US 101 Regional Circulation Project

Final Report • January 2007
Cover Sheet

US 101 Regional Circulation Project

Prepared For:
Washington State Department of Transportation
Olympic Region
5720 Capitol Blvd.
Tumwater, WA 98504

Grays Harbor Council of Governments
115 South Wooding Street
Aberdeen, WA 98520

Prepared By:
Parametrix
411 108th Ave NE, Suite 1800
Bellevue, WA 98004-5571
Title VI

WSDOT ensures full compliance with Title VI of the Civil Rights Act of 1964 by prohibiting discrimination against any person on the basis of race, color, national origin or sex in the provision of benefits and services resulting from its federally assisted programs and activities. For questions regarding WSDOT’s Title VI Program, you may contact the Department’s Title VI Coordinator at (360) 705-7098.

Americans with Disabilities Act (ADA) Information

If you would like copies of this document in an alternative format – large print, Braille, cassette tape, or on computer disk, please call (360) 705-7097. Persons who are deaf or hard of hearing, please call the Washington State Telecommunications Relay Service, or Tele-Braille at 7-1-1, Voice 1-800-833-6384, and ask to be connected to (360) 705-7097.
TABLE OF CONTENTS

COVER SHEET

ACRONYMS

EXECUTIVE SUMMARY

1. What is the US 101 Regional Circulation Project? .. ES-1
2. How were projects evaluated? ... ES-2
3. What were the final recommendations? ... ES-2
4. What are the next steps? .. ES-4

CHAPTER 1 BACKGROUND

1. Why was the US 101 Regional Circulation Project initiated? .. 1-1
2. Where is the project study area? ... 1-2
3. Who was on the project team? ... 1-3
4. How were local community leaders and organizations involved in the process? 1-4
5. What are the existing concerns along the region’s main roadways? 1-6
6. What were the conclusions from previous studies in the region? 1-9

CHAPTER 2 TECHNICAL PROJECT EVALUATION PROCESS AND RECOMMENDED PROJECT LIST

1. How were projects selected? .. 2-1
2. What goals and criteria were used in the evaluation process? .. 2-1
3. What did the project evaluation process involve? .. 2-3
4. What was the final outcome of the project evaluation process? 2-3
5. What was the final decision of the stakeholder committee? .. 2-4

CHAPTER 3 PROJECT DESCRIPTIONS AND COST ESTIMATES

1. How are the top 10 projects described? .. 3-1
2. How was the project cost estimates derived? ... 3-1

COMPLETE SEISMIC UPGRADES TO AREA BRIDGES

1. What is the project? .. 3-3
2. What are the potential benefits and impacts of this project? .. 3-3
3. What is the estimated project cost? .. 3-3

TRUCK ROUTE ALTERNATIVE

1. What is the project? .. 3-5
2. What are the potential benefits and impacts of this project? .. 3-7
3. What is the estimated project cost? .. 3-8

TRI-CITY OPERATIONAL IMPROVEMENTS

1. What is the project? .. 3-9
2. What are the potential benefits and impacts of this project? .. 3-9
3. What is the estimated project cost? .. 3-9
US 101 Regional Circulation Project

WISHKAH MALL ACCESS IMPROVEMENTS ... 3-11
1 What is the project? .. 3-11
2 What are the potential benefits and impacts of this project? ... 3-11
3 What is the estimated project cost? .. 3-11

INTELLIGENT TRANSPORTATION SYSTEMS (ITS) .. 3-13
1 What is the project? .. 3-13
2 What are the potential benefits and impacts of this project? ... 3-13
3 What is the estimated project cost? .. 3-13

IMPROVE PORT INDUSTRIAL ROAD ... 3-15
1 What is the project? .. 3-15
2 What are the potential benefits and impacts of this project? ... 3-15
3 What is the estimated project cost? .. 3-15

COSMOPOLIS DOWNTOWN REVITALIZATION ... 3-17
1 What is the project? .. 3-17
2 What are the potential benefits and impacts of this project? ... 3-17
3 What is the estimated project cost? .. 3-17

RAIL CAR STORAGE EAST OF ABERDEEN ... 3-19
1 What is the project? .. 3-19
2 What are the potential benefits and impacts of this project? ... 3-19
3 What is the estimated project cost? .. 3-19

REPLACE EXISTING HOQUIAM BRIDGES .. 3-21
1 What is the project? .. 3-21
2 What are the potential benefits and impacts of this project? ... 3-21
3 What is the estimated project cost? .. 3-21

RELOCATE RAIL LINE SOUTH OF PORT INDUSTRIAL ROAD 3-23
1 What is the project? .. 3-23
2 What are the potential benefits and impacts of this project? ... 3-23
3 What is the estimated project cost? .. 3-23

CHAPTER 4 NEXT STEPS .. 4-1
1 What are the next steps in the process? ... 4-1
2 Who can I contact for more information? .. 4-1

LIST OF EXHIBITS
Exhibit ES-1 Stakeholder Committee Project Priority List .. ES-3
Exhibit ES-2 Preliminary Cost Estimates ... ES-4
Exhibit 1-1 Project Vicinity Map ... 1-3
Exhibit 1-2 Stakeholder Committee Members .. 1-5
Exhibit 1-3 2005 Bridge Openings .. 1-6
List of Exhibits (continued)

