiency examination administer may constitute satisfactory performance.

2. Completing the test within the time limit of the test procedure or a reasonable time as defined by the administrator of the test.

3. Performing the calculations correctly
Chapter 9 Materials

An unsatisfactory performance rating will be given for a performance that consists of repeated infractions or incorrect performance of individual critical items on the checklist and/or the inability to complete the test method within the designated time limit.

The following items will result in immediate termination of the proficiency examination:
- observed falsification of test reports
- violations of safety, hazardous materials
- violations of nuclear materials security standards
- failure to provide proper care of equipment

9-5.3D Documentation of Initial Qualification

The IAI will be responsible for maintenance of the Region’s qualified tester information in the Tester Qualification Database and in hard copy files within the Region. Originals of each tester’s qualification examination (written examination and checklist) will be kept in the Region files for a minimum of seven years.

The State Materials Laboratory will be responsible for maintaining the Tester Qualification computer program.

9-5.3E Failure of Examination

An individual failing either the written or proficiency examination may request a reexamination. The waiting period for reexamination is as follows:

1. **First Failure:** a minimum of three days waiting period, unless this time limit is waived by the IAI.

2. **Second Failure:** a minimum of a one week waiting period or a minimum of three days waiting period and a letter from the Project Engineer documenting the steps taken to prepare the individual for reexamination.

3. **Three or more consecutive failures:** a minimum of a one month waiting period and a letter from the Project Engineer documenting the steps taken to prepare the individual for reexamination.

9-5.4 Requalification of Testing Personnel

Once a tester’s qualification expires he/she may no longer perform acceptance testing until a requalification visit has been satisfactorily completed. Therefore, to prevent a lapse in qualification the tester should notify the Project Office contact one month in advance of their qualification expiration. Upon notification of the pending qualification expiration the Office contact should get in touch with the IAI to schedule a requalification visit.

9-5.6 Suspension of Qualification

An IAI may recommend to the Regional Materials Engineer that a tester’s qualification be suspended for the following items:

1. repeated failure of proficiency examinations for requalification
2. observed falsification of test reports
3. violations of safety that may result in injury or death to the individual or coworkers
4. violation of hazardous materials or nuclear materials security standards
5. failure to provide proper care of equipment

If an IAI recommends suspension of a tester’s qualification, a letter documenting the reason(s) for suspension of qualification will be sent to the tester’s Project Engineer. Upon receipt of the letter the Project Engineer will remove the tester from performing the tests related to the suspension of qualification until all issues have been resolved to the satisfaction of the IAI.
In the case of a serious safety issue or a violation of nuclear material security standard, the IAI will notify the Project Engineer of the violation and may request the removal of the tester from the performance of that test procedure(s). The IAI will document the violation. The Region Materials Engineer, with recommendations from the IAI and the Project Engineer, will determine the duration of the suspension of qualification.

9-5.7 Report of Deviation from Specified Sampling and Testing Procedures
A report of a deviation from specified sampling and testing procedures requires following the procedure outlined in Section I-06.2(1) of the Standard Specifications. The Project Engineer should work with the Region IAI to review the test procedure and determine what, if any, deviation occurred during the sampling and testing. After determining if a deviation took place the Project Engineer can respond in writing to the report.

9-5.8 Calibration/Standardization/Check of Equipment
All laboratory equipment will be calibrated/standardized/checked as required by the test procedures, AASHTO R 18 or WSDOT Verification Procedures. The State Materials Laboratory will calibrate/standardize/check all required equipment every 12 months unless otherwise stated in the test procedure, AASHTO R 18 or the WSDOT Verification Procedures. Regional and field laboratories will calibrate/standardize/check all required equipment once a year unless otherwise specified by the WSDOT Verification Procedures. All calibration/standardization/checks will be completed by April 1st of each year. A tag bearing the year the calibrate/standardize/check expires will be affixed to all calibrated/standardized/checked equipment. The tags will be provided to the Regions each year by the Quality Systems Manager.

9-5.9 Qualified Laboratories
All laboratories performing acceptance testing on State or Federal funded construction projects must be qualified. Qualification of the State Materials Laboratory will be by accreditation through the AASHTO Accreditation Program (AAP).

9-5.9A Qualification of Region or other subordinate laboratories
Qualification of Region or other subordinate laboratories requires the following:
1. Identification of all test methods performed on a regular basis. Methods must conform to those established by WSDOT for materials acceptance.
2. Annually, calibration/standardization/check equipment laboratory and field test equipment, using State Materials Laboratory equipment calibrated/standardized or checked equipment procedure. All calibrated/standardized or checked equipment must have a calibration tag stating the expiration date of the calibration/standardization/check.
3. Maintain staff qualification for all methods performed in the laboratory. Qualification shall be either by Module Qualified Tester or Individual Method Qualified tester.
4. Each Region laboratory will be reviewed biennially by a team from the State Materials Laboratory. The process of the review will be in accordance with QC3, which is modeled after the AASHTO Materials Reference Laboratory (AMRL) inspection program.

9-5.9B Qualification of Private Laboratories
Qualification of Private Laboratories requires the following:
1. Approval for use by the State Materials Engineer
2. The private laboratory must have an up-to-date Laboratory Quality Systems Manual meeting the requirements of AASHTO R 18
3. The private laboratory must have documentation of tester training and qualification meeting the requirements of AASHTO R 25
4. The testing equipment must be labeled with a sticker showing the date of calibration/standardization/check and all equipment calibration/standardization/check documentation must meet requirements of AASHTO R 18
5. The State Materials Laboratory Review team may conduct a yearly on-site review of the laboratory facilities, tester performance and calibration/standardization/check of the testing equipment in accordance with QC 3

9-5.10 Independent Assurance Program (IAP)
The IAP shall consist of a system based approach to Independent Assurance (IA). This approach bases the frequency of IA evaluations on time, regardless of the number of tests, quantities of materials, or numbers of projects tested by the active qualified tester. This program is based on AASHTO R 44.
The overall IAP for the Region will be managed by the Region’s IAI. Each active qualified tester will have an IA evaluation for each module or method they are qualified in once a year. An active qualified tester is defined as, any qualified tester performing at least one acceptance test per year. The Project Office is responsible for contacting the IAI and scheduling an IA visit when the following testing is occurring on a project:
• Concrete
• Aggregate
• HMA
• Density (HMA or Embankment)
The on-site evaluation of module qualified testers shall include evaluation of all test methods in the applicable qualification module. Method qualified testers will be evaluated in the performance of the individual test method.
IAP evaluations will be performed as follows:
• Concrete and Density test method evaluations will be by observation.
• Hot Mix Asphalt and Aggregate test methods shown in Table 9-5 will be evaluated by observation and split sample. All other Hot Mix Asphalt and Aggregate test methods will be evaluated by observation only.
• Hot Mix Asphalt and Aggregate test methods shown in Table 9-5 will be evaluated by observation and split sample. All other Hot Mix Asphalt and Aggregate test methods will be evaluated by observation only.

• The field split of HMA or Aggregate will be tested by the individual who sampled and reduced the material, under the observation of the IAI or a qualified Region laboratory staff member under the direction of the Region Materials Engineer.

• The laboratory split of the IA sample must remain in the custody of the IAI until the sample is logged into the Regional Materials Laboratory.

• A qualified tester from the Region Materials Laboratory will perform the testing on the laboratory portion of the split sample. The same tester may not perform both the field and the laboratory testing on an IA sample.

• The same equipment may not be used to test the laboratory and the field portions of the IA split sample.

• All equipment used for testing the split samples will be evaluated for condition and current calibration/standardization/check tags.

A record of the evaluation will be kept by the IAI in the Region Office and provided to the PE upon request. The record should contain the following:

- Name of qualified tester
- Observations concerning the condition of the testing equipment
- Observations concerning the performance of the qualified tester including, suggestions or on-the-spot corrections for improving the tester’s performance.

9-5.10A Comparison Evaluation of the Independent Assurance Sample

The IA split sample will be tested by the Region Laboratory except, when the Region Laboratory performs the acceptance testing. If the Region Materials Laboratory performs the acceptance testing then, the IA split sample will be tested by the State Materials Laboratory or another Region Materials Laboratory. The tester performing the comparison evaluation of the Independent Assurance sample must be qualified in the procedures being evaluated.

The calibrated/standardized/checked testing equipment used for the comparison must be different equipment than that used by the field during the split sample evaluation.

9-5.10B Assurance and Acceptance Test Results

Independent Assurance split samples will be compared using Table 9-5. Reports of the degree of conformance will be sent to the Project Engineer and the Region IAI by the Region Materials Engineer (RME).

Comments reflecting the degree of conformance will be entered in the remarks section of the report by the Regional Materials Engineer. The degree of conformance will be determined according to the deviation ranges noted below. Gradation test results will be compared only on specification screens.

<table>
<thead>
<tr>
<th>Test</th>
<th>Normal Range of Deviation</th>
<th>Maximum Range of Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Equivalent</td>
<td>± 8 points</td>
<td>± 15 points</td>
</tr>
<tr>
<td>Fracture</td>
<td>± 5 percent</td>
<td>± 10 percent</td>
</tr>
<tr>
<td>Asphalt Binder Content (HMA&ATB)</td>
<td>± 0.3 percent</td>
<td>± 0.6 percent</td>
</tr>
<tr>
<td>Sieve Analysis — All Items: No.4 sieve and larger</td>
<td>± 5 percent</td>
<td>± 8 percent</td>
</tr>
<tr>
<td>No. 6 sieve to No. 80 sieve</td>
<td>± 3 percent</td>
<td>± 6 percent</td>
</tr>
<tr>
<td>No. 100 sieve to No. 200 sieve</td>
<td>± 2 percent</td>
<td>± 4 percent</td>
</tr>
</tbody>
</table>

Table 9-5

In the table above, “Normal Range” indicates an acceptable range of variation between test results and no action is required. Test results that fall in this category will be so indicated by the wording “normal deviation” on the IA reports.

Test results falling outside of the “Normal Range” but within the “Maximum Range,” will be indicated by the wording “questionable deviation” on the IA reports.

Deviations falling into the questionable category will be reviewed by the Region IAI. The review may include the following:

- check for calculation errors
- review of sampling and splitting procedure
- review of test procedure

Findings of the review will be documented and a copy of the report retained in the Region IAI’s file.

Test results exceeding the maximum range will be indicated by the wording “excessive deviation.” Deviations falling in the excessive category will require a review by the Region IAI. The review will include the items listed under questionable deviations and may require the field tester to pull another IA sample. The IAI will document the findings of the review. If further action is required the IAI will submit a report to the Region Materials Engineer and Project Engineer. If further action is not required a copy of the report will be retained in the IAI’s files.

9-5.10C Independent Assurance Report

WSDOT is required by 23 CFR Part 637 to provide an annual report to the FHWA summarizing the results of the IA program. These reports provide a tool for the Region and WSDOT to analyze trends, identify training needs, and make improvements.

Each Region IAI will submit an annual IA report to the Quality Systems Manager. The report will be submitted in January and will summarize the IA results of the previous year. The annual report will include the following:
1. Number or percent of testers evaluated,
2. How often the qualified testers were evaluated,
3. If applicable, include a general statement as to why all qualified testers were not evaluated.
4. What, if any, problems occurred and why; and
5. A general statement as to how any problems that were reported were resolved.

The focus of Independent Assurance sampling is based on individual tester’s activity and is not intended to provide independent assurance sample reports on all projects or on all materials on any particular project.

9-6 Radioactive Testing Devices

9-6.1 Administration and Safety

This chapter provides guidance for personnel using, and administering the use of, nuclear density gauges. The instructions included in this chapter will be used throughout the Washington State Department of Transportation for the express purpose of regulating the use of nuclear density gauges containing radioactive materials.

Each Region shall have a Radiation Administration Officer (RAO) and a Radiation Safety Officer (RSO) whose duties are described in Sections 9-6.2 and 9-6.3 respectively. All Regional RAO and RSO personnel must have radiation safety training. Only personnel who have successfully completed the WSDOT “Nuclear Gauge Safety and Operations” course are authorized to use or transport the nuclear density gauge. Personnel transporting gauges through a common carrier are required to have training that satisfies USDOT training requirements of 49 CFR 172, subpart H (HAZMAT). Recurrent training is required every 3 years (every 2 years if gauges are to be shipped by air). Personnel performing acceptance testing with the nuclear density gauge must become a qualified or interim tester in either TM-8, In-Place Density of Bituminous Mixtures Using the Nuclear Moisture Gauge, and or, T-310, In-Place Density and Moisture Content of Soils and Soil-Aggregate by Nuclear Method. The operator’s responsibilities for safety and security of the gauges are described in Section 9-6.4.

All personnel using or responsible for the nuclear density gauge shall be:

1. Thoroughly familiar with the safe handling techniques for using radioactive materials.
2. Fully informed of the hazards to health that exists near radioactive materials.
3. Completely familiar and in compliance with the following rules and regulations:
 a. Rules and Regulations for Radiation Protection by the State Department of Health, Division of Radiation Protection, Title 246, WAC.

Copies of the above publications will be kept by the Region Radiation Safety Officer and at the storage location of the gauge. A copy of the Radiation Emergency Handbook will also be supplied with each nuclear density gauge. Authorized Operator(s) will read this handbook before using the radioactive testing device for testing.

If an emergency as outlined in the Radiation Emergency Handbook occurs, the following people or agencies should be notified by the individual in charge of the nuclear density gauge:

1. Radiation Safety Officer
2. Radiation Administration Officer

The RSO or the RAO will notify the following people or agencies:

1. Radiation Control Program; Health Services Division; State Department of Health; Olympia, Washington 98504 (Phone 206/NUCLEAR).
2. Washington State Patrol, if a public hazard exists.
3. State Radiation Administration Officer or Radiation Safety Officer, at the Materials Laboratory.

The telephone numbers of these agencies or individuals will be posted at all storage sites and a copy of these numbers shall be kept with each nuclear density gauge.

It is paramount to the WSDOT that all employees work in a healthy and safe environment. To this end, each employee that works around or with nuclear gauges needs to know the potential hazards of working with nuclear gauges and their individual rights. Each office that uses or stores nuclear gauges shall have a copy of the latest “Sealed Source Edition Rules & Regulations for Radiation Protection” published by the Department of Health. Every employee that uses a nuclear gauge, or works near the storage location of the nuclear gauges, must review the applicable Chapters 246-220 Radiation - General Provisions; 246-221 Radiation Protection Standards; 246-222 Radiation Protection - Worker Rights and sign the “Acknowledgement of the Hazards of Working with Radiation Sources” form which is available through the Radiation Safety Officer.

Personal monitoring of radiation received from the nuclear density gauge is one of the major items in the Health Safety Program. Any individual using radioactive sources or receiving on the job training with radioactive sources must wear a radiation exposure badge which records exposure the body may receive. Radiation exposure badges are assigned to individuals they are not to be used by any other person. Any individual using radioactive sources or receiving on the job training with radioactive sources must be familiar with the conditions outlined in WAC 246-221-010 and WAC 246-221-055 regarding radiation exposure during pregnancy and dose limits to the embryo/fetus. Personnel with valid safety or health concerns may be released from the operation of nuclear gauges without prejudice to their career opportunities with the WSDOT.

The acquisition of radiation exposure badges, as needed by each Region, shall be the responsibility of the Regional Radiation Safety Officer or a designated individual with radiation safety training. These badges can be obtained from U.S. Dosimeter Technology Inc., 660 A George Washington Way, Richland, Washington 99352, Telephone (509) 946-8738, or from a firm recognized by the Department of Health to perform this service. Three-month TLD (Thermal
Luminescent Dosimeter) badges indicating exposure to gamma, beta, x-ray, and neutron radiation will be used as a minimum.

Each nuclear density gauge will be supplied in the manufacturer’s shipping container with an adequate latch. While transporting and when storing the nuclear density gauge, it must be secured with a minimum of 3 levels of security using locks:

1. Security level one is considered to be a combination of a lock on the handle of the nuclear density gauge, and a lock on the manufacturer’s shipping container.

2. Security level two is considered to be the chain and lock combination, or other locking mechanism, used to secure the manufacturers shipping container to the vehicle if in transport or field use, or to a storage bench or locker in an approved storage facility.

Note: Security level two must prevent the manufacturers shipping container from being opened if the lock is removed.

3. Security level three is considered to be:
 a. If a passenger vehicle is used for transporting, the manufacturers shipping container containing the nuclear density gauge, which is secured and locked in the trunk.
 b. If a station wagon, van, or panel truck is used, the manufacturers shipping container containing the nuclear density gauge, which is secured and locked in the back of the vehicle in such a manner as to prevent it from moving during transport.
 c. If a truck with a utility box is used, the manufacturers shipping container containing the nuclear density gauge must be secured in the utility box with the storage lid locked. The nuclear density gauge shall not be transported in the cab of the truck.
 d. If a truck with a canopy is used, the manufacturer’s shipping container containing the nuclear density gauge must be secured to the bed of the truck and the canopy lid locked. The nuclear density gauge shall not be transported in the cab of the truck.
 e. If a licensed storage location, or temporary storage facility approved by the Regional RSO is used, the storage facility door must be locked.

At all times, the key(s) for the security locks will be in the possession of the individual responsible for the nuclear density gauge.

Every effort shall be made to store and transport nuclear density gauges in a manner that minimizes its view from the general public.

When the nuclear density gauges are not in use or in transit, they must be stored with three levels of security in licensed storage locations, or temporary storage facilities approved by the Regional RSO.

Performance audits shall be conducted randomly by the Region Radiation Safety Officer or designee to ensure that each gauge user;

1) Understands the security and transportation requirements described above.
2) Has the necessary means available to use three levels of security in each of their transport vehicles.
3) Is actively employing the three levels of security while gauges are out of a licensed storage area.

The Region Radiation Safety Officer shall retain records of performance audits.

9-6.2 Radiation Administration Officer (Region Materials Engineer)

The Radiation Administration Officer (RAO) will be responsible for administering the use of radioactive material within the Region.

The RAO will obtain, revise, and renew the Region’s Radioactive Material License issued by the Washington State Department of Health. A license indicates the strength and type of radioactive sources that a Region may possess.

Licenses are issued subject to all the requirements of the Washington Rules and Regulations for Radiation Protection and to the conditions specified in the license. Licenses are also subject to any additional requirements of the Department of Health as stated in letters issued by DOH. Where a letter containing a license condition requirement differs from the Regulations, the letter will supersede the regulations insofar as the license is concerned.

When a change occurs in the use, transport or operation of nuclear density gauge which would make a statement in the current Radioactive Material License untrue, the Licensee (RSO) will notify the Department of Health and request an appropriate amendment.

The Radiation Safety Officer must be listed on the license. Individual operators are not required to be listed on the license, but the Radiation Administration Officer or RSO must maintain a list of authorized operators. This list of authorized operators should include the operator’s name, type of training, final test score, and a copy of the training certificate. The RAO or RSO will be responsible for the storage of the nuclear density gauge when not in field use and the assignment of nuclear density gauges to the individual project offices. The RAO or RSO will be responsible for maintaining the following records:

1. List of qualified operators within the Region.
2. Radioactive testing device location records.
3. Radioactive testing device shipping records.

Prior to shipping or transferring a nuclear density gauge from one licensed organization to another, the shipper shall check, and be assured that, the receiver has a valid radioactive material license; and that the shipped or transferred sources do not exceed the limitations of the receiver’s license.

Shipment to authorized personnel within the Region is covered by the Region’s license. The State Materials Laboratory shall be notified when repairs or calibration are
Each entry shall be for a period of time not exceeding one calendar quarter.

9-6.4 Authorized Operators

The Authorized Operators will be directly responsible to the RAO for the use and storage of the nuclear density gauge in the field and to the RSO for all safety in regard to the nuclear density gauge.

The Authorized Operators shall be responsible for posting the following information at all field storage areas:
1. “CAUTION — RADIOACTIVE MATERIALS” Sign.
2. DOH Form RHF-3 “Notice to Employees.”
4. DOH Form “Notification of a Radiation Emergency.”

9-6.3 Radiation Safety Officer

The Radiation Safety Officer (RSO) will be responsible for maintaining the radioactive material license. The RSO will be responsible for maintaining the following records:
1. Leak test records.
2. Medical records.
5. The Acknowledgment of the Hazards of Working with Radiation Sources form.

Leak testing is required by law and is simply a swabbing of the sealed source to ascertain that no radioactive contamination has occurred from the nuclear source. The Regional RSO shall be responsible for having each source leak tested every twelve months. The analysis of leak tests shall be done by a commercial firm licensed to do this work.

The service contract will be obtained by individual regions. Records of leak test results shall be kept in units of micro-curies and maintained for inspection. Any leak test revealing the presence of 1850 Bq or more of removable radioactive material shall be reported to the Department of Health, Division of Radiation Protection, P.O. Box 47827, Olympia, WA 98504-7827, within five days of the test. This report should include a description of the defective source or device, the results of the test, and the corrective action taken.

Leak test kits can be obtained from Troxler Electronic Laboratory, Inc. When returning the sample for testing, place the sample in a plastic envelope. Place the plastic envelope(s) in another envelope and write your regions name, address, and other pertinent details on the outside. This envelope must be marked “RADIOACTIVE MATERIALS — NO LABEL REQUIRED.”

Place this envelope into another envelope addressed to the approved facility for processing. Prior to being mailed, the contents and packing must be checked with a survey instrument and the radiation at any point on the surface must not exceed a dose rate greater than 0.005 mSv per hour in order to comply with U.S. Postal Regulations.

The RSO will be responsible for radiation exposure reports for personnel in that Region. Exposure records shall be kept on Department of Health Form RFH-5, or in a manner which includes all information required on said form.
9-7 WSDOT Testing Methods and Field Operating Procedures Included In This Manual

<table>
<thead>
<tr>
<th>Procedure Number</th>
<th>Owner</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 2</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Sampling of Aggregate</td>
</tr>
<tr>
<td>TM 2</td>
<td>WAQTC</td>
<td>FOP for WAQTC for Sampling Freshly Mixed Concrete</td>
</tr>
<tr>
<td>TM 8</td>
<td>WAQTC</td>
<td>FOP for WAQTC for In-Place Density of Bituminous Mixes Using the nuclear Moisture-Density Gauge</td>
</tr>
<tr>
<td>T 23</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Making and Curing Concrete test Specimens in the Field</td>
</tr>
<tr>
<td>T 27/11</td>
<td>WAQTC</td>
<td>FOP for WAQTC/AASHTO for Sieve Analysis of Fine and Coarse Aggregates</td>
</tr>
<tr>
<td>T 40</td>
<td>WAQTC</td>
<td>FOP for WAQTC/AASHTO for Sampling Bituminous Materials</td>
</tr>
<tr>
<td>T 99</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Moisture-Density Relations of Soils Using a 5.5-lb Rammer and a 12-in. Drop</td>
</tr>
<tr>
<td>T 119</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Standard Test Method for Slump of Hydraulic-Cement Concrete</td>
</tr>
<tr>
<td>T 123</td>
<td>WSDOT</td>
<td>Method of Test for Bark Mulch</td>
</tr>
<tr>
<td>T 152</td>
<td>WAQTC</td>
<td>FOP for WAQTC/AASHTO for Air Content of Freshly Mixed Concrete by the Pressure Method</td>
</tr>
<tr>
<td>T 166</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Bulk Specific Gravities of Compacted Asphalt Mixtures Using Saturated Surface Dry Specimens</td>
</tr>
<tr>
<td>T 168</td>
<td>WAQTC</td>
<td>FOP for WAQTC/AASHTO for Sampling Bituminous Paving Mixtures</td>
</tr>
<tr>
<td>T 176</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Plastic Fines in Grade Aggregate by Use of the Sand Equivalent Test</td>
</tr>
<tr>
<td>T 209</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Method of Test for Maximum Specific Gravity of Bituminous Paving Mixtures — “Rice Density”</td>
</tr>
<tr>
<td>T 217</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Determination of Moisture in Soils by means of a Calcium Carbide Gas Pressure Moisture Tester</td>
</tr>
<tr>
<td>T 248</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Reducing Samples of Aggregate to Testing Size</td>
</tr>
<tr>
<td>T 255</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Total Moisture Content of Aggregate by Drying</td>
</tr>
<tr>
<td>T 272</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Family of Curves — One Point Method</td>
</tr>
<tr>
<td>T 304</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Uncompacted Void Content of Fine Aggregate</td>
</tr>
<tr>
<td>T 308</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Method</td>
</tr>
<tr>
<td>T 309</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Method for Determination of the Temperature of Freshly Mixed Concrete</td>
</tr>
<tr>
<td>T 310</td>
<td>WSDOT</td>
<td>FOP for AASHTO for In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)</td>
</tr>
<tr>
<td>T 312</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Preparing and Determining the Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor</td>
</tr>
<tr>
<td>T 329</td>
<td>WSDOT</td>
<td>FOP for AASHTO Moisture Content of Hot Mix Asphalt (HMA) by Oven Method</td>
</tr>
<tr>
<td>T 335</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Determining the Percentage of Fracture in Coarse Aggregate</td>
</tr>
<tr>
<td>T 420</td>
<td>WSDOT</td>
<td>FOP for AASHTO for Determining the Maturity of Compost (Solvita Test)</td>
</tr>
<tr>
<td>SOP 615</td>
<td>WSDOT</td>
<td>Determination of the % Compaction for Embankment & Untreated Surfacing Materials using the Nuclear Moisture-Density Gauge</td>
</tr>
<tr>
<td>T 712</td>
<td>WSDOT</td>
<td>Standard Method of Reducing Bituminous Paving Mixtures</td>
</tr>
<tr>
<td>T 716</td>
<td>WSDOT</td>
<td>Method of Random Sampling for Location of Testing and Sampling Sites</td>
</tr>
<tr>
<td>SOP 723</td>
<td>WSDOT</td>
<td>Standard Operating Procedure for Submitting Hot Mix Asphalt (HMA) Mix Design for Verification</td>
</tr>
<tr>
<td>T 724</td>
<td>WSDOT</td>
<td>Method for Preparation of Aggregate for ACP Job Mix Design</td>
</tr>
<tr>
<td>T 726</td>
<td>WSDOT</td>
<td>Method of Test for Mixing Procedure for Binder and Aggregate</td>
</tr>
<tr>
<td>SOP 728</td>
<td>WSDOT</td>
<td>Standard Operating Procedure for Determining the Ignition Furnace Calibration Factor (IFCF) for Hot Mix Asphalt (HMA)</td>
</tr>
<tr>
<td>SOP 729</td>
<td>WSDOT</td>
<td>In Place Density of Bituminous Mixes Using the Nuclear Moisture-Density Gauge FOP for WAQTC TM 8</td>
</tr>
<tr>
<td>SOP 730</td>
<td>WSDOT</td>
<td>Standard Operating Procedure for Correlation of Nuclear Gauge Determined Density with Hot Mix Asphalt Cores</td>
</tr>
<tr>
<td>SOP 731</td>
<td>WSDOT</td>
<td>Standard Operating Procedure for Method for Determining Volumetric Properties of Hot Mix Asphalt</td>
</tr>
<tr>
<td>SOP 733</td>
<td>WSDOT</td>
<td>Standard Operating Procedure for Determination of Pavement Density Differentials Using the Nuclear Density Gauge</td>
</tr>
<tr>
<td>SOP 734</td>
<td>WSDOT</td>
<td>Standard Operating Procedure for Sampling Hot Mix Asphalt (HMA) after Compaction (Obtaining Cores)</td>
</tr>
<tr>
<td>SOP 735</td>
<td>WSDOT</td>
<td>Standard Operating Procedure for Longitudinal Joint Density</td>
</tr>
<tr>
<td>C 805</td>
<td>WSDOT</td>
<td>Rebound Hammer Determination of Compressive Strength of Hardened Concrete</td>
</tr>
<tr>
<td>T 813</td>
<td>WSDOT</td>
<td>Field Method of Fabrication of 2-in. Cube Specimens for Compressive Strength Testing of Grouts and Mortars</td>
</tr>
<tr>
<td>T 818</td>
<td>WSDOT</td>
<td>Air Content of Freshly Mixed Self-Compacting Concrete by the Pressure Method</td>
</tr>
<tr>
<td>T 819</td>
<td>WSDOT</td>
<td>Making and Curing Self-Compacting Concrete Test Specimens in the Field</td>
</tr>
<tr>
<td>T 914</td>
<td>WSDOT</td>
<td>Practice for Sampling of Geotextiles for Testing</td>
</tr>
<tr>
<td>C 939</td>
<td>WSDOT</td>
<td>FOP for ASTM for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method)</td>
</tr>
<tr>
<td>C 1611</td>
<td>WSDOT</td>
<td>FOP for ASTM for Slump Flow of Self-Consolidating Concrete</td>
</tr>
<tr>
<td>C 1621</td>
<td>WSDOT</td>
<td>FOP for ASTM for Passing Ability of Self-Consolidating Concrete by J-Ring</td>
</tr>
<tr>
<td>D 4791</td>
<td>WSDOT</td>
<td>FOP for ASTM for Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate</td>
</tr>
<tr>
<td>D 7091</td>
<td>WSDOT</td>
<td>Nondestructive Measurement of Dry Film Thickness of Nonmagnetic Coatings Applied to a Ferrous Base</td>
</tr>
</tbody>
</table>
Standard Practice for Sampling Aggregates

1. Scope

1.1 This practice covers sampling of coarse and fine aggregates for the following purposes:

1.1.1 Preliminary investigation of the potential source of supply,
1.1.2 Control of the product at the source of supply,
1.1.3 Control of the operations at the site of use, and
1.1.4 Acceptance or rejection of the materials.

1.2 The values stated in English units are to be regarded as the standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 AASHTO Standards:

T 248 Reducing Samples of Aggregate to Testing Size

2.2 ASTM Standards:

C 702 Practice for Reducing Field Samples of Aggregate to Testing Size
D 2234 Test Method for Collection of a Gross Sample of Coal
D 3665 Practice for Random Sampling of Construction Materials
E 105 Practice for Probability Sampling of Materials
E 122 Practice for Choice of Sample Size to Estimate the Average Quality of a Lot or Process
E 141 Practice for Acceptance of Evidence Based on the Results of Probability Sampling

3. Significance and Use

3.1 Sampling is equally as important as the testing, and the sampler shall use every precaution to obtain samples that will show the nature and condition of the materials which they represent.

3.2 When sampling of aggregate sources for preliminary testing, the sampling must be witnessed or taken by a designated representative of the Regional Materials Engineer. The Acceptance samples will be taken by a qualified tester employed by the contracting agency or their designated qualified representative.

1 This Procedure is based on AASHTO T 2-91 (2000) and has been modified per WSDOT standards. To view the redline modifications, contact WSDOT Quality Systems Manager at (360) 709-5412.
Note 2: The preliminary investigation and sampling of potential aggregate sources and types occupies a very important place in determining the availability and suitability of the largest single constituent entering into the construction. It influences the type of construction from the standpoint of economics and governs the necessary material control to ensure durability of the resulting structure, from the aggregate standpoint. This investigation should be done only by agency guidelines. For more comprehensive guidance, see the Appendix.

4. Securing Samples

4.1 General — Where practicable, samples to be tested for quality shall be obtained from the finished product. Samples from the finished product to be tested for abrasion loss shall not be subject to further crushing or manual reduction in particle size in preparation for the abrasion test unless the size of the finished product is such that it requires further reduction for testing purposes.

Native soils within the contract limits to be used for embankment construction and/ or backfill material do not require the sampling by a qualified tester. For material that requires gradation testing such as but not limited to manufactured aggregates and Gravel Borrow, a qualified tester shall be required for sampling.

4.2 Inspection — The material shall be inspected to determine discernible variations. The seller shall provide suitable equipment needed for proper inspection and sampling.

4.3 Procedure

4.3.1 Sampling from a Flowing Aggregate Stream (Bins or Belt Discharge) — Select units to be sampled by a random method, from the production. Obtain a field sample whose mass equals or exceeds the minimum recommended in 4.4.2. Take the sample from the entire cross section of the material as it is being discharged. The Standard Specifications require an mechanical, automatic or semi-automatic sampling device be used for processed materials.

Note 3: Sampling the initial discharge or the final few tons from a bin or conveyor belt increases the chances of obtaining segregated material and should be avoided.

4.3.2 Sampling from the Conveyor Belt (Stopped) — Select units to be sampled by a random method, from the production. Obtain a field sample selected at random, from the unit being sampled and combine to form a field sample whose mass equals or exceeds the minimum recommended in 4.4.2. Stop the conveyor belt while the sample increments are being obtained. Insert two templates, the shape of which conforms to the shape of the belt in the aggregate stream on the belt, and space them such that the material contained between them will yield an increment of the required weight. Carefully scoop all material between the templates into a suitable container and collect the fines on the belt with a brush and dust pan and add to the container.
4.3.3 Sampling from Stockpiles or Transportation Units — Avoid sampling coarse aggregate or mixed coarse and fine aggregate from stockpiles or transportation units whenever possible, particularly when the sampling is done for the purpose of determining aggregate properties that may be dependent upon the grading of the sample. If circumstances make it necessary to obtain samples from a stockpile of coarse aggregate or a stockpile of combined coarse and fine aggregate, design a sampling plan for the specific case under consideration. The sampling plan shall define the number of samples necessary to represent lots and sublots of specific sizes. General principles for sampling from stockpiles are applicable to sampling from trucks, rail cars, barges or other transportation units. For general guidance in sampling from stockpiles, see the Appendix.

4.3.4 Sampling from Roadway (Bases and Subbases) — WSDOT has deleted this section.

4.4 Number and Masses of Field Samples

4.4.1 The number of field samples (obtained by one of the methods described in 4.3) required depends on the criticality of, and variation in, the properties to be measured. Designate each unit from which a field sample is to be obtained prior to sampling. The number of field samples from the production should be sufficient to give the desired confidence in test results.

