Washington State
Aviation Planning Council

Long-Term Air Transportation Study (LATS)

Museum of Flight
Seattle, WA

March 6, 2008
Workshop Objectives

- Understand access, preservation and safety issues
- Review of aviation legislation and policy
- Concurrence on Council purpose and need statement
Previous Meeting Follow Up

- Council recommendations and the 2010 WTP update
- LATS web page revisions
- Economist technical assistance
- Research on existing policies and policy gaps
- Unfunded aviation needs in the Washington Multi-Modal Plan
- Invitation to attend April workshop extended to airport directors
- Meeting calendar
- Subcommittees
Access, Preservation, and Safety Panel Discussion
Panel Discussion

- **Airport Safety**
 - Mike Meigs, FAA

- **Pavement Preservation**
 - Jack Scott, FAA

- **Growth Management Act 101**
 - Leonard Bauer, CTED

- **Airport and Land Use Compatibility Program**
 - Kerri Woehler, WSDOT
Airport Safety

Guest Speaker: Mike Meigs, FAA
Aviation Safety Overview

Presented to: Washington State Long Term Air Transportation Study Group

By: Mike Meigs, Runway Safety Program Manager, Air Traffic Organization - Safety

Date: March 6, 2008
Discussion Topics

• FAA Flight Plan Safety Initiatives
 – Statistical Records
 – Goals
• FAA Safety Team
• Airport Related Safety Initiatives
• Council Considerations for Aviation Safety
FAA Flight Plan - Increased Safety

- **Goal is to achieve the lowest possible accident rate and constantly improve safety**
- **Specific Objectives include:**
 - Reduce commercial Air Carrier fatalities
 - Reduce the number of fatal accidents in general aviation
 - Reduce the risk of Runway Incursions
 - Ensure the safety of commercial space launches
 - Enhance the safety of FAA’s air traffic system
 - Implement a Safety Management System for the FAA
 - Reduce GA accidents in Alaska
Target: Cut the rate of fatalities per 100 million persons on board in half by 2025

FY-07 Rate = 8.88 FY-12 goal = 7.649 FY-25 = 4.44
Reducing Air Carrier Fatalities Initiatives

- Increase availability of Required Navigation Precision procedures
- Expand cost-effective safety oversight
 - Air Transportation Oversight System
 - ISO 9001 certification for Aviation Safety (AVS)
- Continue accident human factors research
- Streamline and improve the Notice to Airmen process
- Upgrade Runway Safety Areas
- Promote national data sharing and analysis on accidents/incidents
 - Commercial Aviation Safety Team
• Goal: Reduce the number of GA and non scheduled Part 135 fatal accidents to 331

• FY-07 Result: 314
Reducing GA Fatalities Initiatives

• Implement new technologies including more info in cockpit – ADS-B + others
• Increase availability of WAAS approaches
• Continue human factors research to reduce safety risks
 – Training and outreach efforts through FAA Safety Team
• Expand and accelerate safety and air navigation programs in Alaska
 – WAAS, ADS-B, weather cameras, etc
• Goal: Reduce Category A and B runway incursions to a rate of no more than 0.530 per million operations

RUNWAY INCURSION RATE

Per Million Operations
Highest Severity—Category A & B

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>0.570</td>
<td>0.510</td>
<td>0.444</td>
<td>0.460</td>
<td>0.507</td>
<td>0.393</td>
<td>N/A</td>
</tr>
<tr>
<td>Target</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.551</td>
<td>0.530</td>
<td>0.509</td>
</tr>
</tbody>
</table>

Revised from preliminary estimate of 0.458.
Preliminary estimate until January 2008.
Runway Incursion Risk Reduction Initiatives

• **Improve training for pilots, ATC, mechanics and other airport users**
 – Pilot safety seminars – FAAST team
 – Flight Instructor Refresher Courses – AOPA, others
 – Increased pilot testing requirements under consideration
 – Airport recurrent drivers training for all Part 139 airports