Exhibit 1-4 Existing Year 2006 and Year 2030 Intersection Operations ... 1-8
Exhibit 1-5 High Accident Locations .. 1-9
Exhibit 1-6 Previous Study Locations .. 1-10
Exhibit 2-1 Project Goals and Criteria ... 2-2
Exhibit 2-2 Top 10 Project Priority Ranking .. 2-4
Exhibit 2-3 Stakeholder Committee Project Priority List .. 2-5
Exhibit 2-4 Letter to Senator Mark Doumit ... 2-6
Exhibit 3-1 Preliminary Cost Estimates ... 3-2
Exhibit 3-2 Seismic Upgrades to Area Bridges Project Vicinity Map .. 3-3
Exhibit 3-3 Truck Route Alignment Options ... 3-6
Exhibit 3-4 Intersection Level of Service .. 3-7
Exhibit 3-5 Truck Route Cost Summary ... 3-8
Exhibit 3-6 Tri-City Operational Improvements Vicinity Map .. 3-9
Exhibit 3-7 Tri-City Operational Improvement Projects .. 3-10
Exhibit 3-8 Phased Wishkah Mall Access Improvements ... 3-11
Exhibit 3-9 Intelligent Transportation Systems (ITS) ... 3-13
Exhibit 3-10 Port Industrial Road Improvements ... 3-15
Exhibit 3-11 Cosmopolis Downtown Revitalization Project Vicinity ... 3-17
Exhibit 3-12 Future Rail Car Storage Locations East of Aberdeen ... 3-19
Exhibit 3-13 Replace Existing Hoquiam River Bridges ... 3-21
Exhibit 3-14 Proposed Rail Realignment ... 3-23

ACRONYMS

REFERENCES

LIST OF PREPARERS

LIST OF APPENDICES (LOCATED ON ATTACHED CD)

Appendix A Steering Committee and Open House Meeting Summaries
Appendix B Newspaper Articles
Appendix C Bridge Openings and Rail Crossing Information
Appendix D Future Planned Development
Appendix E Traffic Analysis Report
Appendix F US 101 Regional Circulation Project Collision Analysis
Appendix G Past Study Summary Sheets
Appendix H Cost Estimate Report
Appendix I Project Summary Descriptions
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>GHCOG</td>
<td>Grays Harbor Council of Governments</td>
</tr>
<tr>
<td>HAC</td>
<td>High Accident Corridor</td>
</tr>
<tr>
<td>HAL</td>
<td>High Accident Location</td>
</tr>
<tr>
<td>HAR</td>
<td>Highway Advisory Radio</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transportation Systems</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>PAL</td>
<td>Pedestrian Accident Location</td>
</tr>
<tr>
<td>PS&P</td>
<td>Puget Sound and Pacific Railroad</td>
</tr>
<tr>
<td>SR</td>
<td>State Route</td>
</tr>
<tr>
<td>WSDOT</td>
<td>The Washington State Department of Transportation</td>
</tr>
</tbody>
</table>
Executive Summary

1 What is the US 101 Regional Circulation Project?

The US 101 corridor and connecting highways, US 12 and State Route 109, function as the major transportation routes through the cities of Aberdeen, Hoquiam, and Cosmopolis. This highway network provides a critical economic link between the region and the rest of Washington State. These highways serve as the primary route to Pacific Ocean beaches and the western Olympic Peninsula for visitors, the most direct route for moving freight and goods, and the “main street” for local residents. Congestion on these routes, either from high vehicle volume or from bridge openings and railroad crossings, negatively affects the movement of people and goods to and from the region. These roads are crucial to the economic vitality, growth, and sustainability of the region. The US 101 Regional Circulation Project was initiated to identify and prioritize transportation projects to improve mobility in the region.

During the 2005 Washington State Legislative Session, $500,000 was earmarked for a regional planning study to reduce congestion on US 101 in the vicinity of Aberdeen, Hoquiam, and Cosmopolis. These funds were used to develop a list of prioritized transportation projects that would improve congestion and traffic issues in the area. A stipulation of this prioritized list required that projects improve the community as a whole, not just one local jurisdiction.

The Washington State Department of Transportation (WSDOT), in partnership with the Grays Harbor Council of
Governments (GHCOG) and two consulting firms, worked with a stakeholder committee consisting of local jurisdiction staff and elected officials, business leaders, local Native American tribes, Grays Harbor Transit and the Port of Grays Harbor to develop this prioritized project list. Using corridor studies completed over the last 14 years as a starting point, WSDOT and the stakeholder committee developed an initial list of projects that would be evaluated for further consideration.

2 How were projects evaluated?

From over 150 individual projects recommended in the previous studies, the project team narrowed the list of projects down to 29 projects. Through project team meetings and an initial evaluation process with the stakeholder committee, 23 projects remained on the list. WSDOT further refined this list through an evaluation process providing an overall rank for each of these projects. This evaluation process ranked each project based on three primary goals:

- Promote Regional Solutions
- Promote Economic Vitality and Growth
- Support Multi-modal Solutions

Each goal was subdivided into specific criteria that further refined the evaluation process. The final product of the evaluation was an initial ranked list of the top 10 projects. This list was brought forth to the stakeholder committee for input and consensus.

3 What were the final recommendations?

Stakeholder committee members confirmed the top 10 projects recommended by the project team. Further discussion to develop an even shorter high-priority project list occurred, and the stakeholder committee decided to prioritize five projects and a separate top maintenance priority project. The final recommendation from the stakeholder committee is summarized in Exhibit ES-1 below.
Full Truck Route Alternative - $386M

The Stakeholder Committee has identified the Full Truck Route as the top priority project. As an alternative to funding the entire Truck Route, the Stakeholder Committee recommends moving forward with the project in increments and pledges their support to carry forward this process. Their recommendation is as follows:

1a. Funding for re-evaluation of the NEPA EIS – re-evaluation of the EIS is needed to begin any construction. Funding for early engineering, including phasing analysis - $5M

1b. Funding for environmental documentation, based on results of phasing analysis - $3M

1c. Funding for preliminary engineering and construction of Truck Route segments based on phasing analysis results - $4M to $378M

(Priority 1a and 1b must be done first)

Tri-City Operational Improvements - $10M

The Tri-City Operational Improvements project provides more than 20 needed and visible improvements that can be implemented in the short term. The Stakeholder Committee recommends full funding for this project.