Note 4: Guidance for determining the number of samples required to obtain the desired level of confidence in test results may be found in Test Method D 2234, Practice E 105, Practice E 122, and Practice E 141.

4.4.2 The field sample masses cited are tentative. The masses must be predicated on the type and number of tests to which the material is to be subjected and sufficient material obtained to provide for the proper execution of these tests. Standard acceptance and control tests are covered by ASTM standards and specify the portion of the field sample required for each specific test. Generally speaking, the amounts specified in Table 1 will provide adequate material for routine grading and quality analysis. Extract test portions from the field sample according to T 248 or as required by other applicable test methods.
5. Shipping Samples

5.1 Transport aggregates in bags or other containers so constructed as to preclude loss or contamination of any part of the sample, or damage to the contents from mishandling during shipment. The weight limit for each bag of aggregate is 30 pounds maximum.

5.2 Shipping containers for aggregate samples shall have suitable individual identification attached and enclosed so that field reporting, laboratory logging, and test reporting may be facilitated.

All samples submitted for testing to the Region or State Materials Laboratories shall be accompanied by a completed sample information report from the Materials Testing System (MATS).

<table>
<thead>
<tr>
<th>Nominal Maximum Size (^A^) in (mm)</th>
<th>Minimum Mass (^B) lb (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US No. 4 (4.75)</td>
<td>5 (2)</td>
</tr>
<tr>
<td>¼ (6.3)</td>
<td>10 (4)</td>
</tr>
<tr>
<td>⅛ (9.5)</td>
<td>10 (4)</td>
</tr>
<tr>
<td>½ (12.5)</td>
<td>20 (8)</td>
</tr>
<tr>
<td>⅜ (16.0)</td>
<td>20 (8)</td>
</tr>
<tr>
<td>⅝ (19.0)</td>
<td>30 (12)</td>
</tr>
<tr>
<td>1 (25.0)</td>
<td>55 (25)</td>
</tr>
<tr>
<td>1¼ (31.5)</td>
<td>70 (30)</td>
</tr>
<tr>
<td>1½ (37.5)</td>
<td>80 (36)</td>
</tr>
<tr>
<td>2 (50)</td>
<td>90 (40)</td>
</tr>
<tr>
<td>2½ (63)</td>
<td>110 (50)</td>
</tr>
<tr>
<td>3 (75)</td>
<td>140 (60)</td>
</tr>
<tr>
<td>3½ (90)</td>
<td>180 (80)</td>
</tr>
</tbody>
</table>

\(^A^\) For aggregate, the nominal maximum size, (NMS) is the largest standard sieve opening listed in the applicable specification, upon which any material is permitted to be retained. For concrete aggregate, NMS is the smallest standard sieve opening through which the entire amount of aggregate is permitted to pass.

Size of Samples

Table 1

Note: Agencies that do not have access to MATS may submit a completed WSDOT Form 350-056.

Note 5: For an aggregate specification having a generally unrestrictive gradation (i.e. wide range of permissible upper sizes), where the source consistently fully passes a screen substantially smaller than the maximum specified size, the nominal maximum size, for the purpose of defining sampling and test specimen size requirements may be adjusted to the screen, found by experience to retain no more than 5% of the materials.
Appendices

Xl. Sampling Aggregate From Stockpiles or Transportation Units

X1.1 Scope

X1.1.1 In some situations it is mandatory to sample aggregates that have been stored in stockpiles or loaded into rail cars, barges, or trucks. In such cases the procedure should ensure that segregation does not introduce a serious bias in the results.

X1.2 Sampling From Stockpiles

X1.2.1 In sampling material from stockpiles it is very difficult to ensure unbiased samples, due to the segregation which often occurs when material is stockpiled, with coarser particles rolling to the outside base of the pile. For coarse or mixed coarse and fine aggregate, every effort should be made to enlist the services of power equipment, such as a front end loader, to develop a separate, small sampling pile composed of materials drawn from various levels and locations in the main pile after which several increments may be combined to compose the field sample. If necessary to indicate the degree of variability existing within the main pile, separate samples should be drawn from separate areas of the pile.

X1.2.2 Where power equipment is not available, the contractor may be required to sample the stockpile witnessed by WSDOT personnel. Samples from stockpiles should be made up of at least three increments taken from the top third, at the mid-point, and at the bottom third of the volume of the pile. A board shoved vertically into the pile just above the sampling point aids in preventing further segregation. In sampling stockpiles of fine aggregate the outer layer, which may have become segregated, should be removed and the sample taken from the material beneath. Sampling tubes approximately 1½ in (30 mm) min by 6 ft (2 m) min in length may be inserted into the pile at random locations to extract a minimum of five increments of material to form the sample.

X1.3 Sampling From Transportation Units

X1.3.1 In sampling coarse aggregates from railroad cars or barges, effort should be made to enlist the services of power equipment capable of exposing the material at various levels and random locations. Where power equipment is not available, a common procedure requires excavation of three or more trenches across the unit at points that will, from visual appearance, give a reasonable estimate of the characteristics of the load. The trench bottom should be approximately level, at least 1 ft. (0.3 m) in width and in depth below the surface. A minimum of three increments from approximately equally spaced points along each trench should be taken by pushing a shovel downward into the material. Coarse aggregate in trucks should be sampled in essentially the same manner as for rail car or barges, except for adjusting the number of increments according to the size of the truck. For
fine aggregate in transportation units, sampling tubes as described in X1.2 may be used to extract an appropriate number of increments to form the sample.

X2. Exploration of Potential Aggregate Sources

X2.1 Scope

X2.1.1 Sampling for evaluation of potential aggregate sources should be performed by a responsible trained and experienced person. Because of the wide variety of conditions under which sampling may have to be done it is not possible to describe detailed procedures applicable to all circumstances. This appendix is intended to provide general guidance and list more comprehensive references.

X2.2 Sampling Stone from Quarries of Ledges

X2.2.1 Inspection — The ledge or quarry face should be inspected to determine discernible variations or strata. Differences in color and structure should be recorded.

X2.2.2 Sampling and Size of Sample — Separate samples having a mass of at least 55 lbs (25 kg) should be obtained from each discernible stratum. The sample should not include material weathered to such an extent that it is no longer suitable for the purpose intended. One or more pieces in each sample should be at least 6 × 6 × 4 inch (150 by 150 by 100 mm) in size with the bedding plane plainly marked, and this piece should be free of seams or fractures.

X2.2.3 Record — In addition to the general information accompanying all samples the following information should accompany samples taken from ledges or quarry faces:

X2.2.3.1 Approximate quantity available. (If quantities is very large this may be recorded as practically unlimited.)

X2.2.3.2 Quantity and character of overburden.

X2.2.3.3 A detailed record showing boundaries and location of material represented by each sample.

Note X2.1: A sketch, plan, and elevation, showing the thickness and location of the different layers is recommended for this purpose.

X2.3 Sampling Roadside or Bank Run Sand and Gravel Deposits

X2.3.1 Inspection — Potential sources of bank run sand and gravel may include previously worked pits from which there is an exposed face or potential deposits discovered through air-photo interpretation, geophysical exploration, or other types of terrain investigation.
X2.3.2 Sampling — Samples should be so chosen from each different stratum in the deposit discernible to the sampler. An estimate of the quantity of the different materials should be made. If the deposit is worked as an open-face bank or pit, samples should be taken by channeling the face vertically, bottom to top, so as to represent the materials proposed for use. Overburdened or disturbed material should not be included in the sample. Test holes should be excavated or drilled at numerous locations in the deposit to determine the quality of the material and the extent of the deposit beyond the exposed face, if any. The number and depth of test holes will depend upon the quantity of the material needed, topography of the area, nature of the deposit, character of the material, and potential value of the material in the deposit. If visual inspection indicates that there is considerable variation in the material, individual samples should be selected from the material in each well defined stratum. Each sample should be thoroughly mixed and quartered if necessary so that the field sample thus obtained will be at least 25 lb (12 kg) for sand and 75 lb (35 kg) if the deposit contains an appreciable amount of coarse aggregate.

X2.3.3 Record — In addition to the general information accompanying all samples the following information should accompany samples of bank run sand and gravel:

X2.3.3.1 Location of supply.
X2.3.3.2 Estimate of approximate quantity available.
X2.3.3.3 Quantity and character of overburden.
X2.3.3.4 Length of haul to proposed site of work.
X2.3.3.5 Character of haul (kind of road, maximum grades, etc.)
X2.3.3.6 Details as to extent and location of material represented by each sample. Performance Exam Checklist
Performance Exam Checklist

Sampling of Aggregates
FOP for AASHTO T 2

Participant Name ____________________________ Exam Date ________________

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Preparation</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The tester has a copy of the current procedure on hand?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Conveyor Belts –Stopped</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Belt stopped?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>3. Sampling device set on belt, avoiding intrusion of adjacent material?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>4. Sample, including all fines, scooped off?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Flowing Aggregate Sampler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Container passed through full stream of material as it runs off end of belt?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>(Mechanical, Automatic or Semi Automatic Sampler Only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Three or more trenches cut across the unit?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>7. Trench bottom level and approximate 1 foot wide and 1 foot below surface of material in unit?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>8. Three samples taken at equal spacing along each trench?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Stockpiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Create vertical face, if one does not exist, or use mechanical equipment to build a small sampling pile?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>10. At least three increments taken, at various locations?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Procedure Element</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. When sampling sand, outer layer removed and increments taken from a least five locations?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>12. Correct sample size?</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

First attempt: Pass ☐ Fail ☐ Second attempt: Pass ☐ Fail ☐

Signature of Examiner ____________________________

WSDOT Materials Manual M 46-01.07
January 2011

Page 9 of 10
Sampling Freshly Mixed Concrete

Scope
This method covers procedures for obtaining representative samples of fresh concrete delivered to the project site and on which tests are to be performed to determine compliance with quality requirements of the specifications under which concrete is furnished. The method includes sampling from stationary, paving and truck mixers, and from agitating and non-agitating equipment used to transport central mixed concrete.

This method also covers the procedure for preparing a sample of concrete for further testing where it is necessary to remove aggregate larger than the designated size for the test method being performed. The removal of large aggregate particles is accomplished by wet sieving.

Sampling concrete may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

Apparatus
• Wheelbarrow
• Cover for wheelbarrow (plastic, canvas, or burlap)
• Shovel
• 5 gal bucket for water

Sampling Requirements
For placement of one class of concrete 50 cys or less
• Sample initial truck after ½ cy has been discharged from the truck (this material may not be placed in the forms)
• Sample each truck, after ½ cy has been discharged from truck, until one truck meets all applicable acceptance test requirements.
• After one truck meets the acceptance test requirements, the remaining concrete may be visually inspected.

For placement of one class of concrete greater than 50 yds
• Sample initial truck after ½ cy has been discharged from the truck (this material may not be placed in the forms)
• Sample each truck until two successive loads meet all applicable acceptance test requirements. Once two loads meet the acceptable standard, the sampling and testing frequency may decrease to one for every five truck loads.
• For all trucks, after the initial truck, sample the concrete after a minimum of ½ yd³ of concrete has been discharged into the forms.
Random Sample Selection

Concrete samples other than initial load samples or samples for questioned acceptance will be taken from each sublot by a random selection. Sublots are determined by the designated sampling frequency in the Standard Specifications. Random selection will be accomplished by using WSDOT Test Method T 716, Method of Random Sampling for Locations of Testing and Sampling Sites.

Procedure

Use every precaution in order to obtain samples representative of the true nature and condition of the concrete being placed being careful not to obtain samples from the very first or very last portions of the batch. The size of the sample will be 1.5 times the volume of concrete required for the specified testing, but not less than 1 ft3 after wet-sieving, if required.

Note 1: Sampling should normally be performed as the concrete is delivered from the mixer to the conveying vehicle used to transport the concrete to the forms; however, specifications may require other points of sampling, such as at the discharge of a concrete pump.

• Sampling from stationary mixers, except paving mixers
 Perform sampling by passing a receptacle completely through the discharge stream, or by completely diverting the discharge into a sample container. If discharge of the concrete is too rapid to divert the complete discharge stream, discharge the concrete into a container or transportation unit sufficiently large to accommodate the entire batch and then accomplish the sampling in the same manner as given for paving mixers. Take care not to restrict the flow of concrete from the mixer, container, or transportation unit so as to cause segregation. These requirements apply to both tilting and nontilting mixers.

• Sampling from paving mixers
 Obtain material from at least five different locations in the pile and combine into one test sample. Avoid contamination with subgrade material or prolonged contact with absorptive subgrade. To preclude contamination or absorption by the subgrade, sample the concrete by placing a shallow container on the subgrade and discharging the concrete across the container. The container shall be of a size sufficient to provide a sample size that is in agreement with the nominal maximum aggregate size.

• Sampling from revolving drum truck mixers or agitators
 Do not obtain samples until after all of the water has been added to the mixer. Do not obtain samples from the very first or last portions of the batch discharge. Sample by repeatedly passing a receptacle through the entire discharge stream or by completely diverting the discharge into a sample container. Regulate the rate of discharge of the batch by the rate of revolution of the drum and not by the size of the gate opening.

• Sampling from open-top truck mixers, agitators, non-agitating equipment or other types of open-top containers
 Sample by whichever of the procedures described above is most applicable under the given conditions.
Sampling Freshly Mixed Concrete

• **Sampling from pump or conveyor placement systems**
 Do not obtain samples until after all of the pump slurry has been eliminated. Sample by repeatedly passing a receptacle through the entire discharge system or by completely diverting the discharge into a sample container. Do not lower the pump arm from the placement position to ground level for ease of sampling, as it may modify the air content of the concrete being sampled. Do not obtain samples from the very first or last portions of the batch discharge.

Transport samples to the place where fresh concrete tests are to be performed and specimens are to be molded.

Combine and remix the sample minimum amount necessary to ensure uniformity. Protect the sample from direct sunlight, wind, rain, and sources of contamination.

Complete test for temperature and start tests for slump and air content within 5 minutes of obtaining the sample. Complete tests as expeditiously as possible. Start molding specimens for strength tests within 15 minutes of obtaining the sample.

Report results on concrete delivery ticket (i.e., Certificate of Compliance).

The name of the qualified tester who performed the field acceptance test is required on concrete delivery tickets containing test results.

Wet Sieving

When required for slump testing, air content testing or molding test specimens the concrete sample shall be wet-sieved, prior to remixing, by the following:

1. Place the sieve designated by the test procedure over dampened sample container.
2. Pass the concrete over the designated sieve. Do not overload the sieve (one particle thick.)
3. Shake or vibrate the sieve until no more material passes the sieve.
4. Discard oversize material including all adherent mortar.
5. Repeat until sample of sufficient size is obtained.
6. Mortar adhering to the wet-sieving equipment shall be included with the sample.

Note 1: Wet-sieving is not allowed for samples being utilized for density determinations according to the FOP for AASHTO T 121.
Performance Exam

Checklist Sampling Freshly Mixed Concrete
FOP for WAQTC TM 2

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The tester has a copy of the current procedure on hand?</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>2. Obtain a representative sample:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Sample the concrete after ½ cy discharged?</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>b. Pass receptacle through entire discharge stream or completely divert discharge stream into sampling container?</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c. Transport samples to place of testing?</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d. Sample remixed?</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>e. Sample protected?</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>f. Correct sample size?</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>3. Start tests for slump and air within 5 minutes of sample being obtained?</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>4. Start molding cylinders within 15 minutes of sample being obtained?</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>5. Protect sample against rapid evaporation and contamination?</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

First attempt: Pass ☐ Fail ☑
Second attempt: Pass ☐ Fail ☑

Signature of Examiner ________________________________

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

Comments:
In-Place Density of Hot Mix Asphalt Using the Nuclear Moisture-Density Gauge

Scope

This test method describes a test procedure for determining the density of Hot Mix Asphalt (HMA) by means of a nuclear gauge employing either direct transmission or backscatter methods. Correlation with densities determined under WSDOT FOP for AASHTO T 166 is required.

Radiation Safety

This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous materials. The gauge utilizes radioactive materials that may be hazardous to the health of the user unless proper precautions are taken. Users of this gauge must become familiar with the applicable safety procedures and governmental regulations. All operators will be trained in radiation safety prior to operating nuclear density gauges. Some agencies require the use of personal monitoring devices such as a thermoluminescent dosimeter or film badge. Effective instructions together with routine safety procedures such as source leak tests, recording and evaluation of personal monitoring device data, etc., are a recommended part of the operation and storage of this gauge.

Apparatus

- Nuclear density gauge with the factory matched standard reference block.
- Drive pin, guide, scraper plate, and hammer for testing in direct transmission mode.
- Transport case for properly shipping and housing the gauge and tools.
- Instruction manual for the specific make and model of gauge.
- Radioactive materials information and calibration packet containing:
 - Daily Standard Count Log
 - Factory and Laboratory Calibration Data Sheet
 - Leak Test Certificate
 - Shippers Declaration for Dangerous Goods
 - Procedure Memo for Storing, Transporting and Handling Nuclear Testing Equipment
 - Other radioactive materials documentation as required by local regulatory requirements.

Material

WSDOT does not recommend the use of filler material.

Calibration

WSDOT performs calibrations according to the manufacturer’s Operators Manual.

Standardization

1. Turn the gauge on and allow it to stabilize (approximately 10 to 20 minutes) prior to standardization. Leave the power on during the day’s testing.
2. Standardize the nuclear gauge at the construction site at the start of each day’s work and as often as deemed necessary by the operator or agency. Daily variations in standard count shall not exceed the daily variations established by the manufacturer of the gauge. If the daily variations are exceeded after repeating the standardization procedure, the gauge should be repaired and or recalibrated.

3. Record the standard count for both density and moisture in the Daily Standard Count Log. The exact procedure for standard count is listed in the manufacturer’s Operators Manual.

Test Site Location

1. Select a test location(s) randomly and in accordance with WSDOT Test Method T 716. Test sites should be relatively smooth and flat and meet the following conditions:
 a. At least 33 ft (10 m) away from other sources of radioactivity
 b. At least 10 ft (3 m) away from large objects
 c. No closer than 24 in (600 mm) to any vertical mass, or less than 18 in (450 mm) from a vertical pavement edge. (See Note 1)

 Note 1: When performing SOP 735 Longitudinal Joints Density, subsection c is modified to allow testing within 6 in of the vertical pavement edge.

Overview

There are two methods for determining in-place density of HMA. See agency requirements for method selection.

• Direct Transmission - The standard for WSDOT is to run density tests in “Direct Transmission mode.”

• Thin Layer Gauge or Mode - When the depth of Hot Mix Asphalt is less than 0.11 foot or when the driving of the drive pin is not possible to achieve the required depth for the gauge probe (i.e., underlying concrete) then a “Thin Layer Density gauge” or a Moisture Density Gauge in the “Thin Layer Mode” may be used.

Procedure

Direct Transmission

1. Maintaining maximum contact between the base of the gauge and the surface of the material under test is critical.

2. Use the guide and scraper plate as a template and drill a hole to a depth of at least ¼ in (7 mm) deeper than the measurement depth required for the gauge.

3. Place the gauge on the prepared surface so the source rod can enter the hole. Insert the probe in the hole and lower the source rod to the desired test depth using the handle and trigger mechanism. Position the gauge with the long axis of the gauge parallel to the direction of paving. Pull the gauge so that the probe is firmly against the side of the hole.

 WSDOT Note: For alignment purposes, the user may expose the source rod for a maximum of ten seconds.

4. Take one four-minute test and record the wet density (WD) reading.
Thin Layer Gauge or Mode

1. A Thin Layer Gauge (i.e. Troxler 4640) or a moisture density gauge that has a Thin Layer Mode setting (i.e. Troxler 3450) is required to perform this testing.

2. Take tests in accordance with manufacturer’s recommendation.

3. Take one four-minute test and record the wet density (WD) reading.

Calculation of Percent of Compaction

The percent compaction is determined by comparing the corrected in-place wet density, as determined by this method and WSDOT SOP 730, to the Average Theoretical Maximum Density (ATMD) of the HMA as determined by the WSDOT SOP 729.

Each gauge shall be correlated in accordance with WSDOT SOP 730. A correlation factor will be provided to the moisture-density gauge operator for each gauge.

Calculate the corrected gauge reading as follows:

Corrected Gauge Reading = WD × CF

Where:

WD = Moisture density gauge wet density reading
CF = Gauge correlation factor (round to the nearest .001)

The gauge operator will receive a new ATMD from the tester at the HMA plant each day that production requires a mix test. The gauge operator will continue to use the previous ATMD until a new ATMD is received from the tester at the HMA plant.

The gauge operator will use the ATMD, calculated in accordance with WSDOT SOP 729, to calculate the percentage of compaction as follows:

\[
\text{Percent Compaction} = \frac{\text{Corrected Gauge Reading}}{\text{ATMD}} \times 100
\]

Correlation with Cores

WSDOT has deleted this section, refer to WSDOT SOP 730.

Report

Report the results on the WDOT Form 350-092 and 350-157

Report the percent compaction to the nearest tenth of a percent (0.1 percent)
Tester Qualification Practical Exam Checklist

In-place Density of Hot Mix Asphalt (HMA) Using the Nuclear Moisture-Density Gauge
FOP for WAQTC TM 8

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The tester has a copy of the current procedure on hand?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Gauge turned on?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Gauge standardized and standard count recorded?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Test location selected appropriately?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Direct Transmission Mode:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Hole made a minimum of ¼ inch deeper than measurement depth?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Gauge placed parallel to direction of paving, probe extended, gauge pulled back so probe against hole?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. For alignment purposes did not expose the source rod for more than 10 seconds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. One four-minute test made?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Wet density recorded?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Thin Layer Gauge or Gauge in Thin Layer Mode:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Gauge placed, probe extended to backscatter position?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. One four minute test made; gauge placed as described in the manufacture recommendations?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Wet Densities recorded?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. All calculations performed correctly?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Nuclear Gauge secured in a manner consistent with current DOH requirements?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First attempt: Pass ☐ Fail ☐
Second attempt: Pass ☐ Fail ☐

Signature of Examiner __

Comments:
WSDOT FOP for AASHTO T 23\(^1\)

Making and Curing Concrete Test Specimens in the Field

1. Scope

1.1 This method covers procedures for making and curing cylinder specimens from representative samples of fresh concrete for a construction project.

1.2 The concrete used to make the molded specimens shall be sampled after all on-site adjustments have been made to the mixture proportions, including the addition of mix water and admixtures, except as modified in Section 5.1. This practice is not satisfactory for making specimens from concrete not having measurable slump or requiring other sizes or shapes of specimens.

1.3 The values stated in English units are to be regarded as the standard.

1.4 This standard does not purport to address the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. *(Warning- Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to exposed skin and tissue upon prolonged exposure.)*

2. Referenced Documents

2.1 AASHTO Standards

- T 23 Making and Curing Concrete Test Specimens in the Field
- M 201 Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes
- M 205 Molds for Forming Concrete Test Cylinders Vertically
- R 39 Making and Curing Concrete Test Specimens in the Laboratory
- T 231 Capping Cylindrical Concrete Specimens

ASTM Standards:

- C 125 Terminology Related to Concrete and Concrete Aggregates

ACI Standards:

- 309 R Guide for Consolidation of Concrete

WAQTC:

- TM 2 Sampling Freshly Mixed Concrete

WSDOT:

- Quality Systems Manual Verification Procedure 2-Single Use Molds

3. Terminology

For definitions of terms used in this practice, refer to Terminology ASTM C 125.

\(^1\) This FOP is based on AASHTO T 23-08
4. Significance And Use

4.1 This practice provides standardized requirements for making, curing, protecting, and transporting concrete test specimens under field conditions.

4.2 If the specimens are made and standard cured, as stipulated herein, the resulting strength test data where the specimens are tested are able to be used for the following purposes:

4.2.1 Acceptance testing for specified strength,
4.2.2 Checking the adequacy of mixture proportions for strength,
4.2.3 Quality control.

4.3 If the specimens are made and field cured, as stipulated herein, the resulting strength test data when the specimens are tested are able to be used for the following purposes:

4.3.1 Determination of whether a structure is capable of being put in service.
4.3.2 Comparison with test results of standard cured specimens or with test results from various in-place test methods,
4.3.4 Adequacy of curing and protection of concrete in the structure, or,
4.3.5 Form or shoring removal time requirements,

5. Apparatus

5.1 Molds, General — Refer to AASHTO T 23

5.2 Cylinder: Molds for casting concrete test specimens shall conform to the requirements of M 205, and shall come from an approved shipment as verified by the WSDOT Quality Systems Manual Verification Procedure No. 2.

5.3 Beam Molds — Refer to WSDOT Test Method T 808.

5.4 Tamping Rod — Two sizes are specified as indicated in Table 1. Each shall be a round, straight steel rod with at least the tamping end rounded to a hemispherical tip of the same diameter as the rod. Both ends may be rounded if preferred.

<table>
<thead>
<tr>
<th>Diameter of Cylinder in (mm)</th>
<th>Rod Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diameter, in (mm)</td>
</tr>
<tr>
<td>4(100)</td>
<td>⅜ (10)</td>
</tr>
<tr>
<td>6(150)</td>
<td>⅝ (16)</td>
</tr>
</tbody>
</table>

Rod tolerances length ± 4 in (100 mm) and diameter ± ⅛ in (2 mm).

Tamping Rod Requirements

Table 1
5.5 Vibrators — Internal vibrators shall be used. The vibrator frequency shall be at least 7,000 vibrations per minute at 150 Hz while the vibrator is operating in the concrete. The diameter of a round vibrator shall be no more than one-fourth the diameter of the cylinder mold or one-fourth the width of the beam mold. Other shaped vibrators shall have a perimeter equivalent to the circumference of an appropriate round vibrator. The combined length of the vibrator shaft and vibrating element shall exceed the depth of the section being vibrated by at least 3 in (75 mm). The vibrator frequency shall be checked periodically.

Note 1: For information on size and frequency of various vibrators and a method to periodically check vibrator frequency, see ACI 309R.

5.6 Mallet — A mallet with a rubber or rawhide head weighing 1.25 ± 0.50 lb (0.57 ± 0.23 kg) shall be used.

5.7 Small Tools — Tools and items that may be required are shovels, pails, trowels, wood float, metal float, blunted trowels, straightedge, feeler gauge, scoops, and rules.

5.8 Sampling and Mixing Receptacle — The receptacle shall be a suitable heavy gage metal pan, wheelbarrow, or flat, clean non-absorbent mixing board of sufficient capacity to allow easy remixing of the entire sample with a shovel or trowel.

5.9 Cure Box- The cure box shall be capable of maintaining temperatures between 60° F and 80° F. The box shall also be capable of maintaining an environment that does not allow moisture loss from the concrete cylinders.

5.10 Temperature Measuring Device- The temperature measuring device shall be capable of recording the minimum and maximum temperature within a 24 hr period. The thermometer shall be capable of reading from 32° F to 150° F (0° C to 65° C) with an accuracy of 1.8° F (1.0° C).

6. Testing Requirements

Testing for determining the compressive strength at 28 days shall require a set of two specimens made from the same sample.

6.1 Compressive Strength Specimens — Compressive strength specimens shall be cylinders cast and allowed to set in an upright position. The length shall be twice the diameter. The cylinder diameter shall be at least three times the nominal maximum size of the coarse aggregate. The standard specimen shall be the 4 by 8 in (100 by 200 mm) cylinder when the nominal maximum size of the coarse aggregate does not exceed 1 in (25 mm). When the nominal maximum size of the coarse aggregate exceeds 1 in (25 mm) the specimens shall be made with 6 by 12 in (150 by 300 mm) cylinders. Mixing of cylinder sizes for a particular concrete mix design is not permitted on a project. When the nominal maximum size of the coarse aggregate exceeds 2 in (50 mm), the concrete sample shall be treated by wet sieving through a 2 in (50 mm) sieve as described in FOP for WAQTC TM 2. Contact the Materials Laboratory for directions.

Note 2: The nominal maximum size is the smallest standard sieve opening through which the entire amount of aggregate is permitted to pass.

Note 3: When molds in SI units are required and not available, equivalent inch-pound unit size molds should be permitted.
6.2 Flexural Strength Specimens
Refer to WSDOT Test Method T 808

7. Sampling Concrete

7.1 The samples used to fabricate test specimens under this standard shall be obtained in accordance with FOP for WAQTC TM-2 unless an alternative procedure has been approved.

7.2 Record the identification of the sample with respect to the location of the concrete represented and the time of casting.

7.3 Cylinders shall be made using fresh concrete from the same sample as the slump, air content and temperature tests. Material from the slump, air content, and unit weight tests cannot be reused to construct cylinders.

8. Slump, Air Content, and Temperature
As required, perform the following tests prior to making cylinders:

8.1 Slump — FOP FOR AASHTO T 119.
8.2 Air Content — FOP for AASHTO T 152 or FOP for AASHTO T 196.
8.3 Temperature — FOP for AASHTO T 309.
8.4 Unit Weight — AASHTO T 121

9. Molding Cylinders

9.1 Place of Molding — Mold cylinders on a level, rigid horizontal surface, free of vibration and other disturbances, at a place as near as practicable to the location where they are to be stored.

9.2 Casting the Concrete — Place the concrete in the mold using a scoop, blunted trowel, or shovel. Select each scoopful, trowelful, or shovelful of concrete from the mixing pan to ensure that it is representative of the batch. Remix the concrete in the mixing pan with a shovel or trowel to prevent segregation during the molding of specimens. Move the scoop, trowel, or shovel around the perimeter of the mold opening when adding concrete so the concrete is uniformly distributed within each layer with a minimum of segregation. Further distribute the concrete by use of the tamping rod prior to the start of consolidation. In placing the final layer, the operator shall attempt to add an amount of concrete that will exactly fill the mold after consolidation. Underfilled molds shall be adjusted with representative concrete during consolidation of the top layer. Overfilled molds shall have excess concrete removed.

9.2.1 Number of Layers — Make specimens in layers as indicated in Table 2 or 3.

<table>
<thead>
<tr>
<th>Cylinders: Diameter, in (mm)</th>
<th>Number of Layers of Approximately Equal Depth</th>
<th>Number of Roddings per Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinders: Diameter, in (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (100)</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>6 (150)</td>
<td>3</td>
<td>25</td>
</tr>
</tbody>
</table>

Molding Requirements by Rodding
Table 2
9.2.2 Select the proper tamping rod from 5.4 and Table 1 or the proper vibrator from 5.5. If the method of consolidation is rodding, determine molding requirements from Table 2. If the method of consolidation is vibration, determine molding requirements from Table 3.

9.3 Consolidation:

9.3.1 Method of Consolidation — Preparation of satisfactory cylinders require different methods of consolidation. The methods of consolidation are rodding and vibration. Base the selection of the method of consolidation on slump, unless the method is stated in the specifications under which the work is being performed. Rod or vibrate concretes with slumps greater than 1 in (25 mm). Vibrate concretes with slumps less than or equal to 1 in (25 mm). Concretes of such low water content that they cannot be properly consolidated by the method herein, or requiring other sizes and shapes of specimens to represent the product or structure, are not covered by this method. Specimens for such concretes shall be made in accordance with the requirements of R 39 with regards to specimen size and shape and method of consolidation.

9.3.2 Rodding — Place the concrete in the mold, in the required number of layers of approximately equal volume. Rod each layer with the rounded end of the rod using the required number of roddings specified in Table 2. Rod the bottom layer throughout its depth. Distribute the strokes uniformly over the cross section of the mold. For each layer, allow the rod to penetrate through the layer being rodded and into the layer below approximately 1 in (25 mm). After each layer is rodded, tap the outsides of the mold lightly 10 to 15 times with the open hand, mallet, or rod, to close any holes left by rodding and to release any large air bubbles that may have been trapped.

9.3.3 Vibration — Maintain a uniform time period for duration of vibration for the particular kind of concrete, vibrator, and specimen mold involved. The duration of vibration required will depend upon the workability of the concrete and the effectiveness of the vibrator. Usually, sufficient vibration has been applied as soon as the surface of the concrete has become relatively flat and large air bubbles cease to break through the top surface. Continue vibration only long enough to achieve proper consolidation of the concrete. (See Note 4.) Fill the molds and vibrate in the required number of approximately equal layers. Place
all the concrete for each layer in the mold before starting vibration of that layer. Compacting the specimen, insert the vibrator slowly and do not allow it to rest on the bottom or sides of the mold. Slowly withdraw the vibrator so that no large air pockets are left in the specimen. When placing the final layer, avoid overfilling by more than ¼ in (6 mm).

Note 4: Generally, no more than 5 s of vibration should be required for each insertion to adequately consolidate concrete with a slump greater than 3 in (75 mm). Longer times may be required for lower slump concrete, but the vibration time should rarely have to exceed 10 s per insertion.

9.3.3.1 Cylinders — The number of insertions of a vibrator per layer is given in Table 3. When more than one insertion per layer is required, distribute the insertion uniformly within each layer. Allow the vibration to penetrate through the layer being vibrated, and into the layer below, approximately 1 in (25 mm). After each layer is vibrated, tap the outsides of the mold lightly 10 to 15 times with the open hand, mallet, or rod, to close any holes left by rodding and to release any large air bubbles that may have been trapped.

9.3.3.2 Beam — Refer to WSDOT Test Method T 808.

9.4 Finishing — After consolidation, strike off excess concrete from the surface. Perform all finishing with the minimum manipulation necessary to produce a flat even surface that is level with the rim or edge of the mold and that has no depressions or projections larger than ⅛ in (3.2 mm). Place lid on cylinder.

10. Curing

10.1 Standard Curing — Standard curing is the curing method used when the specimens are made and cured for the purposes stated in 4.2.