• **Improved procedures and standards**
 – Require explicit runway crossing instructions
 – Air Traffic procedure modifications
 – Standardize and improve airport markings/signage

• **Improve evaluation of risks**
 – Promote data sharing efforts with industry
 – Airport Surface Movement analysis – Runway Safety Action Teams (RSAT)

• **Modify and improve surface movement technology infrastructure**
 – Install additional ASDE-X ground surveillance systems
 – Field Runway Status Light Systems at selected airports
 – Research and field additional Low Cost Ground Surveillance Systems
FAA Safety Team (FAAST)

• Purpose is to improve safety through outreach and education
• FAA employees solicit volunteers to help with education/outreach
 – Volunteers receive training and support in outreach efforts
• Support WINGS pilot proficiency program
• More information available at www.faasafety.gov
Airport Related Safety Initiatives

• Runway Safety Areas – applied to Part 139 airports, 87% complete by 2010
• Airspace Program - review/approval of proposed construction and changes
 – Critical to make RNP/WAAS approaches possible
• Standard signs and markings – mandatory for Part 139
 – Critical for pilot training efforts to be effective
• Drivers training improvements
Runway Safety Issues at uncontrolled airports

- Airport design – taxiway/runway layout
- Security – control of runways/taxiways
- Airport information – accurate information to pilots
- Standard signs and markings
- Clear runway safety areas
- Communications
 - CTAF
 - NOTAMs
Uncontrolled Airfields
Quincy Regional – Baldwin Field Nov 1996

It is early evening. The WX is VFR. Two aircraft collide at a runway intersection. Fourteen are killed.
Uncontrolled airfields require extra vigilance...

Signs and Markings (or lack thereof...)
Maintenance may not be “Job One.”
Be alert for unexpected “Guests…”
Anticipate a lack of security...
Common Locations of Surface Events Regardless of Airport Size or Level of Operational Activity

- Complex & Confusing Intersections
- Runway/Runway Intersections
- Runway/Taxiway Intersections
- Runway Thresholds
Council Considerations

• **Proper airport design**
 – Geometry – full length taxiways, etc.
 – Compliant runway safety areas
 – Signs and markings

• **Land use compatibility**
 – Support FAR Part 77 airspace protection
 – Wildlife hazards

• **Improved instrument approaches**
 – Airports must meet IFR design standards to be eligible

• **Airport information**
 – Publications
 – Weather cameras, other weather reporting

• **Pilot Education**
Pavement Preservation

Guest Speaker: Jack Scott, FAA
• Airfield pavements differences from highways.

• Geographical issues.

• Pavement preservation.

• Life-cycle costs.
• Wheel Loads
• Locked Wheel Turns
Jet Blast
• Grooved Pavements
• Grooved Pavements
• Temperature Extremes
• Oxidation
• Differential Frost

Heave
Maintenance Types

- Crack and Joint Sealing
- Fog and other Seal Coats for AC Pavements
- Spall Repairs
- Patching
- Other
Why Joint and Crack Seal?

• Extends Pavement Service Life

• Prevent Water Intrusion
 • loss of support in base and subbase
 • alligator cracking, potholes, etc.

• Keep Incompressibles Out of Crack
 • causes “push-up” at edges during expansion
 • decreases rideability
Pavement Condition Index (PCI)

Preventive Maintenance

Major Rehabilitation

Reconstruction

PCI:
- 100
- 85
- 70
- 55
- 40
- 25
- 10
- 0

Images of pavement conditions对应各个PCI数值。
Timing of Treatments

<table>
<thead>
<tr>
<th>Age</th>
<th>Treatment Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joint and crack sealing, surface seals</td>
<td>$1.00</td>
</tr>
<tr>
<td></td>
<td>Patching, thinner overlays</td>
<td>$3.00</td>
</tr>
<tr>
<td></td>
<td>Thicker overlays</td>
<td>$7.00</td>
</tr>
<tr>
<td></td>
<td>Reconstruction</td>
<td>$14.00</td>
</tr>
</tbody>
</table>
The Pavement Management