Wishkah Mall Access Improvements - $4M

To alleviate identified traffic problems caused by access issues at this regional destination, the Stakeholder Committee recommends funding the project in two phases.

3a. Funding for emergency vehicle access, turning movement and access revisions, signal interconnection, and re-striping the internal parking area - $500K

3b. Funding includes an investigation of constructing an alternate access road on the north side of US 12. The project would include public involvement, right-of-way acquisition, preliminary engineering and construction - $3.5M

Intelligent Transportation Systems (ITS) - $9M

This project would install changeable message signs, photo enforcement cameras, closed circuit television, and Highway Advisory Radio. Actual locations and configurations would be determined during design.

Improve Port Industrial Road - $4M

This project would improve capacity, traffic flow, and safety by providing right and left turn lanes at key intersections and other improvements as identified in the Port Industrial Road Strategic Analysis.

Maintenance Priority
Seismic Improvements - $20M

The regional highway system in the tri-city area is connected by five aging bridges, two of which require funding for seismic upgrades. Completion of this project is necessary to maintain access to regional hospitals, and fire and police protection in the event of a natural disaster. The estimated costs for these repairs are listed below:

- Chehalis River Bridge - $10M
- Wishkah River (Heron Street Bridge) - $10M
Cost estimates for each of the top ranked projects include all project phases and activities, including initial project studies, preliminary engineering and design, environmental documentation, right-of-way acquisition, construction, construction management, and sales tax. All project costs were estimated using 2006 dollars. Exhibit ES-2 summarizes the preliminary cost estimates for each project.

<table>
<thead>
<tr>
<th>Project</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Full Truck Corridor</td>
<td>$386,000,000</td>
</tr>
<tr>
<td>2. Tri-City Operational Improvements</td>
<td>$9,887,000</td>
</tr>
<tr>
<td>3. Alternate Access to Wishkah Mall</td>
<td>$4,000,000</td>
</tr>
<tr>
<td>4. Intelligent Transportation Systems (ITS)</td>
<td>$9,280,000</td>
</tr>
<tr>
<td>5. Improve Port Industrial Road</td>
<td>$3,598,000</td>
</tr>
<tr>
<td>Maintenance Priority-Complete Seismic Upgrades to Area Bridges</td>
<td>$20,000,000</td>
</tr>
</tbody>
</table>

4 What are the next steps?

This prioritized project list will be circulated to the stakeholder committee members, the Coastal Caucus, the Southwest Washington Regional Transportation Planning Organization, and community members of the cities of Aberdeen, Hoquiam, and Cosmopolis. The list will provide direction to local elected officials and other community leaders and will provide a blueprint for transportation improvements over the next several years. The list has also been provided to the Washington State House and Senate members representing Grays Harbor County for the upcoming 2007 legislative session.

While the project list was recommended as the top priority for the region at this time, it should not be considered a static list. The stakeholder committee members with direction and involvement from GHCOG and WSDOT agreed to reevaluate the prioritized list every couple of years to ensure the project cost estimates have not significantly changed, to add or delete projects from the list, and to continue to seek funding for each of the top projects.
Chapter 1 Background

What's in Chapter 1?

Chapter 1 explains why the project was initiated, the existing conditions along US 101, how local community leaders and organizations were involved in the project process, and what previous studies led to the development of this project.

1 Why was the US 101 Regional Circulation Project initiated?

The US 101 corridor and connecting highways, US 12 and State Route 109, function as the major transportation routes through the cities of Aberdeen, Hoquiam, and Cosmopolis. Today, these highways are the primary route to Pacific Ocean beaches and the western Olympic Peninsula for tourists and are the “main streets” for local community traffic. This highway network serves as a critical economic link between the region and the rest of Washington State. These three corridors also provide the most direct route for moving freight and goods in the region. Congestion on these routes, either from high vehicle volumes or from bridge openings and railroad crossings, negatively affects the movement of goods to and from the region. The US 101 Regional Circulation Project was initiated to identify and prioritize transportation projects to improve mobility in the region.

The three corridors were studied extensively over the past 14 years in nine studies documenting strategies and projects to improve congestion, safety, and aesthetics in the vicinity of Aberdeen, Hoquiam, and Cosmopolis. Several transportation improvement projects were identified in these studies, some of
which are already constructed, while others still require funding and community support. The transportation network will continue to degrade in the future without funding for these projects.

The region has had opportunities to participate in statewide funding programs over the last several years; however, the region did not have a mutually supported prioritized project list to support funding requests. As a result, the state legislature has not allocated transportation improvement funds to the region in recent years.

During the 2005 Legislative Session, Senator Mark Doumit from the 19th Congressional District in Washington earmarked $500,000 for a regional planning study for congestion mitigation improvements on US 101 in the vicinity of the city of Aberdeen. The final product of this study would include a prioritized list of projects. With a prioritized project list, the region would position itself to obtain state funding for those projects during the next legislative session. The final list had to include projects that have broad regional impact and alleviate problems within multiple jurisdictions. This report documents the end result of this process.