10.1.1 Storage — If specimens cannot be molded at the place where they will receive initial curing, immediately after finishing, move the specimens to an initial curing place for storage. The supporting surface on which specimens are stored shall be level to within ¼ in per ft (20 mm per m). If cylinders in the single-use molds are moved, lift and support the cylinders from the bottom of the molds with a large trowel or similar device. If the top surface is marred during movement to place of initial storage, immediately refinish.

10.1.2 Initial Curing — Immediately after molding and finishing, the specimens shall be stored in a cure box for a period 24 ± 8 hours, unless Contractor provides initial curing information for final set.

For concrete with a specified strength less than 6000 psi the cure temperature shall be between 60° F and 80° F and for concrete with specified strengths of 6,000 psi and higher the cure temperature shall be between 68° F and 78° F.

A minimum/maximum thermometer shall be mounted on the cure box such that the thermometer reads the internal temperature of the box but is visible from the outside. Keep a record of the minimum and maximum temperatures at intervals of 24 hours during the initial curing time.
Do not exceed the capacity of the cure box. When concrete is placed at more than one location simultaneously, each location must have its own cure box.

Once concrete cylinders are placed in the cure box, the cure box shall not be moved until the cylinders are ready to be transported to the final cure location (See 10.1.3).

10.1.3 Transportation of specimens to final cure location—Prior to transporting, cure and protect specimens as required in Section 9. Specimens shall not be transported until at least 8 h after final set. (See Note 5) During transporting, protect the specimen with suitable cushioning material to prevent damage from jarring and transport in an upright position. During cold weather, protect the specimens from freezing with suitable insulation material. Prevent moisture loss during transportation by use of tight-fitting plastic caps on plastic molds. Transportation time shall not exceed 4 h.

Note 5: If a specimen does not attain final set within 32 hours, it is to remain in place until final set is reached. The time of final set shall be provided by the concrete producer. After final set is reached, it can then be transported.

10.1.4 Final Curing:

10.1.4.1 Cylinders—Upon completion of initial curing and within 30 minutes after removing the molds, cure specimens with free water maintained on their surfaces at all times at a temperature of $73 \pm 3^\circ$ F ($23 \pm 2^\circ$ C) using water storage tanks or moist rooms complying with the requirements of Specification M 201, except when capping with sulfur mortar capping compound and immediately before testing. When capping with sulfur mortar capping compounds, the ends of the cylinder shall be dry enough to preclude the formation of steam or foam pockets under or in cap larger than $\frac{1}{4}$ in (6 mm) as described in T 231. For a period not to exceed 3 h immediately prior to test, standard curing temperature is not required provided free moisture is maintained on the cylinders and ambient temperature is between 68 to 80° F (20 and 30° C).

10.1.4.2 Beams—Refer to WSDOT Test Method T 808.

10.2 Field Curing—Field curing is the curing method used for the specimens made for the purposes stated in 4.3.

10.2.1 Cylinders — Store cylinders in or on the structure as near to the point of deposit of the concrete represented as possible. Protect all surfaces of the cylinders from the elements in as near as possible the same way as the formed work. Provide the cylinders with the same temperature and moisture environment as the structural work. Test the specimens in the moisture condition resulting from the specified curing treatment. To meet these conditions, specimens made for the purpose of determining when a structure is capable of being put in service shall be removed from the molds at the time of removal of form work.

10.2.2 Beams — Refer to WSDOT Test Method T 808.
11. Transportation of Specimens to Laboratory

See Section 10.1.3

12. Report

12.1 Report the following information to the laboratory that will test the specimens:

12.1.1 Identification number;

12.1.2 Location of concrete represented by the samples;

12.1.3 Date, time, and name of individual molding specimens;

12.1.4 Slump, air content, and concrete temperature, test results and results of any other tests on the fresh concrete and any deviations from referenced standard test methods, and

12.1.5 Record all information required using the Materials Testing System (MATS) electronic Concrete Transmittal.

Note: Agencies that do not have access to MATS may use WSDOT Form 350-009 Concrete Cylinder Transmittal.
Performance Exam Checklist

Making and Curing Concrete Test Specimens in the Field

FOP for AASHTO T 23

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The tester has a copy of the current procedure on hand?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2. Molds placed on a level, rigid, horizontal surface free of vibration?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3. Making of specimens begun within 15 minutes of sampling?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4. Concrete placed in the mold, moving a scoop or trowel around the perimeter of</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>the mold to evenly distribute the concrete as discharged?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Mold filled in correct number of layers, attempting to exactly fill the mold on</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>the last layer?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Each layer rodded throughout its depth 25 times with hemispherical end of rod,</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>uniformly distributing strokes?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Bottom layer rodded throughout its depth?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8. Middle and top layers rodded, each throughout their depths, and penetrate into</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>the underlying layer?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Sides of the mold tapped 10-15 times after rodding each layer?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>10. Strike off excess concrete, and finished the surface with a minimum of</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>manipulation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Specimens covered with non-absorbent, nonreactive cap or plate?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

First attempt: Pass ☐ Fail ☐
Second attempt: Pass ☐ Fail ☐

Signature of Examiner __

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

Comments:
Sieve Analysis of Fine and Coarse Aggregates

Significance

Sieve analyses are performed on aggregates used in roadway bases and in portland cement and asphalt cement concretes. Sieve analyses reveal the size makeup of aggregate particles – from the largest to the smallest. A gradation curve or chart showing how evenly or unevenly the sizes are distributed between largest and smallest is created in this test. How an aggregate is graded has a major impact on the strength of the base or on the properties and performance of concrete. In portland cement concrete (PCC), for example, gradation influences shrinkage and shrinkage cracking, pumpability, finishability, permeability, and other characteristics.

Scope

This procedure covers sieve analysis in accordance with AASHTO T 27 and materials finer than No. 200 (75 µm) in accordance with AASHTO T 11. The procedure combines the two test methods.

Sieve analyses determines the gradation or distribution of aggregate particles within a given sample in order to determine compliance with design and production standards.

Accurate determination of material smaller than No. 200 (75 µm) cannot be made with AASHTO T 27 alone. If quantifying this material is required, it is recommended that AASHTO T 27 be used in conjunction with AASHTO T 11. Following AASHTO T 11, the sample is washed through a No. 200 (75 µm) sieve. The amount of material passing this sieve is determined by comparing dry sample masses before and after the washing process.

This procedure covers sieve analysis in accordance with AASHTO T 27 and materials finer than No. 200 (75 µm) in accordance with AASHTO T 11. The procedure includes two method choices, A, and B.

Note: All Field Operating Procedures (FOP’s) referred to in this procedure are WSDOT FOP’s.

Apparatus

- Balance or scale: Capacity sufficient for the masses shown in Table 2, accurate to 0.1 percent of the sample mass or better and conform to the requirements of AASHTO M 231.
- Sieves – Meeting the requirements of AASHTO M 92.
- Mechanical sieve shaker – Meeting the requirements of AASHTO T 27.
- Suitable drying equipment (see FOP for AASHTO T 255)
- Containers and utensils: A pan or vessel of a size sufficient to contain the sample covered with water and to permit vigorous agitation without loss of any part of the sample or water
- Optional Mechanical washing device

1 This FOP is based on WAQTC FOP for AASHTO T 27/T 11 and has been modified per WSDOT standards. To View the redline modifications, contact WSDOT Quality Systems Manager (360) 709-5497.
Sample Sieving

In all procedures it is required to shake the sample over nested sieves. Sieves are selected to furnish information required by specification. The sieves are nested in order of decreasing size from the top to the bottom and the sample, or a portion of the sample, is placed on the top sieve. The sample may also be sieved in increments.

Sieves are shaken in a mechanical shaker for the minimum time determined to provide complete separation for the sieve shaker being used.

Time Evaluation

WSDOT has deleted this section.

Overload Determination

Additional sieves may be necessary to provide other information, such as fineness modulus, or to keep from overloading sieves. The sample may also be sieved in increments.

For sieves with openings smaller than No. 4 (4.75 mm), the mass retained on any sieve shall not exceed 4 g/in² (7 kg/m²) of sieving surface. For sieves with openings No. 4 (4.75 mm) and larger, the mass, in grams shall not exceed the product of 2.5 × (sieve opening in mm) × (effective sieving area). See Table 1.

<table>
<thead>
<tr>
<th>Sieve Size US inches (mm)</th>
<th>8 φ (203)</th>
<th>12 φ (305)</th>
<th>12 × 12 (305 × 305)</th>
<th>14 × 14 (350 × 350)</th>
<th>16 × 24 (372 × 580)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0285</td>
<td>0.0670</td>
<td>0.0929</td>
<td>0.1225</td>
<td>0.2158</td>
</tr>
<tr>
<td>3½ (90)</td>
<td>*</td>
<td>15.1</td>
<td>20.9</td>
<td>27.6</td>
<td>48.5</td>
</tr>
<tr>
<td>3 (75)</td>
<td>*</td>
<td>12.6</td>
<td>17.4</td>
<td>23.0</td>
<td>40.5</td>
</tr>
<tr>
<td>2½ (63)</td>
<td>*</td>
<td>10.6</td>
<td>14.6</td>
<td>19.3</td>
<td>34.0</td>
</tr>
<tr>
<td>2 (50)</td>
<td>3.6</td>
<td>8.4</td>
<td>11.6</td>
<td>15.3</td>
<td>27.0</td>
</tr>
<tr>
<td>1½ (37.5)</td>
<td>2.7</td>
<td>6.3</td>
<td>8.7</td>
<td>11.5</td>
<td>20.2</td>
</tr>
<tr>
<td>1 (25.0)</td>
<td>1.8</td>
<td>4.2</td>
<td>5.8</td>
<td>7.7</td>
<td>13.5</td>
</tr>
<tr>
<td>¾ (19.0)</td>
<td>1.4</td>
<td>3.2</td>
<td>4.4</td>
<td>5.8</td>
<td>10.2</td>
</tr>
<tr>
<td>½ (16.0)</td>
<td>1.1</td>
<td>2.7</td>
<td>3.7</td>
<td>4.9</td>
<td>8.6</td>
</tr>
<tr>
<td>⅔ (12.5)</td>
<td>0.89</td>
<td>2.1</td>
<td>2.9</td>
<td>3.8</td>
<td>6.7</td>
</tr>
<tr>
<td>⅔ (9.5)</td>
<td>0.67</td>
<td>1.6</td>
<td>2.2</td>
<td>2.9</td>
<td>5.1</td>
</tr>
<tr>
<td>⅔ (6.3)</td>
<td>0.44</td>
<td>1.1</td>
<td>1.5</td>
<td>1.9</td>
<td>3.4</td>
</tr>
<tr>
<td>No. 4 (4.75)</td>
<td>0.33</td>
<td>0.80</td>
<td>1.1</td>
<td>1.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Less than (No. 4)</td>
<td>0.20</td>
<td>0.47</td>
<td>0.65</td>
<td>0.86</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Sample sizes above are in kilograms to covert: to grams multiple by 1,000. To convert to pounds multiple by 2.2.

Maximum Allowable Mass of Material Retained on a Sieve, kg

Table 1
Sample Preparation

Obtain samples in accordance with the FOP for AASHTO T 2 and reduce to the size shown in Table 2 in accordance with the FOP for AASHTO T 248.

If the gradation sample is obtained from FOP for AASHTO T-308, the Ignition Furnace, proceed to Procedure Method A, Step 2.

<table>
<thead>
<tr>
<th>Nominal Maximum</th>
<th>Minimum Dry Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size in</td>
<td>(mm)</td>
</tr>
<tr>
<td>US No. 4</td>
<td>(4.75)</td>
</tr>
<tr>
<td>¼</td>
<td>(6.3)</td>
</tr>
<tr>
<td>⅜</td>
<td>(9.5)</td>
</tr>
<tr>
<td>½</td>
<td>(12.5)</td>
</tr>
<tr>
<td>¾</td>
<td>(16.0)</td>
</tr>
<tr>
<td>⅝</td>
<td>(19.0)</td>
</tr>
<tr>
<td>1</td>
<td>(25.0)</td>
</tr>
<tr>
<td>1¼</td>
<td>(31.5)</td>
</tr>
<tr>
<td>1½</td>
<td>(37.5)</td>
</tr>
<tr>
<td>2</td>
<td>(50)</td>
</tr>
<tr>
<td>2¼</td>
<td>(63)</td>
</tr>
<tr>
<td>3</td>
<td>(75)</td>
</tr>
<tr>
<td>3½</td>
<td>(90)</td>
</tr>
</tbody>
</table>

*For aggregate, the nominal maximum size, (NMS) is the largest standard sieve opening listed in the applicable specification, upon which any material is permitted to be retained. For concrete aggregate, NMS is the smallest standard sieve opening through which the entire amount of aggregate is permitted to pass.

Sample Sizes for Aggregate Gradation Test

Table 2

Note: For an aggregate specification having a generally unrestrictive gradation (i.e. wide range of permissible upper sizes), where the source consistently fully passes a screen substantially smaller than the maximum specified size, the nominal maximum size, for the purpose of defining sampling and test specimen size requirements may be adjusted to the screen, found by experience to retain no more than 5% of the materials.

WSDOT Note 1: These sample sizes are standard for aggregate testing but, due to equipment restraints, samples may need to be partitioned into several “subsamples.” See Method A.

Overview

Method A - This method is the preferred method of sieve analysis for HMA aggregate.
- Determine dry mass of original sample
- Wash through a No. 200 (75 µm) sieve
- Determine dry mass of washed sample
- Sieve material

Method B
- Determine dry mass of original sample
- Wash through a No. 200 (75 µm) sieve
- Determine dry mass of washed sample
- Sieve coarse material
- Determine mass of fine material
- Reduce fine portion
- Determine mass of reduced portion
- Sieve fine portion
Procedure Method A

1. Dry the sample in accordance with the FOP for AASHTO T 255, and record to the nearest 0.1 percent of total mass or better.

2. When the specification requires that the amount of material finer than No. 200 (75 µm) be determined, do Step 3 through Step 9 – otherwise, skip to Step 10.

 WSDOT Note 2: If the applicable specification requires that the amount passing the No. 200 (75 µm) sieve be determined on a portion of the sample passing a sieve smaller than the nominal maximum size of the aggregate, separate the sample on the designated sieve and determine the mass of the material passing that sieve to 0.1 percent of the mass of this portion of the test sample. Use the mass as the original dry mass of the test sample.

3. Nest a sieve, any sieve ranging from a No. 8 (2.36 mm) to a No. 16 (1.18 mm) may be used, above the No. 200 (75 µm) sieve.

4. Place the test sample in a container and add sufficient water to cover it.

 WSDOT requires the use of a detergent, dispersing agent, or other wetting solution when washing a sample from FOP for AASHTO T 308, an ignition furnace sample.

 WSDOT Note 3: A detergent, dispensing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the No. 200 (75 µm) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.

5. Agitate vigorously to ensure complete separation of the material finer than No. 200 (75 µm) from coarser particles and bring the fine material into suspension above the coarser material. When using a mechanical washing device, exercise caution to not degrade the sample.

6. Immediately pour the wash water containing the suspended and dissolved solids over the nested sieves, being careful not to pour out the coarser particles.

7. Add a second change of water to the sample remaining in the container, agitate, and repeat Step 6. Repeat the operation until the wash water is reasonably clear.

8. Return all material retained on the nested sieves to the container by flushing into the washed sample.

 WSDOT Note 4: A suction device may be used to extract excess water from the washed sample container. Caution will be used to avoid removing any material greater than the No. 200.

9. Dry the washed aggregate in accordance with the FOP for AASHTO T 255, and then cool prior to sieving. Record the cooled dry mass.

10. Select sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom and place the sample, or a portion of the sample, on the top sieve.
11. Place sieves in mechanical shaker and shake for a minimum of 10 minutes, or the minimum time determined to provide complete separation if this time is greater than 10 minutes for the sieve shaker being used.

12. Determine the individual or cumulative mass retained on each sieve and the pan to the nearest 0.1 percent or 0.1 g.

 WSDOT Note 5: Use coarse wire brushes to clean the No. 40 (425 µm) and larger sieves, and soft bristle brushes for smaller sieves.

Calculations

The total mass of material after sieving should be verified with the mass before sieving. If performing T 11 with T 27 this would be the dry mass after wash. If performing just T 27 this would be the original dry mass. When the masses before and after sieving differ by more than 0.3 percent do not use the results for acceptance purposes. When performing the gradation from HMA using T 308, the masses before and after sieving shall not differ by more than 0.2%.

Calculate the total percentages passing, individual or cumulative percentages retained, or percentages in various size fractions to the nearest 0.1 percent by dividing the masses for Method A, or adjusted masses for Methods B and C, on the individual sieves by the total mass of the initial dry sample. If the same test sample was first tested by T 11, use the total dry sample mass prior to washing in T 11 as the basis for calculating all percentages. Report percent passing as indicated in the “Report” section at the end of this FOP.

Percent Retained:

\[
I\text{PR} = \frac{I\text{MR}}{M} \times 100 \quad \text{or} \quad C\text{PR} = \frac{C\text{MR}}{M} \times 100
\]

Where:
- \(I\text{PR}\) = Individual Percent Retained
- \(C\text{PR}\) = Cumulative Percent Retained
- \(M\) = Total Dry Sample mass before washing
- \(I\text{MR}\) = Individual Mass Retained OR Adjusted Individual mass from Methods B or C
- \(C\text{MR}\) = Cumulative Mass Retained OR Adjusted Individual mass From Methods B or C

OR

Percent Passing (Calculated):

Where:
- \(P\) = Percent Passing
- \(P\text{PP}\) = Previous Percent Passing
- \(I\text{PR}\) = \(P\text{PP}\)-\(I\text{PR}\) OR \(P\) = 100-\(C\text{PR}\)

Calculate cumulative percent retained on and passing each sieve on the basis of the dry mass of total sample, before washing. This will include any material finer than No. 200 (75 µm) that was washed out.
Divide the cumulative masses, or the corrected masses, on the individual sieves by the total mass of the initial dry sample (prior to washing) to determine the percent retained on and passing each sieve. Calculate the percent retained on and passing each sieve. Report percent passing as indicated in the “Report” section at the end of this FOP.

Example

Dry mass of total sample, before washing: 3214.0 g

Dry mass of sample, after washing out the No. 200 (75 µm) minus: 3085.1 g

For the ½ sieve:

Cumulative Mass retained on ½” sieve = 161.0 g

Cumulative % retained = \(\frac{161.0}{3214.0} \times 100 = 5.0\% \) retained

% passing = 100 - 5.0 = 95% passing ½" sieve

Table: Sieve Analysis Results

<table>
<thead>
<tr>
<th>Sieve Size in (mm)</th>
<th>Cumulative Mass Retained g</th>
<th>Cumulative Percent Retained</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾ (19.0)</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>½ (12.5)</td>
<td>161.0</td>
<td>5.0</td>
<td>95</td>
</tr>
<tr>
<td>⅜ (9.5)</td>
<td>642.0</td>
<td>20.0</td>
<td>80</td>
</tr>
<tr>
<td>No. 4 (4.75)</td>
<td>1118.3</td>
<td>34.8</td>
<td>65</td>
</tr>
<tr>
<td>**No. 6 (3.35)</td>
<td>1515.2</td>
<td>59.6</td>
<td>40</td>
</tr>
<tr>
<td>No. 10 (2.0)</td>
<td>1914.7</td>
<td>59.6</td>
<td>40</td>
</tr>
<tr>
<td>No. 40 (0.425)</td>
<td>2631.6</td>
<td>81.9</td>
<td>18</td>
</tr>
<tr>
<td>No. 80 (0.210)</td>
<td>2862.7</td>
<td>89.1</td>
<td>11</td>
</tr>
<tr>
<td>No. 200 (0.075)</td>
<td>3051.1</td>
<td>94.9</td>
<td>5.1</td>
</tr>
<tr>
<td>Pan</td>
<td>3086.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Report No. 200 (75 µm) sieve to 0.1 percent. Report all others to 1 percent.
** Intermediate sieve used to prevent overloading the U. S. No. 10 sieve.

Gradation on All Screens

Test Validation: 3086.4 – 3085.1/3085.1 x 100 = 0.04 % which is within the 0.3 percent requirement and the results can be used for acceptance purposes.
Procedure Method B

1. Perform steps 1 thru 9 from the “Procedure Method A” then continue as follows:

2. Select sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the No. 4 (4.75 mm) with a pan at the bottom to retain the minus No. 4 (4.75 mm). (See Table 1.)

3. Place sieves in mechanical shaker and shake for a minimum of 10 minutes, or the minimum time determined to provide complete separation if this time is greater than 10 minutes for the sieve shaker being used.

4. Determine the individual or cumulative mass retained on each sieve and the pan to the nearest 0.1 percent or 0.1 g. Ensure that all material trapped in the openings of the sieve are cleaned out and included in the mass retained. (See Note 5)

5. Determine the mass retained on each sieve to the nearest 0.1 percent of the total mass or better.

6. Determine the mass of the material in the pan (minus No. 4 (4.75 mm)).

7. Reduce the minus No. 4 (4.75 mm) using a mechanical splitter in accordance with the FOP for AASHTO T 248 to produce a sample with a mass of 500 g minimum. Determine and record the mass of the minus No. 4 (4.75 mm) split.

8. Select sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the No. 200 (75 µm) with a pan at the bottom to retain the minus No. 200 (75 µm).

9. Place sieves in mechanical shaker and shake for a minimum of 10 minutes, or the minimum time determined to provide complete separation if this time is greater than 10 minutes for the sieve shaker being used.

10. Determine the individual or cumulative mass retained on each sieve and the pan to the nearest 0.1 percent or 0.1 g. Ensure that all material trapped in the openings of the sieve are cleaned out and included in the mass retained. (See Note 5)

Calculations

Compute the “Adjusted Cumulative Mass Retained” of the size increment of the original sample as follows when determining “Cumulative Mass Retained”:

Divide the cumulative masses, or the corrected masses, on the individual sieves by the total mass of the initial dry sample (prior to washing) to determine the percent retained on and passing each sieve. Calculate the percent retained on and passing each sieve. Report percent passing as indicated in the “Report” section at the end of this FOP.

When material passing the No. 4 (4.75 mm) sieve is split and only a portion of that is tested, the proportionate share of the amount passing the No. 200 (75 µm) sieve must be added to the sample mass to obtain a corrected test mass. This corrected test mass is used to calculate the gradation of the material passing the No. 4 (4.75 mm) sieve.
\[C = \left(\frac{M_1}{M_2} \times B \right) + D \]

Where:
- \(C \) = Total cumulative mass retained of the size increment based on a total sample
- \(M_1 \) = Mass of fraction finer than No. 4 (4.75 mm) sieve in total sample
- \(M_2 \) = Mass of reduced portion of material finer than No. 4 (4.75 mm) sieve actually sieved
- \(B \) = Cumulative mass of the size increment in the reduced portion sieved
- \(D \) = Cumulative mass of plus No. 4 (4.75 mm) portion of sample

Example:

Dry mass of total sample, before washing: 3214.0 g

Dry mass of sample, after washing out the No. 200 (75 µm) minus: 3085.1 g

<table>
<thead>
<tr>
<th>Sieve Size in (mm)</th>
<th>Cumulative Mass Retained g</th>
<th>Cumulative Percent Retained</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8 (19.0)</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1/2 (12.5)</td>
<td>161.0</td>
<td>5.0</td>
<td>95</td>
</tr>
<tr>
<td>3/8 (9.50)</td>
<td>642.0</td>
<td>20.0</td>
<td>80</td>
</tr>
<tr>
<td>No. 4 (4.75)</td>
<td>1118.3</td>
<td>34.8</td>
<td>65</td>
</tr>
</tbody>
</table>

Gradiation on Coarse Screens

Pan = 1968.0

Test Validation: \(1118.3 + 1968.0 - 3085.1/3085.1 \times 100 = 0.04\% \) which is within the 0.3 percent requirement and the results can be used for acceptance purposes.

The actual mass of material passing the No. 4 (4.75 mm) sieve and retained in the pan is 1968.0 g. This is \(M_1 \).

The pan (1968.0 grams) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was 512.8 g. This is \(M_2 \).

<table>
<thead>
<tr>
<th>Sieve Size in (mm)</th>
<th>Cumulative Mass Retained (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4 (4.75)</td>
<td>0</td>
</tr>
<tr>
<td>No. 10 (2.00)</td>
<td>207.5</td>
</tr>
<tr>
<td>No. 40 (0.425)</td>
<td>394.3</td>
</tr>
<tr>
<td>No. 80 (0.210)</td>
<td>454.5</td>
</tr>
<tr>
<td>No. 200 (0.075)</td>
<td>503.6</td>
</tr>
<tr>
<td>Pan</td>
<td>512.8</td>
</tr>
</tbody>
</table>

Gradiation on Fine Screens

Test Validation: \(512.8 - 512.8/512.8 = 0.0 \% \) which is within the 0.3 percent requirement and the results can be used for acceptance purposes.
For the No. 10 sieve:

\[M_1 = 1968.0\text{g} \]
\[M_2 = 512.8\text{g} \]
\[B = 207.5\text{g} \]
\[D = 1118.3\text{g} \]

\[C = \frac{M_1}{M_2} \times B + D = \frac{1968.0\text{g}}{512.8\text{g}} \times 207.5\text{g} + 1118.3\text{g} = 1914.7\text{g} \]

\[\% \text{ retained} = \frac{1914.7\text{g}}{3214.0\text{g}} = 59.6\% \]

\[\% \text{ passing} = 100 - 59.6 = 40.4\%, \text{ reported as } 40\% \]

Final Gradation on All Screens

<table>
<thead>
<tr>
<th>Sieve Size in (mm)</th>
<th>Cumulative Mass Retained g</th>
<th>Adjusted Cumulative Mass Retained g</th>
<th>Cum. Percent Retained</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾ (19.0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>½ (12.5)</td>
<td>161.1</td>
<td>161.1</td>
<td>5.0</td>
<td>95</td>
</tr>
<tr>
<td>⅜ (9.5)</td>
<td>642.5</td>
<td>642.5</td>
<td>20.0</td>
<td>80</td>
</tr>
<tr>
<td>No. 4 (4.75)</td>
<td>1118.3</td>
<td>1118.3</td>
<td>34.8</td>
<td>65</td>
</tr>
<tr>
<td>No. 10 (2.0)</td>
<td>207.5 \times 3.838 + 1118.3</td>
<td>1914.7</td>
<td>59.6</td>
<td>40</td>
</tr>
<tr>
<td>No. 40 (0.425)</td>
<td>394.3 \times 3.838 + 1118.3</td>
<td>2631.6</td>
<td>81.6</td>
<td>18</td>
</tr>
<tr>
<td>No. 80 (0.210)</td>
<td>454.5 \times 3.838 + 1118.3</td>
<td>2862.7</td>
<td>89.1</td>
<td>11</td>
</tr>
<tr>
<td>No. 200 (0.075)</td>
<td>503.6 \times 3.838 + 1118.3</td>
<td>3051.1</td>
<td>94.9</td>
<td>5.1</td>
</tr>
<tr>
<td>Pan</td>
<td>512.8 \times 3.838 + 1118.3</td>
<td>3086.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Report No. 200 (75 µm) sieve to 0.1 percent. Report all others to 1 percent.

Alternative Method B

As an alternate method to account for the fact that only a portion of the minus No. 4 (4.75 mm) material was sieved, multiply the fine screen “Percent Passing” values by the percent passing the No. 4 (4.75 mm) sieve obtained in the coarse screen procedure, 65 percent in this case.

The mass retained in the pan must be corrected to include the proper percent of No. 200 (.075 mm) minus material washed out.

Divide the cumulative masses, or the corrected masses, on the individual sieves by the corrected pan mass of the initial dry sample (prior to washing) to determine the percent retained on and passing each sieve. Calculate the percent retained on and passing each sieve. Report percent passing as indicated in the “Report” section at the end of this FOP.

Dry mass of total sample, before washing: 3214.0 g

Dry mass of sample, after washing out the No. 200 (75 µm) minus: 3085.1 g

Amount of No. 200 (75 µm) minus washed out: 3214.0 g – 3085.1 g = 128.9 g
Sieve Analysis of Fine and Coarse Aggregates

<table>
<thead>
<tr>
<th>Sieve Size in (mm)</th>
<th>Cumulative Mass Retained (g)</th>
<th>Cumulative Percent Retained</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾ (19.0)</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>½ (12.5)</td>
<td>161.0</td>
<td>5.0</td>
<td>95</td>
</tr>
<tr>
<td>⅜ (9.50)</td>
<td>642.0</td>
<td>20.0</td>
<td>80</td>
</tr>
<tr>
<td>No. 4 (4.75)</td>
<td>1118.3</td>
<td>34.8</td>
<td>65</td>
</tr>
</tbody>
</table>

Gradation on Coarse Screens

Pan = 1968.0

Test validation: \[
\frac{1118.3 + 1968.0 - 3085.1}{3085.1} \times 100 = 0.04\%
\]

which is within the 0.3 percent requirement and the results can be used for acceptance purposes.

The actual mass of material passing the No. 4 (4.75 mm) sieve and retained in the pan is 1968.0 g. This is \(M_3\).

The pan (1968.0 grams) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was 512.8 g. This is \(M_4\).

\[
\text{Corrected pan mass} = M_4 + \frac{(M_4)(C_1)}{M_3}
\]

Where:
- \(M_4\) = Mass retained in the pan from the split of the No. 4 (4.75 mm) minus
- \(M_3\) = Mass of the No. 4 (4.75 mm) minus of entire sample, not including No. 200 (.075 mm) minus washed out
- \(C_1\) = Mass of No. 200 (.075 mm) minus washed out

<table>
<thead>
<tr>
<th>Sieve Size in (mm)</th>
<th>Cumulative Mass Retained (g)</th>
<th>Cumulative Percent Retained</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4 (4.75)</td>
<td>0</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>No. 10 (2.00)</td>
<td>207.5</td>
<td>38.0</td>
<td>62.0</td>
</tr>
<tr>
<td>No. 40 (0.425)</td>
<td>394.3</td>
<td>72.2</td>
<td>27.8</td>
</tr>
<tr>
<td>No. 80 (0.210)</td>
<td>454.5</td>
<td>83.2</td>
<td>16.8</td>
</tr>
<tr>
<td>No. 200 (0.075)</td>
<td>503.6</td>
<td>92.2</td>
<td>7.8</td>
</tr>
<tr>
<td>Pan</td>
<td>512.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The corrected pan mass is the mass used to calculate the percent retained for the fine grading.
Example:

\[M_4 = 512.8g \]
\[M_3 = 1968.0g \]
\[C_1 = 128.9g \]

Corrected pan mass = \[512.8g + \frac{(512.8g)(128.9g)}{1968.0g} = 546.4g \]

For the No. 10 sieve:

Mass of No. 10 sieve = 207.5g

Corrected Pan Mass = 546.4g

Cumulative % retained = \[\frac{207.5g}{546.4g} = 38\% \]

% passing = 100-38.0 = 62.0%

Adjusted % passing No. 10 = % passing No. 10 \times \% No. 4 = 62.0 \times 0.65 = 40\%

<table>
<thead>
<tr>
<th>Sieve Size in (mm)</th>
<th>Adjustment</th>
<th>Reported Percent Passing*</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾ (19.0)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>½ (12.5)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>⅜ (9.5)</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>No. 4 (4.75)</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>No. 10 (2.00)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>No. 40 (0.425)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>No. 80 (0.210)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>No. 200 (0.075)</td>
<td>5.1</td>
<td></td>
</tr>
</tbody>
</table>

* Report No. 200 (75 µm) sieve to 0.1 percent. Report all others to 1 percent

Final Gradation on All Screens
Sample Calculation for Fineness Modulus

Fineness Modulus (FM) is used in determining the degree of uniformity of aggregate gradation in PCC mix designs. It is an empirical number relating to the fineness of the aggregate. The higher the FM, the coarser the aggregate. Values of 2.40 to 3.00 are common for FA in PCC.

The FM is the sum of the percentages retained on specified sieves, for PCC fine aggregate they are: ¾” (9.5 mm), No. 4 (4.75 mm), 2.36 mm (No. 8), 1.18 mm (No. 16), 0.60 mm (No. 30), 0.30 mm (No. 50), and 0.15 mm (No. 100) divided by 100 gives the FM.

