POST-TENSIONING TABLE

<table>
<thead>
<tr>
<th>SPAN</th>
<th>ORDER</th>
<th>STRAND DIAMETER IN.</th>
<th>JACKING</th>
<th>AFTER SEATING</th>
<th>TOTAL PRESTRESS LOSS KSI (DT+ES+FR+AS)</th>
<th>Z_A (%)</th>
<th>Z_B (%)</th>
<th>Z_C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POST-TENSIONING NOTES

1. The cast-in-place concrete in deck slab shall be Class 4000D. The minimum compressive strength of the cast-in-place concrete at the wet joint at the time of post-tensioning shall be 5000 psi.

2. The minimum prestressing load after seating and the maximum number of prestressing strands for each order shall be as shown in post-tensioning table.

3. The design is based on 5/8 inch diameter low-relaxation strands with a jacking load for each order as shown in post-tensioning table, an anchor set of 1/4 inch of curvature friction coefficient, \(\mu = 0.20 \) and a mobilized friction coefficient, \(\mu = 0.20 \). The actual anchor set used by the contractor shall be specified in the shop plans and includes in the transfer force calculations.

4. The design is based on the estimated prestress loss of post-tensioning strands shown in post-tensioning table due to steel relaxation, elastic shortening, creep and shrinkage of concrete.

5. The contractor shall submit the stressing sequence and elongation calculations to the engineer for approval. All losses due to tendon vertical and horizontal curvature must be included in elongation calculations.

A. The prestressing force shall be distributed with an approximately equal amount in each web and shall be placed symmetrically about the centerline of the tub.

B. No more than one-half of the pre-stressing force in any web may be stressed before an equal force is stressed in the adjacent web. At no time during stressing operation will more than one-sixth of the total prestressing force be applied eccentrically about the centerline of the tendon.

6. The maximum outside diameter of the duct shall be 5/8 inch. The area of the duct shall be at least 2.5 times the net area of the prestressing steel in the duct.

7. All tendons shall be stressed from both sides of the closure and crossbeam shall be removed prior to post-tensioning.