Cost-Effective Time for Preventive Maintenance

Cost-Effective Time for Rehabilitation

Costly Time for Rehabilitation
CRACKS – Seal or Overlay
• Overlay or Reconstruct
• Crack Sealing?
Life Cycle Cost Evaluation

CASE 1:

INITIAL COST = $6.00

$1.00 (P/F, 4%, 5 YRS) {.8219} = $0.822

$1.00 (P/F, 4%, 10 YRS) {.6756} = $0.676

$5.00 (P/F, 4%, 15 YRS) {.5533} = $2.767

$1.00 (P/F, 4%, 20 YRS) {.4564} = $0.456

$2.00 (P/F, 4%, 25 YRS) {.3751} = <$0.750>

PRESENT WORTH = $9.97 /SY
Case 2:
Initial cost = $8.00

$1.00 (P/F, 4%, 15 yrs) \{.5533\} = $0.555
$1.00 (P/F, 4%, 25 yrs) \{.3751\} = <$0.375>

Present worth = $8.18/yr

***** Case 2 is the most economical, even with the greatest initial cost.
Pavement Preservation – Key Issues

- There is a direct link between preservation and safety
- Capital investment decisions need to be guided by lowest life-cycle costs as well as initial investment amounts
- Pavement maintenance programs should be implemented by the airport to reduce catastrophic infrastructure cost
- PCI or Pavement Conditions Index are established as performance objectives with LATS
Growth Management Act, 101

Guest Speaker: Leonard Bauer, CTED
Planning under the Growth Management Act

Community, Trade and Economic Development
Growth Management Services
March 6, 2008
Growth Management Basics

• A statewide system for land use planning
• 20-year growth projections must be accommodated in plans
• Urban growth boundaries, rural and natural resource lands
• Consistency and coordination
• State framework
 – 14 state planning goals
 – technical/financial assistance

• Local decisions
 – Cities and Counties

• Public participation
 – Early & continuous
Why is planning for concentrated growth so important?

Our population continues to grow

The GMA applies to all cities and counties in the state.
GMA Planning Goals:

- Sprawl reduction
- Urban growth
- Transportation
- Housing
- Economic development
- Property rights
- Timely permitting
- Natural resource industries
- Open space & recreation
- Environmental protection
- Citizen participation
- Public facilities & services
- Historic lands & buildings
- Shoreline management

RCW 36.70A.020
GMA Requirements for fully planning communities

- County-wide planning policies
- Comprehensive plan
- Development regulations
- Project review
Countywide Planning Policies

A framework for local plans to:

• Designate and plan for urban growth areas
• Process for siting essential public facilities
• Consider affordable housing needs
• Plan for economic development
Essential Public Facilities

The comprehensive plan of each county and city that is planning under the GMA shall include a process for identifying and siting essential public facilities. Essential public facilities include those facilities that are typically difficult to site, such as airports, state education facilities.

No local comprehensive plan or development regulation may preclude the siting of essential public facilities.

RCW 36.70A.200
Comprehensive Plan Elements

• Land Use
• Housing
• Capital Facilities
• Transportation
• Utilities
• Rural (counties only)
• Shoreline Master Program (policies)
Airports and Incompatible Uses

Counties, cities and towns with general aviation airports must discourage the siting of incompatible uses adjacent to the airport through the comprehensive plan and development regulations.