The following example is for WSDOT Class 2 Sand:

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Size</th>
<th>% Passing</th>
<th>% Retained</th>
<th>% Retained on Specified Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4</td>
<td>4.75 mm</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No. 8</td>
<td>2.36 mm</td>
<td>87</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>No. 16</td>
<td>1.18 mm</td>
<td>69</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>No. 30</td>
<td>0.60 mm</td>
<td>44</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>No. 50</td>
<td>0.30 mm</td>
<td>18</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>No. 100</td>
<td>0.15 mm</td>
<td>4</td>
<td>96</td>
<td>96</td>
</tr>
</tbody>
</table>

\[
\text{FM} = \frac{0 + 13 + 31 + 56 + 82 + 96}{100} = 2.78
\]

Report

Results shall be reported on standard forms approved for use by the agency. Depending on the agency, this may include:

- Cumulative mass retained on each sieve
- Cumulative percent retained on each sieve
- Percent passing and retained on each sieve shall be reported to the nearest 1 percent except for the percent passing the U.S. No. 200 (75 µm) sieve, which shall be reported to the nearest 0.1 percent
- FM to the nearest 0.01 percent for WSDOT Class 2 Sand

Report results using WSDOT Form 422-020, or other report approved by the State Materials Engineer.
Performance Exam Checklist

WAQTC FOP FOR AASHTO T 27/T 11
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES

Participant Name ____________________ Exam Date _______________

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The tester has a copy of the current procedure on hand?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>2. All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>3. Minimum sample mass meets requirement of Table 1 or from FOP for AASHTO T 308?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>4. Test sample dried to a constant mass by FOP for AASHTO T 255?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>5. Test sample cooled and mass determined to nearest 0.1 percent of mass?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>6. Sample placed in container and covered with water? (If specification requires that the amount of material finer than the No. 200 sieve is to be determined.)</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>7. Dispersing Agent used for HMA?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>8. Contents of the container vigorously agitated?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>9. Complete separation of coarse and fine particles achieved?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>10. Wash water poured through required nested sieves?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>11. Operation continued until wash water is reasonably clear?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>12. Material retained on sieves returned to washed sample?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>13. Washed aggregate dried to a constant mass by FOP for AASHTO T 255?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>14. Washed aggregate cooled and mass determined to nearest 0.1 percent of mass?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>15. Sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.)</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>16. Material sieved in verified mechanical shaker for minimum of 10 minutes or for the minimum verified time whichever is longer?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>17. Mass of residue on each sieve determined to 0.1 percent of mass?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>18. Total mass of material after sieving agrees with mass before sieving to within 0.3 percent, or 0.2 percent for HMA (per FOP for AASHTO T 308)?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>19. Percentages calculated to the nearest 0.1 percent and reported to the nearest whole number, except No. 200 - reported to the nearest 0.1 percent?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>20. Percentage calculations based on original dry sample mass?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
<tr>
<td>21. Calculations performed properly? If material passing No. 4 sieve is split and only a portion is tested, calculation as noted in FOP performed properly?</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
</tbody>
</table>

First attempt: Pass [] Fail []
Second attempt: Pass [] Fail []

Signature of Examiner ____________________

Materials Manual M 46-01.07
January 2011
Page 13 of 14
Standard Test Method for Slump of Hydraulic-Cement Concrete

1. Scope

1.1 This test method covers determination of slump of concrete, both in the laboratory and in the field.

1.2 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.

1.3 The text of the standard reference notes and footnotes provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.

1.4 This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.)

2. Referenced Documents

2.1 AASHTO Standards:
 T 141 Sampling Freshly Mixed Concrete

2.2 ASTM Standards:
 C 172 Practice for Sampling Freshly Mixed Concrete

3. Summary of Test Method

3.1 A sample of freshly mixed concrete is placed and compacted by rodding in a mold shaped as the frustum of a cone. The mold is raised, and the concrete allowed to subside. The distance between the original and displaced position of the center of the top surface of the concrete is measured and reported as the slump of the concrete.

4. Significance and Use

4.1 This test method is intended to provide the user with a procedure to determine slump of plastic hydraulic-cement concretes.

Note 1: This test method was originally developed to provide a technique to monitor the consistency of unhardened concrete. Under laboratory conditions, with strict control of all concrete materials, the slump is generally found to increase proportionally with the water content of a given concrete mixture, and thus to be inversely related to concrete strength. Under field conditions, however, such a strength relationship is not clearly and consistently shown. Care should therefore be taken in relating slump results obtained under field conditions to strength.

1 This FOP is based on AASHTO T 119-07.
4.2 This test method is considered applicable to plastic concrete having coarse aggregate up to 1½ in (37.5 mm) in size. If the coarse aggregate is larger than 1½ in (37.5 mm) in size remove per FOP for WAQTC TM 2.

4.3 This test method is not considered applicable to non-plastic and non-cohesive concrete.

Note 2: Concretes having slumps less than 0.5 in (15 mm.) may not be adequately plastic and concretes having slumps greater than about 9 in (230 mm) may not be adequately cohesive for this test to have significance. Caution should be exercised in interpreting such results.

5. Apparatus

5.1 Mold — The test specimen shall be formed in a mold made of metal not readily attacked by the cement paste. The metal shall not be thinner than 0.060 in (1.5 mm) and if formed by the spinning process, there shall be no point on the mold at which the thickness is less than 0.045 in (1.15 mm). The mold shall be in the form of the lateral surface of the frustum of a cone with the base 8 in (200 mm) in diameter, the top 4 in (100 mm) in diameter, and the height 12 in (300 mm). Individual diameters and heights shall be within ±⅛ in (3.2 mm) of the prescribed dimensions. The base and the top shall be open and parallel to each other and at right angles to the axis of the cone. The mold shall be provided with foot pieces and handles similar to those shown in Figure 1. The mold shall be constructed without a seam. The interior of the mold shall be relatively smooth and free from projections. The mold shall be free from projections. A mold which clamps to a nonabsorbent base plate is acceptable instead of the one illustrated provided the clamping arrangement is such that it can be fully released without movement of the mold and the base is large enough to contain all of the slumped concrete in an acceptable test.

5.1.1 Check and record conformance to the mold’s specified dimensions when it is purchased or first placed in service and at least annually thereafter.

5.1.2 Mold with alternative materials.

5.1.2.1 Molds other than metal are permitted if the following requirements are met: The mold shall meet the shape, height, and internal dimensional requirements of Section 5.1. The mold shall be sufficiently rigid to maintain the specified dimensions and tolerances during use, resistant to impact forces, and shall be nonabsorbent. The mold shall be demonstrated to provide test results comparable to those obtained when using a metal mold meeting the requirements of Section 5.1. Comparability shall be demonstrated on behalf of the manufacturer by an independent testing laboratory. Test for comparability shall consist of not less than 10 consecutive pairs of comparisons performed at each of three different slumps ranging from 50 to 200 mm (2 to 8 in). No individual test results shall vary by more than 15 mm [0.50 in] from that obtained using the metal mold. The average test results of each slump range obtained using the mold constructed of alternative material shall not vary by more than 0.25 in (6 mm) from the average of test results obtained using the metal mold. Manufacturer comparability test data
shall be available to users and laboratory inspection authorities (see Note 4). If any changes in material or method of manufacture are made, tests for comparability shall be repeated.

Note 3: The phrase “consecutive pairs of comparisons” does not mean without interruption or all in one day. At a schedule selected by the testing entity, the pairs of tests leading to 10 consecutive pairs may be accomplished in small groups. The word consecutive prevents ignoring pairs of tests which may not meet criteria.

Note 4: Because the slump of concrete decreases with time and higher temperatures, it will be advantageous for the comparability tests to be performed by alternating the use of metal cones and alternative material cones, to utilize several technicians, and to minimize the time between test procedures.

5.1.2.2 If the condition of any individual mold is suspected of being out of tolerance from the as manufactured condition, a single comparative test shall be performed. If the test results differ by more than 0.50 in (15 mm) from that obtained using the metal mold, the mold shall be removed from service.

5.2 Tamping Rod — The tamping rod shall be a round, straight steel rod ⅝ in (16 mm) in diameter and approximately 24 in (600 mm) in length, having the tamping end or both ends rounded to a hemispherical tip, the diameter of which is ⅛ in (16 mm).

5.3 Measuring Device—A ruler, metal roll-up measuring tape, or similar rigid or semi-rigid length measuring instrument marked in increments of 5 mm [⅛ in] or smaller. The instrument length shall be at least 300 mm [12 in].

5.4 Torpedo level

5.5 Base — Flat, nonabsorbent, rigid surface.

6. Sample

6.1 The sample of concrete from which test specimens are made shall be representative of the entire batch. It shall be obtained in accordance with FOP for WAQTC TM 2. With concrete using 1½ in (37.5 mm), or larger aggregate, the aggregate larger than 1½ in (37.5 mm) must be removed per FOP for WAQTC TM 2. Contact the Materials Laboratory for directions.
T 119

Standard Test Method for Slump of Hydraulic-Cement Concrete

Mold for Slump Test

Figure 1

<table>
<thead>
<tr>
<th>mm</th>
<th>2</th>
<th>3</th>
<th>15</th>
<th>25</th>
<th>75</th>
<th>30</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>in.</td>
<td>0.08</td>
<td>0.12</td>
<td>0.60</td>
<td>0.98</td>
<td>2.98</td>
<td>1.18</td>
<td>3.94</td>
<td>7.87</td>
<td>11.81</td>
</tr>
</tbody>
</table>

Dimensional Units

Thickness
7. Procedure

7.1 Dampen the mold and place it on a flat, level, moist, nonabsorbent rigid horizontal surface, free from vibration and other disturbances, such as a pre-moistened concrete floor or a base plate on a rigid surface. It shall be held firmly in place during filling and perimeter cleaning by the operator standing on the two foot pieces, or by clamping arrangements to a base plate as described in 5.1. From the sample of concrete obtained in accordance with Section 6, immediately fill the mold in three layers, each approximately one-third the volume of the mold.

Note 5: One third of the volume of the slump mold fills it to a depth of 2¾ in (67 mm); two thirds of the volume fills it to a depth of 6⅛ in (155 mm).

7.2 Rod each layer with 25 strokes of the tamping rod. Uniformly distribute the strokes over the cross section of each layer. For the bottom layer this will necessitate inclining the rod slightly and making approximately half of the strokes near the perimeter, and then progressing with vertical strokes spirally toward the center. Rod the bottom layer throughout its depth. Rod the second layer and the top layer each throughout its depth, so that the strokes just penetrate into the underlying layer.

7.3 In filling and rodding the top layer, heap the concrete above the mold before rodding is started. If the rodding operation results in subsidence of the concrete below the top edge of the mold, add additional concrete to keep an excess of concrete above the top of the mold at all times. After the top layer has been rodded, strike off the surface of the concrete by means of a screeding and rolling motion of the tamping rod. Continue to hold the mold down firmly and remove concrete from the area surrounding the base of the mold to preclude interface with the movement of slumping concrete.

Remove the mold immediately from the concrete by raising it carefully in a vertical direction. Raise the mold a distance of approximately 12 in (300 mm) in 5 ± 2 seconds by a steady upward lift with no lateral or torsional motion. Complete the entire test from the start of the filling through removal of the mold without interruption and complete it within an elapsed time of 2½ min.

7.4 Immediately measure the slump by determining the vertical difference between the top of the mold and the displaced original center of the top surface of the specimen. If a decided falling away or shearing off of concrete from one side or portion of the mass occurs (Note 6), disregard the test and make a new test on another portion of the sample.

Note 6: If two consecutive tests on a sample of concrete show a falling away or shearing off of a portion of the concrete from the mass of the specimen, the concrete probably lacks necessary plasticity and cohesiveness for the slump test to be applicable. Report material cannot be slumped due to shearing or falling away.
8. Report

8.1 Report the slump in terms of inches (millimeters) to the nearest $\frac{1}{4}$ in (5 mm) of subsidence of the specimen during the test, as follows:

\[
\text{Slump} = 12 \text{ inches of height after subsidence} \\
\text{Slump} = 300 \text{ mm of height after subsidence}
\]

Report results on concrete delivery ticket (i.e., Certificate of Compliance).

The name of the tester who performed the field acceptance test is required on concrete delivery tickets containing test results.

9. Precision and Bias

9.1 Precision:

See AASHTO T 119 for Precision and bias
Performance Exam Checklist

Slump of Hydraulic Cement Concrete
FOP for AASHTO T 119

Participant Name ______________________________ Exam Date ____________________

Procedure Element

1. The tester has a copy of the current procedure on hand? Yes ☐ No ☐
2. All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present? Yes ☐ No ☐
3. Cone and floor or base plate dampened? Yes ☐ No ☐
4. Cone held firmly against the base by standing on the two foot pieces? Cone not allowed to move in any way during filling? Yes ☐ No ☐
5. Representative samples scooped into the cone? Yes ☐ No ☐
6. Cone filled in three approximately equal layers by volume? Yes ☐ No ☐
7. Each layer rodded throughout its depth 25 times with hemispherical end of rod, uniformly distributing strokes? Yes ☐ No ☐
8. Middle and top layers rodded to just penetrate into the underlying layer? Yes ☐ No ☐
9. When rodding the top layer, excess concrete kept above the mold at all times? Yes ☐ No ☐
10. Concrete struck off level with top of cone using tamping rod? Yes ☐ No ☐
11. Excess concrete removed from around the base? Yes ☐ No ☐
12. Cone lifted upward approximately 12 in (300 mm) in one smooth motion, without twisting the cone, in 5 ± 2 seconds? Yes ☐ No ☐
13. Slump measured to the nearest ¼ in (5 mm) from the top of the cone to the displaced original center of the top surface of the specimen? Yes ☐ No ☐
14. Test performed from start to finish within 2½ minutes? Yes ☐ No ☐

First attempt: Pass ☐ Fail ☐ Second attempt: Pass ☐ Fail ☐

Signature of Examiner ______________________________

Comments:
Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens

1. Scope

1.1 This method of test covers the determination of bulk specific gravity of specimens of compacted hot mix asphalt.

1.2 Definition:

1.3 Bulk specific gravity (of solids)—the ratio of the mass in air of a unit volume of a permeable material (including both permeable and impermeable voids normal to the material) at a stated temperature to the weight in air of equal density of an equal volume of gas-free distilled water at a stated temperature. The form of the expression shall be:

\[
\text{Bulk specific gravity } \frac{x}{y} \degree C
\]

where:

\[
\begin{align*}
x &= \text{temperature of the material, and} \\
y &= \text{temperature of the water}
\end{align*}
\]

1.4 The bulk specific gravity of the compacted hot mix asphalt may be used in calculating the unit mass of the mixture.

1.5 The values stated in English units are to be regarded as the standard.

Note: Method A shall be used for laboratory compacted specimens, and field specimens compacted using gyratory compactor.

Method C shall be used for asphalt pavement cores.

2. Referenced Documents

2.1 AASHTO Standards:

- M 231, Weighing Devices Used in the Testing of Materials
- T 275, Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens

3. Test Specimens

3.1 Test specimens may be either laboratory-molded HMA mixtures or from HMA pavements. The mixtures may be surface, wearing, leveling or base course materials.

3.2 Size of Specimens — It is recommended that: (1) the diameter of cylindrically molded or cored specimens, or the length of the sides of sawed specimens, be at least equal to four times the maximum size of the aggregate; and (2) the thickness of specimens be at least one-and-one-half times the maximum size of the aggregate.

3.3 Specimens shall be taken from pavements with core drill, diamond or carborundum saw, or by other suitable means.

1 This Test Method is based on AASHTO T 166-10.
3.4 Care shall be taken to avoid distortion, bending, or cracking of specimens during and after the removal from pavement or mold. Specimens shall be stored in a safe, cool place.

3.5 Specimens shall be free from foreign materials such as seal coat, tack coat, foundation material, soil, paper, or foil.

3.6 If desired, specimens may be separated from other pavement layers by sawing or other suitable means. Care should be exercised to ensure sawing does not damage the specimens.

METHOD A

4. Apparatus

4.1 Weighing Device — The weighing device shall have sufficient capacity, be readable to 0.1 percent of the specimen mass, or better, and conform to the requirements of AASHTO M 231. The weighing device shall be equipped with suitable suspension apparatus and holder to permit weighing the specimen while suspended from the center of scale pan of the weighing device.

4.2 Suspension Apparatus — The wire suspending the container shall be the smallest practical size to minimize any possible effects of a variable immersed length. The suspension apparatus shall be constructed to enable the container to be immersed to a depth sufficient to cover it and the specimen during weighing. Care should be exercised to ensure no trapped air bubbles exist under the specimen.

4.3 Water Bath — for immersing the specimen in water while suspended under the weighing device, equipped with an overflow outlet for maintaining a constant water level.

4.4 Thermometric Device— liquid-in-glass thermometers or other suitable thermometric device, accurate to 1°F (0.5°C).

5. Procedure

5.1 Dry the specimen to a constant mass (Note 1). Cool the specimen to room temperature for a minimum of 15 hours and a maximum of 24 hours at 77 ± 9°F (25 ± 5°C) per SOP 731 and record the dry mass as A. Immerse each specimen in water at 77 ± 1.8°F (25 ± 1°C) for 4 ± 1 minute and record the immersed mass as C. Remove the specimen from the water, damp dry the specimen by blotting with a damp towel as quickly as possible (blotting not to exceed 10s), and determine the surface-dry mass as, B. Any water that seeps from the specimen during the weighing operation is considered part of the saturated specimen (Note 1). Each specimen shall be immersed and weighed individually.

Note 1: Constant mass shall be defined as the mass at which further drying at 125 ± 5°F (52 ± 3°C) does not alter the mass by more than 0.05 percent. Specimen saturated with water shall initially be dried overnight at 125 ± 5°F (52 ± 3°C) and then weighed at 2-hour drying intervals. Recently molded laboratory specimens which have not been exposed to moisture do not require drying.

Note 2: If desired, the sequence of testing operations may be changed to expedite the test results. For example, first the immersed mass (C) can be taken, then the surface-dry mass (B), and finally the dry mass (A).
Note 3: Terry cloth has been found to work well for an absorbent cloth. Damp is considered to be when no water can be wrung from towel.

6. Transportation Of Warm Specimens

It is not recommended that specimens be transported before they have cooled to room temperature. If however, a specimen must be transported prior to reaching room temperature the following guidelines should be used to transport the specimen;

a. Place the specimen in a container that has a flat bottom surface to prevent deformation of the bottom of the specimen.

Note: A flat piece of wood, rigid aluminum or reinforced cardboard may be used to create a flat surface in an HMA sample box.

b. Make sure the specimen is not deformed in handling.

c. Do not stack anything on top of the specimen container.

d. Transport the container in the cab of the vehicle or secure it in the vehicle bed to prevent movement during transit.

6. Calculation

6.1 Calculate the bulk specific gravity of the specimens as follows (round and report the value to the nearest three decimal places):

\[
\text{Bulk Specific Gravity} = \frac{A}{B - C}
\]

Where:

\[
A = \text{Mass in grams of specimen in air}
\]

\[
B = \text{Mass in grams of surface-dry specimen in air}
\]

\[
C = \text{Mass in grams of specimen in water}
\]

6.2 Calculate the percent water absorbed by the specimen (on volume basis) as follows:

\[
\text{Percent Water Absorbed by Volume} = \frac{B - A}{B - C} \times 100
\]

6.3 If the percent water absorbed by the specimen in Section 5.1 exceeds 2 percent, use T 275 (Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens) to determine the bulk specific gravity.

METHOD B

WSDOT does not use Method B and has removed this section from the procedure.

METHOD C (RAPID TEST)
10. Procedure

10.1 This procedure can be used for testing specimens which are not required to be saved and which contain substantial amount of moisture. Specimens obtained by coring or sawing can be tested the same day by this method.

10.2 The testing procedure shall be the same as given in Sections 5 except for the sequence of operations. The dry mass (A) of the specimen is determined last as follows.

Note 4: A microwave oven can be used to speed up the process by initially heating the sample so that it can be broken into small pieces prior to placing it into the drying oven.

10.3 Place the specimen in a large flat bottom drying pan of known mass. Place the pan and specimen in a 325 ± 25º F (164 ± 14ºC) oven. Leave the specimen in the oven until it can be easily separated to the point where the particles of the fine aggregate-asphalt portion are not larger than ¼ in (6.4 mm). Place the separated specimen in the 325º F (164ºC) oven and dry to a constant mass. The test sample shall be initially dried for a minimum of 90 minutes, and its mass determined. Then, at 30 minute intervals until constant mass is achieved.

Note: If samples are placed in the oven overnight for a minimum of 6 hours at 230ºF, then the 90 minute weighting is not necessary.

10.4 Cool the pan and specimen to room temperature at 77 ± 9°F (25 ± 5°C). Determine the mass of the pan and specimen, subtract the mass of the pan and record the dry mass of the pan and record the dry mass, A.

11. Calculations

11.1 Calculate the bulk specific gravity per Sections 6.1.

12. Report

12.1 The report shall include the following:

12.1.1 Bulk Specific Gravity reported to the nearest thousandth. (0.001)

12.1.2 Absorption reported to the nearest hundredth. (0.01)

13. Precision

13.1 See AASHTO T 166 for precision statement.
Performance Exam Checklist

WSDOT FOP for AASHTO T 166

Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface Dry Specimens

Participant Name ___________________________ Exam Date _________________

Procedure Element

1. The tester has a copy of the current procedure on hand? Yes □ No □

2. All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present? Yes □ No □

Method A (For use with laboratory compacted specimens.)

1. Compacted specimen cooled to room temperature (refer to WSDOT SOP 731, Procedure #5g), 77 ± 9º F, and record the dry mass. Yes □ No □

2. Immerse each specimen in water at 77 ± 1.8ºF for 3 to 5 minutes and record the immersed mass to the nearest 0.1 gram? Yes □ No □

3. Remove sample from water, surface dry with damp towel and weigh the specimen in air at 77 ± 9º F to the nearest 0.1 gram? Yes □ No □

4. Calculated the bulk specific gravity of the specimens per Section 6.1? Yes □ No □

Method C (For use with pavement cores and chunks.)

1. Immerse specimen in water at 77 ± 1.8º F for 3 to 5 minutes and record the immersed weight to the nearest 0.1 gram? Yes □ No □

2. Remove sample from water, surface dry by blotting with damp towel and immediately weigh specimen in air at 77 ± 9º F to the nearest 0.1 gram? Yes □ No □

3. Place specimen in container (noting the empty container weight), then into an oven set at 325 ± 25º F until sample can be broken into small pieces? Yes □ No □

4. Return container to oven until it has reached a constant weight? Yes □ No □

5. Remove container and sample from oven and allow to cool to room temperature, 77 ± 9º F? Yes □ No □

6. Weigh pan with sample and record to nearest 0.1 gram, deducting known weight of pan to arrive at oven-dried sample weight? Yes □ No □

7. Calculated the bulk specific gravity of the specimen per Section 6.1? Yes □ No □

First attempt: Pass ☐ Fail ☐ Second attempt: Pass ☐ Fail ☐

Signature of Examiner ________________________________
Comments:
WSDOT FOP For AASHTO T 176

Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test

1. Scope
 1.1 This test is intended to serve as a rapid field test to show the relative proportions of fine dust or claylike material in soils or graded aggregates.

 1.2 The following applies to all specified limits in this standard: For the purpose of determining conformance with these specifications, an observed value or a calculated value shall be rounded off “to the nearest unit” in the last right-hand place of figures used in expressing the limiting value, in accordance with R 11, recommended practice for indicating which places of figures are to be considered significant in specified limiting values.

 1.3 The values stated in English units are to be regarded as the standard.

 1.4 Refer to R 16 for regulatory information for chemicals.

2. Apparatus
 2.1 A graduated plastic cylinder, rubber stopper, irrigator tube, weighted foot assembly, and siphon assembly, all conforming to their respective specifications and dimensions shown in Figure 1. Fit the siphon assembly to a 1 gal (4-L) bottle of working calcium chloride solution (see Section 2.8) placed on a shelf 36 ± 1 in (915 ± 25 mm) above the work surface. In lieu of the specified 1 gal (4-L) bottle, a glass or plastic vat having a larger capacity may be used provided the liquid level of the working solution is maintained between 36 and 46 inches (915 and 1170 mm) above the work surface. (See Figure 2.)

 ![Apparatus Figure 2](image-url)
FIGURE 1 Sand Equivalent Apparatus
ASSEMBLY C

Note: all dimensions are shown in mm unless otherwise indicated.

FIGURE 1 Sand Equivalent Apparatus (continued)
LIST OF MATERIAL

<table>
<thead>
<tr>
<th>Assembly</th>
<th>No. Reg.</th>
<th>Description</th>
<th>Stock size</th>
<th>Material</th>
<th>Heat Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Siphon Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>Siphon Tube</td>
<td>6.4 dia. × 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Siphon Hose</td>
<td>4.6 I.D. × 1220</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Blow Hose</td>
<td>4.8 I.D. × 50.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Blow Tube</td>
<td>6.4 dia × 50.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Two-Hole Stopper</td>
<td>No. 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Irrigator Tube</td>
<td>6.4 O.D. 0.89 Wall × 500 Stainless Steel tube, Type 316</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Clamp</td>
<td>Pinchcock, Day, BKH No. 21730 or Equiv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>Tube</td>
<td>38.1 Od. × 430</td>
<td>Trans. Acrylic Plastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Base</td>
<td>12.7 × 102 × 102</td>
<td>Trans. Acrylic Plastic</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>Sand Reading Indicator</td>
<td>6.4 dia. × 14.9</td>
<td>Nylon 101 type 66 Annealed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Rod</td>
<td>6.4 dia. × 438.2</td>
<td>Brass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Weight</td>
<td>50.8 dia. × 52.78</td>
<td>C.R. SH.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Roll Pin</td>
<td>0.16 dia. × 12.7</td>
<td>Steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Foot</td>
<td>0.16 dia. × 13.7</td>
<td>Brass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Solid Stopper</td>
<td>No. 7</td>
<td>Rubber</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. “C” Mounted Foot Assembly to weigh 1000 ± 5 g.
2. Graduations of graduate to be 2.54 mm apart and every tenth mark to be numerically designated as shown. Every fifth line should be approximately 9.5 mm long. All other lines should be approximately 5.5 mm long. Depth to be 0.4 mm. Width to be 0.8 mm across the top.
3. Accuracy of scale to be ± 0.25 mm. Error at any point on scale to be ± 0.75 mm of true distance to zero.
4. Glass or stainless steel may be substituted as a material type for the copper siphon and blow tubing.

Sand Equivalent Apparatus (continued)

Figure 1

Note 1: An older model of weighted foot assembly has a guide cap that fits over the upper end of the graduated cylinder and centers the rod in the cylinder, and the foot of the assembly has a conical upper surface and three centering screws to center it loosely in the cylinder. The older model does not have the same reading indicator affixed to the rod (Figure 1), but a slot in the centering screws of the weighted foot is used to indicate the sand reading. Apparatus with the sand reading indicator (Figure 1) is preferred for testing clayey materials.

2.2 A tinned measure, having a capacity of 3 oz (85 ± 5 mL), approximately 2.25 in (57 mm) in diameter.

2.3 A wide-mouth funnel approximately 4 in (100 mm) in diameter at the mouth.

2.4 A clock or watch reading in minutes and seconds.
2.5 A mechanical shaker having a throw of 8.00 ± 0.04 in (203.2 ± 1.0 mm) and operating at 175 ± 2 cycles per minute (2.92 ± 0.03 Hz) (Note 2). Prior to use, fasten the mechanical sand equivalent shaker securely to a firm and level mount.

Note 2: The mechanical shaker shall be used when performing referee sand equivalent determinations.

2.6 A manually operated shaker capable of producing an oscillating motion at the rate of 100 complete cycles in 45 ± 5 seconds, with a hand-assisted half stroke length of 5.0 ± 0.2 in (127 ± 5 mm). The shaker shall be fastened securely to a firm and level mount by bolts or clamps.

2.7 Stock Solution – Shall meet the requirements of AASHTO T 176.

2.8 Working calcium chloride solution: Prepare the working calcium chloride by diluting one measuring tin full 3 oz. (85 ± 5 mL), or from a graduated cylinder of the stock calcium chloride solution to 1 gal (3.8 L) with water (finished product will equal 1 gallon). Use distilled or demineralized water for the normal preparation of the working solution. Record the date made on the gallon bottle. Working solutions more than 30 days old shall be discarded.

2.9 A straightedge or spatula, suitable for striking off the excess soil from the tin measure.

2.10 A thermostatically controlled drying oven, or other suitable sources of heat may be used, such as an electric or gas hot plate, electric heat lamp, or a ventilated microwave oven.

2.11 Quartering or splitting cloth, approximately 2 ft square, nonabsorbent material such as plastic or oil cloth.

2.12 Optional Handle for Irrigation Tube — A 25 mm diameter wooden dowel to aid in pushing the irrigation tube into firm materials. See Figure 1, Assembly B.

3. Temperature Control

3.1 The temperature of the working solution should be maintained at 67-77°F (22 ± 3°C) during the performance of this test. If field conditions preclude the maintenance of the temperature range, frequent reference samples should be submitted to a laboratory where proper temperature control is possible. It is also possible to establish temperature correction curves for each material being tested where proper temperature control is not possible. However, no general correction curve should be utilized for several materials even within a narrow range of sand equivalent values. Samples which meet the minimums and equivalent requirement at a working solution temperature below the recommended range need not be subject to reference testing.
4. Sampling

4.1 Obtain a sample of the material to be tested in accordance with WSDOT FOP for AASHTO T 2.

4.2 Reduce the sample in accordance with WSDOT FOP for AASHTO T 248.

4.3 Sieve the sample over No. 4 (4.75 mm) sieve using a mechanical shaker. (Make sure all large clumps of material are broken up before placing sieves in the mechanical shaker)

4.3.1 Shake the sample in the mechanical shaker for a minimum of 10 minutes or for the minimum verified shaking time whichever is greater.

4.3.2 The material shall be at Saturated Surface Dry (Saturated Surface Dry is defined herein as no visible free moisture, but material may still appear damp) or drier prior to sieving.

4.3.3 Sieves may be nested above the No. 4 (4.75 mm) to prevent overloading, as defined in Table 1 of WSDOT FOP for WAQTC/AASHTO T 27/T 11, or the sample may be sieved in increments.

4.4 Break up any remaining clumps of fine-grained material and clean the fines from particles retained above the No. 4 (4.75 mm) sieve. Pass this material over the No. 4 (4.75 mm) sieve and include the material that passes in the total material passing the No. 4 (4.75 mm) sieve.

4.5 Split or quarter the material passing the No. 4 (4.75 mm), in accordance with WSDOT FOP for AASHTO T 248, to yield approximately 1,000 g to 1,500 g of material. Use extreme care to obtain a truly representative portion of the original sample (Note 3).

Note 3: Experiments show that as the amount of material being reduced by splitting or quartering is decreased, the accuracy of providing representative portions is decreased. It is imperative that the sample be split or quartered carefully. When it appears necessary, dampen the material before splitting or quartering, to avoid segregation or loss of fines.

5. Sample Preparation

5.1 Prepare two test samples by the following method:

5.1.1 The sample must be in the proper moisture condition to achieve reliable results. Condition is determined by tightly squeezing a small portion of the thoroughly mixed sample in the palm of the hand. If the cast that is formed permits careful handling without breaking, the correct moisture range has been obtained. If the material is too dry, the cast will crumble and it will be necessary to add water and remix and retest until the material forms a cast. If the material shows any free water it is too wet to test and must be drained and air-dried, mixing it frequently to insure uniformity. This overly wet material will form a good cast when checked initially, so the drying process should continue until a squeeze check on the drying material gives a cast which is more fragile and delicate to handle than the original.

Place the sample on the splitting cloth and mix by alternately lifting each corner of the cloth and pulling it over the sample toward the diagonally opposite corner, causing the material to be rolled. When the material appears homogeneous, finish the mixing with the sample in a pile near the center of the cloth.
5.1.2 Fill the 3 oz (85 mL) tin measure by pushing it through the base of the pile while exerting pressure with the hand against the pile on the side opposite the measure. As the tin is moved through the pile, hold enough pressure with the hand to cause the material to fill the tin to overflowing. Press firmly with the palm of the hand, compacting the material and allowing the maximum amount to be placed in the tin. Strike off the tin measure level full with a spatula or straightedge. For the second determination, remix the sample and fill the tin again.

Dry the test sample to constant mass in accordance with FOP for AASHTO T 255, and cool to room temperature before testing. It is acceptable to place the test sample in a larger container to aid drying.

6. Procedure

6.1 Start the siphon by forcing air into the top of the solution bottle through the bent copper, glass, or stainless steel blow tube while the pinch clamp is open. The apparatus is now ready for use.

6.2 Siphon 4.0 ± 0.1 in (101.6 ± 2.5 mm) of working calcium chloride solution into the plastic cylinder. Pour the prepared test sample into the plastic cylinder using the funnel to avoid spillage (See Figure 3). Tap the bottom of the cylinder sharply on the heel of the hand several times to release air bubbles and to promote thorough wetting of the sample.

6.3 Allow the wetted sample to stand undisturbed for 10 ± 1 minute. At the end of the 10-minute soaking period, stopper the cylinder, then loosen the material from the bottom by partially inverting and shaking it simultaneously.

6.4 After loosening the material from the bottom of the cylinder, shake the cylinder and contents by any one of the following methods:

6.4.1 Mechanical Shaker Method — Place the stoppered cylinder in the mechanical sand equivalent shaker, set the timer, and allow the machine to shake the cylinder and contents for 45 ± 1 second.

6.4.2 Manual Shaker Method — Secure the stoppered cylinder in the three spring clamps on the carriage of the hand-operated sand equivalent shaker and reset the stroke counter to zero. Stand directly in front of the shaker and force the
pointer to the stroke limit marker painted on the backboard by applying an abrupt horizontal thrust to the upper portion of the right hand spring steel strap. Then remove the hand from the strap and allow the spring action of the straps to move the carriage and cylinder in the opposite direction without assistance or hindrance. Apply enough force to the right hand spring steel strap during the thrust portion of each stroke to move the pointer to the stroke limit marker by pushing against the strap with the ends of the fingers to maintain a smooth oscillating motion. The center of the stroke limit marker is positioned to provide the proper stroke length and its width provides the maximum allowable limits of variation. The proper shaking action is accomplished only when the tip of the point reverses direction within the marker limits. Proper shaking action can best be maintained by using only the forearm and wrist action to propel the shaker. Continue the shaking action for 100 strokes.

Manually-operated Shaker

Figure 4

6.5 Following the shaking operation, set the cylinder upright on the work table and remove the stopper.

6.6 Irrigation Procedure — Insert the irrigator tube in the cylinder and rinse material from the cylinder walls as the irrigator is lowered. Force the irrigator through the material to the bottom of the cylinder by applying a gentle stabbing and twisting action while the working solution flows from the irrigator tip. This flushes the fine material into suspension above the coarser sand particles, (See Figure 5.) Continue to apply the stabbing and twisting action while flushing the fines upward until the cylinder is filled to the 15 in (381 mm) mark. Then raise the irrigator slowly without shutting off the flow so that the liquid level is maintained at about 15 in (381 mm) while the irrigator is being withdrawn. Regulate the flow just before the irrigator is entirely withdrawn and adjust the final level to 15 in (381 mm). Final level as judged by the bottom of the meniscus shall be between the top two gradations on the tube but shall not be above the 15 in (381 mm) level.