2 Where is the project study area?

The US 101 Regional Circulation Project study area is located in Grays Harbor County in the State of Washington and focuses on the cities of Aberdeen, Hoquiam, and Cosmopolis. The study area limits include sections of US 12, US 101, and State Route 109, and roadways surrounding the Port of Grays Harbor. The project limits represent logical end points for transportation improvements based on the project needs. These identified needs include:

- Improving traffic mobility and safety.
- Addressing seismic deficiencies on several local bridges.
- Promoting the efficient movement of goods and services.

Exhibit 1-1 illustrates the project limits.
3 Who was on the project team?

The US 101 Regional Circulation project team was a partnership between the Grays Harbor Council of Governments (GHCOG) and the Washington State Department of Transportation (WSDOT). GHCOG served as the project stakeholder committee liaison and WSDOT guided the technical work and overall process. Two consulting firms, ExelTech and Parametrix, provided technical support for the project.
4 How were local community leaders and organizations involved in the process?

One of the project’s primary goals was involving the local community and organizations in the process. The project team created a stakeholder committee tasked with achieving consensus on a prioritized project list. The stakeholder committee included members from each of the local jurisdictions and other organizations that are influential to the region. A complete list of stakeholder committee members is provided in Exhibit 1-2.

The stakeholder committee met three times between September and October 2006. At these meetings, information was presented regarding existing conditions, the project planning process, traffic forecasts, and project cost estimates. The meetings provided valuable input to the planning process and allowed committee members to voice their concerns and desires. The input and direction from the stakeholders directly influenced the final project recommendations.

In addition to the stakeholder meetings, two public meetings provided information and allowed the public to provide input into the process.

What was discussed at each of the project meetings?

Stakeholder Committee Meeting #1: discussed project history and purpose, goals and criteria to be used in the evaluation process, and a summary of recommendations from previous studies.

Stakeholder Committee Meeting #2: supplied existing conditions information to stakeholders, including bridge openings, collision analysis, rail crossings, community growth forecasts, and traffic analysis. Committee members participated in a project pre-screening exercise.

Stakeholder Committee Meeting #3: provided cost estimates for the top ranked projects, and the top prioritized projects were decided by committee members.

Public Meeting #1: allowed the community to view and comment on the existing conditions information provided at the second stakeholder committee meeting. Furthermore, community members were provided information about the proposed projects.

Public Meeting #2 allowed the community to view 10 information stations that documented the project overview and provided the community the recommendations of the stakeholder committee. The public was invited to comment on the project.

A summary of each of the meetings is provided in Appendix A – Steering Committee and Open House Meeting Summaries. Furthermore, both public open houses were covered by The Daily World, the local newspaper. Synopses are included in Appendix B.
Stakeholder Committee Members

<table>
<thead>
<tr>
<th>Organization</th>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Aberdeen</td>
<td>Dorothy Voege</td>
<td>Mayor</td>
</tr>
<tr>
<td></td>
<td>Larry Bledsoe</td>
<td>Public Works Director</td>
</tr>
<tr>
<td></td>
<td>Denny Lawrence</td>
<td>City Councilmember</td>
</tr>
<tr>
<td></td>
<td>Dave Carlberg</td>
<td>Fire Chief</td>
</tr>
<tr>
<td></td>
<td>Bob Torgerson</td>
<td>Police Chief</td>
</tr>
<tr>
<td></td>
<td>Vicki Raines</td>
<td>Mayor</td>
</tr>
<tr>
<td>City of Cosmopolis</td>
<td>Darrin Raines</td>
<td>Public Works Direction</td>
</tr>
<tr>
<td></td>
<td>Todd Moulton</td>
<td>Fire Chief</td>
</tr>
<tr>
<td></td>
<td>Casey Stratton</td>
<td>Police Chief</td>
</tr>
<tr>
<td>City of Hoquiam</td>
<td>Jack Durney</td>
<td>Mayor</td>
</tr>
<tr>
<td></td>
<td>Brian Shay</td>
<td>City Administrator</td>
</tr>
<tr>
<td></td>
<td>Ray Pumphrey</td>
<td>Fire Chief</td>
</tr>
<tr>
<td></td>
<td>Jeff Myers</td>
<td>Chief of Police</td>
</tr>
<tr>
<td></td>
<td>Jim Maloney</td>
<td>Hoquiam Police Dept.</td>
</tr>
<tr>
<td>Grays Harbor County</td>
<td>Bob Beerbower</td>
<td>Commissioner</td>
</tr>
<tr>
<td></td>
<td>Mike Wilson</td>
<td>Commissioner</td>
</tr>
<tr>
<td></td>
<td>Al Carter</td>
<td>Commissioner</td>
</tr>
<tr>
<td>Port of Grays Harbor</td>
<td>Gary Nelson</td>
<td>Executive Director</td>
</tr>
<tr>
<td></td>
<td>Leonard Barnes</td>
<td>Deputy Executive Director</td>
</tr>
<tr>
<td>GH Chamber of Commerce</td>
<td>LeRoy Tipton</td>
<td>President</td>
</tr>
<tr>
<td>GH Economic Development Council</td>
<td>Michael Tracy</td>
<td>President</td>
</tr>
<tr>
<td>Grays Harbor PUD</td>
<td>Phil Penttila</td>
<td>Engineering Supervisor</td>
</tr>
<tr>
<td>Grays Harbor County Sheriff</td>
<td>Michael Whelan</td>
<td></td>
</tr>
<tr>
<td>Grays Harbor Tourism</td>
<td>Barbara Smith</td>
<td></td>
</tr>
<tr>
<td>SW Regional Transportation Planning</td>
<td>Rosemary Siipola</td>
<td></td>
</tr>
<tr>
<td>Grays Harbor Transit</td>
<td>Dave Rostedt</td>
<td>Manager</td>
</tr>
<tr>
<td></td>
<td>Keith Polzin</td>
<td>Shop Supervisor</td>
</tr>
<tr>
<td>State Senators</td>
<td>Mark Doumit</td>
<td>Senator</td>
</tr>
<tr>
<td></td>
<td>Jim Hargrove</td>
<td>Senator</td>
</tr>
<tr>
<td></td>
<td>Tim Sheldon</td>
<td>Senator</td>
</tr>
<tr>
<td>State Representatives</td>
<td>Brian Blake</td>
<td>Representative</td>
</tr>
<tr>
<td></td>
<td>Jim Buck</td>
<td>Representative</td>
</tr>
<tr>
<td></td>
<td>Kathy Haigh</td>
<td>Representative</td>
</tr>
<tr>
<td></td>
<td>Dean Takko</td>
<td>Representative</td>
</tr>
<tr>
<td></td>
<td>Lynn Kessler</td>
<td>Representative</td>
</tr>
<tr>
<td></td>
<td>Ike Eickmeyer</td>
<td>Representative</td>
</tr>
<tr>
<td>WSDOT, Aberdeen PEO</td>
<td>John Hart</td>
<td>Project Engineer</td>
</tr>
<tr>
<td>Quinault Tribe</td>
<td>Fawn Sharp</td>
<td>Chair</td>
</tr>
<tr>
<td></td>
<td>Jonathan Ciesla</td>
<td>Planner</td>
</tr>
<tr>
<td>Confederate Tribes of the Chehalis</td>
<td>David Bumett</td>
<td>Chair</td>
</tr>
<tr>
<td></td>
<td>Amy Loudermilk</td>
<td>Planner</td>
</tr>
<tr>
<td>Squaxin Island Tribe</td>
<td>James L. Peters</td>
<td>Chair</td>
</tr>
<tr>
<td></td>
<td>Lynn Scroggins</td>
<td>Planner</td>
</tr>
<tr>
<td>Hoh Tribe</td>
<td>Vivian Lee</td>
<td>Chair</td>
</tr>
<tr>
<td></td>
<td>Kristina Currie</td>
<td></td>
</tr>
<tr>
<td>Skokomish Tribe</td>
<td>Denese LaClair</td>
<td>Chair</td>
</tr>
<tr>
<td></td>
<td>Ed Binder</td>
<td>Senior Planner</td>
</tr>
<tr>
<td>Quileute Tribe</td>
<td>Russell Woodruff Sr.</td>
<td>Chair</td>
</tr>
<tr>
<td></td>
<td>Dennis Crawford</td>
<td>Planner</td>
</tr>
</tbody>
</table>
5 What are the existing concerns along the region’s main roadways?