RCW 36.70.547
Coordination

- Cities may not preclude siting of essential public facilities
- State policies must implement local comprehensive plans
- Cities must evaluate land use impacts on state transportation facilities
- Transportation planning occurs regionally as well as locally
Growth Management Hearings Boards

- Three regional hearings boards
- Jurisdiction over plans and regulations
- Plans and regulations presumed valid
Statutory Update

• Review and - if needed - revise comprehensive plans and development regulations every 7 years
 – Address GMA amendments
 – Update 20-year growth projections
 – Adapt to changing local conditions
Key Questions

• What are the future plans of Washington cities and counties for accommodating the next 20 years of growth?
• How do those plans affect the need for, and ability to provide, air transportation service?
• How can airports best coordinate their master plans with city and county comprehensive plans?
Airport and Land Use Compatibility Program

Guest Speaker: Kerri Woehler, WSDOT
WSDOT Aviation’s
Airport Land-Use Compatibility Program

Kerri Woehler
Mount Baker Area Planning Manager
Presentation Outline

- The relevance of airport land use compatibility
- The players and their roles
- Current status of the program
- Opportunities to strengthen
Why is Airport Land Use Compatibility Important?

In Washington State, public-use airports are recognized as Essential Public Facilities because they provide:

- Transportation Access
- Economic Development
- Long-Term Capacity
- Emergency Response/Disaster Relief
What is the Significance of Airport Land Use Compatibility?

Airport Land Use Compatibility is an important part of WSDOT’s efforts to promote:

• Safety
• Preservation
• Mobility
• Environment
• Stewardship
What Are the Consequences of Incompatible Development?

- Reduces airspace needed to support advanced technologies
- Impedes airport expansion required to accommodate future growth
- Generates political opposition to existing and future airport activities
- Increases exposure to noise, risk and other undesirable impacts
- *Makes life miserable!*
What Are the Consequences of Incompatible Development?
Who’s Responsible for Airport Land Use Compatibility Planning?

All stakeholders are part of the puzzle:

- Airport constituents
- Airport sponsors
- Cities and towns
- Counties
- Regional planning organizations
- Port districts
- State government
- Federal government
Airports and State Law

- Airports are Essential Public Facilities
 \((RCW 36.70A.200)\)

- Airports are part of the multi-modal transportation system
 \((RCW 36.70A.070)\)

- Towns, cities and counties must discourage incompatible land uses
 \((RCW 36.70.547, 36.70A.510; 35A.63.270; 35.60.250)\)

- Towns, cities and counties must consult with aviation interests
 \((RCW 36.70.547, 36.70A.510; 35A.63.270; 35.60.250)\)

- WSDOT Aviation must provide technical assistance
 \((RCW 36.70.547, 36.70A.510; 35A.63.270; 35.60.250)\)
What is WSDOT Aviation’s Role?

- Facilitate Coordination
- Provide Tools and Resources
- Answer Questions
- Review Draft Policies and Regulations
- Provide Public Comment
How Are Washington’s Airports Protected Today?

![Bar chart showing the percentage of compatibility policies, height hazard control, and compatibility control by zoning.]

- Compatibility Policies: 33%
- Height Hazard Control: 53%
- Compatibility Control by Zoning: 22%

Source: LATS Phase II Technical Report, June 2007
What Can the State Do to Improve Protections?

• Increase resources available for technical assistance

• Clarify expectations for local jurisdictions (in the WACs)

• Pursue statewide “aviation activity notice” requirements

• Continue to integrate land use considerations into agency activities

• Continue to communicate the significance of airport land use compatibility for: Safety, Preservation, Mobility, Environment and Stewardship
Key Issues & Challenges

Guest Speaker: Sara Funk, WHPacific
What Are the State’s Airport Classifications?

- Commercial Service Airports – 16 airports
 - Provide scheduled passenger air carrier and/or commuter service

- Regional Service Airports – 19 airports
 - Serve the general aviation needs of multiple communities or are located in large metropolitan areas where multiple airports are warranted, most have at least 40 based aircraft and a 4,000-foot runway, have service areas up to 90 minutes, include relievers and future Commercial Service airports

- Community Service Airports – 23 airports
 - Serve small to medium-sized communities and have at least 20 based aircraft

- Local Service Airports – 33 airports
 - Serve small to medium-sized communities, primarily used by piston-driven general aviation aircraft with less activity than Community Service Airports, have paved runways.