Note 4: For certain soils, particularly on crushed materials, the stabbing action may not be possible. For these materials, the irrigation technique is as follows: Continue to apply a twisting action as the irrigation tube is slowly withdrawn. As the tube is withdrawn, it is essential that as many fines as possible flushed upward until the cylinder is filled to the 15 in (381 mm) mark.
6.7 Allow the cylinder and contents to stand undisturbed for 20 minutes ± 15 seconds. Start the timing immediately after withdrawing the irrigator tube.

6.8 At the end of the 20 minute sedimentation period, read and record the level of the top of the clay suspension. This is referred to as the “clay reading.” If no clear line of demarcation has formed at the end of the specified 20 minute sedimentation period, allow the sample to stand undisturbed until a clear reading can be obtained, then immediately read and record the level of the top of the clay suspension and the total sedimentation time. If the total sedimentation time exceeds 30 minutes, it will be rejected.

6.9 After the clay reading has been taken, the “sand reading” shall be obtained by one of the following methods:

6.9.1 When using the weighted foot assembly having the sand indicator on the rod of the assembly, place the assembly over the cylinder and gently lower the assembly toward the sand. Do not allow the indicator to hit the mouth of the cylinder as the assembly is being lowered. As the weighted foot comes to rest on the sand, tip the assembly toward the graduations on the cylinder until the indicator touches the inside of the cylinder. Subtract 10 in (254 mm) from the level indicated by the extreme top edge of the indicator and record this value as the “sand reading.” (See Figure 6.)

6.9.2 If an older model weighted foot assembly having centering screws is used, keep one of the centering screws in contact with the cylinder wall near the graduations so that it can be seen at all times while the assembly is being lowered. When the weighted foot has come to rest on the sand, read the level of the centering screw and record this value as the “sand reading.”

6.10 If clay or sand readings fall between 0.1 in (2.5 mm) graduations, record the level of the higher graduation as the reading. For example, a clay reading of 7.95 would be recorded as 8.0, and a sand reading of 3.22 would be recorded as 3.3.
7. Calculations

7.1 Calculate the sand equivalent (SE) to the nearest 0.1 using the following formula:

\[
SE = \frac{\text{Sand Reading} \times 100}{\text{Clay Reading}}
\]

7.2 If the calculated sand equivalent is not a whole number, report it as the next higher whole number, as in the following example:

\[
SE = \frac{3.3 \times 100}{8} = 41.25
\]

which is reported as 42.

7.3 Average the whole number values determined as described above. If the average of these values is not a whole number, raise it to the next higher whole number, as in the following example:

Calculated SE values: 41.2, 40.9

After raising each to the next higher whole number, they become: 42, 41.

The average of these values is then determined:

\[
\frac{42 + 41}{2} = 41.5
\]

Which is reported as 42

If the two results from the same SE sample vary by more than 8 points, the test shall be invalid and a new test completed.

7.3.1 Since the average value is not a whole number, it is raised to the next higher whole number and the reported averages and equivalent value is reported as 42.

Report the results using WSDOT Form 350-161 EF, 422-020X, or other report approved by the State Materials Engineer.

8. Precautions

See AASHTO T 176 for Precision

9. Operator Qualifications

WSDOT has deleted this section see Section 9-5.5 of the Construction Manual.
Performance Exam Checklist

Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test
FOP for AASHTO T 176

<table>
<thead>
<tr>
<th>Participant Name</th>
<th>____________________________</th>
<th>Exam Date</th>
<th>__________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Preparation

1. The tester has a copy of the current procedure on hand? □ □
2. All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present? □ □
3. Sample passed through No. 4 (4.75 mm) sieve? □ □
4. Material in clods broken up and re-screened? □ □
5. No fines lost? □ □
6. Temperature of working solution 72 ± 5° F (22 ± 3° C)? □ □
7. Working calcium chloride solution 36 ± 1 in (915 mm ± 25 mm) above the work surface? □ □
8. 4 ± 0.1 in (101.6 ± 2.5 mm) working calcium chloride solution siphoned into cylinder? □ □
9. Working solution dated? □ □

Sample Preparation

1. If necessary, sample sprayed with water to prevent loss of fines? □ □
2. Material checked for moisture condition by tightly squeezing small portion in palm of hand and forming a cast? □ □
3. Sample at proper water content?
 a. If too dry, (cast crumbles easily), water added and re-mixed? □ □
 b. If too wet (shows free water), sample drained, air dried and mixed frequently? □ □
4. Sample placed on splitting cloth and mixed by alternately lifting each corner of the cloth and pulling it over the sample toward diagonally opposite corner, causing material to be rolled? □ □
5. Is material thoroughly mixed? □ □
6. When material appears to be homogeneous, mixing finished with sample in a pile near center of cloth? □ □
7. Fill the 85 mL tin by pushing through base of pile with other hand on opposite side of pile? □ □
8. Material fills tin to overflowing? □ □
9. Material compacted into tin with palm of hand? □ □
10. Tin struck off level full with spatula or straightedge? □ □
11. Test sample dried to a constant mass? □ □
12. Sample cooled to room temperature □ □
Procedure
1. Prepared sample funneled into cylinder with no loss of fines?
2. Bottom of cylinder tapped sharply on heel of hand several times to release air bubbles?
3. Wetted sample allowed to stand undisturbed for 10 min ± 1 min?
4. Cylinder stoppered and material loosened from bottom by shaking?
5. Properly performed shaking method?
 Mechanical Shaker Method
 Manual Shaker Method
6. Following shaking, cylinder set vertical on work surface and stopper removed?
7. Irrigator tube inserted in cylinder and material rinsed from cylinder walls as irrigator is lowered?
8. Irrigator tube forced through material to bottom of cylinder by gently stabbing and twisting action?
9. Stabbing and twisting motion applied until cylinder filled to 15 in (381 mm) mark?
10. Liquid raised and maintained at 15 in (381 mm) mark while irrigator is being withdrawn?
11. No clear solution at top of column?
12. Contents let stand 20 minutes ± 15 seconds?
13. Timing started immediately after withdrawal of irrigator?
14. No vibration or disturbance of the sample?
15. Readings taken at 20 minutes or up to 30 minutes, when a definite line appears?
16. Weighted foot assembly lowered into cylinder without hitting mouth of cylinder?
17. Calculations made to 0.1 and reported to the next higher whole number?
18. SE is based on the average results of two samples?
19. If the two SE values vary by more than 8 points additional tests run?
20. All calculations performed correctly?

First attempt: Pass ☐ Fail ☐ Second attempt: Pass ☐ Fail ☐

Signature of Examiner ________________________________

Comments:
WSDOT FOP for AASHTO T 209

Theoretical Maximum Specific Gravity and Density of Hot-Mix Asphalt Paving Mixtures

1. Scope

1.1 This test method covers the determination of the theoretical maximum specific gravity and density of uncompact ed hot-mix asphalt paving mixtures at 77° F (25° C).

1.2 The values stated in English units are to be regarded as the standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 AASHTO Standards:

• M 231, Weighing Devices Used in the Testing of Materials
• PP 57, Establishing Requirements for and Performing Equipment Standardizations and Checks

2.2 ASTM Standards:

• D 4311, Practice for Determining Asphalt Volume Correction to a Base Temperature
• C 670, Preparing Precision and Bias Statements for Test Methods for Construction Materials

2.3 Other Standards:

T 168 WAQTC FOP for AASHTO for Sampling Bituminous Paving Mixtures
T 712 WSDOT Standard Method of Reducing Bituminous Paving Mixtures
SOP 729 In Place Density of Bituminous Mixes Using the Nuclear Moisture-Density Gauge FOP for WAQTC TM 8
SOP 730 Standard Operating Procedure for Correlation of Nuclear Gauge Determined Density with Hot Mix Asphalt (HMA) Pavement Cores
SOP 731 Method for Determining Volumetric Properties of Hot Mix Asphalt (HMA)
SOP 732 Standard Operating Procedure for Superpave Volumetric Design for Hot-Mix Asphalt (HMA)

1 This FOP is based on AASHTO T 209 (2010) and has been modified per WSDOT standards. To view the redline modifications, contact WSDOT Quality Systems Manager at 360-709-5412.
3. Terminology

3.1 Definitions:

3.1.1 Density, as determined by this test method—the mass of a cubic meter of the material at 77°F (25°C) in English units, or the mass of a cubic foot of the material at 77°F (25°C) in inch-pound units.

3.1.2 Residual pressure, as employed by this test method—the pressure in a vacuum vessel when vacuum is applied.

3.1.3 Specific gravity, as determined by this test method—the ratio of a given mass of material at 77°F (25°C) to the mass of an equal volume of water at the same temperature.

4. Summary of Test Method

4.1 A weighed sample of HMA paving mixture in the loose condition is placed in a tared vacuum vessel. Sufficient water is added to completely submerge the sample. Vacuum is applied for 15 ± 2 min to gradually reduce the residual pressure in the vacuum vessel. At the end of the vacuum period, the vacuum is gradually released. The volume of the sample of paving mixture is obtained by (Section 9.5.2) filling the vacuum container level full of water and weighing in air. At the time of weighing the temperature is measured as well as the mass. From the mass and volume measurements, the specific gravity or density at 77°F (25°C) is calculated. If the temperature employed is different from 77°F (25°C), an appropriate correction is applied.

5. Significance and Use

5.1 The theoretical maximum specific gravities and densities of hot-mix asphalt paving mixtures are intrinsic properties whose values are influenced by the composition of the mixtures in terms of types and amounts of aggregates and asphalt binder materials.

5.1.1 These properties are used to calculate percent air voids in compacted HMA.

5.1.2 These properties provide target values for the compaction of HMA.

5.1.3 These properties are essential when calculating the amount of asphalt binder absorbed by the internal porosity of the individual aggregate particles in HMA.

6. Apparatus

6.1 Follow the procedures for performing equipment standardizations, standardization, and checks found in PP 57.

6.2 Vacuum Container:

6.2.1 The vacuum containers described must be capable of withstanding the full vacuum applied, and each must be equipped with the fittings and other accessories required by the test procedure being employed. The opening in the container leading to the vacuum pump shall be covered by a piece of No. 200 (75-μm) mesh to minimize the loss of fine material.
6.2.2 The capacity of the vacuum container should be between 2000 and 10,000-mL and depends on the minimum sample size requirements given in Section 7.2. Avoid using a small sample in a large container.

6.2.3 Vacuum Bowl, either a metal or plastic bowl with a diameter of approximately 7.1 to 10.2 in (180 to 260 mm) and a bowl height of at least 6.3 in (160 mm) equipped with a transparent cover fitted with a rubber gasket and a connection for the vacuum line.

6.2.4 Vacuum Flask for Weighing in Air Only, a thick-walled volumetric glass flask and a rubber stopper with a connection for the vacuum line.

6.2.5 Pycnometer for Weighing in Air Only, a glass, metal or plastic pycnometer.

6.3 Balance, conforming to the requirements of AASHTO M 231, Class G 2. The balance shall be standardized at least every 12 months.

6.3.1 For the mass determination-in-water method (Section 9.5.1), the balance shall be equipped with a suitable apparatus and holder to permit determining the mass of the sample while suspended below the balance. The wire suspending the holder shall be the smallest practical size to minimize any possible effects of a variable immersed length.

6.4 Vacuum pump or water aspirator, capable of evacuating air from the vacuum container to a residual pressure of 30 mm Hg (4.0 kPa) or less.

6.4.1 When a vacuum pump is used, a suitable trap of one or more filter flasks, or equivalent, shall be installed between the vacuum vessel and vacuum source to reduce the amount of water vapor entering the vacuum pump.

6.5 Absolute pressure gauge or vacuum gauge, used for annual standardization and traceable to NIST (mandatory) to be connected directly to the vacuum vessel and to be capable of measuring residual pressure down to 30 mm Hg (4.0 kPa), or less (preferably to zero). It is to be connected at the end of the vacuum line using an appropriate tube and either a “T” connector on the top of the vessel or by using a separate opening (from the vacuum line) in the top of the vessel to attach the hose.

Note 2: A residual pressure of 30 mm Hg (4.0 kPa) absolute pressure is approximately equivalent to 730 mm Hg (97 kPa) reading on vacuum gauge at sea level.

6.6 Thermometric Device (Mass Determination in Air), liquid-in-glass thermometers or other suitable thermometric device, accurate to 1° F (0.5° C). The thermometric device shall be standardized at the test temperature at least every 12 months.

6.7 Water Bath, a water bath that can be maintained at a constant temperature between 73 and 82.9° F (22.8 and 28.3° C).

6.8 Bleeder Valve, attached to the vacuum train to facilitate adjustment of the vacuum being applied to the vacuum vessel.

6.9 Protective Gloves, used when handling glass equipment under vacuum.

6.10 Mallet, with a rubber or rawhide head.
7. Sampling

7.1 Obtain the sample in accordance with WAQTC FOP for AASHTO T 168 and WSDOT T 712.

7.2 The size of the sample shall conform to the requirements in Table 1. Samples larger than the capacity of the container may be tested a portion at a time.

<table>
<thead>
<tr>
<th>Nominal Maximum Aggregate Size, in (mm)</th>
<th>Minimum Sample Size, lb (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½ (37.5) or greater</td>
<td>8 (4000)</td>
</tr>
<tr>
<td>¼ (19) to 1 (25)</td>
<td>5 (2500)</td>
</tr>
<tr>
<td>⅛ (12.5) or smaller</td>
<td>3 (1500)</td>
</tr>
</tbody>
</table>

Minimum Sample Sizes

Table 1

8. Standardization of Flasks, Bowls, and Pycnometers

This section has been deleted by WSDOT and replaced with the following:

The volumetric flask or metal vacuum pycnometer will be standardized periodically in conformance with established verification procedures or per AASHTO T 209. Standardization shall be done at 77° F.

9. Procedure

9.1 Separate the particles of the HMA sample by hand, taking care to avoid fracturing the aggregate, so that the particles of the fine aggregate portion are not larger than ¼ in (6.3 mm). If an HMA sample is not sufficiently soft to be separated manually, place it in a flat pan, and warm it in an oven until it can be separated as described.

9.2 WSDOT has deleted this section

9.3 Cool the sample to room temperature, and place it in a tared and standardized flask, bowl, or pycnometer. Weigh and designate the net mass of the sample as A. Add sufficient water at a temperature of approximately 25° C (77° F) to cover the sample completely.

9.4 Remove air trapped in the sample by applying gradually increased vacuum until the absolute pressure gauge or vacuum gauge reads 30 mm HG or less (4.0 kPa or less). Maintain this residual pressure for 15 ± 2 min. Agitate the container and contents during the vacuum period either continuously by a mechanical device, or manually by vigorous shaking at intervals of about 2 minutes. Glass vessels should be shaken on a resilient surface such as a rubber or plastic mat, and not on a hard surface, so as to avoid excessive impact while under vacuum. To aid in releasing the trapped air from the metal vacuum pycnometer, tap the sides of the metal vacuum pycnometer 3 to 5 times with the mallet at approximately two minutes intervals.

The release of entrapped air may be facilitated by the addition of a few drops of suitable wetting agent.
9.5 At the end of the vacuum period, release the vacuum within 10 to 15 seconds. Start
the 9 to 11 minute time, as described in 9.5.2, immediately upon starting the release of
vacuum. Proceed to 9.5.2.

9.5.1 WSDOT has deleted this section

9.5.2 Weighing in Air—Fill the flask with water and adjust the contents to a
temperature of 77 ± 2° F (25 ± 1° C) in a constant temperature water bath.
Determine the mass of the container (and contents), completely filled, 9 to
11 minutes after starting Section 9.5. Designate this mass as E. Accurate filling
may be ensured by the use of a glass cover plate.

In lieu of a constant temperature water bath described in 9.5.2, determine the
temperature of the water within the flask or metal vacuum pycnometer and
determine the appropriate density correction factor “R” using Table 2.

10. Calculation

10.1 Calculate the theoretical maximum specific gravity of the sample at 77° F (25° C)
as follows:

10.1.1 Weighing in Air:

\[
\text{Theoretical Maximum Specific Gravity} = \frac{A}{A + D - E}
\]

Where:
\[A = \text{Mass of oven-dry sample in air, g}\]
\[D = \text{Mass of container filled with water at 77° F (25° C), g}\]
\[E = \text{Mass of container filled with sample and water at 77° F (25° C), g}\]

10.1.1.1 If the test temperature differs significantly from 77° F (25° C), correct
for thermal effects as follows:

WSDOT has removed the AASHTO calculation and replaced it with
the following calculations:

1. Determination using temperature correction:

\[
\text{Theoretical Maximum Gravity} = \frac{A}{A + D - E} \times R
\]

Where:
\[A = \text{Mass of oven-dry sample in air, g;}\]
\[D = \text{Mass of container filled with water at 77° F (25° C), g;}\]
and
\[E = \text{Mass of container filled with sample and water at 77° F (25° C), g.}\]
\[R = \text{Factor from Table 2 to correct density of water from}\]
the test temperature to 77° F (25° C).

\textbf{Note:} The flask standardization is done at 77 ± 0.4° F
(25 ± 0.2° C).
2. Determination using weighted average:

\[
\text{Weighted Average Maximum Specific Gravity} = \frac{(\text{Sp.G}_1 \times A_1) + (\text{Sp.G}_2 \times A_2)}{(A_1 + A_2)}
\]

Where:
- \(\text{Sp.G}_1\) = Specific gravity of first test segment
- \(\text{Sp.G}_2\) = Specific gravity of second test segment
- \(A_1\) and \(A_2\) = Mass of dry sample in air of respective test segments

3. Calculate the rice density (calculate to one decimal place):

\[
\text{Rice density} = \text{Rice sp gr} \times 62.24 \text{ lb/ft}^3 (997 \text{ kg/m}^3)
\]

<table>
<thead>
<tr>
<th>C°</th>
<th>F°</th>
<th>“R”</th>
<th>C°</th>
<th>F°</th>
<th>“R”</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8</td>
<td>73.0</td>
<td>1.00054</td>
<td>25.2</td>
<td>77.4</td>
<td>0.99995</td>
</tr>
<tr>
<td>23.0</td>
<td>73.4</td>
<td>1.00050</td>
<td>25.4</td>
<td>77.7</td>
<td>0.99990</td>
</tr>
<tr>
<td>23.2</td>
<td>73.8</td>
<td>1.00045</td>
<td>25.6</td>
<td>78.1</td>
<td>0.99984</td>
</tr>
<tr>
<td>23.3</td>
<td>73.9</td>
<td>1.00042</td>
<td>25.8</td>
<td>78.4</td>
<td>0.99979</td>
</tr>
<tr>
<td>23.4</td>
<td>74.1</td>
<td>1.00040</td>
<td>26.0</td>
<td>78.8</td>
<td>0.99974</td>
</tr>
<tr>
<td>23.6</td>
<td>74.5</td>
<td>1.00035</td>
<td>26.1</td>
<td>79.0</td>
<td>0.99971</td>
</tr>
<tr>
<td>23.8</td>
<td>74.8</td>
<td>1.00030</td>
<td>26.2</td>
<td>79.2</td>
<td>0.99968</td>
</tr>
<tr>
<td>23.9</td>
<td>75.0</td>
<td>1.00028</td>
<td>26.4</td>
<td>79.5</td>
<td>0.99963</td>
</tr>
<tr>
<td>24.0</td>
<td>75.2</td>
<td>1.00025</td>
<td>26.6</td>
<td>79.9</td>
<td>0.99958</td>
</tr>
<tr>
<td>24.2</td>
<td>75.6</td>
<td>1.00020</td>
<td>26.7</td>
<td>80.1</td>
<td>0.99955</td>
</tr>
<tr>
<td>24.4</td>
<td>75.9</td>
<td>1.00015</td>
<td>27.2</td>
<td>81.0</td>
<td>0.99941</td>
</tr>
<tr>
<td>24.6</td>
<td>76.3</td>
<td>1.00010</td>
<td>27.3</td>
<td>81.1</td>
<td>0.99938</td>
</tr>
<tr>
<td>24.8</td>
<td>76.6</td>
<td>1.00005</td>
<td>27.8</td>
<td>82.0</td>
<td>0.99924</td>
</tr>
<tr>
<td>25.0</td>
<td>77.0</td>
<td>1.00000</td>
<td>28.3</td>
<td>82.9</td>
<td>0.99910</td>
</tr>
</tbody>
</table>

Density Correction Factor “R”

Table 2

10.2 Theoretical maximum density at 77° F (25° C):

10.2.1 Calculate the corresponding theoretical maximum density at 77° F (25° C) as follows:

Theoretical maximum density at 77° F (25° C) = theoretical maximum specific gravity \(\times 997.1\ \text{kg/m}^3\) in SI units, or

Theoretical maximum density at 77° F (25° C) = theoretical maximum specific gravity \(\times 62.245\ \text{lb/ft}^3\) in inch-pound units.

Where:

The specific gravity of water at 77° F (25° C) = 997.1 in SI units or = 62.245 in inch-pound units.
11. Supplemental Procedure for Mixtures Containing Porous Aggregate
 WSDOT has removed this section.

12. Report
 12.1 Report the following information:
 12.1.1 Specific gravity and density of the mixture to the third decimal place
 12.1.2 Type of mixture,
 12.1.3 Size of sample,
 12.1.4 Number of samples,
 12.1.5 Type of container, and
 12.1.6 Type of procedure.

13. Precision
 See AASHTO T-209 for Precision.

Appendix
Nonmandatory Information
A1. Theoretical Maximum Specific Gravity For A Loose-Paving Mixture
 WSDOT has removed this section.
Performance Exam Checklist

Theoretical Maximum Specific Gravity and Density of
HOT MIX ASPHALT Paving Mixtures

FOP for AASHTO T 209

Participant Name ___________________________ Exam Date __________

Procedure Element

1. The tester has a copy of the current procedure on hand? □ □
2. All equipment is functioning according to the test procedure, and if required, has the current standardization/verification tags present? □ □
3. Particles of sample separated? □ □
4. Care used not to fracture mineral fragments? □ □
5. After separation, fine HMA particles not larger than ¼ inch? □ □
6. Sample at room temperature? □ □
7. Mass of bowl or flask determined? □ □
8. Mass of sample and bowl or flask determined? □ □
9. Mass of sample determined? □ □
10. Water at approximately 77° F (25° C) added to cover sample? □ □
11. Entrapped air removed using partial vacuum for 15 ± 2 min? □ □
12. Container and contents agitated continuously by mechanical device or manually by vigorous shaking at intervals of about 2 minutes? □ □
13. For metal pycnometer, strike 3 to 5 times with a mallet? □ □
14. Release of entrapped air facilitated by addition of suitable wetting agent (optional)? □ □
15. Flask determination:
 a. Flask filled with water?
 1. Flask then placed in constant temperature water bath (optional) or? □ □
 2. Temperature of water in flask determined upon completion of 15d.? □ □
 b. Contents at 77 ± 2° F or density of water corrected using Table 2 in FOP? □ □
 c. Mass of filled flask determined 9 to 11 minutes after removal of entrapped air completed? □ □
16. All calculations performed correctly? □ □

First attempt: Pass □ Fail □ Second attempt: Pass □ Fail □

Signature of Examiner ___________________________
Comments:
Reducing Samples of Aggregate to Testing Size

1. Scope

1.1 This method covers the reduction of large samples of aggregate to the appropriate size for testing employing techniques that are intended to minimize variations in measured characteristics between the test samples so selected and the large sample.

1.2 The values stated in English units are to be regarded as the standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 AASHTO Standards:
 - T 2 Sampling of Aggregate
 - T 84 Specific Gravity and Absorption of Coarse Aggregate

2.2 ASTM Standards:
 - C 125 Terminology Relating to Concrete and Concrete Aggregates

3. Terminology

3.1 Definitions — The terms used in this practice are defined in ASTM C 125.

4. Significance and Use

4.1 Specifications for aggregates require sampling portions of the material for testing. Other factors being equal, larger samples will tend to be more representative of the total supply. These methods provide for reducing the large sample obtained in the field or produced in the laboratory to a convenient size for conducting a number of tests to describe the material and measure its quality in a manner that the smaller test sample portion is most likely to be a representation of the larger sample, and thus of the total supply. The individual test methods provide for minimum amount of material to be tested.

4.2 Under certain circumstances, reduction in size of the large sample prior to testing is not recommended. Substantial differences between the selected test samples sometimes cannot be avoided, as for example, in the case of an aggregate having relatively few large size particles in the sample. The laws of chance dictate that these few particles may be unequally distributed among the reduced size test samples. Similarly, if the test sample is being examined for certain contaminants occurring as a few discrete fragments in only small percentages, caution should be used in interpreting results from the reduced size test sample. Chance inclusion or exclusion of only one or two particles in the selected test sample may importantly influence interpretation of the characteristics of the original sample. In these cases, the entire original sample should be tested.

1 This FOP is based on AASHTO T 248-02.
4.3 Failure to carefully follow the procedures in this practice could result in providing a nonrepresentative sample to be used in subsequent testing.

5. Selection of Method

5.1 Fine Aggregate — Samples of fine aggregate that are drier than the drier at saturated-surface-dry condition or drier (Note 1) may be reduced using a mechanical splitter according to Method A. Samples having free moisture on the particle surfaces may be reduced in size by quartering according to Method B, or by treating as a miniature stockpile as described in Method C.

5.1.1 If the use of Method B or Method C is desired, and the sample does not have free moisture on the particle surfaces, the sample may be moistened to achieve this condition, thoroughly mixed, and then the sample reduction performed.

Note 1: The method of determining the saturated-surface-dry condition is described in Test Method T 84. As a quick approximation, if the fine aggregate will retain its shape when molded in the hand, it may be considered to be wetter than saturated-surface-dry.

5.1.2 If use of Method A is desired and the sample has free moisture on the particle surfaces, the entire sample may be dried to at least the saturated-surface-dry condition, using temperatures that do not exceed those specified for any of the tests contemplated, and then the sample reduction performed. Alternatively, if the moist sample is very large, a preliminary split may be made using a mechanical splitter having wide chute openings of 1½ in (38 mm) or more to reduce the sample to not less than 5000 g. The portion so obtained is then dried, and reduction to test sample size is completed using Method A.

5.2 Mixtures of Coarse and Fine Aggregates

5.2.1 If the sample does not exceed a saturated surface dry condition (there is no visible free water, sample may still appear damp) then the sample may be reduced using Method A.

5.2.2 If the sample exceeds a saturated surface dry condition the sample may be reduced using Method B or dried to a constant mass per WSDOT FOP for T 255 and then reduced using Method A.

5.3 Coarse Aggregates — Reduce the sample using a mechanical splitter in accordance with Method A (preferred method) or by quartering in accordance with Method B. The miniature stockpile Method C is not permitted for coarse aggregates.

5.4 Untreated materials shall be prepared for testing using this procedure. Treated materials (i.e., Hot Mix Asphalt or Asphalt Treated Base) shall be prepared for testing using WSDOT Test Method No. T 712 for reduction of size of samples of Asphalt treated materials.
6. Sampling

6.1 The samples of aggregate obtained in the field shall be taken in accordance with T 2, or as required by individual test methods. When tests for sieve analysis only are contemplated, the size of field sample listed in T 2 is usually adequate. When additional tests are to be conducted, the user shall determine that the initial size of the field sample is adequate to accomplish all intended tests. Similar procedures shall be used for aggregate production in the laboratory.

Sample Dividers (Riffles)

Figure 1
Method A — Mechanical Splitter

7. Apparatus

7.1 Sample Splitter — Sample splitters shall have an even number of equal width chutes, but not less than a total of eight for coarse aggregate, or 12 for fine aggregate, which discharge alternately to each side of the splitter. For coarse aggregate and mixed aggregate, the minimum width of the individual chutes shall be approximately 50 percent larger than the largest particles in the sample to be split (Note 2). For dry fine aggregate in which the entire sample will pass the ⅜ in (9.5 mm) sieve, the minimum width of the individual chutes shall be at least 50 percent larger than the largest particles in the sample and the maximum width shall be ¾ in (19 mm). The splitter shall be equipped with two receptacles to hold the two-halves of the sample following splitting. It shall also be equipped with a hopper or straight edge pan which has a width equal to or slightly less than the overall width of the assembly of chutes, by which the sample may be fed at a controlled rate to the chutes. The splitter and accessory equipment shall be so designed that the sample will flow smoothly without restriction or loss of material (Figure 1).

Note 2: Mechanical splitters are commonly available in sizes adequate for coarse aggregate having the largest particle not over 1½ in (37.5 mm).

8. Procedure

8.1 Place the original sample in the hopper or pan and uniformly distribute it from edge to edge, so that when it is introduced into the chutes, approximately equal amounts will flow through each chute. The rate at which the sample is introduced shall be such as to allow free flowing through the chutes into the receptacles below. Reintroduce the portion of the sample in one of the receptacles into the splitter as many times as necessary to reduce the sample to the size specified for the intended test. The portion of the material collected in the other receptacle may be reserved for reduction in size for other tests.

Method B — Quartering

9. Apparatus

9.1 Apparatus shall consist of a straightedge, scoop, shovel, or trowel; a broom or brush; and a canvas blanket approximately 6 by 8 ft (2 by 2.5 m).
Reducing Samples of Aggregate to Testing Size T 248

10. Procedure

10.1 Use either the procedure described in 10.1.1 or 10.1.2 or a combination of both.

10.1.1 Place the original sample on a hard clean, level surface where there will be neither loss of material nor the accidental addition of foreign material. Mix the material thoroughly by turning the entire sample over three times. With the last turning, shovel the entire sample into a conical pile by depositing each shovelful on top of the preceding one. Carefully flatten the conical pile to a uniform thickness and diameter by pressing down the apex with a shovel so that each quarter sector of the resulting pile will contain the material originally in it. The diameter should be approximately four to eight times the thickness. Divide the flattened mass into four equal quarters with a shovel or trowel and remove two diagonally opposite quarters, including all fine material, and brush the cleared spaces clean. Successively mix and quarter the remaining material until the sample is reduced to the desired size (Figure 2).

![Quartering on a Hard, Clean Level Surface](image)

10.1.2 As an alternative to the procedure in 10.1.1 when the floor surface is uneven, the field sample may be placed on a canvas blanket and mixed with a shovel as described in 10.1.1, or by alternatively lifting each corner of the canvas and pulling it over the sample toward the diagonally opposite corner causing the material to be rolled. Flatten the pile as described in 10.1.1. Divide the sample as described in 10.1.1 or if the surface beneath the blanket is uneven, insert a stick or pipe beneath the blanket and under the center of the pile, then lift both ends of the stick, dividing the sample into two equal parts. Remove the stick leaving a fold of the blanket between the divided portions. Insert the stick under the center of the pile at right angles to the first division and again lift both ends of the stick, dividing the sample into four equal parts. Remove two diagonally opposite quarters, being careful to clean the fines from the blanket. Successively mix and quarter the remaining material until the sample is reduced to the desired size (Figure 3).
Method C — Miniature Stockpile Sampling (Damp Fine Aggregate Only)

11. Apparatus

11.1 Apparatus shall consist of a straight-edged scoop, shovel, or trowel for mixing the aggregate, and either a small sampling thief, small scoop, or spoon for sampling.

12. Procedure

12.1 Place the original sample of damp fine aggregate on a hard clean, level surface where there will be neither loss of material nor the accidental addition of foreign material. Mix the material thoroughly by turning the entire sample over three times. With the last turning, shovel the entire sample into a conical pile by depositing each shovelful on top of the preceding one. If desired, the conical pile may be flattened to a uniform thickness and diameter by pressing the apex with a shovel so that each quarter sector of the resulting pile will contain the material originally in it. Obtain a sample for each test by selecting at least five increments of material at random locations from the miniature stockpile, using any of the sampling devices described in 11.1.
Performance Exam Checklist
Reducing Samples of Aggregates to Testing Size
FOP for AASHTO T 248

Participant Name ___________________________ Exam Date ___________

Procedure Element

Preparation

1. The tester has a copy of the current procedure on hand? [] Yes [] No

Selection of Method

1. Fine Aggregate or Mixture of Fine and Coarse Aggregates
 a. Saturated surface dry or drier: Method A (Splitter) used? [] Yes [] No
 b. Free moisture present: Method B (Quartering) used? [] Yes [] No

2. Coarse Aggregate
 a. Method A used (preferred)? [] Yes [] No
 b. Method B used? [] Yes [] No

Method A — Splitting

1. Material spread uniformly on feeder? [] Yes [] No
2. Rate of feed slow enough so that sample flows freely through chutes? [] Yes [] No
3. Material in one pan re-split until desired mass is obtained? [] Yes [] No
4. Chutes are set correctly for material being split? [] Yes [] No

Method B — Quartering

1. Sample placed on clean, hard, and level surface? [] Yes [] No
2. Mixed by turning over 3 times with shovel or by raising canvas and pulling over pile? [] Yes [] No
3. Conical pile formed? [] Yes [] No
4. Diameter equal to about 4 to 8 times thickness? [] Yes [] No
5. Pile flattened to uniform thickness and diameter? [] Yes [] No
6. Divided into 4 equal portions with shovel or trowel? [] Yes [] No
7. Two diagonally opposite quarters, including all fine material, removed? [] Yes [] No
8. Cleared space between quarters brushed clean? [] Yes [] No
9. Process continued until desired sample size is obtained when two opposite quarters combined? [] Yes [] No

The sample may be placed upon a blanket and a stick or pipe may be placed under the blanket to divide the pile into quarters.