Elements of the existing infrastructure are inadequate, maintenance costs are increasing, safety is becoming a concern, and delays are unbearable at times. These concerns individually and collectively contribute to the operational quality of the region’s roadways for existing residents, businesses and visitors to the area.

Bridges

Five bridges are critical to transportation mobility in the region. Each bridge is a low-rise facility and must be opened for large vessels passing underneath them. These bridge openings create periodic congestion on the main roadways. Some bridges open up to 84 times in a month for durations of as much as 9 minutes. Exhibit 1-3 shows the average number of bridge openings per month and the average duration of each opening. Some of the bridges are also approaching the end of their useful life and present local safety concerns.

Exhibit 1-3

2005 Bridge Openings

<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>Year Built</th>
<th>Average boat openings per month</th>
<th>Average maintenance openings per month</th>
<th>Average bridge opening duration (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic-Chehalis River Bridge</td>
<td>1955</td>
<td>32</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>Historic-Heron Street Bridge</td>
<td>1949</td>
<td>2</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Historic-Simpson Ave Bridge</td>
<td>1928 Rebuilt: 1948</td>
<td>11</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Riverside Ave Bridge</td>
<td>1970</td>
<td>24</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Historic-Wishkah River Bridge</td>
<td>1925 Rebuilt: 2003</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Source: WSDOT Aberdeen Bridge Office

\(^1\) Actual vehicle delays may be longer than bridge opening duration.
Rail
The Port of Grays Harbor is served by three trains on the Puget Sound and Pacific Railroad during a typical day. In addition to trucks, rail is one of the main economical transportation modes to ship goods over long distances. In the Port of Grays Harbor, most trains are built in the Aberdeen Rail Yard, which provides limited storage capability. As a result, trains frequently block local roadways due to switching and coupling activity that extends beyond the rail yard. This train activity contributes to vehicle delay and lost productivity.

Regional Growth
Growth has been on an upward swing in the Aberdeen-Hoquiam vicinity since the 1990s, and population and employment forecasts for the region are positive. The Port of Grays Harbor is expecting new businesses, including a bio-diesel generation facility, and expansion of existing businesses. Other businesses and residential developments are expected along the study corridors and in surrounding communities. The projected growth will continue to increase traffic congestion on the local transportation system.

Traffic
Traffic congestion in the Aberdeen-Hoquiam vicinity occurs regularly on several roads and intersections. Roadway and intersection operating conditions are measured in terms of level of service (LOS), a standard developed by transportation engineers to identify traffic congestion levels based on vehicle delay. For example, the intersections of US 12 with Tyler Street and Chehalis Street adjacent to the Wishkah Mall currently have moderately high congestion levels (LOS C), requiring drivers to wait up to 30 seconds before getting through during a typical PM weekday commute home.