- Recreation or Remote Airports – 39 airports
 - All land-based airports that are open to public use, but do not meet the threshold criteria for other categories.

- Seaplane Bases – 9 airports
 - Seaplane bases serve amphibious and float-equipped aircraft.
Key Findings: LATS I – II

What Are the Performance Objectives?

<table>
<thead>
<tr>
<th>Objective</th>
<th>Commercial Service</th>
<th>Regional Service</th>
<th>Community Service</th>
<th>Local Service</th>
<th>Recreation or Remote</th>
<th>Seaplane Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard runway safety area</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>NA</td>
</tr>
<tr>
<td>Runway PCI 75</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>NA</td>
</tr>
<tr>
<td>Taxiway PCI 70</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>NA</td>
</tr>
<tr>
<td>Apron PCI 70</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>NA</td>
</tr>
<tr>
<td>No obstacles in threshold siting surface</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>No obstacles in obstacle free zone</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning documents less than 7 years old</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Land Use Compatibility Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compatibility policies in comprehensive plan</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Appropriate zoning designation for airport</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Land use controlled in runway protection zones</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Height hazard zoning or regulations</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Zoning discourages incompatible development</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runway Length</td>
<td>5,000 feet</td>
<td>5,000 feet</td>
<td>3,200 feet</td>
<td>2,400 feet</td>
<td>No objective</td>
<td>No objective</td>
</tr>
<tr>
<td>Taxiway</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Parallel</td>
<td>Turn-around</td>
<td>Turn-around</td>
<td>No objective</td>
</tr>
<tr>
<td>Instrument Approach</td>
<td>Lower than (\frac{3}{4}) mile visibility minimum</td>
<td>Lower than (\frac{3}{4}) mile visibility minimum</td>
<td>1 mile visibility minimum</td>
<td>No objective</td>
<td>No objective</td>
<td>No objective</td>
</tr>
<tr>
<td>Lighting</td>
<td>Medium intensity</td>
<td>Medium intensity</td>
<td>Medium intensity</td>
<td>Low intensity</td>
<td>Reflectors</td>
<td>NA</td>
</tr>
<tr>
<td>Visual Glide Slope Indicators</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>No objective</td>
<td>NA</td>
</tr>
<tr>
<td>Weather Reporting</td>
<td>AWOS or ASOS</td>
<td>AWOS or ASOS</td>
<td>Super-Unicom</td>
<td>No objective</td>
<td>No objective</td>
<td>No objective</td>
</tr>
<tr>
<td>Dock Facility</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
</tr>
<tr>
<td>Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Sales</td>
<td>Jet A and 100LL</td>
<td>Jet A and 100LL</td>
<td>100LL</td>
<td>No objective</td>
<td>No objective</td>
<td>No objective</td>
</tr>
<tr>
<td>Maintenance Service</td>
<td>Major</td>
<td>Major</td>
<td>Minor</td>
<td>No objective</td>
<td>No objective</td>
<td>No objective</td>
</tr>
</tbody>
</table>
Key Findings: LATS I – II

How Did Washington Airports Stack up Against the State’s Performance Objectives?

- All but one percent of the state’s residents live within 90 minutes of a Regional Service or Commercial Service airport.

- Airports with pavements currently perform well on pavement condition objectives.

- Land use protection is inadequate for airports in all classifications.

- The availability of navigation equipment is a weakness in the performance of the state air transportation system.
Key Findings: LATS I – II

How Did Washington Airports Stack up Against the State’s Performance Objectives?

- Development of a new Northeast Washington Airport near Colville is recommended to achieve the state’s goal of providing adequate access to Regional Service Airports.

- Development of a new Regional Service Airport may be needed in Southwest Washington, as the area’s current Regional Service Airport (Kelso-Longview) is located approximately 1 hour from the population center (Vancouver).
Key Findings: LATS I – II

How Does the Access to Regional Service and Commercial Services Airports Look Statewide?