First attempt: Pass [] Fail [] Second attempt: Pass [] Fail []

Signature of Examiner __
Comments:
Preparing Hot-Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor

1. Scope

1.1 This standard covers the compaction of cylindrical specimens of hot-mix asphalt (HMA) using the Superpave gyratory compactor.

1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 AASHTO Standards:
- M 231, Weighing Devices Used in Testing of Materials
- TP 71, Evaluation of the Superpave Gyratory Compactor (SGC) Internal Angle of Gyration Using Simulated Loading
- R 30, Mixture Conditioning of Hot-Mix Asphalt (HMA)
- R 35, Superpave Volumetric Design for Hot-Mix Asphalt (HMA)
- T 166, Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens
- T 168, Sampling Bituminous Paving Mixtures
- T 209, Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures
- T 275, Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens
- T 316, Viscosity Determination of Asphalt Binder Using Rotational Viscometer

2.2 Other Standards:
- WSDOT SOP 731, Method for determining volumetric properties of Hot Mix Asphalt (HMA)
- WSDOT SOP 732, Superpave Volumetric Design for Hot-Mix Asphalt (HMA)

3. Significance and Use

3.1 This standard is used to prepare specimens for determining the mechanical and volumetric properties of HMA. The specimens simulate the density, aggregate orientation, and structural characteristics obtained in the actual roadway when proper construction procedure is used in the placement of the paving mix.

3.2 This test method may be used to monitor the density of test specimens during their preparation. It may also be used for field control of an HMA production process.

1 This FOP is based on AASHTO T 312-09 and has been modified per WSDOT standards. To view the redline modifications, contact WSDOT Quality Systems Manager at (360) 709-5412.
4. Apparatus

4.1. Superpave Gyratory Compactor-An electrohydraulic or electromechanical compactor with a ram and ram heads as described in Section 4.3. The axis of the ram shall be perpendicular to the platen of the compactor. The ram shall apply and maintain a pressure of 600 ± 18 kPa perpendicular to the cylindrical axis of the specimen during compaction (Note 1). The compactor shall tilt the specimen molds at an average internal angle of 1.16 ± 0.02° (20.2 ± 0.35 mrad), determined in accordance with AASHTO TP 71. The compactor shall gyrate the specimen molds at a rate of 30.0 ± 0.5 gyrations per minute throughout compaction.

Note 1: This stress calculates to 10,600 ± 310 N total force for 6 inches (150 mm) specimens.

4.1.1 Specimen Height Measurement and Recording Device – When specimen density is to be monitored during compaction, a means shall be provided to continuously measure and record the height of the specimen to the nearest 0.1 mm during compaction once per gyration.

4.1.2 The system may include a connected printer capable of printing test information, such as specimen height per gyration. In addition to a printer, the system may include a computer and suitable software for data acquisition and reporting.

4.2 Specimen Molds – Specimen molds shall have steel walls that are at least 0.3 inches (7.5 mm) thick and are hardened to at least a Rockwell hardness of C48. The initial inside finish of the molds shall have a root mean square (rms) of 1.60 um or smoother (Note 2). Molds shall have an inside diameter of 5.9 to 6.0 inches (149.90 to 150.00 mm) and be at least 9.8 inches (250 mm) high at room temperature.

Note 2: Smoothness measurement is in accordance with ANSI B 46.1. One source of supply for a surface comparator, which is used to verify the rms value of 1.60 um, is GAR Electroforming, Danbury, Connecticut.

4.3 Ram Heads and Mold Bottoms – Ram heads and mold bottoms shall be fabricated from steel with a minimum Rockwell hardness of C48. The ram heads shall stay perpendicular to its axis. The platen side of each mold bottom shall be flat and parallel to its face. All ram and base plate faces (the sides presented to the specimen) shall be flat to meet the smoothness requirement in Section 4.2 and shall have a diameter of 5.88 to 5.90 inches (149.50 to 149.75 mm).

4.4 Thermometric Device- used for determining the temperature of aggregates, binder, and HMA between 18 to 418°F (10 and 232°C).

4.5 Balance – A balance meeting the requirements of M 231, Class G5, for determining the mass of aggregates, binder, and HMA.

4.6 Oven – An oven, thermostatically controlled to ± 5° F (± 3° C), for heating aggregates, binder, HMA, and equipment as required. The oven shall be capable of maintaining the temperature required for mixture conditioning in accordance with R 30.
4.7 Miscellaneous – flat-bottom metal pans for heating aggregates, scoop for batching aggregates, containers (grill-type tins, beakers, containers for heating asphalt), large mixing spoon or small trowel, large spatula, gloves for handling hot equipment, paper disks, mechanical mixer (optional), lubricating materials recommended by the compactor manufacturer.

4.8 Maintenance – In addition to routine maintenance recommended by the manufacturer, check the Superpave gyratory compactor’s mechanical components for wear, and perform repair, as recommended by the manufacturer.

5. Hazards

5.1 Use standard safety precautions and protective clothing when handling hot materials and preparing test specimens.

6. Standardization

6.1 Items requiring periodic verification of calibration include the ram pressure, angle of gyration, gyration frequency, LVDT (or other means used to continuously record the specimen height), and oven temperature. Verification of the mold and platen dimensions and the inside finish of the mold are also required. When the computer and software options are used, periodically verify the data processing system output using a procedure designed for such purposes. Verification of calibration, system standardization, and quality checks may be performed by the manufacturer, other agencies providing such services, or in-house personnel. Frequency of verification shall follow the manufacturer’s recommendations.

6.2 The angle of gyration the internal angle (tilt of mold with respect to end plate surface within the gyratory mold). The calibration of the internal angle of gyration should be verified in accordance with AASHTO TP 71.

7. Preparation of Apparatus

7.1 Immediately prior to the time when the HMA is ready for placement in the mold, turn on the main power for the compactor for the manufacturer’s required warm-up period.

7.2 Verify the machine settings are correct for angle, pressure, and number of gyrations.

7.3 Lubricate any bearing surfaces as needed per the manufacturer’s instructions.

7.4 When specimen height is to be monitored, the following additional item of preparation is required. Immediately prior to the time when the HMA is ready for placement in the mold, turn on the device for measuring and recording the height of the specimen, and verify the readout is in the proper units, mm, and the recording device is ready. Prepare the computer, if used, to record the height data, and enter the header information for the specimen.
8. HMA Mixture Preparation

8.1 Weigh the appropriate aggregate fractions into a separate pan, and combine them to the desired batch weight. The batch weight will vary based on the ultimate disposition of the test specimens. If a target air void level is desired, as would be the case for Superpave mix analysis and performance specimens, batch weights will be adjusted to create a given density in a known volume. If the specimens are to be used for the determination of volumetric properties, the batch weights will be adjusted to result in a compacted specimen having dimensions of 6 inches (150 mm) in diameter and 4.53 ± 0.12 inches (115 ± 5 mm) in height at the desired number of gyrations.

Note 3: It may be necessary to produce a trial specimen to achieve this height requirement. Generally, 4500 – 4700 g of aggregate are required to achieve this height for aggregates with combined bulk specific gravities of 2.55-2.70, respectively.

8.2 Place the aggregate and binder container in the oven, and heat them to the required mixing temperature.

8.2.1. The mixing temperature range is defined as the range of temperatures where the unaged binder has a kinematic viscosity of 170 ± 20 mm²/s (approximately 0.17 ± 0.02 Pa·s for a binder density of 1.00 g/cm³) measured in accordance with T 316.

Note 4: Modified asphalts may not adhere to the equi-viscosity requirements noted, and the manufacturer’s recommendations should be used to determine mixing and compaction temperatures.

Note 5: The SI unit kinematic viscosity is m²/s; for practical use, the submultiple mm²/s is recommended. The more familiar centistokes is a cgs unit of kinematic viscosity; it is equal to 1 mm²/s. The kinematic viscosity is the ratio of the viscosity of the binder to its density. For a binder with a density equal to 1.000 g/cm³, a kinematic viscosity of 170 mm²/s is equivalent to a viscosity of 0.17 Pa·s measured in accordance with T 316.

8.3 Charge the mixing bowl with the heated aggregate from one pan, and dry-mix thoroughly. Form a crater in the dry blended aggregate, and weigh the required amount of binder into the mix. Immediately initiate mixing.

8.4 Mix the aggregate and binder as quickly and thoroughly as possible to yield HMA having a uniform distribution of binder. As an option, mechanical mixing may be used.

8.5 After completing the mixture preparation perform the required mixture conditioning in accordance with R 30.

8.6 Place a compaction mold and base plate in an oven not to exceed 350° F for a minimum of 60 minutes prior to the estimated beginning of compaction (during the time the mixture is being conditioned in accordance with R 30).
8.7 Following the mixture conditioning period specified in R 30, if the mixture is at the compaction temperature, proceed immediately with the compaction procedure as outlined in Section 9. If the compaction temperature is different from the mixture conditioning temperature used in accordance with R 30, place the mix in another oven at the compaction temperature for a brief time (maximum of 30 minutes) to achieve the required temperature.

8.7.1. The compaction temperature is the mid-point of the range of temperatures where the unaged binder has a kinematic viscosity of 280 ± 30 mm²/s (approximately 0.28 ± 0.03 Pa·s) measured in accordance with T 316 (Note 4).

8.8 If loose HMA plant mix is used, the sample should be obtained in accordance with T 168. The mixture shall be brought to the compaction temperature range by careful, uniform heating in an oven immediately prior to molding.

9. Compaction Procedure

9.1 When the temperature of the HMA is five degrees above the compaction temperature as shown on the “Mix Design Verification Report,” remove the heated mold, base plate, and upper plate (if required) from the oven. Place the base plate and a paper disk in the bottom of the mold.

9.2 Remove the pan of HMA from the oven and in one motion invert the pan onto the construction paper, vinyl mat, etc. Quickly remove any material that remains in the pan and include it with the HMA sample to be compacted. Grasp opposing edges of the paper and roll them together to form the HMA into a cylindrical shape. Insert one end of the paper roll into the bottom of the compaction mold and remove the paper as the HMA slides into the mold. This process needs to be accomplished in approximately 60 seconds. Place the mixture into the mold in one lift. Care should be taken to avoid segregation in the mold. After all the mix is in the mold, level the mix, and place another paper disk and upper plate (if required) on top of the leveled materials.

9.3 Load the charged mold into the compactor, and center the loading ram.

9.4 Apply a pressure of 600 ± 18 kPa on the specimen.

9.5 Apply a 1.16 ± 0.02° (20.2 ± 0.35 mrad) average internal angle, as appropriate, to the mold assembly, and begin

9.6 Allow the compaction to proceed until the desired number of gyrations specified in R 35 is reached and the gyratory mechanism shuts off.

9.7 Remove the angle from the mold assembly; retract the loading ram; remove the mold from the compactor (if required); and extrude the specimen from the mold.

Note 6: The specimens can be extruded from the mold immediately after compaction for most HMA. However, a cooling period of 5 to 10 minutes in front of a fan may be necessary before extruding some specimens to insure the specimens are not damaged.

9.8 Remove the paper disks from the top and bottom of the specimens.

Note 7: Before reusing the mold, place it in an oven for at least 5 minutes. The use of multiple molds will speed up the compaction process.
10. Density Procedure
 10.3 When the specimen height is to be monitored, record the specimen height to the nearest 0.1 mm after each revolution.

11. Density Calculations
 WSDOT has removed this section refer to WSDOT SOP 731.

12. Report
 WSDOT has removed this section refer to WSDOT SOP 731.
 12.2 Report results on WSDOT form 350-162 or other report approved by the State Materials Engineer.

13. Precision And Bias
 See AASHTO T 312 for Precision and Bias
Performance Exam Checklist

Determining Density of Hot Mix Asphalt (HMA)
Specimens by Means of the SHRP Gyratory Compactor
FOP For AASHTO T 312

<table>
<thead>
<tr>
<th>Participant Name</th>
<th>Exam Date</th>
<th>Procedure Element</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. The tester has a copy of the current procedure on hand?</td>
<td>☐️</td>
<td>☐️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present?</td>
<td>☐️</td>
<td>☐️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Main power for compactor turned on for manufacturer’s required warm-up period if applicable?</td>
<td>☐️</td>
<td>☐️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Angle, pressure and number of gyrations set?</td>
<td>☐️</td>
<td>☐️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Bearing surfaces, rotating base surface and rollers lubricated?</td>
<td>☐️</td>
<td>☐️</td>
</tr>
</tbody>
</table>

Preparation of Mixtures

| 1. | Is mixture 5°F above compaction temperature? If not, was mixture placed in an oven and brought up to 5°F above compaction temperature? | ☐️ | ☐️ |
| 2. | Mold and base plate heated for a minimum of 60 minutes in an oven at a temperature not to exceed 350°F? | ☐️ | ☐️ |

Plant mix – Loose mix brought to compaction temperature by uniform heating immediately prior to molding.

1.	Mold, base plate and upper plate (if required) removed from oven and paper disk placed on bottom of mold?	☐️	☐️
2.	Mixture placed into mold in one lift, mix leveled, and paper disk and upper plate (if required) placed on top of material?	☐️	☐️
3.	Mold loaded into compactor and a pressure of 600 ± 18 kPa applied?	☐️	☐️
4.	Angle of 1.16 ± 0.02° (20.2 ± 0.35 mrad) applied to the mold assembly and gyratory compaction started?	☐️	☐️
5.	Compactor shuts off when appropriate gyration level is reached?	☐️	☐️
6.	Mold removed and specimen extruded?	☐️	☐️
7.	Paper disks removed?	☐️	☐️
8.	If specimens are used for determination of volumetric properties, are the heights of the specimens 115 ± 5mm?	☐️	☐️
9.	All calculations performed correctly?	☐️	☐️

First attempt: Pass ☐️ Fail ☐️ Second attempt: Pass ☐️ Fail ☐️

Signature of Examiner ________________________________
Comments:
WSDOT FOP for AASHTO T 329

Moisture Content of Asphalt (HMA) by Oven Method

1. Scope
 1.1. This method is intended for the determination of moisture content of hot mix asphalt (HMA) by drying in an oven.
 1.2. The values stated in SI units are to be regarded as the standard.
 1.3. This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns associated with its use. It is the responsibility of the user of this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents
 2.1. AASHTO Standards:
 • M 231, Weighing Devices Used in the Testing of Materials
 • T 168, Sampling Bituminous Paving Mixtures
 WAQTC Standards
 • T 168, Sampling Bituminous Paving Mixtures
 WSDOT Standards:
 • T 712 Standard Method of Reducing Hot Mix Asphalt Paving Mixtures

3. Terminology
 3.1 Constant mass shall be defined as the mass at which further drying at 325 ± 25°F (163 ± 14°C) does not alter the mass by more than 0.1 percent.

4. Summary of Test Method
 4.1. A sample of HMA is dried in a forced-air, ventilated, or convection oven to a constant mass.

5. Apparatus
 5.1. Balance or Scale—4.4-lb (2-kg) capacity, readable to at least 0.1 g and conforming to the requirements of M 231.
 5.2. Forced-Air, Ventilated, or Convection Oven—capable of maintaining the temperature surrounding the sample at 325 ± 25°F (163 ± 14°C).
 5.3. Sample Container—the container in which the sample is dried shall be of sufficient size to contain the sample without danger of spilling and to allow the sample to be evenly distributed in a manner that will allow completion of the test in an expeditious manner.
 5.4. Thermometric Devices—Armored glass, Infrared gun or dial-type thermometers with metal stems for determining the temperature of aggregates, binder, and HMA.

1 This FOP is based on AASHTO T 329-08 and has been modified per WSDOT standards. To view the redline modifications, contact WSDOT Quality Systems Manager at (360) 709-5412.
6. Sample

6.1 A sample of HMA shall be obtained in accordance with WSDOT FOP for WAQTC T 168.

6.2 The sample shall be reduced in size in accordance with WSDOT T 712. The size of the test sample shall be a minimum of 1,000 g.

7. Procedure

7.1 Determine and record the mass of the sample container to the nearest 0.1g.

7.2 Place the test sample in the sample container. Determine and record the temperature of the test sample. To facilitate drying, evenly distribute the test sample in the sample container.

7.3 Determine and record the total mass of the sample container and moist test sample to the nearest 0.1 g.

7.4 Preheat the oven to drying temperature of 325 ± 25°F (163 ± 14°C).

 Note 1: For repeatability between operators and or laboratories the difference between drying temperatures for samples should not exceed 15°F (9°C).

7.5 Calculate the mass of the initial, moist test sample by subtracting the mass of the sample container determined in Section 7.1 from the total mass of the sample container and moist test sample determined in Section 7.3.

7.6 The test sample shall be initially dried for a minimum of 90 minutes, and its mass determined. Then, at 30 min intervals until constant mass is achieved.

 Note 2: The moisture content of test samples and the number of test samples in the oven will affect the rate of drying at any given time. Placing wet test samples in the oven with nearly dry test samples could affect the drying process.

7.7 Cool the sample container and test sample to approximately the same temperature as determined in Section 7.2.

7.8 Determine and record the total mass of the sample container and dry test sample to the nearest 0.1 g.

 Note 3: Do not attempt to remove the test sample from the sample container for the purposes of determining the dry mass of the test sample.

7.9 Calculate the mass of the final, dry test sample by subtracting the mass of the sample container determined in Section 7.1 from the total mass of the sample container and dry test sample determined in Section 7.8.
8. Calculations

8.1. WSDOT uses the following formula to calculate moisture content:

\[
\text{Moisture Content, } \% = \frac{M_i - M_f}{M_i} \times 100
\]

Where:

\(M_i \) = Mass of the initial, moist test sample
\(M_f \) = Mass of the final, dry test sample

Example:
\(M_i = 1,389.8 \text{ g} \)
\(M_f = 1,388.0 \text{ g} \)

\[
\text{Moisture Content} = \frac{1,389.8 - 1,388.0}{1,389.8} \times 100 = 0.129\% = 0.13\%
\]

9. Report

9.1. Report the moisture content to the nearest 0.01 percent.

9.2. Results shall be reported on standard forms approved for use by the agency.
Performance Exam Checklist

Moisture Content of Asphalt (HMA) by Oven Method

WSDOT FOP for AASHTO T 329

Participant Name ___________________________ Exam Date ________________

Procedure Element

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>The tester has a copy of the current procedure on hand?</td>
</tr>
<tr>
<td>2.</td>
<td>All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present?</td>
</tr>
</tbody>
</table>

Test for Moisture

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Representative sample obtained; 1,000 g minimum?</td>
</tr>
<tr>
<td>2.</td>
<td>Mass of sample determined to nearest 0.1 g?</td>
</tr>
<tr>
<td>3.</td>
<td>Initial temperature recorded?</td>
</tr>
<tr>
<td>4.</td>
<td>Sample placed in drying oven for a minimum of 90 minutes?</td>
</tr>
<tr>
<td>5.</td>
<td>Sample dried to a constant weight at 325 ±25° F?</td>
</tr>
<tr>
<td>6.</td>
<td>Samples checked for additional loss?</td>
</tr>
<tr>
<td>7.</td>
<td>Sample and container cooled to approximately the initial temperature before mass determined?</td>
</tr>
<tr>
<td>8.</td>
<td>Calculation of moisture content performed correctly?</td>
</tr>
</tbody>
</table>

F% = \(\frac{M_i - M_f}{M_i} \times 100 \)

First attempt: Pass ☐ Fail ☐ Second attempt: Pass ☐ Fail ☐

Signature of Examiner ____________________________

Comments:
WSDOT Test Method T 716
Method of Random Sampling for Locations of Testing and Sampling Sites

1. Scope
 a. This method outlines the procedure for selecting sampling and testing sites in accordance with accepted random sampling techniques. It is intended that all testing and sampling locations be selected in an unbiased manner based entirely on chance.
 b. Testing and sampling locations and procedures are as important as testing. For test results or measurements to be meaningful, it is necessary that the sampling locations be selected at random, typically by use of a table of random numbers. Other techniques yielding a system of randomly selected locations are also acceptable.
 c. This procedure is divided into several sections:
 • Applications for Hot Mixture Asphalt Density
 • Applications for Hot Mixture Asphalt (HMA) Sampling
 • Applications for Portland Cement Concrete
 • Applications for Aggregate and other materials

2. Procedure
 a. Determine the lot, or sublot size and number of tests required for material being tested or sampled.
 b. Select a two digit number at random. Use the random number as the entry point into the random number table.
 Note: A recommended procedure for selecting a random number is stated in each of the categories of material in Section 4 Calculations.
 c. Determine multipliers for testing/sampling locations using Table 1 to calculate “X” and “Y” coordinates or Table 2 to calculate tonnage (X only).

3. Calculations
 a. Hot Mix Asphalt Density
 1. To determine a testing site location, calculate the tons/linear foot distance as follows:
 \[
 \text{Tons per linear foot} = \frac{1.0 \text{ ft} \times \text{width (feet)} \times \text{depth (feet)} \times 2.05 \text{ Tons/cy}}{27}
 \]
 \[
 \text{Sub length} = \frac{\text{tons}}{\text{tons per linear ft}}
 \]
Example:
Pavement-12 ft wide, 0.15 ft deep, 80 ton sublot

\[\text{Tons per linear Foot} = \frac{1.0 \text{ ft} \times 12 \text{ ft} \times 0.15 \text{ ft} \times 2.05 \text{ tons}}{27} = 0.137 \text{ Tons per linear Foot} \]

\[\text{Sublot length} = \frac{80 \text{ Tons}}{0.137 \text{ Tons per linear Foot}} = 583.9 \text{ lf} \text{ (round to 584 lf)} \]

2. Choose a number at random (see Section 2b) to enter Table 1. The recommended method for choosing a random number for HMA density is to use the last two digits from the most recent standard count on the nuclear gauge.

3. Determine the test station and offset as follows:

Test Station = (sublot length × “X” multiplier) + beginning station of paving

Offset (from right side of pavement) = (width of pavement × “Y” multiplier)

Note: The values in the table have been set so that no measurements are taken within 1.5 LF of the edge of the lane. When a test falls within an area that is not appropriate for a test location (i.e. a bridge end, track crossing, night joint) move the testing location 25 lf ahead or back on stationing, as appropriate.

Example:

Beginning Station = 168 + 75
 Width = 12 ft
 Sublot length = 584
 Ending Station = (Beginning Station + Sublot length) = (16875 + 584) = 174 +59
 Standard Count = 2951

Beginning Test Location
 Enter table at line (51): “X” multiplier = 0.762, “Y” multiplier = 0.65
 Stationing = (584 × 0.762) + 16875 = 173 +20
 Offset = (12 × 0.65) = 7.8 ft

4. Determine subsequent testing locations as follows:

Enter the random number table on the next line in sequence (if original table entry 51, next line entry 52, then 53, etc.)

New beginning station = previous ending station + sublot length
X coordinate = (sublot length × “X” multiplier) + New beginning station
Y coordinate = (width of pavement × “Y” multiplier)

Example:

Second Test Location
 New beginning station = 174+59
 Enter table at line (52): “X” multiplier = 0.285, “Y” multiplier = 0.28
 Test station = (584 × 0.285) + 17459 = 176 +25
 Offset = (12 × 0.28) = 3.4 ft from right edge
Y values are selected so that lateral locations are no closer than 1.5 feet (0.45m) from the edge of a paving lane.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>X</th>
<th>Y</th>
<th>Sequence</th>
<th>X</th>
<th>Y</th>
<th>Sequence</th>
<th>X</th>
<th>Y</th>
<th>Sequence</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.290</td>
<td>0.33</td>
<td>26</td>
<td>0.657</td>
<td>0.69</td>
<td>51</td>
<td>0.762</td>
<td>0.65</td>
<td>76</td>
<td>0.434</td>
<td>0.43</td>
</tr>
<tr>
<td>2</td>
<td>0.119</td>
<td>0.43</td>
<td>27</td>
<td>0.761</td>
<td>0.27</td>
<td>52</td>
<td>0.285</td>
<td>0.28</td>
<td>77</td>
<td>0.832</td>
<td>0.71</td>
</tr>
<tr>
<td>3</td>
<td>0.694</td>
<td>0.32</td>
<td>28</td>
<td>0.389</td>
<td>0.69</td>
<td>53</td>
<td>0.347</td>
<td>0.87</td>
<td>78</td>
<td>0.044</td>
<td>0.73</td>
</tr>
<tr>
<td>4</td>
<td>0.722</td>
<td>0.47</td>
<td>29</td>
<td>0.751</td>
<td>0.20</td>
<td>54</td>
<td>0.962</td>
<td>0.75</td>
<td>79</td>
<td>0.235</td>
<td>0.28</td>
</tr>
<tr>
<td>5</td>
<td>0.784</td>
<td>0.39</td>
<td>30</td>
<td>0.191</td>
<td>0.77</td>
<td>55</td>
<td>0.203</td>
<td>0.60</td>
<td>80</td>
<td>0.271</td>
<td>0.62</td>
</tr>
<tr>
<td>6</td>
<td>0.953</td>
<td>0.15</td>
<td>31</td>
<td>0.006</td>
<td>0.50</td>
<td>56</td>
<td>0.803</td>
<td>0.35</td>
<td>81</td>
<td>0.477</td>
<td>0.85</td>
</tr>
<tr>
<td>7</td>
<td>0.576</td>
<td>0.14</td>
<td>32</td>
<td>0.456</td>
<td>0.23</td>
<td>57</td>
<td>0.672</td>
<td>0.17</td>
<td>82</td>
<td>0.267</td>
<td>0.44</td>
</tr>
<tr>
<td>8</td>
<td>0.069</td>
<td>0.74</td>
<td>33</td>
<td>0.367</td>
<td>0.85</td>
<td>58</td>
<td>0.306</td>
<td>0.20</td>
<td>83</td>
<td>0.933</td>
<td>0.28</td>
</tr>
<tr>
<td>9</td>
<td>0.691</td>
<td>0.86</td>
<td>34</td>
<td>0.025</td>
<td>0.73</td>
<td>59</td>
<td>0.223</td>
<td>0.83</td>
<td>84</td>
<td>0.974</td>
<td>0.87</td>
</tr>
<tr>
<td>10</td>
<td>0.973</td>
<td>0.44</td>
<td>35</td>
<td>0.299</td>
<td>0.33</td>
<td>60</td>
<td>0.116</td>
<td>0.58</td>
<td>85</td>
<td>0.600</td>
<td>0.46</td>
</tr>
<tr>
<td>11</td>
<td>0.328</td>
<td>0.5</td>
<td>36</td>
<td>0.194</td>
<td>0.25</td>
<td>61</td>
<td>0.768</td>
<td>0.32</td>
<td>86</td>
<td>0.591</td>
<td>0.19</td>
</tr>
<tr>
<td>12</td>
<td>0.468</td>
<td>0.78</td>
<td>37</td>
<td>0.936</td>
<td>0.37</td>
<td>62</td>
<td>0.893</td>
<td>0.37</td>
<td>87</td>
<td>0.165</td>
<td>0.77</td>
</tr>
<tr>
<td>13</td>
<td>0.183</td>
<td>0.44</td>
<td>38</td>
<td>0.231</td>
<td>0.71</td>
<td>63</td>
<td>0.504</td>
<td>0.66</td>
<td>88</td>
<td>0.668</td>
<td>0.41</td>
</tr>
<tr>
<td>14</td>
<td>0.669</td>
<td>0.36</td>
<td>39</td>
<td>0.050</td>
<td>0.74</td>
<td>64</td>
<td>0.043</td>
<td>0.31</td>
<td>89</td>
<td>0.327</td>
<td>0.29</td>
</tr>
<tr>
<td>15</td>
<td>0.971</td>
<td>0.71</td>
<td>40</td>
<td>0.584</td>
<td>0.43</td>
<td>65</td>
<td>0.284</td>
<td>0.39</td>
<td>90</td>
<td>0.473</td>
<td>0.51</td>
</tr>
<tr>
<td>16</td>
<td>0.336</td>
<td>0.37</td>
<td>41</td>
<td>0.172</td>
<td>0.87</td>
<td>66</td>
<td>0.196</td>
<td>0.15</td>
<td>91</td>
<td>0.598</td>
<td>0.58</td>
</tr>
<tr>
<td>17</td>
<td>0.314</td>
<td>0.78</td>
<td>42</td>
<td>0.430</td>
<td>0.87</td>
<td>67</td>
<td>0.742</td>
<td>0.66</td>
<td>92</td>
<td>0.373</td>
<td>0.69</td>
</tr>
<tr>
<td>18</td>
<td>0.508</td>
<td>0.44</td>
<td>43</td>
<td>0.704</td>
<td>0.19</td>
<td>68</td>
<td>0.941</td>
<td>0.43</td>
<td>93</td>
<td>0.244</td>
<td>0.24</td>
</tr>
<tr>
<td>19</td>
<td>0.347</td>
<td>0.20</td>
<td>44</td>
<td>0.009</td>
<td>0.18</td>
<td>69</td>
<td>0.531</td>
<td>0.31</td>
<td>94</td>
<td>0.831</td>
<td>0.14</td>
</tr>
<tr>
<td>20</td>
<td>0.877</td>
<td>0.85</td>
<td>45</td>
<td>0.552</td>
<td>0.17</td>
<td>70</td>
<td>0.478</td>
<td>0.56</td>
<td>95</td>
<td>0.178</td>
<td>0.45</td>
</tr>
<tr>
<td>21</td>
<td>0.712</td>
<td>0.17</td>
<td>46</td>
<td>0.626</td>
<td>0.29</td>
<td>71</td>
<td>0.228</td>
<td>0.37</td>
<td>96</td>
<td>0.821</td>
<td>0.46</td>
</tr>
<tr>
<td>22</td>
<td>0.193</td>
<td>0.17</td>
<td>47</td>
<td>0.144</td>
<td>0.62</td>
<td>72</td>
<td>0.008</td>
<td>0.48</td>
<td>97</td>
<td>0.124</td>
<td>0.62</td>
</tr>
<tr>
<td>23</td>
<td>0.976</td>
<td>0.69</td>
<td>48</td>
<td>0.246</td>
<td>0.13</td>
<td>73</td>
<td>0.002</td>
<td>0.17</td>
<td>98</td>
<td>0.580</td>
<td>0.57</td>
</tr>
<tr>
<td>24</td>
<td>0.997</td>
<td>0.63</td>
<td>49</td>
<td>0.055</td>
<td>0.40</td>
<td>74</td>
<td>0.330</td>
<td>0.42</td>
<td>99</td>
<td>0.037</td>
<td>0.24</td>
</tr>
<tr>
<td>25</td>
<td>0.930</td>
<td>0.44</td>
<td>50</td>
<td>0.678</td>
<td>0.66</td>
<td>75</td>
<td>0.089</td>
<td>0.20</td>
<td>100</td>
<td>0.700</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Random Numbers with X and Y value

Table 1

b. Hot Mix Asphalt (HMA) Pavement Mixture

1. Determine the sublot increment of the material.

2. Choose a number at random to enter Table 2. The recommended method for choosing a random number for HMA mix is to use the last two digits of the ignition furnace calibration.

3. Determine the test location by tonnage.

4. Calculate the first test location as follows:

 Sampling Site = Sublot increment × “X” multiplier (Table 2)

Example:

 The Ignition Furnace Calibration is 0.45%. Use 45 as the starting point to enter random number Table 2. “X” = 0.604.
First test location:
- Sublot increment = 800 tons
- Beginning tonnage: 0
- Sublot increment: $800 \times 0.604 = 483$
- Test tonnage Sample 1: Beginning tonnage + 483 tons = 483 tons

Random sample tonnage may be adjusted per sublot to accommodate field testing. Adjustments to random sample tonnage should be documented.

e. Determine subsequent test locations as follows:

The new beginning tonnage is calculated by adding the sublot increment tonnage to the previous test tonnage.

Enter the Table 2 on the next line in sequence (if beginning entry 45, next line entry 46, next 47, etc.)

