

Salvage of the 1940 Narrows BridgeAfter the center span fell into the Tacoma Narrows, the towers, main cables, side spans, and anchorages remained. The approach spans sustained no damage. The process of dismantling and salvaging the ruined bridge proved as intricate and dangerous as its construction. In March 1941 estimates for salvage operations looked gloomy. Experts calculated the scrap metal value of the towers, deck floor system, and other steel parts at $206,000. It would cost three times that amount, an estimated $636,000, to dismantle the bridge. Dismantling of the towers began on September 8, 1941. With the start of World War II in December that year, hopes rose that a steel shortage would bring a better price, and perhaps a profit. That hopeful vision faded. By the end of March 1943 workers had removed more than 4,000 tons of steel from the towers and 3,000 tons from the cables and deck. The salvaged metal was sold for scrap during World War II. In the end, salvage operations lost money. The Toll Bridge Authority paid nearly $646,661 for the effort. In return for 7,000 tons of scrap steel the State received a meager $295,726. The net cost for the operation was $350,933. Interestingly, the process took about 29 months, roughly the same amount of time that it would take to build the replacement Narrows Bridge at the end of the decade. Engineering Challenges For Gertie's Replacement
Engineers faced two major challenges in uilding the second (current) Narrows Bridge. First, they had to better explain what happened to the 1940 bridge, and to design one that would not meet the same fate. Second, what remnants of the old bridge, especially the piers, could be used? In July 1941 Charles E. Andrew, consulting engineer for the Washington State Toll Bridge Authority (WSTBA), appointed Dexter R. Smith as chief design engineer to plan the new structure. By October the state had a new design. The plans roughly resembled Clark Eldridge's original design. The proposed replacement bridge with a deep, open deck truss would cost about $7 million. The proposed design for the new Narrows Bridge needed testing. Issues of aerodynamic stability in the design of suspension bridges had never before been investigated. Testing the bridge design fell to F. B. Farquharson, professor of engineering at the University of Washington. Dexter Smith and the State's bridge design team consulted extensively with Professor Farquharson and his research group at the University. Their work represented the leading edge. They were pioneering the field of bridge aerodynamics. For the four years of World War II, and occasionally afterwards to 1947, Farquharson studied the 1940 span and the new proposed Narrows Bridge in a specially built, 100foot long Structural Research Laboratory that housed a wind tunnel and scale models of the bridges.
First, Farquharson confirmed that the 1940 Narrows Bridge had collapsed because of its excessive flexibility and susceptibility to aerodynamic forces. Galloping Gertie became the first suspension bridge ever studied using both visual observation and wind tunnel testing. These investigations laid the foundation for continued research. If a dynamic scale model of a proposed bridge design could pass Farquharson's wind tunnel testing, then Smith and his bridge engineers could build the real thing with confidence at the Tacoma Narrows. They envisioned a new Narrows Bridge designed to offer the least wind resistance. The solution would be to use deep, open stiffening trusses with trussed floor beams. The truss members would be shallow, to avoid creating any large, solid surfaces like the ones associated with the failure of the 1940 Narrows Bridge. Farquharson built a 1:50 full scale model and sectional models of Smith's design. The tests included subjecting the model to wind forces striking the bridge at angles up to plusandminus 45 degrees perpendicular to the deck. This wide range of wind angles helped give the new bridge design even greater stability. (Today, design engineers typically use a narrower range of plustominus 5 degrees.) The tests proved that the proposed bridge would be far more stable than Galloping Gertie. Farquharson decided to test the model equipped with open wind grates to permit freer airflow and minimize the wind's effects. It worked. The model now showed virtually no torsional movement. Smith and Farquharson decided to take additional steps. They wanted to eliminate as much vertical and twisting motion in the model as possible. Mechanical devices would enhance their design's natural damping ability. First, they added a double lateral bracing system to the stiffening truss to increase torsional stiffness. Second, they added hydraulic shock absorbers at three strategic points in the structure: at midspan, between the main span and side span, and at each tower. The existing piers posed the second engineering challenge. Would they support the proposed fourlane bridge, which was 60 percent heavier than the old superstructure? The piers had been stressed by collapse of the 1940 bridge, as well as by 17 earthquakes that struck the area between 1939 and 1946. Two of those reached 5 on the Richter scale. Engineers discovered, to their relief, that the piers would prove to be solid foundations for the heavier new span.