99% of the State’s Population is within 90 minutes of a commercial service or regional service airport.

Key:
- Commercial Airport
- Regional Airport
- < 60 Minute Drive Time
- 60-90 Minute Drive Time

One dot represents 500 residents (2005)
Key Findings: LATS I – II

How Did the Airports’ Pavement Condition Compare to the Performance Objectives?

Runway Pavement Condition Performance Assessment

Taxiway Pavement Condition Performance Assessment

Apron Pavement Condition Performance Assessment
Key Findings: LATS I – II

What Are the Issues with Land Use Protections?

- Compliance with nearly all the land use objectives is noticeably lower than in other measures.
- Only 35 percent of airports are protected by comprehensive plan policies.
- Only 22 percent of airports are protected by zoning ordinances.
- 53 percent of airports have Height Hazard Controls.
Key Findings: LATS I – II

How Did the Airports Comply with the Instrument Approach Procedures Objective?

- Commercial Service – 63%
- Regional Service – 37%
- Community Service – 22%

This objective is an important indicator of all-weather, 24 hour airport access, which opens the facility to many types of aircraft and supports economic development, emergency medical transportation and business aviation.
Key Findings: LATS I – II

How did the Airports Comply with Other Performance Objectives Concerned with Safety?

Standard Runway Safety Area Performance Assessment

- State System: 45%
- Commercial Service: 86%
- Regional Service: 79%
- Community Service: 45%
- Local Service: 17%
- Recreation or Remote: 15%

Weather Reporting Performance Assessment

- Commercial Service: 88%
- Regional Service: 84%
- Community Service: 48%
Main Points about Airport Classifications and Performance Objectives

- GENERAL. Classifying airports by system role and setting performance objectives for classifications can help prioritize airport investments to achieve access, preservation, safety, and other goals.

- ACCESS. Washington’s residents have good airport access, but more airports need to be all-weather.

- PRESERVATION. Airport pavement preservation has been far more successful than airport preservation (land use compatibility).

- SAFETY. Smaller airports are less successful at meeting safety objectives than larger airports.
Discussion: Key Issues & Challenges

- Should the state play a broader role in assuring land development that protects airport and airport neighbors?
- Does having an airport classification system make sense?
- Does it make sense to have different performance objectives for each classification?
- Does it make sense to establish funding priorities based on performance objectives and classification system?
Aviation Legislation & Policy Review
Early Legislation

- **Municipal Airports Act, 1941**
 - Authorizes local jurisdictions to acquire, maintain, and operate aviation-related facilities
 - Provides local jurisdictions authority to acquire (by purchase, condemnation, or lease) and dispose of land and other property

- **Municipal Airports Act, 1945**
 - Expands 1941 Municipal Airports Act
 - Grants airport districts same powers as cities, towns, counties, and port districts
 - Declares municipal airports serve a public purpose and are a matter of public necessity
 - Provides municipal airports the ability to appropriate funds, raise taxes for certain purposes, issue revenue bonds, and accept federal aid

- **Airport Zoning, 1945**
 - Allows local jurisdictions to adopt zoning controls to protect critical airspace from buildings, structures, or other airspace obstructions
 - Declares that creating an airport hazard is a public nuisance and must be prevented; allows local jurisdiction ability to raise and use public funds or acquire land to prevent or mitigate airport hazards

- **RCW 47.68**
 - Outlines authority of WSDOT Aviation Division
 - WSDOT Aviation Division created in 1947
More Recent Legislation

- Growth Management Act

- RCW 47.04.280 – establishes five policy goals for the planning, operation, performance of, and investment in the state’s transportation system:
 - Preservation
 - Safety
 - Mobility
 - Environment
 - Stewardship
Aviation System Planning Hierarchy

