Tunneling toward a new SR 99 corridor

It’s not rocket science, but it might be just as impressive: a custom-built, tube-shaped machine that bores its way through the earth, building a tunnel behind it as it goes. Industry folks call it a tunneling machine. We call her Bertha, the world’s largest tunnel digger.

Tunneling beneath Seattle allows us to replace the SR 99 Alaskan Way Viaduct while minimizing closures of the highway during construction. When the tunnel opens in late 2015, a two-mile stretch of SR 99 will move underground, allowing us to remove the viaduct and open up nine acres of new public space along Seattle’s downtown waterfront.

Bertha is 57.5 feet in diameter, roughly as tall as a five-story building. After successfully completing testing in Japan, she was taken apart and shipped to Seattle in more than 40 pieces aboard a ship called the Jumbo Fairpartner. Bertha was reassembled in an 80-foot-deep pit to the west of Seattle’s stadiums, then fully tested once more. At the end of July, Bertha started her journey beneath downtown.

The SR 99 tunneling machine in Japan.

Bertha’s massive cutterhead being carefully lowered into the 80-foot-deep pit.

Aerial view of the SR 99 tunneling machine and launch pit.

A rendering of the SR 99 tunnel, which will open to traffic in late 2015.
Better than a shovel

How does a tunneling machine work? The answer, as you might expect, is complicated. Our custom-built machine was built specifically for the ground conditions beneath Seattle. The graphic below illustrates a few of its more notable parts.

1. **Cutterhead**: The machine’s front end is known as the cutterhead for good reason – it has dozens of teeth that chip away the ground as it rotates. The machine will dig an average of 35 feet per day. At the end of its journey, the cutterhead will have rotated the equivalent of 2,300 miles – enough to roll from Seattle to New York.

2. **Tunnel shield**: As the name implies, the shield is the protective barrier between the ground and the workers and equipment inside the machine.

3. **Concrete panels**: Curved concrete panels are installed behind the shield to form “rings” that serve as the tunnel’s exterior walls. Ring by ring, the machine pushes forward while the tunnel takes shape in its wake.

4. **Conveyor belt**: A massive conveyor belt will move excavated soil from the front of the machine out of the tunnel to barges waiting at nearby Terminal 46. The belt will get longer as the machine progresses, eventually reaching 9,000 feet in length.

5. **Trailing gear**: More than 300 feet of support gear will trail behind the machine. It includes everything the machine and its crew needs, from supplies like grout and grease to amenities like restrooms and a kitchen. About 25 crew members will be working in the machine at any given time.

The SR 99 Tunnel Project is being designed and built by Seattle Tunnel Partners, a joint venture of Dragados USA and Tutor Perini Corp. Both firms have extensive backgrounds in delivering successful megaprojects, including similar tunnels, around the world. The tunneling machine was manufactured by Japanese firm Hitachi Zosen Corp.
Real-time monitoring

There’s a lot to keep track of when you’re tunneling beneath a bustling city. Steering, for instance. And of course the soil in front of the machine. The important thing to know about soil is that not all of it is the same. In fact, there are eight different types of soils along our tunnel route. In general, the looser the soil, the more likely it is to move as you tunnel through it. Sand, for example, is harder to control than clay. Other things workers might encounter underground: boulders, gravel, logs and various man-made objects.

Our machine can handle almost anything, but that doesn’t mean our crews aren’t using extreme caution. They are continuously monitoring ground conditions as they drive the machine forward. Safety measures began before tunneling even started, when nearly 200 buildings above the tunnel alignment were examined and fitted with monitoring equipment that allows crews to detect even the slightest movement. Buildings and other structures that are thought to be sensitive were stabilized prior to tunneling. There are a number of ways to do this, including ground improvements and construction of angled walls below the ground that hold the earth in place above the tunnel.

Project Area
Learn more at Milepost 31

Our tunneling machine Bertha may spend most of her time out of sight, but you don’t have to be underground to see her. A 10-foot-long, motorized model of the machine is on display now at Milepost 31, our public information center in Seattle’s Pioneer Square neighborhood.

In addition to interactive displays and other cool exhibits that tell the story behind our efforts to replace the viaduct, Milepost 31 highlights the people and projects that shaped Pioneer Square. You’ll find history, artifacts and interactive exhibits designed to broaden your understanding of the land beneath you. You’ll explore the neighborhood’s changing landscape, from earth-moving efforts of the past to the massive tunnel project that will soon move SR 99 underground and reconnect Pioneer Square to the waterfront.

What’s in a Name?

Like most ships, tunneling machines are typically named after females. Our machine is named Bertha, in honor of Bertha Knight Landes, who was elected mayor of Seattle in 1926 and was the first woman to lead a major American city. A panel of judges that included former Gov. Chris Gregoire and former Transportation Secretary Paula Hammond selected Bertha from more than 150 submissions to a naming contest among Washington state students. Follow Bertha on Twitter at @BerthaDigsSR99.

Fun facts

- The 57.5-foot-diameter, 326-foot-long machine is the size of some of Washington State Ferries’ largest vessels. It weighs nearly 7,000 tons.
- The machine was delivered to Seattle in 41 pieces. The largest piece weighs over 900 tons.
- The engine of your average sedan runs at about 200 horsepower. Our tunneling machine has about 25,000 horses behind its cutterhead.
- Over the course of tunneling, crews will remove 850,000 cubic yards of soil. If you were to pile all of it on the turf at nearby CenturyLink Field, you’d end up with a mountain of dirt more than 400 feet tall. That’s 100 feet taller than the stadium’s roof.

For more information

- Visit the website at www.AlaskanWayViaduct.org
- Call the hotline at 1-888-AWV-LINE
- Send an email to viaduct@wsdot.wa.gov
- Send a letter to:
 Alaskan Way Viaduct Replacement Program
 Washington State Department of Transportation
 999 Third Ave., Suite 2200
 Seattle, WA 98104

Americans with Disabilities Act & Title VI information

Americans with Disabilities Act (ADA) Information: This material can be made available in an alternate format by emailing the WSDOT Diversity/ADA Affairs Team wsdotada@wsdot.wa.gov or by calling toll free, 855-362-4ADA (4232). Persons who are deaf or hard of hearing may make a request by calling the Washington State Relay at 711.

Title VI: WSDOT ensures full compliance with Title VI of the Civil Rights Act of 1964 by prohibiting discrimination against any person on the basis of race, color, national origin or sex in the provision of benefits and services resulting from its federally assisted programs and activities. For questions regarding WSDOT’s Title VI Program, contact Jonté Sulton at 360-705-7082 or SultonJ@wsdot.wa.gov.