Example:

Second test location:
- Enter Table 2 at (46) “X” = 0.087
- Sublot increment: $800 \times 0.087 = 70$
- Testing tonnage Sample 2: $800 + 70 = 870$ tons

<table>
<thead>
<tr>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 0.186</td>
<td>(21) 0.256</td>
<td>(41) 0.201</td>
<td>(61) 0.508</td>
<td>(81) 0.431</td>
</tr>
<tr>
<td>(2) 0.584</td>
<td>(22) 0.753</td>
<td>(42) 0.699</td>
<td>(62) 0.884</td>
<td>(82) 0.509</td>
</tr>
<tr>
<td>(3) 0.965</td>
<td>(23) 0.108</td>
<td>(43) 0.785</td>
<td>(63) 0.648</td>
<td>(83) 0.962</td>
</tr>
<tr>
<td>(4) 0.044</td>
<td>(24) 0.626</td>
<td>(44) 0.874</td>
<td>(64) 0.398</td>
<td>(84) 0.315</td>
</tr>
<tr>
<td>(5) 0.840</td>
<td>(25) 0.885</td>
<td>(45) 0.604</td>
<td>(65) 0.142</td>
<td>(85) 0.721</td>
</tr>
<tr>
<td>(6) 0.381</td>
<td>(26) 0.418</td>
<td>(46) 0.087</td>
<td>(66) 0.962</td>
<td>(86) 0.637</td>
</tr>
<tr>
<td>(7) 0.756</td>
<td>(27) 0.320</td>
<td>(47) 0.334</td>
<td>(67) 0.516</td>
<td>(87) 0.056</td>
</tr>
<tr>
<td>(8) 0.586</td>
<td>(28) 0.098</td>
<td>(48) 0.189</td>
<td>(68) 0.615</td>
<td>(88) 0.905</td>
</tr>
<tr>
<td>(9) 0.480</td>
<td>(29) 0.791</td>
<td>(49) 0.777</td>
<td>(69) 0.226</td>
<td>(89) 0.195</td>
</tr>
<tr>
<td>(10) 0.101</td>
<td>(30) 0.717</td>
<td>(50) 0.704</td>
<td>(70) 0.881</td>
<td>(90) 0.981</td>
</tr>
<tr>
<td>(11) 0.282</td>
<td>(31) 0.868</td>
<td>(51) 0.946</td>
<td>(71) 0.369</td>
<td>(91) 0.600</td>
</tr>
<tr>
<td>(12) 0.957</td>
<td>(32) 0.583</td>
<td>(52) 0.426</td>
<td>(72) 0.001</td>
<td>(92) 0.044</td>
</tr>
<tr>
<td>(13) 0.377</td>
<td>(33) 0.385</td>
<td>(53) 0.266</td>
<td>(73) 0.744</td>
<td>(93) 0.433</td>
</tr>
<tr>
<td>(14) 0.456</td>
<td>(34) 0.465</td>
<td>(54) 0.791</td>
<td>(74) 0.229</td>
<td>(94) 0.762</td>
</tr>
<tr>
<td>(15) 0.778</td>
<td>(35) 0.101</td>
<td>(55) 0.711</td>
<td>(75) 0.906</td>
<td>(95) 0.678</td>
</tr>
<tr>
<td>(16) 0.243</td>
<td>(36) 0.285</td>
<td>(56) 0.122</td>
<td>(76) 0.413</td>
<td>(96) 0.347</td>
</tr>
<tr>
<td>(17) 0.578</td>
<td>(37) 0.829</td>
<td>(57) 0.895</td>
<td>(77) 0.827</td>
<td>(97) 0.274</td>
</tr>
<tr>
<td>(18) 0.966</td>
<td>(38) 0.998</td>
<td>(58) 0.371</td>
<td>(78) 0.984</td>
<td>(98) 0.114</td>
</tr>
<tr>
<td>(19) 0.373</td>
<td>(39) 0.539</td>
<td>(59) 0.221</td>
<td>(79) 0.641</td>
<td>(99) 0.480</td>
</tr>
<tr>
<td>(20) 0.834</td>
<td>(40) 0.060</td>
<td>(60) 0.011</td>
<td>(80) 0.068</td>
<td>(100) 0.685</td>
</tr>
</tbody>
</table>

Random Numbers

Table 2

C. Portland Cement Concrete (PCC)

1. Determine the sublot increment for the random test sample. A sublot for PCC is based on a sampling frequency of one in five trucks after, two successive trucks within specification.

Sublot increment = Cubic Yards per truck × 5 trucks
Example:
Each truck carries 10 CY of concrete
Sublot Increment = 10 CY × 5 trucks = 50 CY

2. Choose a two digit number at random to enter Table 2. The recommended method for choosing a random number for Portland Cement Concrete is to choose the last two digits from the first civilian license plate seen that day (do not use vehicles associated with the project site).

Note: Start each day of concrete placement with a new “X” value determined by chance in order to obtain a random selection

3. Determine the sample location as follows:
Sampling Location = Sublot increment × “X” multiplier (Table 2)
Example:
The civilian license plate ends in 37. Use 37 as the starting point to enter random number Table 2 “X” = 0.829.
Sample location = 50 CY × 0.829 = 41 CY

4. Determine where the first sample will be taken:
Sample Yardage = (CY per truck × 2 (for the first two trucks)) + Sample location
Example:
First sample location:
Sample location = (10 CY × 2) + 41 CY = 61 CY

5. The sample will be taken from the truck containing the 61st CY or in this example the seventh truckload of the pour. Allow approximately ½ CY of concrete to be discharged before sampling the truck.
Example:
(41/10) CY = 4.1 trucks + original 2 truck = 6.1 trucks
Sample is located in the first ⅓ of the 7th truck of the pour.

6. Determine subsequent sampling locations as follows:
Example:
Second sample location:
Use the next sequential line of the chart after the beginning random number. Original number was 37 use line (38) as the starting point to enter random number Table 2. “X” = 0.998.
Sample location = 50 CY × 0.998 = 49.9 CY = 50 CY

7. The second sample will be taken at 120 CY
Example:
20 CY (first two trucks) + 50 (first random sample of 5 trucks) + 50 CY
The sample would come from the last ⅓ of the truck 12th truck of the pour.
d. Aggregate and Other Materials

1. Determine the lot or sublot size according to the contract documents. The lot or sublot shall be determined to the nearest 100 tons.

2. Choose a two digit number at random to enter Table 2. The recommended method for choosing a random number for Aggregates and other materials not described above is to choose the last two digits from the first civilian license plate seen that day (do not use vehicles associated with the project site) or use a digital stopwatch. To use the stopwatch method; start the stop watch and let it count for several seconds, stop the watch and use the decimal part of the seconds as your entry point.

3. Determine the sample location as follows:

 Sampling Location = lot or Sublot size × “X” multiplier (Table 2)

 Sampling from a Belt or Flowing Stream: The specification calls for one sample from every 1000 Tons of aggregate. If the random number is (58), “X” = 0.371,

 Example:

 First sample location

 (0.371) (1000 Tons) = 371 Tons.
 Sample the material when the 371st ton passes over the belt.

 Second sample location

 Entry line will be (59), “X”= 0.221
 (0.221) (1000 Tons) = 221 Tons
 Sample site= 1,000 + 221 = 1,221
 Sample the material when the 1,221st ton passes over the belt.

 Sampling from Haul Units: If the contract documents require samples based on number of haul units. Determine the number of hauling units that comprise a lot. Multiply the selected random number(s) by the number of units to determine which unit(s) will be sampled.

 Example:

 Lot size = 20 haul units
 If the random number is (58), “X”= 0.371,
 First sample location

 (0.371) (20) = 7.42 haul units.
 Sample is taken from the 7th haul unit

 Second sample location

 Entry line will be (59), “X”= 0.221
 (0.221) (20) = 4.42 haul units
 Sample site= 20 + 4.42 = 24.42
 Sample the material when the 24th haul unit

 Sampling from a Roadway with Previously Placed Material: Determine the sample location in the same manner as Section 4 (A) Hot Mix Density.
Appendix A

Hot Mix Asphalt Density and Challenge Cores (400 Ton Lots)

a. Determine the LOT size and number of tests per LOT. The Standard specifications set the size of a density test lot for Hot Mix Asphalt Pavement to no greater than a single day’s production or 400 tons, whichever is less, and require five tests per LOT. At the end of a day's production the final lot may be increased to a maximum of 600 tons.

b. Convert this LOT size to an area segment of the roadway based on the roadway section and depth being constructed for the course being tested. The calculations in Example 1 show how this is performed. Table A1 has been provided to give you recommend lot lengths for standard lane widths at various depths. Lot length needs to be determined to the nearest 100 feet.

Example 1

Sample Computation for Lot Length

Using nominal compacted density of 2.05 tons/cy, and a 400 ton lot:

\[
\text{Tons per linear foot} = \frac{1.0 \text{ (foot)} \times \text{width (feet)} \times \text{depth (feet)}) \times 2.05 \text{ Tons/cy}}{27}
\]

\[
\text{Tons per linear Foot} = \frac{1.0 \text{ ft} \times 12 \text{ ft} \times 0.15 \text{ ft} \times 2.05 \text{ tons}}{27} = 0.137 \text{ Tons per linear Foot}
\]

\[
\text{Lot length} = \frac{400 \text{ Tons}}{0.137 \text{ Tons per linear Foot}} = 2900 \text{ linear Feet}
\]

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>Compacted Depth</th>
<th>Computed Lot Length</th>
<th>Recommended Lot Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 feet</td>
<td>0.12</td>
<td>3655</td>
<td>3700</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>2924</td>
<td>2900</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>2193</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>1754</td>
<td>1800</td>
</tr>
<tr>
<td>11 feet</td>
<td>0.12</td>
<td>3987</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>3189</td>
<td>3200</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>2392</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>1913</td>
<td>1900</td>
</tr>
</tbody>
</table>

Hot Mix Asphalt Density Test Lot Length 400 Ton lot at 2.05 tons/cubic yard

Table A1

LOT length may also be determined based on Nominal Designated LOT sizes. To utilize this concept, compacted mix volumes equivalent to the designated mix quantity per LOT have been determined using the nominal compacted unit weight of Hot Mix asphalt. These volumes are then converted into Density LOT lengths using the typical lane width and specified compacted depth.
c. Determine the locations of the test (or sampling) sites by using values from the random number table to determine the coordinate location on the roadway. In the table, use the “X” values as decimal fractions of the total length of the lot; use the “Y” values as fractions of the width, customarily measured from the right edge of the pavement. The values in the table have been set so that no measurements are taken within 1.5 LF (0.45 m) of the edge of the pavement. Whenever a test location is determined to fall within such an area (i.e., bridge end, track crossing, or night joint) the test location should be moved ahead or back on stationing, as appropriate, by 25 LF (8 m).

d. In order to determine which “X” and “Y” values should be used, enter the table on a line chosen by chance. Recommended procedure is selection of a line based on the last two digits from the most recent standard count on the nuclear density gage. Subsequent “X” and “Y” values are then taken from the lines that follow. Based on the specified sampling frequency, 20 lots can be accommodated by one cycle through the table. Start each shift with a set of values determined by chance in order to obtain random selection.

e. Example 2 shows the calculations for determining the testing location for asphalt pavement density.

Example 2
Test Location Within the LOT
for Hot Mix Asphalt Density

For the lot: (12 ft wide, 0.15 ft deep, starting at station 168 + 75 with paving progressing ahead on station), Lot length was previously determined as 2,900 LF. Using the last two digits of the standard count, as in the example, 2951, assume “X” and “Y” values from line (51) in random number table: X = 0.762, Y = 0.65.

For the first test:

Beginning station: 168 + 75
Sublot length increment: 580 × 0.762 = 442
Width offset: 12 × 0.65 = 7.8 ft (from right edge)
Location is: station: (168+75) + 442 = 173 + 17, 7.8 ft from right edge

For the Second test:

Beginning station: (168 + 75) + (580) = 174 + 55
Sublot length increment: 580 × 0.285 = 165
Width offset: 12 × 0.28 = 3.4 ft (from right edge)
Location is: station: (174 + 55) + 165 = (176 + 20), 3.4 ft from right edge

For the Third test:

Beginning station: (168 + 75) + 580 + 580 = 180 + 35
Sublot length increment: 580 × 0.347 = 201
Width offset: 12 × 0.87 = 10.4 ft (from right edge)
Location is: station: (180 + 35) + 201 = (182 + 36), 10.4 ft from right edge
Appendix B

HOT MIX ASPHALT DENSITY AND CHALLENGE CORES (Milepost)

a. Determine the LOT size and number of tests per LOT. The Standard specifications set the size of a density test lot for Hot Mix Asphalt Pavement to no greater than a single day’s production or 400 tons, whichever is less, and require five tests per LOT. At the end of a day’s production the final lot may be increased to a maximum of 600 tons.

b. Convert this LOT size to an area segment of the roadway based on the roadway section and depth being constructed for the course being tested. The calculations in Example 1 show how this is performed. Table A2 has been provided to give you recommend lot lengths for standard lane widths at various depths. Lot length needs to be determined to the nearest .01 of a mile.

Example 1
Sample Computation for Lot Length

Using nominal compacted density of 2.05 tons/cy, and a 400 ton lot:

\[
\text{Tons per linear foot} = \frac{(1.0 \text{ (foot)} \times \text{width (feet)} \times \text{depth (feet)}) \times 2.05 \text{ Tons/cy}}{27}
\]

Tons per linear Foot = \(\frac{1.0 \text{ ft} \times 12 \text{ ft} \times 0.15 \text{ ft} \times 2.05 \text{ tons}}{27}\) = 0.137 Tons per linear Foot.

0.137 Tons per linear Foot \times 5,280 \text{ ft} = 723.36 \text{ Tons per mile}

\[
\text{Lot length} = \frac{400 \text{ Tons}}{723.36 \text{ Tons per mile}} = 0.55 \text{ linear miles}
\]

<table>
<thead>
<tr>
<th>Lane Width</th>
<th>Compacted Depth</th>
<th>Computed Lot Length</th>
<th>Recommended Lot Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 feet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td></td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>0.15</td>
<td></td>
<td>0.55</td>
<td>.55</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td>0.42</td>
<td>.42</td>
</tr>
<tr>
<td>.25</td>
<td></td>
<td>0.33</td>
<td>.034</td>
</tr>
<tr>
<td>11 feet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td></td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>0.15</td>
<td></td>
<td>0.60</td>
<td>0.61</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td>0.45</td>
<td>0.46</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td>0.35</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Hot Mix Asphalt Density Test Lot Length
400 Ton lot at 2.05 tons/cubic yard

Table A2
LOT length may also be determined based on Nominal Designated LOT sizes. To utilize this concept, compacted mix volumes equivalent to the designated mix quantity per LOT have been determined using the nominal compacted unit weight of Hot Mix asphalt. These volumes are then converted into Density LOT lengths using the typical lane width and specified compacted depth. The included tables present the values for LOT Lengths based on mileposts.

c. Determine the locations of the test (or sampling) sites by using values from the random number table to determine the coordinate location on the roadway. In the table, use the “X” values as decimal fractions of the total length of the lot; use the “Y” values as fractions of the width, customarily measured from the right edge of the pavement. The values in the table have been set so that no measurements are taken within 1.5 LF (0.45 m) of the edge of the pavement. Whenever a test location is determined to fall within such an area (i.e., bridge end, track crossing, or night joint) the test location should be moved ahead or back on milepost, as appropriate, by .01 mile.

d. In order to determine which “X” and “Y” values should be used, enter the table on a line chosen by chance. Recommended procedure is selection of a line based on the last two digits from the most recent standard count on the nuclear density gage. Subsequent “X” and “Y” values are then taken from the lines that follow. Based on the specified sampling frequency, 20 lots can be accommodated by one cycle through the table. Start each shift with a set of values determined by chance in order to obtain random selection.

e. Example 2 shows the calculations for determining the testing location for asphalt pavement density.

Example 2
Test Location Within the LOT for Hot Mix Asphalt Density

For the lot: (12 ft wide, 0.15 ft deep, starting at Milepost 1.00 with paving ̶ progressing ahead on Milepost), Lot length was previously determined as 0.55 miles. Using the last two digits of the standard count, as in the example, 2951, assume “X” and “Y” values from line (51) in random number table: $X = 0.762$, $Y = 0.65$.

For the first test:
- Beginning Milepost: 1.00
- Sublot length increment: $.11 \times 0.762 = .08$
- Width offset: $12 \times 0.65 = 7.8$ ft (from right edge)
- Location is: Milepost: (1.00) + .08 = 1.08, 7.8 ft from right edge

For the Second test:
- Beginning Milepost: (1.00) + (.11) = 1.11
- Sublot length increment: $.11 \times 0.285 = .03$
- Width offset: $12 \times 0.28 = 3.4$ ft (from right edge)
- Location is: Milepost: (1.11) + .03 = (1.14), 3.4 ft from right edge

For the Third test:
- Beginning Milepost: (1.00) + .11 + .11 = 1.22
- Sublot length increment: $.11 \times 0.347 = .04$
- Width offset: $12 \times 0.87 = 10.4$ ft (from right edge)
- Location is: Milepost: (1.22) + .04 = (1.26), 10.4 ft from right edge
Appendix C

HOT MIX DENSITY TEST LOCATIONS FOR IRREGULAR PAVING AREAS

a. Track tonnage placed in the irregular shaped area until 80 tons have been placed, note the stationing.

b. Measure back to the beginning of the paving or end of the previous lot to obtain the length (this is also your beginning station).

c. Choose a random number (see Section 2b) or use the next random number in sequence to enter the random number table.

d. Multiply the length by the “X” value and add to the beginning station to locate your testing site.

e. Measure the width at the testing station and multiply the width time the “Y” value to determine the offset of the testing site.

f. Make a sketch of the area to document the test location in the event a retest is required.

Example:
Paving began at Station 101 + 00. The tester determined that Station 105 + 75 was the end of the 80 ton lot. The random number was 45.

Calculate testing station

Sta 105 + 75 – Sta 101 + 00 = 475 ft
Random # 45 “X” value = 0.552
475 ft × 0.552 = 262 + 10,100 = 102 + 62

Calculating Offset
Random # 45 “Y” value = 0.17
Offset = 10.5’ × 0.17 = 1.8’
WSDOT Test Method T 724

Method of Preparation of Aggregate for HOT MIX ASPHALT (HMA) Mix Designs

1. Scope

This method of test is intended for the processing and preparation of aggregate samples for use in HMA mix designs and Ignition Furnace calibration samples for Hot Mix Asphalt, asphalt treated base, or open graded products.

2. Apparatus

a. Sieves — shall conform to the specifications of sieves for testing purposes.

b. Mechanical sieve shaker — of sufficient size to separate the material to the specification sieves.

c. Oven(s) — of appropriate size, capable of maintaining a uniform temperature of 325 ± 25° F (163 ± 14° C).

d. Container — pans or containers of suitable size to dry and store the aggregate.

e. Balance — capacity of at least 8 kg sensitive to 0.1 g and meeting the requirements of AASHTO M 231.

f. Aggregate washer (optional).

3. Procedure

a. Representative sample(s) of the production aggregates shall be obtained.

b. Dry the aggregate in an oven to a constant mass not to exceed 350° F.

 Note: When developing an Ignition Furnace Calibration Factor, samples from separate stockpiles can be combined in the same percentages as the job mix formula prior to further processing. The combined sample should be at least four times the amount required for a single test (i.e., IFCF determination).

c. Sieve the aggregate over all the specification sieves designated for class of mix being tested. Place the material retained on each sieve in separate containers.

d. Wash the separated aggregate samples, except the portion passing the No. 200 (0.075 mm) sieve, in accordance with WSDOT FOP for WAQTC/AASHTO T 27/11.

e. Dry the washed, aggregate samples to constant mass.

f. Recombine the aggregate samples to match the grading of the job mix formula. The sample size as determined by the specific test procedure performed.
Performance Exam Checklist
Method of Preparation of Aggregate for Hot Mix Asphalt (HMA) Mix Designs
WSDOT Test Method T 724

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The tester has a copy of the current procedure on hand?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2. All equipment is functioning according to the test procedure, and if required, has the current calibration/verification tags present?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3. Representative sample(s) of the production aggregates obtained.</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4. Aggregate dried in an oven to a constant mass?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5. Aggregate sieved over designated sieves for class of mix being tested?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>6. Material retained on each sieve placed in separate containers?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>7. Separated aggregates washed, except the portion passing the No. 200 (0.075mm) sieve, in accordance with FOP for AASHTO T27/T11?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8. Washed aggregate samples dried in an oven to a constant mass?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>9. Aggregate recombined to match the grading of the job mix formula?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>10. Sample size determined by the specific test procedure to be performed?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

First attempt: Pass ☐ Fail ☐ Second attempt: Pass ☐ Fail ☐

Signature of Examiner ________________________________

Comments:
WSDOT Test Method T 726

Mixing Procedure for Hot Mix Asphalt (HMA)

1. Scope

This is the mixing procedure for laboratory prepared samples of asphalt concrete, asphalt treated base, or open graded asphalt products mixtures. The aggregates used in this procedure are prepared by means of WSDOT Test Method No. 724.

2. Equipment

a. Mixing Spoon — A large metal spoon capable of handling hot mix asphalt.

b. Scoop — A metal scoop of ample size, capable of handling hot mix asphalt.

c. Curing Pan — A heat resistant pan of ample size to handle samples of hot mix asphalt.

d. Mixing Bowl — A heat resistant bowl for hand mixing or mechanical mixer of ample size to handle samples of hot mix asphalt.

e. Mechanical Mixer — A mechanical mixer with heat source may be used in lieu of hand mixing.

f. Balance — The balance shall have capacity of 11 kg and sensitive to 0.1 gm.

g. Oven — An oven of appropriate size, capable of maintaining a uniform temperature within the allowable tolerance for the grade of asphalt binder.

h. Thermometer- Armored glass or dial-type thermometric devices with metal stems or probe for determining the temperature of aggregates, binder, and HMA between 180°F and 418°F (100 and 232°C).

3. Procedure

a. Heat asphalt binder, aggregate sample(s), and mixing bowl(s) in a preheated oven to the mixing temperature specified by the supplier of asphalt binder or as indicated on mix design report.

b. Stir the asphalt binder and verify that the temperature of asphalt binder is within the temperature recommended by the asphalt supplier or as indicated on mix design verification report.

c. After the materials are heated place mixing bowl on balance and tare.

d. Place heated aggregate sample in the tared mixing bowl and determine the mass of the aggregate sample. Use this mass to calculate the mass of asphalt binder required to produce a sample of HMA at the Job Mix Formula (JMF) asphalt binder content (See calculation below).

e. Form a crater in the aggregate sample and weigh in asphalt binder as determined above.

Note: If mixing bowl is not buttered an additional sample should be prepared, mixed and then discarded to properly coat the mixing bowl with asphalt and fines.
f. Mix aggregate sample and asphalt binder for approximately 3 minutes or until aggregate sample is completely coated with asphalt binder. This can be accomplished by hand mixing or by mechanical mixer.

Note: Reheating of the HMA for a short period of time may be necessary to assure complete coating of the aggregate.

g. Transfer mixed HMA to the proper container for other testing as required.

h. Repeat steps A thru H for each sample to be mixed.

Calculation for Mass of Asphalt Binder:

\[
\text{Designated Mass of Asphalt Binder} = \frac{(A) D}{(1 - A)}
\]

Where:
- \(A \) = Designated asphalt binder content (expressed in decimal)
- \(D \) = Dry aggregate mass (from step 3(c))

Example:

The designated asphalt binder content is 5.3\%, and dry aggregate mass is 1567.1 grams.

\[
\text{Designated Mass of Asphalt Binder} = \frac{(0.053) 1567.1}{(1 - 0.053)} = \frac{83.1}{0.947} = 87.7 \text{g}
\]
Performance Exam Checklist

Mixing Procedure for Hot Mix Asphalt (HMA)
WSDOT Test Method T 726

<table>
<thead>
<tr>
<th>Procedure Element</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The tester has a copy of the current procedure on hand?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2. All equipment is functioning according to the test procedure, and if required, has</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>the current calibration/verification tags present?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3. Aggregate samples prepared as per WSDOT Test Method T 724?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4. Mixing bowl(s), aggregate and asphalt binder heated to appropriate mixing</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>temperature?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5. Asphalt binder stirred and temperature confirmed by thermometer?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>6. Heated mixing bowl placed on scale and scale then tared?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>7. Heated aggregate sample placed in bowl and scale then tared?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8. Crater formed into center aggregate, weigh in asphalt binder in accordance with</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>mix design information?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>9. Mix aggregate and asphalt for approximately 3 minutes or until aggregate is</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>completely coated?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>10. When mixing is complete carefully scrape off mixing apparatus, tools and bowl</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>is dumped into correctly marked pan?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>11. Repeat steps 4 - 8 for each sample to be mixed?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>12. All calculations performed correctly?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

First attempt: Pass ☐ Fail ☐ Second attempt: Pass ☐ Fail ☐

Signature of Examiner __

Comments:
WSDOT SOP 729

Determination of the Moving Average of the Theoretical Maximum for HMA FOP for WAQTC TM 8

1. Scope

This procedure covers the process for obtaining the moving average of the Theoretical Maximum Density for calculating pavement compaction in accordance with WSDOT FOP for WAQTC TM 8. The Theoretical Maximum Density (TMD) is to be determined in accordance with WSDOT FOP for AASHTO T 209.

2. Procedure

The procedure for determining the moving average of the Theoretical Maximum Density is as follows:

a. On the initial day of production of a new Mix Design, two determinations shall be made to establish an initial average value. The samples shall not be from the same truck. Average the two Theoretical Maximum Densities and report the result to the Moisture Density Gauge Operator. The Theoretical Maximum Density value from the Mix Design shall not be included in the average. If the two Theoretical Maximum Densities determined on the initial day do not agree within 3.0 lb/ft3 (48 kg/m3), a third determination shall be made. The initial average density shall be based on the two closest results.

b. For Non Volumetric projects, a TMD test shall be taken with the first mix sample of each production shift. For Volumetric projects, a TMD test shall be taken with each mix sample. The moving average is defined as the average of the last five Theoretical Maximum Density (TMD) values for the HMA being placed. Until five TMD values have been determined, the moving average will consist of all previous TMD values plus the first TMD value for the current production shift. When five TMD values have been determined, the moving average for each shift will include the last four TMD values plus the first TMD value for the current paving shift. This new moving average value will be used for the entire paving shift.

c. Each TMD shall be compared with the previously computed moving average. If a TMD deviates from the moving average by more than 3.0 lb/ft3 (± 48 kg/m3), a second test shall be made on another portion of the same sample. If the second TMD agrees within 3.0 lb/ft3 (± 48 kg/m3) of the moving average then the first TMD will be discarded and the second TMD will be included in the moving average. If the second TMD is not within 3.0 lb/ft3 (± 48 kg/m3) of the moving average but is within 3.0 lb/ft3 (± 48 kg/m3) of the first TMD, a new moving average will be initiated, discarding all previous results. The new moving average will be sent to the Moisture Density Gauge operator and will replace the current moving average.
d. A moving average will be sent to the Moisture Density Gauge operator once per production shift, unless two tests during a shift are not within 3.0 lb/ft\(^3\) (± 48 kg/m\(^3\)), then a new moving average will be calculated in accordance with “c” of this procedure and sent to the Moisture Density Gauge operator as the new moving average for the shift. The Moisture Density Gauge Operator will continue to use the previous moving average until a new moving average is available.
WSDOT SOP 730

Correlation of Nuclear Gauge Densities with Hot Mix Asphalt (HMA) Cores

1. When evaluating HMA compaction
 1.1 A gauge correlation is required:
 a. For each combination of gauge and HMA Mix Design (initial JMF).
 b. When gauge mode changes (i.e. direct transmission to thin layer).
 c. When a gauge is recalibrated.
 1.2 A gauge correlation is not required but may be considered by the Region Materials Engineer when:
 a. Base material changes from the original correlation base (i.e. from a surfacing base to an asphalt base).
 b. Lift thickness change (i.e. 2” to 4”)
 c. The same gauge-HMA Mix Design (Reference Mix Design) combination are used on a different contract within the same construction year
 d. When JMF has been adjusted in accordance with Section 9-03.8(7)A of the Standard Specifications.

2. Gauge correlation is based on 10 in-place HMA densities and 10 cores taken at the same locations. In-Place HMA densities shall be determined in accordance with WSDOT FOP for WAQTC TM 8. Cores should be taken no later than the day following paving and before traffic has been allowed on roadway. Correlation cores are not required to be taken at record density locations therefore, a site outside the traveled way should be considered for worker safety.

 Note1: If a core becomes damaged, it shall be eliminated from the average.

 Note2: Cores may be taken sooner than the day after paving if the HMA is cooled to prevent damage during coring and removal of cores. Water, ice, or dry-ice may be used to cool the pavement. Another method of cooling that may be used is substitution of nitrogen gas or CO2 for drilling fluids.

3. Obtain a pavement core from each of the test sites in accordance with WSDOT SOP 734. The core shall be taken in the nuclear gauge footprint. If direct transmission was used, locate the core at least 1 in (25 mm) away from the edge of the drive pin hole.

4. Core densities shall be determined in conformance with AASHTO T 166 Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens.

5. Correlation factor shall be determined to 0.001 using Standard Form 350-112: Correlation Nuclear Gauge to Core Density, or the MATS database.
WSDOT SOP 731

Method for Determining Volumetric Properties of Hot Mix Asphalt

1. Scope

This procedure covers the determination of volumetric properties of Hot Mix Asphalt i.e. Air Voids (Va), Voids in Mineral Aggregate (VMA), Voids Filled with Asphalt (VFA), and Dust to Binder Ratio (P_{200}/P_{be}).

2. References

a. T 329, WSDOT FOP for AASHTO Moisture Content of Hot Mix Asphalt (HMA) by Oven Method
b. T 27/11, WSDOT FOP for WAQTC/AASHTO Sieve Analysis of Fine and Coarse Aggregates
c. T 166, WSDOT FOP for AASHTO Bulk Specific Gravity of Compacted Hot Mix Asphalt Using Saturated Surface-Dry Specimens
d. T 168, WSDOT FOP for WAQTC/AASHTO Sampling of Hot Mix Asphalt Paving Mixtures
e. T 209, WSDOT FOP for AASHTO Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt Paving Mixtures
f. T 308, WSDOT FOP for AASHTO Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Method
g. T 312, WSDOT FOP for AASHTO Preparing Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor
h. T 712, WSDOT Test Method Standard Method of Reducing Hot Mix Asphalt Paving Mixtures

3. Calibration of Compactor

a. The gyratory compactor will be calibrated in accordance with WSDOT VP-58 and according to the manufacturer’s established calibration procedure. Anytime the gyratory compactor is moved to a new testing site a new calibration is required in accordance with WSDOT VP-58.

4. Test Samples

a. All test samples shall be obtained per WSDOT FOP for WAQTC/AASHTO T 168, and reduced in accordance with WSDOT Test Method T 712. It is recommended that the gyratory test sample be the first sample acquired in order to minimize heat loss.

b. The size of the gyratory sample shall be such that it will produce a compacted specimen 115.0 ± 5.0 mm in height. Generally, the mix design verification report from the State materials Laboratory initial starting mass is adequate.
c. Place the gyratory sample in an oven set no more than 25° F above the compaction temperature (Note 1) as soon as possible to reduce sample cooling. The gyratory test is temperature sensitive. The sample should be heated five degrees above the compaction temperature as shown on the mix design verification report.

Note 1: Any change in compaction temperature must be confirmed by the temperature viscosity chart provided by the asphalt supplier, which can be obtained from the Paving Contractor.

5. Procedure

a. Place a compaction mold, base plate, and top plate (if required), in an oven set at no more than 350° F for a minimum of 60 minutes prior to the estimated beginning of compaction. Subsequent uses of a conditioned mold will require 5 minutes of reheating.

b. Place a thermometer into the center of the mix, do not stir the mixture. (Note 3) Compact the sample immediately upon achieving compaction temperature in accordance with step 4 (c).

Note 2: While the gyratory test sample is heating it is beneficial to prepare and/or run the other tests as times permits.

c. Perform the sample compaction in accordance with WSDOT FOP for AASHTO T 312 Section 9.

d. Determine theoretical maximum density per WSDOT FOP for AASHTO T 209.

e. Determine asphalt content and gradation per WSDOT FOP for AASHTO T 308 and WSDOT FOP for WAQTC/AASHTO T 27/11.

f. Determine moisture content per WSDOT FOP for AASHTO T 329.

g. Allow the gyratory compacted specimen to cool at room temperature for 15 to 24 hours. Determine the Bulk Specific Gravity (Gmb) of the specimen in accordance with WSDOT FOP for AASHTO T 166 Method A.

Note 3: For repeatability between operators the challenge sample should be cooled for the same amount of time at room temperature as the original specimen. When sending challenge samples to the Region or State Laboratory, note the time the original sample was cooled at room temperature in the remarks section of the transmittal.