The tests from 1941 to 1947 cost over $88,000 when completed. By comparison at the time, a pound of coffee cost 29 cents, and you could buy a new car for about $1,500, or rent a 3room duplex for $50 a month. But, the extensive investigations gave the State's engineers confidence in their new design. The proposed bridge would stand safe and solid in winds up to 127 mph for a 3second gust. An "EpochMaking" New Span RisesThanks to the failure of its predecessor, Galloping Gertie, the current Narrows Bridge affected the course of suspension bridge engineering and design. The years of research into aerodynamics, and the new mathematical knowledge of vibrations and wave phenomena ushered in a new era of more stable suspension spans. The next generation of large suspension bridges featured deep and rigid stiffening trusses. Completion of the 1950 Narrows Bridge was soon followed in the United States by the Delaware Memorial Bridge in 1951, the Chesapeake Bay Bridge (Preston Lane Jr. Memorial Bridge) in 1952, and David Steinman's great Mackinac Strait Bridge, built from 1954 to 1957. "Epochmaking," is how one writer describes the current Narrows Bridge. It represented a remarkable achievement. Its design, engineering, functions, and stability were unprecedented. Its aesthetic appeal marked a milestone as well. The visually stunning "Sturdy Gertie" helped shift popular perceptions about "beautiful" suspension bridges.
Construction began on April 8, 1948. The contract for steel fabrication and erection went to Bethlehem Pacific Coast Steel. John A. Roebling Sons Company won the cable spinning contract. Some 29 months later, the bridge opened to the public on October 14, 1950. Once again, the Tacoma Narrows became home to the third longest suspension bridge in the world. View WSDOT VIDEO of Installing Catwalks Overall, the 1950 Narrows Bridge has a suspended structure of 5,000 feeta center span of 2,800 feet and two side spans of 1,100 feet (the same as its predecessor, since the same piers were used). The motion damping devices tested in Farquharson's wind tunnel all appeared in the finished bridge.The new fourlane bridge had several features that made it 58 times more rigid than the 1940 Narrows Bridge. They immediately earned the span a distinctive place in bridge engineering history. In 1950 the Tacoma Narrows Bridge was the most technically advanced long span suspension bridge in the world. Innovations & Special Features:
Fire, Ice, and EarthquakesEngineering challenges were not the only difficulties faced by the builders of the 1950 Narrows Bridge. Some of the reasons that construction took 29 months had to do with several challenges from "Mother Nature." On April 13, 1949 an earthquake measuring 7.1 on the Richter scale shook the Puget Sound region. The trembler caused no damage to the Narrows Bridge's piers or towers, then under construction. The severe winter of 194950 slowed construction. Engineers already had concerns about starting cable spinning in the coldest season. That winter proved their worries valid. For six weeks rain and snow, driven by high winds, lashed the area. Once, ice an inch thick had to be removed from steel so men could do their jobs. Especially rough was work on the cable spinning. At times, workers had to use blowtorches to thaw out cable strands for adjustment and banding. By February 1950 the cable spinning contractor, John A. Roebling Sons Co., was fighting a 2month delay. Who were the engineers and bridge workers who endured these hardships and successfully met the challenges? You'll find the two main engineers who launched the 1950 Narrows Bridge, Charles Andrew and Dexter R. Smith. Take a look at a couple of the bridge workers, Earl White and Joe Gotchy.Components of the Current Narrows BridgePiers
Towers Anchorages
The new bridge had a much bigger cable load, increased from the
original 28 million pounds to 36 million pounds. This required modification
of the anchorages for the 1940 bridge. The old anchorages, spaced
39 feet apart, were retrofitted for the new span's 60foot spacing
between cables. The original structures became the cores of the
new, heavier and wider 54,000ton anchor blocks. The anchorages
included 62foot long eyebars, fitted with 26inch diameter shoes,
embedded into the new concrete. Cables The 33foot deep Warren stiffening truss system was assembled at the bridge site from shopfabricated components. Four rolling derricks (2 per tower) moved each way from the tower. Two riveting crews and traveler operators worked from the tower piers to the center of the main span, while two other crews worked from the piers to the shore. First, workmen placed the top and bottom chords and their diagonal bracing. Next, the floor beams were placed between the chords. Then, deck stringers were laid lengthwise on top of the beams. Finally, crews pinned the members in place, and the riveting gangs finished the process.
The deck measures 46 feet 9 inches (curbtocurb) for the 4 traffic
lanes, plus two sidewalks 2 feet 9 inches wide. Steel reinforcing
rods were placed in the roadway. Then, workmen placed the deck slab,
a lightweight concrete 53/4 inches thick with a 5/8inch asphalt
riding surface (used to lessen the load on the piers). The open
steel wind grates were installed between driving lanes and at the
curbs. Suspender Cables and Cable Bands Special Features & MotionDamping Devices The current Narrows Bridge is painted "Narrows Green." Subcontractor for the bridge's first coat of green was H. P. Fisher & Sons Company of Seattle for painting the suspender cables, cable bands, and various steel parts. "Span Stats" – Statistical Profile of the 1950
Narrows Bridge