Federal and State Policy Framework
- Washington Multi-Modal Plan
- NPIAS
 National Plan of Integrated Airport Systems (Federal Aviation Administration)

Long-Term Air Transportation Study (LATS)
- Aviation System Planning Principles
- Policies
- Planning Framework
 - System goals
 - System strategies
 - System definition

Implementation
- RTP
 Regional Transportation Plan
- CIP/TIP
 Capital Improvement Program/Transportation Improvement Program
- System Management
- Major Investments
 Airport Specific Plans
- Local Land Use Decisions
AIRTRAC (1993)

- Calls for a larger state role in transportation planning
 - State should provide the umbrella for local actions – including planning, siting, mitigating – to address the state’s interest in aviation
 - Replicates approach to surface transportation planning

- Builds on State’s “bottom-up” approach to planning
 - Provides a framework for local planning to preserve the existing system, address future needs, and mitigate negative impacts
 - State, regional, and local jurisdictions working as partners to meet the state’s interest in aviation

- Sets forth 33 recommendations in 5 broad policy areas - all but 14 have been implemented

- Identifies the State’s interest in aviation:
 - Preservation
 - Safety
 - Capacity
 - Environmental protection

- Provides short-term strategies rather than long-term policy direction

- All recommendations have been implemented or are being addressed by current planning efforts
Washington Transportation Plan (2007-2027)

- Recommendations are organized by five investment guidelines:
 - Preservation
 - Safety
 - Economic vitality
 - Mobility
 - Environmental quality and health

- Only two recommendations are specific to aviation

- Aviation Planning Council recommendations to inform the 2010 WTP update
Common Themes in Previous Policy Efforts

- Air transportation is a critical part of the state’s transportation system
- Air transportation is critical to the State’s economy
- A greater State role is needed:
 - Multi-modal coordination
 - Land use compatibility
 - Environmental mitigation
 - Resolving conflict
- Funding resources are limited
Summary

 Where we’ve been:
 – AIRTRAC focused attention on need to integrate air transportation into existing local comprehensive plans and regional transportation planning
 – WA State Transportation Policy identifies gaps in the state aviation system and makes recommendations to address system shortfalls

 Where we’re going:
 – Transportation Commission will look to the Aviation Planning Council to inform aviation policy recommendations in the 2010 WTP update
 – 1998 Policy focused was on preserving existing capacity; we need to address adding new capacity to the system in the next 25 years
 – Greater state role is needed
 – Need to refocus thinking on a system-wide approach
Action Items

- Concurrence on Purpose and Need Statement
DRAFT PURPOSE AND NEED STATEMENT

Maintaining a healthy aviation system is in the interests of the nation and the citizens of Washington State.

Washington’s aviation system provides intrastate, national and international access for passengers and goods and is an important component of our national defense capability. Washington State’s aviation system is an essential function of our overall transportation system, because it

- moves people and goods
- supports business and commerce
- promotes quality of life
- provides access for critical emergency and disaster management services that other transportation modes cannot accommodate.

Airports in the system range from large airports that serve major population centers to small community airports that are a critical link to sparsely populated expanses and local economies. Although Washington’s airports are diverse, with different roles and needs, they must function together as a healthy, balanced system.

The Washington State Aviation Planning Council was established by the Legislature and appointed by the Governor to develop recommendations to the Governor and Legislature for policies and capital investment strategies needed to maintain a healthy aviation system.

The Council’s recommendations will be based upon current State policy goals, the analysis presented in the Long-term Air Transportation study (LATS), public input, and additional technical research. As directed by the Legislature, technical and administrative support will be provided by the Washington State Department of Transportation (WSDOT) Aviation Division and a technical consultant team.
Next Steps

■ Work Plan Update

■ Council Meetings
 – Workshop #3: General Aviation and Commercial Airports
 April 3, 2008 – Seattle
 – Workshop #4: Forecast and Capacity Assessment
 May 1, 2008 - Seattle