APPENDIX 8.3-B1

PRECAST SPLIT BOX BURIED STRUCTURE
DESIGN CRITERIA
I. GENERAL

The criteria is for the highway and hydraulic buried structures of precast or cast-in-place four sided split box buried systems.

The terminology of buried structure is used for all highway and hydraulic structures, and the culvert is used for hydraulic structures only.

The selection of type of structures is depending on span and rise requirements determined by Highway, Environmental, Hydraulic, and Geotech requirements. Bridge Office has developed the split box culvert structures with spans up 25', see Preliminary Culvert Standards 8.3.3-A1 to 8.3.3-A3, and 8.3.3-A9.

The buried structures to be designed for the following guidelines; any special consideration shall be consulted with the Bridge Design Engineer, Geotech Engineer, and Hydraulic Engineer.

II. DESIGN SPECIFICATIONS

E. NFPA 502 Standard for Road Tunnels, Bridges, and Other Limited Access Highways.

F. ASTM C 1786 - Segmental Precast Concrete Box Culvert.

G. ACI 318, for tunnel and special design.

III. DESIGN PROCEDURES

After the structure type has been selected. The structure design is following into two steps:

A. For Service I and Strength I Limit States - Use Gstrudl, CSI Bridge, or other programs to determine the forces.
B. For Extreme I Limit State - Use "Racking Method" per the design specification in section D above, to determine the forces for the Earthquake. The analysis for racking may be done either GSTrudl, CSI Bridge, or other programs.

IV. GEOMETRY

Use Preliminary Culvert Standard 8.3.3-A3 for thickness of deck and wall.

Wall Thickness $T = 8\"$ min. for span $< 24'$

$T = 10\"$ min. for span $> 24'$

Maximum skew $= 45^\circ$ (centerline of structure)

V. LOADING DIAGRAMS

![Diagram](image)

VI. DESIGN LOADING

A. DC and DW - Dead Load

1. Concrete structure dead load = 155 lb/cf
2. Overburden fill = 125 lb/cf (or provided by the Geotech Engineer)
3. HMA overlay = 140 lb/cf
4. Backfill along walls = 125 lb/cf (or provided by the Geotech Engineer)

B. EH, EV, ES, LS, and ES - Earth Pressure

1. EH - Horizontal Earth Pressure

\[p = k \cdot Y_S \cdot z \]

$k = k_0$ specified in sect. 3.115.2 for wall that not deflect, which applies for the frame type structure.
reduction due to earth pressure of section 3.11.7 may apply in the effects of other loads.

2. **EV - Vertical Earth Pressure due to overburden soil above the structure**

 A. Embankment Installation

 \[EV = W_e = F_e \cdot \gamma_s \cdot B_c \cdot H \]

 \[F_e = 1 + 0.20 \frac{H}{B_c} \]

 \[EV = W_e = F_t \cdot \gamma_s \cdot B_c \cdot H \]

 \[F_t = \frac{C_d B_d^2}{HB_c} \leq F_e \]

3. **ES - Earth pressure Surcharge**

 The earth pressure surcharge to be provided by the Geotech engineer.

4. **LS - Live Load Surcharge**

 2' live load surcharge to be used.

C. **LL - Live Load on top of Buried structures**

 Live load consists of standard AASHTO design truck load or tandem, with 1.2 single lane multiple presence factor.

 Three conditions of liveload application on top of buried structure:
 . 2' of fill or less.
 . 2' to 8' of fill.
 . > 8' of fill
Two cases of live load distribution on top of the buried structures to be considered:

1. The live load parallel to the culvert span, and
2. The live load perpendicular to the culvert span.

In most cases of the buried structures, live load parallel to structure will control for the traffic on top of the structure.

Condition 1 - 2' of fill or less

- live load distributed to top slab per sections 3.6.1.2.6 and 4.6.2.10

The distribution of the wheel load in both directions are analyzed below:

\[
E_{\text{WIDTH}} = 96 + 1.44 \, S \\
E_{\text{SPAN}} = L_T + LLDF \,(H)
\]

\(S = \) span length
\(H = \) Depth of ground cover on top of culvert

Case 1 - Traffic travels parallel to span of buried structure

Live load distribution parallel

Case 2 - Traffic travels perpendicular to span of buried structure

(not considered at this time)

Condition 2 - 2' to 8' of fill

Live load distributed to top slab per section 3.6.1.2.6a

Case 1 - Traffic travels parallel to span of buried structure

(see the loading pictures above)

Live load distribution parallel to the buried structure

\[H_{int-p} = \frac{S_a - L_T}{LLDF} \]

Live load distribution transverse to the buried structure

\[H_{int} = \frac{S_b - w_L}{LLDF} - 0.06 \times \frac{D_T}{LLDF} \]
Where $H < \text{Hint-p}$
\[l_w = \frac{l_2}{12} + LLDF(H) \]

Where $H > \text{Hint-p}$
\[l_w = \frac{l_2}{12} + s_a + LLDF(H) \]

Where $H < \text{Hint}$
\[w_w = \frac{w_l}{12} + LLDF * H + 0.06 * \frac{D_l}{12} \]

Where $H > \text{Hint}$
\[w_w = \frac{w_l}{12} + s_w + LLDF * H + 0.06 * \frac{D_l}{12} \]

Case 2 - Traffic travels perpendicular to span of buried structure
(not considered at this time)

Condition 3 Fill > 8' and > span length
Ignore the live load effect per 3.6.1.2.6a
For fill < 8', the live load effect shall be considered.