Delays due to bridge openings and train blockages further compound traffic congestion at these intersections. During peak clam-tide weekends, motorists may have to wait through several signal cycles at these intersections and roadways are typically at or above capacity. Furthermore, high truck volumes contribute to safety and operational issues on the region’s main roadways. By 2030, traffic forecasts indicate that several additional intersections in...
Aberdeen and Hoquiam would become congested, and some roadways would be over capacity.

Existing intersection LOS is generally good, with efficient traffic operations and minimal vehicle delay during the typical PM weekday commute. As shown in Exhibit 1-4, the majority of intersections in Aberdeen/Hoquiam/Cosmopolis operate at LOS A or B, with a few operating at LOS C or worse. By 2030, several intersections and arterials would have higher levels of traffic congestion compared to existing conditions, and a greater number of intersections would operate in the LOS E to F range.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Number of Intersections (2006)</th>
<th>Number of Intersections (2030)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or B</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>C or D</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>E or F</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

What is Level of Service?

Level of service (LOS) characterizes the operating conditions and vehicle delay of roads and intersections. LOS is reported in terms of grades from A through F, much like a school report card.

LOS A reflects little to no traffic congestion, with vehicle delays less than 10 seconds at signals and at stop signs.

LOS B reflects a high degree of traffic congestion. At intersections, minimal delay occurs, between 10 to 20 seconds at signalized intersections and 10 to 25 seconds at stop signs.

LOS C reflects a generally acceptable level of congestion for most drivers. At intersections, there is a minor delay, generally between 20 and 35 seconds at signalized intersections and 15 to 25 seconds at stop signs.

LOS D reflects increasing traffic volumes and congestion. At intersections, there is a delay between 35 and 55 seconds for signalized intersections and 25 to 35 seconds at stop signs.

LOS E reflects substantial traffic congestion and vehicle delay. The system is at or near capacity. Delays are between 55 to 80 seconds at signalized intersections and between 30 and 50 seconds at stop signs. Intersections operating at LOS E generally move the most traffic.

LOS F reflects highly congested traffic conditions. There are long delays, generally more than 80 seconds at signalized intersections and more than 50 seconds at stop signs.

Safety

Safety concerns along the US 101 corridor include vehicle/vehicle and vehicle/pedestrian incidents at several intersections and roadway segments in the study area. Safety concerns include vehicular collisions from red-light violators, intersections that have poor visibility and unclear signage, and locations that are unsafe for pedestrians. Collision data over the last 3 years (2003–2005) indicate that injury and fatal collisions occur more frequently on US 101 compared with the state highway average. Other corridors, including US 12 and State Route 109, had comparable collision rates to the state highway average. Two fatalities occurred on study area roadways during this time period, including a pedestrian who was struck at a midblock crossing. Local streets adjacent to US 101 also had several incidents, but did not result in any fatalities. Exhibit 1-5 shows intersection and corridor segments that have high collision rates in the study area.
What are HACs, HALs, and PALs?

According to the Washington State Department of Transportation:

A High Accident Corridor, or HAC, is a section of roadway greater than 1/4 mile in length having a significantly higher than average accident rate.

A High Accident Location, or HAL, is similar to a HAC, but is limited to roadway sections less than a 1/4 mile in length. HALs are typically located at intersections or driveways along a corridor and have a significantly higher than average accident rate.

A Pedestrian Accident Location (PAL) is a section of highway less than a 1/4 mile in length that has four or more pedestrian-related accidents over a 6-year period.

What were the conclusions from previous studies in the region?

Over the last 14 years, the Aberdeen/Hoquiam/Cosmopolis area has been studied extensively, as shown in Exhibit 1-6. A total of nine previous studies were reviewed, and recommendations were compiled from each study. Each study provided unique improvements for the study area, ranging from small intersection improvements to a larger, alterative truck corridor. Over 150 different projects were recommended in these studies. Additional summaries for each of the previous studies are included in Appendix G.
1-10 Background

What is a managed access facility?
Managed access facilities, according to the Washington State Access Classification System Chapter 468.52 WAC (7-14-94), includes all state highways that are not limited access highways. These highways are classified into five levels. Class 1 is the most restrictive, limiting the number of intersections to one per mile. Class 5, the least restrictive, requires intersections to be spaced at least 1/4 mile apart and allows private access connections every 125 feet.

Exhibit 1-6
Previous Study Locations

This report explored an alternative corridor of US 101 around and through the cities of Hoquiam and Aberdeen. This study recommended several minor roadway improvements and provided some initial recommendations for a new, managed access roadway south of the existing US 101 corridor.

Aberdeen-Hoquiam Corridor Project Final Environmental Impact Statement (WSDOT 2000)
This project evaluated and recommended appropriate transportation improvements to provide a more functional, safe, and efficient transportation corridor through the cities of Aberdeen and Hoquiam. The recommended preferred alternative
was a new managed access facility with high level bridges over the Wishkah and Hoquiam Rivers. The roadway alignment would primarily use existing roadways, including State Street and Port Industrial Road.

Port Industrial Road Strategic Analysis (Port of Grays Harbor 2006)
This study analyzed deficiencies related to access and competing users, such as rail, truck, and local traffic, on Port Industrial Road adjacent to the Port of Grays Harbor. The study identified several short-term and long-term alternatives intended to relieve congestion along the corridor, ranging from intersection channelization improvements to relocating rail or providing grade-separation on the corridor.

US 12 Route Development Plan – City of Aberdeen to Grand Mound (WSDOT 1999)
The US 12 Route Development Plan identified strategies for improving existing and forecasted deficiencies along US 12. It serves as a planning tool used by local and regional agencies when planning for new transportation and land uses along the corridor.