LENGTH: Current Narrows Bridge  Deck construction, aerial view, spring 1950 WSDOT 

Total structure length  5,979 feet 

Suspension bridge section  5,000 feet 

Center Span  2,800 feet 

Shore Suspension Spans (2), each  1,100 feet 

East Approach and Anchorage  365 feet 

West Approach and Anchorage  614 feet 

ANCHORAGES: Current Narrows Bridge  Deck construction, view from water level, spring 1950 Earl White 

Weight of each anchorage (shore
anchors) 
66,000 tons  
Concrete in each anchorage 
25,000 cu. yds.  
West Anchorage (concrete anchor
block and gallery) 
164 feet long  
East Anchorage (concrete anchor
block and gallery), plus approach, administration buildings
and toll house 
185 feet long  
West Anchorage, construction & cost 
Woodworth & Co. $406,000 (est) 

East Anchorage, construction & cost  Woodworth & Co. $386,000 (est) 
PIERS: Current Narrows Bridge  Last stages of construction, June 1950 Tacoma Public Library copyright information 

West Pier, total height  215 feet  
West Pier, depth of water  120 feet  
West Pier, penetration at bottom  55 feet  
East Pier, total height  265 feet  
East Pier, depth of water  135 feet  
East Pier, penetration at bottom  90 feet  
Area  118 feet, 11 inches  
by 65 feet, 11 inches 
CABLES: Current Narrows Bridge  Roadway view of open grating, June 1951 Tacoma Public Library copyright information 

Diameter of Main Suspension Cable  20.25 inches  
Weight of Main Suspension Cable (each)  5,441 tons  
Weight Sustained by Cables  18,160 tons  
Number of No. 6 Wires in Each Cable  8,705  
Total Length of Wire  104,094,390 feet, = 19,715 miles  
Sag Ratio  1:10  
TOWERS: Current Narrows Bridge  
Height above water  500 feet  
Height above piers  467 feet  
Height above roadway  280 feet  
Weight of each tower  2,675 tons  
Night work to complete the bridge on time, 1950 WSDOT 
ROADWAY  DECK: Current Narrows Bridge  
Center Span height above water  187.5 feet 
Weight of center span  7,250 lb./ft 
Traffic lanes  4 
Width of roadway  49 feet 10 inches 
Width between cables  60 feet 
Width of sidewalks(2), each  3 feet 10 inches 
Number of girders and type  2 Warren trusses 
Depth of girders  33 feet 
Suspender cables  32 foot intervals 
Thickness of roadway  63/8 inch reinforced concrete 
SPAN RATIOS 

Bridge  Width to Length (of Center Span)  Girder Depth to Length (of Center Span) 
1940 Narrows Bridge  1:72  1:350 
Current Narrows Bridge  1:46  1:112 
Golden Gate Bridge  1:47  1:168 
George Washington Bridge  1:33  1:120 
BronxWhitestone Bridge  1:31  1:209 