D. Live Load Impact
The dynamic load allowance for buried structures:

\[\text{IM} = 33 \ (1.0 - 0.125*D_E) = \text{or} \ > \text{than} \ 0 \]

<table>
<thead>
<tr>
<th>D_E (ft)</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>0.12</td>
</tr>
<tr>
<td>6</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
</tr>
</tbody>
</table>

D_E = depth of cover

Per inspection, the Impact Factor can be ignored for $D_E > 8'$

E. Truck and Train Impact
For the cases where the culvert to be used for highway and railroad structure only.

F. Thermal, Creep, and Shrinkage
1. Thermal in transverse direction for joint between segments
 The thermal loading may be considered for joint gap between segments.
G. Post-Tensioning
Post-tensioning may be used to connect the segments together in longitudinal section due to settlement and other issues.

H. WA - Hydrostatic, Water Load and Stream Pressure (for culvert structure only)

I. Seismic Load
The seismic design for the underground structures shall be analyzed according to the FHWA-NHI-10-034 "Technical Manual for Design and Construction of Roadway Tunnels - Civil Elements" on racking and vertical ground acceleration.

1. Racking Analysis (See Racking Analysis Example of the Split Box Culvert)

2. Vertical Ground Acceleration Effects (See Racking Analysis Example of the Split Box Culvert)

Design notes:
. Per design experience - no racking analysis is needed for culvert span of 25' or less, height 15' or less, and fill cover less than 10'. Due to the small deflection and forces of the racking analysis.

J. Structural Modeling
For boundary conditions the split box culvert can be modeled as conditions below at the bottom of the box:
. Pin - Roller
. Spring at supports
. Spring at bottom slab (beam on elastic foundation) - preferred method more realistic soil/structure interaction
VII. LOAD COMBINATIONS

A. Limit States

Design per AASHTO Table 3.4.1-1

<table>
<thead>
<tr>
<th>LOAD COMB.</th>
<th>DC</th>
<th>DW</th>
<th>EH */EV #</th>
<th>ES</th>
<th>EL</th>
<th>LL,IM</th>
<th>WA</th>
<th>TU, CR, SH</th>
<th>EQ</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength I</td>
<td>1.25 0.90</td>
<td>1.50 0.65</td>
<td>1.35 0.90</td>
<td>1.50 0.75</td>
<td>1.00</td>
<td>1.75</td>
<td>1.00</td>
<td>1.20 0.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Strength II</td>
<td>1.25 0.90</td>
<td>1.50 0.65</td>
<td>1.35 0.90</td>
<td>1.50 0.75</td>
<td>1.00</td>
<td>1.35</td>
<td>1.00</td>
<td>1.20 0.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Service I</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>Extreme I</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>γEQ</td>
<td>0.00</td>
<td>0.00 1.00 0.00</td>
</tr>
<tr>
<td>Extreme II</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00 0.00 0.00 1.00</td>
</tr>
</tbody>
</table>

B. Resistance Factors

Strength Limit
- Flexural, $\phi = 1.00$ for Precast and 0.95 for Cast-in-Place
- Shear, $\phi = 0.90$
- Bearing, $\phi = 0.70$ bearing on concrete

C. Non-Reduncancy

$\eta_R = 1.05$ per section 1.3.4

VIII. STRUCTURAL MATERIALS

A. Concrete

Class 5000, 6000, 7000 for precast and 4000 for CIP elements.
Class 7000 SCC per manufacturer's recommendation.

B. Reinforcement

AASHTO M31 (ASTM A615) for all - grade 60 ksi and 80 ksi.
Welded Wire fabric (ASTM A 1064) can be used inplace of ASTM A615.

IX. SPECIAL STRUCTURAL DESIGN AND DETAILS

A. Joint Types

1. Panel Connection

The joints of precast concrete box culvert shall be fabricated in accordance to ASTM C 1786.
AASHTO Section 4.6.2.10 requires means of shear transfer with flat top and less than 2' fill.
2. Connection between precast and CIP footing

B. Waterproofing System
For buried structure that carries traffic inside the structure, the waterproofing to be used on top of the buried structures.

For the buried structure carries stream inside the structure, the external joint wrap over the joints between segments to be used. The external joint wrap shall be conformed to ASTM C 877.

C. Scour Protection
Riprap or other scour protection to be provided per Hydraulics' recommendations.

D. Fire Protection System
For buried structure that carries traffic inside the structure, the fire protection may required per NFPA 502.

X. MISCELLANEOUS DETAILS
A. Cable Rail on Headwalls and Wingwalls
Fall protection shall be provided in accordance with WAC 296-155-24609 for exposed wall height of 4’ or more.