Washington State Department of Transportation Projects (WSDOT 2006)
Two main projects were identified by WSDOT: (1) improvements to the US 12 and Sargent Boulevard intersection, including channelization and signalization enhancements, and (2) repairing an area of unstable hillside at milepost 79.4 on US 101.

Route Development Plan State Route 107 and US 101 (WSDOT 1997)
This route development plan provided a detailed analysis of potential improvements to SR 107 and US 101 as a viable alternative for travelers, intermodal transfer, and shipment of freight destined for communities located south of Grays Harbor.

The Washington State Highway System Plan is an element of the Washington Transportation Plan that provides a comprehensive assessment of existing and projected 20-year deficiencies on the Washington State highway system.
A Highway between the Bays, A Management Plan for the State Route 105 Corridor (WSDOT 1998)
This study encourages voluntary partnerships for corridor enhancement projects and promotes coordination among corridor residents, communities, and agencies along the State Route 105 corridor.

The Washington Coastal Corridor US 101 Corridor Master Plan (WSDOT 1997)
The primary goal of the US 101 Coastal Corridor Master Plan was to identify improvements to provide world-class traveling experiences on US 101 while balancing the needs of communities, industry, and the general public who rely on the corridor. This plan identified interpretive strategies such as kiosks, signage, and pullouts that promote regional points of interest.
Chapter 2 Technical Project Evaluation Process and Recommended Project List

What's in Chapter 2?
Chapter 2 describes the project evaluation process, initial findings, and the overall outcome of the process.

1 How were projects selected?
The project team narrowed the list of over 150 projects recommended in the previous studies to 29 projects for more detailed review by stakeholder committee members. These 29 projects were prescreened by stakeholder committee members at their second meeting. At this meeting, several projects were deemed less important to the community and were removed from the list, and other projects were consolidated and included with other projects. The final project list recommended for more detailed analysis and review included 23 projects.

2 What goals and criteria were used in the evaluation process?
Each project was evaluated based on three primary goals that define the core values for the region:

▪ Promoting regional solutions.
▪ Stimulating economic vitality and growth.
▪ Supporting multi-modal solutions.

Several criteria were developed for each goal to evaluate each project. Each criterion was defined by a measure of effectiveness, or a qualitative or quantitative standard, that was used to rate each project. Exhibit 2-1 illustrates this process.

Where can I find more information about each of the proposed projects?
Project descriptions for the top 10 projects are included in Chapter 3 Project Descriptions and Cost Estimates.
Exhibit 2-1
Project Goals and Criteria

<table>
<thead>
<tr>
<th>GOALS</th>
<th>CRITERIA</th>
<th>MEASURES OF EFFECTIVENESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PROMOTE REGIONAL SOLUTIONS</td>
<td>Does the project serve important regional and local destinations?</td>
<td>Relative degree in which the project serves important community destinations</td>
</tr>
<tr>
<td></td>
<td>Does the alternative have broad regional support?</td>
<td>Relative degree of project support, opposition, and multi-agency partnering opportunities</td>
</tr>
<tr>
<td></td>
<td>Is the alternative regional in nature?</td>
<td>Benefit to regional through travel and tsunami evacuation routes</td>
</tr>
<tr>
<td>2. PROMOTE ECONOMIC VITALITY AND GROWTH</td>
<td>Does the alternative support economic growth?</td>
<td>Relative improvement to overall economic prosperity</td>
</tr>
<tr>
<td></td>
<td>Does the project improve access to tourist destinations and economic centers?</td>
<td>Relative degree in which the improvement enhances accessibility to tourist destinations and economic centers</td>
</tr>
<tr>
<td></td>
<td>Is it a cost effective investment?</td>
<td>Cost effectiveness, including long term maintenance costs for aging infrastructure</td>
</tr>
<tr>
<td></td>
<td>Does it have any negative impact to local businesses?</td>
<td>Business access or parking impacts</td>
</tr>
<tr>
<td></td>
<td>Does the project have potential environmental impacts and mitigation costs?</td>
<td>Relative degree of environmental impacts and mitigation costs</td>
</tr>
<tr>
<td>3. SUPPORTS MULTI-MODAL SOLUTIONS</td>
<td>Does the project reduce delay at intersections?</td>
<td>2006 and 2030 PM peak hour Level of Service (LOS)</td>
</tr>
<tr>
<td></td>
<td>Does it improve safety?</td>
<td>Accident reduction potential</td>
</tr>
<tr>
<td></td>
<td>Does it reduce the impact of bridge openings or provide an alternative local route?</td>
<td>Delay reduction</td>
</tr>
<tr>
<td></td>
<td>Does the project serve important regional and local destinations?</td>
<td>Proximity to freight oriented businesses and impact or benefit to rail transportation</td>
</tr>
<tr>
<td></td>
<td>Does it improve transit access or reliability?</td>
<td>Number of transit routes improved</td>
</tr>
<tr>
<td></td>
<td>Does it encourage pedestrian or bicycle travel or improve safety?</td>
<td>Improvement to pedestrian or bicycle travel</td>
</tr>
</tbody>
</table>
3 What did the project evaluation process involve?

The final project list was evaluated and ranked by the project team during an all-day project evaluation workshop. Members from WSDOT, GHCOG, Exeltech, and Parametrix worked to objectively rate each of these projects for each specific criterion based on its measure of effectiveness. The project team rated each project on a scale from 1 to 4, where a 1 indicated little or no improvement and a 4 resulted in the greatest impact or improvement for each criterion. Ratings were based on a relative scale, meaning projects were compared to each other when determining the ratings. Average scores from the 14 criteria were prepared for each project, and an initial ranked project list was developed.