6. Volumetric Calculations

Calculations

a. Calculate \(\%G_{mm} @ N_{design} \) as follows:

\[
\%G_{mm}@N_{design} = \frac{G_{mb}}{G_{mm}} \times 100
\]

Example:

\[
\%G_{mm}@N_{design} = \frac{2.383}{2.493} \times 100 = 95.6\%
\]

Where:

- \(\%G_{mm}@N_{design} \) = % theoretical maximum specific gravity @ \(N_{design} \)
- \(G_{mb} \) = Bulk specific gravity of the compacted specimen
- \(G_{mm} \) = Maximum specific gravity of the paving mixture
- \(N_{design} \) = Number of design gyrations
b. Calculate $\%G_{\text{mm} @ N_{\text{ini}}}$ as follows:

Example:

$$\%G_{\text{mm} @ N_{\text{ini}}} = 100 \times \left(\frac{G_{\text{mb}} \times h_d}{G_{\text{mm}} \times h_i}\right)$$

Where:

- $\%G_{\text{mm} @ N_{\text{ini}}}$ = Percent theoretical maximum specific gravity @ N_{initial}
- h_d = Height of specimen at design gyration level
- h_i = Height of specimen at initial design gyration level
- N_{initial} = Number of initial gyrations

$$\%G_{\text{mm} @ N_{\text{ini}}} = 100 \times \left(\frac{2.383 \times 110.0}{2.493 \times 123.1}\right) = 85.4\%$$

c. Calculate Air Voids (V_a) as follow:

Example:

$$V_a = 100 \times \left(1 - \left(\frac{G_{\text{mb}}}{G_{\text{mm}}}\right)\right)$$

Where:

- V_a = Percent air voids

$$V_a = 100 \times \left(1 - \left(\frac{2.383}{2.493}\right)\right) = 4.4\%$$

d. Calculate Voids in Mineral Aggregate (VMA) as follows:

Example:

$$VMA = 100 - \left(\frac{G_{\text{mb}} \times P_s}{G_{\text{sb}}}\right)$$

Where:

- P_s = Percent of aggregate in the mixture (100-P_b)

$$VMA = 100 - \left(\frac{2.383 \times 94.8}{2.630}\right) = 14.1\%$$

Where:

- G_{sb} = Bulk specific gravity of the combined aggregate
- VMA = Voids in Mineral Aggregate, percent

e. Calculate Voids Filled with Asphalt (VFA) as follows:

Example:

$$VFA = 100 \times \left(\frac{VMA - V_a}{VMA}\right)$$

Where:

- VFA = Voids Filled with Asphalt, percent

$$VFA = 100 \times \left(\frac{14.1 - 4.4}{14.1}\right) = 68.8\%$$
f. Calculate Gravity Stone Effective \((G_{se})\) as follows:

\[
G_{se} = \frac{100 - P_b}{\left(\frac{100}{G_{mm}} - \frac{P_b}{G_b}\right)}
\]

Example:

\[
G_{se} = \frac{100 - 5.2}{\left(\frac{100}{2.493} - \frac{5.2}{1.025}\right)} = 2.706
\]

Where:
- \(G_{se}\) = Gravity Stone Effective (specific gravity of aggregates, excluding voids permeable to asphalt)
- \(P_b\) = Percent of binder
- \(G_b\) = Gravity binder

Note 4: \(G_b\) is the specific gravity of the asphalt binder. It is imperative that current \(G_b\) is used in the volumetric calculations. Any changes in the binder specific gravity must be confirmed by the temperature viscosity curve provided by the asphalt supplier, which can be obtained from the paving Contractor.

g. Calculate Percent Binder Effective \((P_{be})\) as follows:

\[
P_{be} = P_b - \left(\frac{P_s \times G_b (G_{se} - G_{sb})}{G_{se} - G_{sb}}\right)
\]

Example:

\[
P_{be} = 5.2 - \left(\frac{(94.8 \times 1.025)(2.706 - 2.630)}{2.706 \times 2.630}\right)
\]

Where:
- \(P_{be}\) = Percent binder effective, the percent by mass of effective asphalt content minus the quantity of binder lost by absorption into the aggregate particles.
- \(P_s\) = Percent of aggregate in the mixture
- \(G_b\) = Gravity binder
- \(G_{se}\) = Effective specific gravity of the aggregate
- \(G_{sb}\) = Bulk specific gravity of the combined aggregate
- \(P_b\) = Percent of binder

h. Calculate dust-to-binder ratio \((P_{200}/P_{be})\) as follows:

\[
P_{200}/P_{be} = P_{200} \div P_{be}
\]

Example:

\[
5.0 \div 3.6 = 1.4
\]

Where:
- \(P_{200}/P_{be}\) = Dust-to-binder ratio
- \(P_{200}\) = Percent of aggregate passing the No. 200 sieve

7. Report

Report asphalt content, gradation, and moisture content on WSDOT Form 350-560EF, and report volumetric properties on WSDOT Form 350-162 or other report approved by the State Materials Engineer.
1. Scope

This test method describes the procedure for locating and testing areas of suspected low cyclic density. Lower pavement density has been related to temperature differentials and areas of “spots, streaks” or visual pavement irregularities. This method uses infrared detection devices and visual inspection to identify areas of potentially low cyclic density.

2. Definitions

a. Temperature Differential Area- Any area where the temperature of the newly placed HMA pavement is greater than 25° F different than the surrounding area.

b. Aggregate segregation- “Spots, streaks” or visual pavement irregularities in the newly placed HMA pavement that has a significant difference in texture when compared to the surrounding material.

c. Systematic Density Testing - the testing of temperature differential areas or areas of aggregate segregation to determine if there is a pattern of low cyclic density.

3. Equipment

a. An approved infrared camera OR a handheld noncontact infrared thermometer (features for both should include continuous reading, minimum, maximum, and average readings, laser sighting, and a minimum distance to spot size ratio (D:S) of 30:1.

b. Nuclear moisture-density gauge.

c. Tape measure.

d. A can of spray paint for marking test locations.

e. Required report form.

4. Testing Criteria

a. Where temperature differentials are 25° F or greater a systematic HMA compaction test is required.

b. Where temperature differentials are less than 25° F a systematic HMA compaction test is not required unless, an area shows signs of visual pavement irregularities, surface segregation or a significantly different texture.

5. Determination of Systematic Density Testing Locations

Use either an infrared camera or a handheld non-contact infrared device to locate temperature differential areas as follows:
5.1 Infrared Camera
 a. Delineate a 500 ft section of pavement and systematically check the area for temperature differentials within one minute of HMA placement and prior to any compaction of the pavement.
 b. No temperature profiles shall be performed within the first or last 25 tons of production each day or within 25 feet of any transverse joint.
 c. Focus the camera on the freshly placed HMA pavement prior to compaction. Adjust the camera to show the high and low temperatures.
 d. Viewing should occur from the side of the paved lane approximately 15 to 20 feet back from the paver looking toward the paver.
 e. The “spot” function on the camera should be used to obtain the temperature of the cool area and the surrounding HMA to assess for temperature differentials.
 f. If the temperature differential is 25° F or more, locate the approximate center of the temperature differential area with the camera. The offset is from the center of the temperature differential area to the edge of the lane. Mark the location to be tested for systematic HMA compaction by placing a paint mark at the edge of the lane corresponding to the center of the temperature differential. Record the HMA surface temperature, temperature differential, offset, and station on DOT form 350-170 and in the MATS database.
 g. If the temperature differential is less than 25° F, there is no need to mark the location unless an area within the paved lane has a significantly different texture. If testing is performed because of a significantly different textured area, locate the center of the affected area and mark the location as described in step g and as shown in Figure 1 with an (S) after the temperature differential.

5.2 Handheld Noncontact Infrared Device
 a. Delineate a 500 ft section of pavement and systematically check the area for temperature differentials within one minute of HMA placement and prior to any compaction of the pavement.
 b. No temperature profiles shall be performed within the first or last 25 tons of production each day or within 25 feet of any transverse joint.
 c. Perform a longitudinal scan of the pavement by standing at the edge of the paving lane about 5 to 10 feet back from the paver. Scan the mat with the handheld noncontact thermometer continuously in a longitudinal manner by walking behind the paver in the direction of paving, staying the same distance away from the paver for 500 ft of HMA placement.
 d. The offset for the longitudinal profile should be anywhere from 18 inches from the edge to no more than half the width of the paved lane. (The need to vary the longitudinal offset will be necessary to get an accurate representation of the whole mat.) Scanning temperatures for the other half of the paved lane should be performed from the other side.

 Note: Typically, temperature differentials or surface segregation can be captured with the longitudinal scan.
e. Perform a transverse scan after completion of the longitudinal scan, making sure to scan the entire width of the paved lane excluding the outer 18 inches on each side. It should be performed approximately 5 to 10 feet behind the paver (to check for streaking of the mat).

Note: Typically, streaking caused by temperature differentials or surface segregation will be captured by the transverse scan.

f. If the temperature differential is 25° F or more, locate the approximate center of the temperature differential area by scanning that specified location. The offset is from the center of the temperature differential area to the edge of the paved lane. Mark the location to be tested for systematic density testing by placing a paint mark at the edge of the lane corresponding to the center of the temperature differential. Record the HMA surface temperature, temperature differential, offset, and station on DOT form 350-170 or in the MATS database.

g. If the temperature differential is less than 25° F, there is no need to mark the location unless an area within the paved lane has visual pavement irregularities, surface segregation or a significantly different texture. If testing is performed because of a significantly different textured area, locate the center of the affected area and mark the location as described in step g and as shown in Figure 1 with an (S) after the temperature differential.

 a. Systematic density testing shall begin after finish rolling is completed.
 b. All systematic density testing shall be performed in accordance with WSDOT FOP for WAQTC TM 8.
 c. Systematic density testing shall be performed at all the locations recorded in 5.1f and 5.2f of this procedure. Gauge probe shall be placed at the station and offset determined above as the center of the temperature differential area.
 d. If no temperature differentials or streaks greater than 25° F are found or if there are no more than 2 density readings lower than 90 percent found in a 500 ft section, the testing frequency may be reduced. Random checks however, should continue to be made throughout the day and the results recorded.
 e. If any significant equipment or weather changes occur, temperature profiles should be performed to determine if the new operation is capable of producing uniform HMA temperatures.
 f. If it is found that the paving machine is creating areas that are significantly different in texture from the surrounding pavement, systematic density tests should be performed to determine if these are areas of low cyclic density.
Marking Location of Temperature Differential

Figure 1
Chapter 11 Forms

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-1</td>
<td>Introduction</td>
<td>11-1</td>
</tr>
<tr>
<td>11-2</td>
<td>General Instructions</td>
<td>11-1</td>
</tr>
<tr>
<td>11-2A</td>
<td>Project Office</td>
<td>11-2</td>
</tr>
<tr>
<td>11-2B</td>
<td>Regional Office</td>
<td>11-3</td>
</tr>
<tr>
<td>11-2C</td>
<td>Fabrication Inspector</td>
<td>11-3</td>
</tr>
<tr>
<td>11-2D</td>
<td>State Construction Office</td>
<td>11-3</td>
</tr>
<tr>
<td>11-2E</td>
<td>Materials Laboratory (State or Region)</td>
<td>11-3</td>
</tr>
<tr>
<td>11-2F</td>
<td>Contractor</td>
<td>11-4</td>
</tr>
</tbody>
</table>
Chapter 11

Forms

11-1 Introduction

This chapter is published to acquaint engineers and inspectors with the various forms provided by WSDOT for keeping records of the construction activities and payment for the various phases of the work.

The following pages contain a list of forms to be used in reporting project progress. The sample forms listed in this manual in the past have been eliminated. Copies of the forms are available via four different methods:

- The WSDOT Internal website at wwwi.wsdot.wa.gov/fasc/adminservices/forms
- The WSDOT Microsoft Outlook in the following folder: Public Folders/All Public Folders/WSDOT/Agency Forms/Filemaker Forms/WSDOT Forms
- The WSDOT external website at www.wsdot.wa.gov/forms
- By ordering the forms through your WSDOT Regional Stores personnel.

Both English and Metric versions will be available until the last metric project is completed.

11-2 General Instructions

Forms shown in Chapter 11 are categorized by those persons or offices responsible for completing the form(s) and alphabetically by form name.

It is recommended that the on-line version be utilized, which should be the most current copy of the form, during the administration of a project.

Unless otherwise noted, the previous version of a revised form may continue to be used until the existing supply is gone. However, if the supply of the older form is not exhausted at the end of six months after the revision date shown below, the supply of old forms should be discarded and the latest version used. The latest version may also be used immediately if desired.

Blank forms should be ordered or downloaded from one of the methods listed in Section 11-1 when supplies run low rather than photocopying an existing form. This will ensure that the latest version of the form is used.

Form numbers followed by the letters “EF” indicate that an electronic version of the form is available.

* Indicates only forms with the revised date shown are to be used. All older forms will be discarded.

Signatures

The collection of information in the field has traditionally consisted of text-based documents which were intended to be “hand-signed” by the originator of the document. Now that these forms are available electronically, the question arises as to which forms will require an original hand-written signature and which will be acceptable with computer generated or printed signatures.

The electronic forms listed in Chapter 11 are further categorized into those forms requiring an original signature and which are acceptable with computer generated or printed signatures. Project Office personnel will need to review the forms to familiarize themselves with the signature requirement of each form. All computer generated forms are acceptable as a hard copy with a “handwritten” signature.

Signature Blocks

Any form, on which the word “Signature” appears in the block, requires an original handwritten signature in that block (e.g. Inspector’s signature ___, Contractor’s signature ___, Project Engineer’s signature ___, etc.) Any form on which the signature block contains anything other than “Signature” may utilize a computer generated or printed signature (e.g. Completed by ___, Prepared by ___, Submitted by ___, Inspector ___, etc.) Signature blocks on these forms are “open” on the FileMaker Pro electronic forms in order to allow the originator of the form to type in their name.

When filling out and completing our construction forms, all signature or initial blocks must be completed. Leaving them blank is not acceptable.

Identifying Individual’s Signatures

Project Offices will need to establish a procedure in which printed signatures or initials appearing on a document may be accepted as equal to a handwritten signature or initials. A WSDOT personnel signature list (Form 422-001 EF, Project Personnel Signature Listing) is available for Project Office use.

This list shall be included with the final records as defined in Chapter 10-3.5 of the Construction Manual. It is recommended that before work commences on a project, that all those who will be assigned a role on the project sign and initial this sheet. The list should be kept current throughout the life of the project.

*NOTE: A handwritten signature is always acceptable on all forms.
11-2A Project Office

<table>
<thead>
<tr>
<th>Form No.</th>
<th>Revised Date</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>410-025 EF</td>
<td>3/02</td>
<td>Project Engineer Transmittal</td>
</tr>
<tr>
<td>420-012 EF</td>
<td>1/96</td>
<td>Recommended Changes to Specifications and Construction Manual</td>
</tr>
<tr>
<td>421-005A EF</td>
<td>12/09</td>
<td>Change Order – Minor Change (2 page)</td>
</tr>
<tr>
<td>421-006 EF</td>
<td>5/06</td>
<td>Order to Suspend Work</td>
</tr>
<tr>
<td>421-007 EF</td>
<td>5/06</td>
<td>Order to Resume Work</td>
</tr>
<tr>
<td>421-010 EF</td>
<td>3/08*</td>
<td>Prime Contractor Performance Report</td>
</tr>
<tr>
<td>540-509 EF</td>
<td>3/02</td>
<td>Commercial Pesticide Application Record</td>
</tr>
<tr>
<td>722-025 EF</td>
<td>7/10</td>
<td>As Built Cover Sheet</td>
</tr>
<tr>
<td>750-001 EF</td>
<td>6/08</td>
<td>Fall Protection Plan</td>
</tr>
<tr>
<td>750-001A EF</td>
<td>1/05</td>
<td>Tower and Bridge Fall Protection Plan</td>
</tr>
<tr>
<td>350-023 EF</td>
<td>4/02</td>
<td>Pit Evaluation Report</td>
</tr>
<tr>
<td>422-020 EF</td>
<td>9/08</td>
<td>Record of Field Tests</td>
</tr>
<tr>
<td>422-020A EF</td>
<td>5/08</td>
<td>Aggregate Record of Field Tests</td>
</tr>
<tr>
<td>422-020B EF</td>
<td>7/08</td>
<td>Inspector’s Record of Field Test</td>
</tr>
<tr>
<td>350-016</td>
<td>4-02</td>
<td>Asphalt Emulsion Label</td>
</tr>
<tr>
<td>350-126 EF</td>
<td>8/97</td>
<td>Asphalt Plant Inspection</td>
</tr>
<tr>
<td>350-157 EF</td>
<td>4/02</td>
<td>Rice Density</td>
</tr>
<tr>
<td>350-161 EF</td>
<td>3-07</td>
<td>HMA Mineral Aggregates</td>
</tr>
<tr>
<td>350-162 EF</td>
<td>7/08</td>
<td>Volumetrics Worksheet</td>
</tr>
<tr>
<td>350-560 EF</td>
<td>4/09</td>
<td>Ignition Furnace Worksheet</td>
</tr>
<tr>
<td>350-009 EF</td>
<td>7/02</td>
<td>Concrete Test Cylinder Transmittal</td>
</tr>
<tr>
<td>450-001 EF</td>
<td>1/96</td>
<td>Manufacturer’s Certificate of Compliance for Ready Mixed Concrete</td>
</tr>
<tr>
<td>272-051 EF</td>
<td>6/07</td>
<td>MBE/DBE/WBE On-Site Review</td>
</tr>
<tr>
<td>272-060 EF</td>
<td>12/04</td>
<td>Federal-Aid Highway Construction Annual Project Training Report</td>
</tr>
<tr>
<td>226-012 EF</td>
<td>5/06</td>
<td>Trainee Interview Questionnaire</td>
</tr>
<tr>
<td>424-003 EF</td>
<td>12/96</td>
<td>Employee Interview Report</td>
</tr>
<tr>
<td>350-073 EF</td>
<td>1/07</td>
<td>Hot Mix Asphalt Test Section Report</td>
</tr>
<tr>
<td>350-074 EF</td>
<td>3/10</td>
<td>Field Density Test</td>
</tr>
<tr>
<td>350-092 EF</td>
<td>1/09</td>
<td>Hot Mix Asphalt Compaction Report</td>
</tr>
<tr>
<td>350-092A EF</td>
<td>5/10</td>
<td>Mile Post Asphalt Compaction Report</td>
</tr>
<tr>
<td>350-092B</td>
<td>3/10</td>
<td>Hot Mix Asphalt Compaction Report (80 ton)</td>
</tr>
<tr>
<td>351-015 EF</td>
<td>6/10</td>
<td>Daily Compaction Test Report</td>
</tr>
<tr>
<td>134-146 EF</td>
<td>10/07*</td>
<td>Final Contract Voucher Certificate</td>
</tr>
<tr>
<td>350-115 EF</td>
<td>2/10</td>
<td>Contract Materials Checklist</td>
</tr>
<tr>
<td>410-027 EF</td>
<td>4/02</td>
<td>Test Pile Record</td>
</tr>
<tr>
<td>422-001 EF</td>
<td>10/08</td>
<td>Project Personnel Signature Listing</td>
</tr>
<tr>
<td>422-001A EF</td>
<td>10/08</td>
<td>Change Order Authorization Signature</td>
</tr>
<tr>
<td>422-007 EF</td>
<td>3/08</td>
<td>Report of Protested Work</td>
</tr>
<tr>
<td>422-008 EF</td>
<td>3/08*</td>
<td>Daily Report of Force Account Worked</td>
</tr>
<tr>
<td>422-009 EF</td>
<td>2/96</td>
<td>Final Record Notes Title Page</td>
</tr>
<tr>
<td>422-009B EF</td>
<td>2/96</td>
<td>Final Record Notes Title Page</td>
</tr>
<tr>
<td>422-010 EF</td>
<td>2/06*</td>
<td>Force Account Equipment Rate Request</td>
</tr>
<tr>
<td>422-012 EF</td>
<td>4/01</td>
<td>Final Record Notes – Title Sticker</td>
</tr>
<tr>
<td>422-021</td>
<td>4/08</td>
<td>Item Quantity Ticket</td>
</tr>
<tr>
<td>422-024</td>
<td>7/95</td>
<td>Water Delivery Record</td>
</tr>
<tr>
<td>422-568 EF</td>
<td>4/01</td>
<td>Load Tally Sheet</td>
</tr>
<tr>
<td>422-635 EF</td>
<td>3/08</td>
<td>Field Note Record</td>
</tr>
</tbody>
</table>
Chapter 11: Forms

Forms

<table>
<thead>
<tr>
<th>Form No.</th>
<th>Revised Date</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>422-636 EF</td>
<td>8/96</td>
<td>Field Note Record (Sketch Grid)</td>
</tr>
<tr>
<td>422-637 EF</td>
<td>3/08</td>
<td>Field Note Record for Drainage</td>
</tr>
<tr>
<td>422-700 EF</td>
<td>8/99</td>
<td>Daily Work Quantities</td>
</tr>
<tr>
<td>450-004</td>
<td>8/08</td>
<td>Pile Book</td>
</tr>
<tr>
<td>591-020A EF</td>
<td>10/10</td>
<td>Daily Traffic Item Ticket (Equipment)</td>
</tr>
<tr>
<td>591-020B EF</td>
<td>10/10</td>
<td>Daily Traffic Item Ticket (Labor)</td>
</tr>
<tr>
<td>591-020C</td>
<td>10/10</td>
<td>Summary of Daily Traffic Item Ticket</td>
</tr>
</tbody>
</table>

General Materials

<table>
<thead>
<tr>
<th>Form No.</th>
<th>Revised Date</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-026 EF</td>
<td>5/02</td>
<td>Preliminary Sample Transmittal</td>
</tr>
<tr>
<td>350-056 EF</td>
<td>1/09</td>
<td>Sample Transmittal</td>
</tr>
<tr>
<td>350-114 EF</td>
<td>4/02</td>
<td>Summary Report of Acceptance Sampling and Testing</td>
</tr>
<tr>
<td>350-130 EF</td>
<td>3/08</td>
<td>Field Acceptance/Verification Report (RAM/QPL)</td>
</tr>
<tr>
<td>350-564 EF</td>
<td>3/08</td>
<td>Gradation Chart – 0.45 Power</td>
</tr>
<tr>
<td>350-572 EF</td>
<td>6/04</td>
<td>Manufacturer’s Certificate of Compliance Checklist</td>
</tr>
</tbody>
</table>

Inspection

<table>
<thead>
<tr>
<th>Form No.</th>
<th>Revised Date</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>421-045 EF</td>
<td>2/97</td>
<td>WSP Field Check List</td>
</tr>
<tr>
<td>422-004 EF</td>
<td>3/08</td>
<td>Inspector’s Daily Report</td>
</tr>
<tr>
<td>422-004A EF</td>
<td>7/08</td>
<td>Inspector’s Daily Report Diary Page</td>
</tr>
<tr>
<td>422-004B EF</td>
<td>7/08</td>
<td>(Street) Inspector’s Daily Report</td>
</tr>
<tr>
<td>422-027 EF</td>
<td>10/07</td>
<td>Scaleman’s Daily Report</td>
</tr>
<tr>
<td>422-644 EF</td>
<td>12/95*</td>
<td>Daily Report of BST Operations</td>
</tr>
<tr>
<td>540-020 EF</td>
<td>3/02</td>
<td>Backflow Prevention Assembly Test Report</td>
</tr>
</tbody>
</table>

11-2B Regional Office

<table>
<thead>
<tr>
<th>Form No.</th>
<th>Revised Date</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>230-036A EF</td>
<td>4/07</td>
<td>Initial Documentation Review (Procedures)</td>
</tr>
<tr>
<td>230-036B EF</td>
<td>3/07</td>
<td>Follow-Up Documentation Review</td>
</tr>
<tr>
<td>272-061 EF</td>
<td>8/03</td>
<td>Federal-Aid Highway Construction Cumulative Training Report</td>
</tr>
<tr>
<td>420-012 EF</td>
<td>1/96</td>
<td>Recommended Changes to Specifications and Construction Manual</td>
</tr>
<tr>
<td>421-014 EF</td>
<td>1/97</td>
<td>Examination Sheet for Contract Items</td>
</tr>
<tr>
<td>422-100 EF</td>
<td>6/03</td>
<td>Interim Inspection of Federal-Aid Project</td>
</tr>
<tr>
<td>FHWA-1392</td>
<td>3/92</td>
<td>Federal-Aid Highway Construction Summary of Employment Data</td>
</tr>
</tbody>
</table>

11-2C Fabrication Inspector

<table>
<thead>
<tr>
<th>Form No.</th>
<th>Revised Date</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-004 EF</td>
<td>5/02</td>
<td>Fabrication Progress Report</td>
</tr>
<tr>
<td>450-005 EF</td>
<td>3/02</td>
<td>Post-Tensioning Record</td>
</tr>
</tbody>
</table>

11-2D State Construction Office

<table>
<thead>
<tr>
<th>Form No.</th>
<th>Revised Date</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>422-101 EF</td>
<td>6/07</td>
<td>Final Inspection and Acceptance of Federal-Aid Project</td>
</tr>
<tr>
<td>FHWA-1392</td>
<td>3/92</td>
<td>Federal-Aid Highway Construction Summary of Employment Data</td>
</tr>
</tbody>
</table>

11-2E Materials Laboratory (State or Region)

<table>
<thead>
<tr>
<th>Form No.</th>
<th>Revised Date</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-112 EF</td>
<td>3/02</td>
<td>Correlation — Nuclear Gauge to Core Density</td>
</tr>
<tr>
<td>350-514 EF</td>
<td>4/97</td>
<td>Moisture – Density Relationship Report</td>
</tr>
<tr>
<td>350-564 EF</td>
<td>3/08</td>
<td>Gradation Chart – 0.45 Power</td>
</tr>
<tr>
<td>351-021 EF</td>
<td>4/02</td>
<td>Statement of Receipt of Radioactive Material</td>
</tr>
</tbody>
</table>
11-2F Contractor

<table>
<thead>
<tr>
<th>Form No.</th>
<th>Revised Date</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>134-146 EF</td>
<td>10/07*</td>
<td>Final Contract Voucher Certificate</td>
</tr>
<tr>
<td>272-049 EF</td>
<td>9/07</td>
<td>Training Program</td>
</tr>
<tr>
<td>272-050 EF</td>
<td>9/07</td>
<td>Apprentice/Trainee Approval Request</td>
</tr>
<tr>
<td>272-062 EF</td>
<td>6/98</td>
<td>Contract Compliance Review Request for Additional Information</td>
</tr>
<tr>
<td>350-040 EF</td>
<td>6/06</td>
<td>Concrete Mix Design</td>
</tr>
<tr>
<td>350-042 EF</td>
<td>1/09</td>
<td>HMA Mix Design Submittal</td>
</tr>
<tr>
<td>350-071 EF</td>
<td>12/08*</td>
<td>Request for Approval of Material</td>
</tr>
<tr>
<td>350-109 EF</td>
<td>9/07</td>
<td>Certification of Materials Origin</td>
</tr>
<tr>
<td>410-029 EF</td>
<td>5/10</td>
<td>Contractor’s Construction Process Evaluation</td>
</tr>
<tr>
<td>420-004 EF</td>
<td>3/08*</td>
<td>Contractor and Subcontractor or Lower-Tier Subcontractor Certification for Federal-Aid Projects</td>
</tr>
<tr>
<td>421-009 EF</td>
<td>3/08</td>
<td>Release — Retained Percentage (Except Landscaping)</td>
</tr>
<tr>
<td>421-012 EF</td>
<td>11/09*</td>
<td>Request to Sublet Work</td>
</tr>
<tr>
<td>421-023 EF</td>
<td>4/10*</td>
<td>Quarterly Report of Amounts Paid MBE/WBE Participants</td>
</tr>
<tr>
<td>421-040A EF</td>
<td>4/04</td>
<td>Contractor’s Daily Report of Traffic Control - Summary</td>
</tr>
<tr>
<td>422-102 EF</td>
<td>2/06</td>
<td>Quarterly Report of Amounts Credited as DBE Participation</td>
</tr>
<tr>
<td>422-110 EF</td>
<td>7/09</td>
<td>Statement of Apprentice/Journeyman Participation</td>
</tr>
<tr>
<td>422-115 EF</td>
<td>7/09</td>
<td>Apprentice Utilization Plan</td>
</tr>
<tr>
<td>540-509 EF</td>
<td>3/02</td>
<td>Commercial Pesticide Application Record</td>
</tr>
<tr>
<td>FHWA-1391</td>
<td>3/92</td>
<td>Federal-Aid Highway Construction Contractor’s Annual EEO Report</td>
</tr>
</tbody>
</table>

Alphabetical Listing of Forms

Forms Requiring an Original Hand Written Signature

(X) = Contractor’s signature is desirable but not necessary to make payment.

<table>
<thead>
<tr>
<th>Cont.</th>
<th>PE</th>
<th>Form No.</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>421-023 EF</td>
<td>Quarterly Report of Amounts Paid MBE/WBE Participants*(4/10)</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>272-050 EF</td>
<td>Apprentice/Trainee Approval Request</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>540-020 EF</td>
<td>Backflow Prevention Assembly Test Report</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>350-109 EF</td>
<td>Certification of Materials Origin</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>350-040 EF</td>
<td>Concrete Mix Design</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>350-042 EF</td>
<td>HMA Mix Design Submittal</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>421-005A EF</td>
<td>Change Order – Minor Change (2 page)</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>540-509 EF</td>
<td>Commercial Pesticide Application Record</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>272-062 EF</td>
<td>Contract Compliance Review Request for Additional Information</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>350-115 EF</td>
<td>Contract Materials Checklist (pdf format)</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>420-004 EF</td>
<td>Contractor and Subcontractor or Lower-Tier Subcontractor Certification for Federal-Aid Projects*(3/08)</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>FHWA-1391</td>
<td>Federal-Aid Highway Construction Contractors’ Annual EEO Report</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>FHWA-1392</td>
<td>Federal-Aid highway Construction Summary of Employment Data</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>134-146 EF</td>
<td>Final Contract Voucher Certificate*(11/07)</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>421-010 EF</td>
<td>Prime Contractor Performance Report*(3/08)</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>422-001 EF</td>
<td>Project Personnel Signature Listing</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>422-102 EF</td>
<td>Quarterly Report of Amounts Credited as DBE Participation</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>421-009 EF</td>
<td>Release — Retained Percentage (Except Landscaping)</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>422-007 EF</td>
<td>Report of Protested Work</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>421-012 EF</td>
<td>Request to Sublet Work*(11/09)</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>351-021 EF</td>
<td>Statement of Receipt of Radioactive Material</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>272-049 EF</td>
<td>Training Program</td>
</tr>
</tbody>
</table>
Forms Suitable for Printed Signature

(X)* = Contractor’s signature is desirable but not necessary.

<table>
<thead>
<tr>
<th>Cont.</th>
<th>PE</th>
<th>Form No.</th>
<th>Form Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>422-115 EF</td>
<td>Apprentice Utilization Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>722-025 EF</td>
<td>As Built Cover Sheet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-126 EF</td>
<td>Asphalt Plant Inspection</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-016 EF</td>
<td>Asphalt Emulsion Label</td>
<td></td>
</tr>
<tr>
<td>(X)*</td>
<td>350-009 EF</td>
<td>Concrete Test Cylinder Transmittal</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-040 EF</td>
<td>Concrete Mix Design</td>
<td></td>
</tr>
<tr>
<td>(X)*</td>
<td>410-029 EF</td>
<td>Contractor’s Construction Process Evaluation</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>421-040A</td>
<td>Contractor’s Daily Report of Traffic Control -Summary</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>421-040B</td>
<td>Contractor’s Daily Report of Traffic Control –Traffic Control Log</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-112 EF</td>
<td>Correlation – Nuclear Gauge to Core Density</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>351-015 EF</td>
<td>Daily Compaction Test Report</td>
<td></td>
</tr>
<tr>
<td>(X)*</td>
<td>422-644 EF</td>
<td>Daily Report of BST Operations*(12/95)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>591-020A EF</td>
<td>Daily Traffic Item Ticket (Equipment)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>591-020B EF</td>
<td>Daily Traffic Item Ticket (Labor)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>591-020C EF</td>
<td>Daily Traffic Item Ticket (Summary)</td>
<td></td>
</tr>
<tr>
<td>(X)*</td>
<td>422-644 EF</td>
<td>Daily Report of BST Operations</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-700 EF</td>
<td>Daily Work Quantities</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>424-003 EF</td>
<td>Employee Interview Report</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>421-014 EF</td>
<td>Examination Sheet for Contract Items</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-004 EF</td>
<td>Fabrication Progress Report</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>750-001 EF</td>
<td>Fall Protection Plan</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>272-060 EF</td>
<td>Federal-Aid Highway Construction Annual Training Report</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>272-061 EF</td>
<td>Federal-Aid Highway Construction Cumulative Training Report</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-130 EF</td>
<td>Field Acceptance/Verification Report (RAM/QPL)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-074 EF</td>
<td>Field Density Test</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-074A EF</td>
<td>Field Dry Density Test</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-635 EF</td>
<td>Field Note Record</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-367 EF</td>
<td>Field Note Record for Drainage</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-636 EF</td>
<td>Field Note Record (Sketch Grid)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-101 EF</td>
<td>Final Inspection and Acceptance of Federal-Aid Project</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-009 EF</td>
<td>Final Records Notes Title Page</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-009B EF</td>
<td>Final Records Notes Title Page</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>230-036B EF</td>
<td>Follow-Up Documentation Review</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-010 EF</td>
<td>Force Account Equipment Rate Request*(2/06)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-564 EF</td>
<td>Gradation Chart – 0.45 Power</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-161 EF</td>
<td>HMA Mineral Aggregates</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-092 EF</td>
<td>Hot Mix Asphalt Compaction Report</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-073 EF</td>
<td>Hot Mix Asphalt Test Section Report</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-042 EF</td>
<td>HMA Mix Design Submittal</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-560 EF</td>
<td>Ignition Furnace Worksheet</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>230-036A EF</td>
<td>Initial Documentation Review (Procedures)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-004 EF</td>
<td>Inspector’s Daily Report</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-004A EF</td>
<td>Inspector’s Daily Report - Diary Page</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-004B EF</td>
<td>(Street) Inspector’s Daily Report*(7/08)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-020</td>
<td>Inspector’s Record of Field Test</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-100 EF</td>
<td>Interim Inspection of Federal-Aid Project</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-021</td>
<td>Item Quantity Ticket</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>422-568 EF</td>
<td>Load Tally Sheet</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>272-051 EF</td>
<td>MBE/DBE/WBE On-Site Review</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-572 EF</td>
<td>Manufacturer’s Certificate of Compliance Checklist</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>450-001 EF</td>
<td>Manufacturer’s Certificate of Compliance for Ready Mixed Concrete</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-514 EF</td>
<td>Moisture – Density Relationship Report</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>421-007 EF</td>
<td>Order to Resume Work</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>421-006 EF</td>
<td>Order to Suspend Work</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>450-004</td>
<td>Pile Book</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-023 EF</td>
<td>Pit Evaluation Report</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>450-005 EF</td>
<td>Post-Tensioning Record</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350-026 EF</td>
<td>Preliminary Sample Transmittal</td>
<td></td>
</tr>
<tr>
<td>Form Number</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>410-025 EF</td>
<td>Project Engineer Transmittal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420-012 EF</td>
<td>Recommended Changes to Specification and Construction Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350-071 EF</td>
<td>Request for Approval of Material*(12/06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350-157 EF</td>
<td>Rice Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350-056 EF</td>
<td>Sample Transmittal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422-027 EF</td>
<td>Scaleman's Daily Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422-110 EF</td>
<td>Statement of Apprentice/Journeyman Participation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350-114 EF</td>
<td>Summary Report of Acceptance Sampling and Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>410-027 EF</td>
<td>Test Pile Record</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422-012 EF</td>
<td>Title Sticker – Final Record Books</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226-012 EF</td>
<td>Trainee Interview Questionnaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350-162 EF</td>
<td>Volumetrics Worksheet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422-024 EF</td>
<td>Water Delivery Ticket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>421-045 EF</td>
<td>WSP Field Check List</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>