1. All material and workmanship shall be in accordance with the requirements of the Washington State Department of Transportation standard specifications for road, bridge, and municipal construction, dated 20__, and amendments.

2. The sign structure design and analysis has been done in accordance with AASHTO standard specifications for structural supports for highway signs, luminaires and traffic signals - dated 20__, using basic wind speed of __ mph and 50 years of design life. The design of the structure conforms to fatigue category 1 of the specified AASHTO standard specifications.

3. All butt joint welds shall be full penetration groove welds with back-up plates of 3/8" min. thickness.

4. The back-up plates for all full penetration welds shall be welded continuously to the joined pieces. This can be done by either a continuous fillet weld on the back side of the piece, or by a continuous weld in the root of the full penetration welds, unless otherwise noted.

5. All rods, bolts, and related hardware shall be galvanized after fabrication in accordance with ASTm F 2329.

6. All steel surfaces of monotube sign structure shall be galvanized after fabrication in accordance with ASTm F 2329.

7. Sign panels as shown in the contract plans shall be installed with the sign structure or immediately after the sign structure is erected.

8. Fabricate beam to provide smooth parabolic camber curve. See camber diagram. Do not shim at bolted splices.

9. Fabricate beam to provide straight camber, see camber diagram. Do not shim at bolted splices.

10. Materials specifications:
- All structural steel except ASTM A 572 GR. 50 or GR. 70
- As otherwise noted, ASTM A 588
- Anchor rods, ASTM F 1554 GR. 105
- Handhole cover screws, ASTM F 305 GR. 1
- Splice bolts, ASTM A 325
- Sign bracket rods, ASTM A 307
- Mounting beam bolts, ASTM A 325
- Cover plates, ASTM A 36

11. Bottom of base plate elevations and post heights shown are approximate. The contractor shall field measure anchor rod locations, elevations, clearances and all steel structure dimensions, and submit to engineer for approval prior to completion of fabrication. As an option for sign bridges, cap of one foundation may be placed while completed sign bridge is temporarily supported in place.

12. Posts, base plates, beams and splice plates are main load carrying tension members or tension components of flange members and shall meet the conditional charpy V-notch test as described in section 6.0.5.2 for ASTM W 270 material. Non-destructive test acceptance criteria to conform to tension members with cyclic load.

13. See other plans for conduit penetrations and hand holes. Refer to electrical plans for internal routing of conductors. Conduct connections shall not be attached to the outside of the sign structure. Isolation of the signal wires shall be achieved using the clevis of the structural support. See NSX39 TERMINAL CABINET DETAIL ON BRIDGE SHEET ___ (10.1-10.2 10.1-12 2 10.1-23 2).

14. The maximum sign area on the structure is specified as follows:

 a) For sign and light attachment bracket details for monotubes see standard plan 0.30.20. Paint entire attachment bracket to match existing structure. See NEMA 3R TERMINAL CABINET DETAIL ON BRIDGE SHEET ___ (10.1-10.2 10.1-12 2 10.1-23 2).

 b) Fabricate beam to provide straight camber, see camber diagram. Do not shim at bolted splices.

 c) Fabricate beam to provide smooth parabolic camber curve. See camber diagram. Do not shim at bolted splices.

 d) For light attachment bracket details for monotubes see standard plan 0.30.20. Paint entire attachment bracket to match existing structure. See NEMA 3R TERMINAL CABINET DETAIL ON BRIDGE SHEET ___ (10.1-10.2 10.1-12 2 10.1-23 2).

15. All welding shall be done to minimize distortion. Permissible monotube dimension variations for outside dimensions, wall thickness, length, straightness, (parabolically cambered sign bridge beam excluded) shall be in accordance with section 11 of ASTM A500.