4 What was the final outcome of the project evaluation process?

A “Top 10” project list was developed to best represent the three regional goals. The final outcome of this process was an initial ranked project list recommended by the project team, which is shown in Exhibit 2-2. This initial ranked project list was circulated to the stakeholder committee for review prior to the third and final stakeholder committee meeting.
5 What was the final decision of the stakeholder committee?

Stakeholder committee members confirmed the top 10 projects recommended by the project team at their final meeting. Further discussion to develop an even shorter high-priority project list resulted in the stakeholder committee deciding to prioritize five projects and a separate top maintenance priority project. The final recommendation from the stakeholder committee is summarized in Exhibit 2-3. This information was transmitted to Senator Doumit in the letter shown in Exhibit 2-4.
Exhibit 2-3
Stakeholder Committee Project Priority List

Full Truck Route Alternative - $386M
The Stakeholder Committee has identified the Full Truck Route as the top priority project. As an alternative to funding the entire Truck Route, the Stakeholder Committee recommends moving forward with the project in increments and pledges their support to carry forward this process. Their recommendation is as follows:

1a. Funding for re-evaluation of the NEPA EIS – re-evaluation of the EIS is needed to begin any construction. Funding for early engineering, including phasing analysis - $5M
1b. Funding for environmental documentation, based on results of phasing analysis - $3M
1c. Funding for preliminary engineering and construction of Truck Route segments based on phasing analysis results - $4M to $378M

(Priority 1a and 1b must be done first)

Tri-City Operational Improvements - $10M
The Tri-City Operational Improvements project provides more than 20 needed and visible improvements that can be implemented in the short term. The Stakeholder Committee recommends full funding for this project.

Wishkah Mall Access Improvements - $4M
To alleviate identified traffic problems caused by access issues at this regional destination, the Stakeholder Committee recommends funding the project in two phases.

3a. Funding for emergency vehicle access, turning movement and access revisions, signal interconnection, and re-striping the internal parking area - $500K
3b. Funding includes an investigation of constructing an alternate access road on the north side of US 12. The project would include public involvement, right-of-way acquisition, preliminary engineering and construction - $3.5M

Maintenance Priority Seismic Improvements - $20M
The regional highway system in the tri-city area is connected by five aging bridges, two of which require funding for seismic upgrades. Completion of this project is necessary to maintain access to regional hospitals, and fire and police protection in the event of a natural disaster. The estimated costs for these repairs are listed below:

- Chehalis River Bridge - $10M
- Wishkah River (Heron Street Bridge) - $10M

Intelligent Transportation Systems (ITS) - $9M
This project would install changeable message signs, photo enforcement cameras, closed circuit television, and Highway Advisory Radio. Actual locations and configurations would be determined during design.

Improve Port Industrial Road - $4M
This project would improve capacity, traffic flow, and safety by providing right and left turn lanes at key intersections and other improvements as identified in the Port Industrial Road Strategic Analysis.
Exhibit 2-4
Final Letter to Senator Doumit

Grays Harbor Council of Governments

115 S. Wooding St.
Aberdeen, WA 98520

Voice
W. Coty (360) 537-4386
EL Coty (360) 482-1665
Fax (360) 537-4387
Internet Address
http://www.ghcoc.org

MEMBER ENTITIES:
City of Cosmopolis
City of Elma
City of Hoquiam
City of McCleary
City of Montesano
City of Oakville
City of Ocean Shores
City of Westport
Grays Harbor County
Grays Harbor PUD #1
Grays Harbor Transportation Authority
Port of Grays Harbor
Quinault Indian Nation
Timberland Regional Library
Columbia-Pacific RMC/EDD

VICKI J. CUMMINGS
Executive Director

October 24, 2006

The Honorable Senator Mark Doumit
PO Box 40419
Olympia, WA 98504-0419

Re: Priority Recommendations from the Grays Harbor County US 101 Regional Circulation Project

Dear Senator Doumit:

As you know, for the past few months the communities of Aberdeen, Hoquiam, and Cosmopolis have been working together as stakeholders in the US 101 Regional Circulation Project. Their goal, to identify issues causing congestion in the corridor and develop solutions to those issues, has been accomplished.

At the onset of the process you requested we supply to you a prioritized list of projects before the beginning of the next session. It is with deep appreciation that we now share with you the Grays Harbor County Stakeholder Committee Project Priority List. The Priority List, developed in facilitation with the Grays Harbor Council of Governments and the Washington State Department of Transportation, identifies long term, short term, and emergency maintenance projects. The Stakeholders were very prudent in developing these specific projects as each of the Priority Projects identified will address a subset of several smaller projects.

We are grateful for this opportunity to share our regional priorities with you. We realize this project would not have been possible without your investment in the region. Please accept our gratitude for your dedication and your commitment to support the needs of our communities. Thank you Senator.

Respectfully,

Commissioner Bob Beerbower
Grays Harbor County Commissioner
GHCOCG Representative
SWRTPC Representative

Enclosure: 1

Vicki Cummings
Executive Director
Chapter 3 Project Descriptions and Cost Estimates

What’s in Chapter 3?
Chapter 3 provides a detailed description, potential benefits and impacts, and preliminary cost estimates for the top 10 projects. Each project has its own information sheet.

1 How are the top 10 projects described?
The following pages provide summary level information for each of the top 10 projects recommended in the evaluation process. Each project sheet provides a brief project description, the benefits and/or impacts associated with each project, and the total estimated project costs. The top right corner of each sheet indicates how the project was rated during the evaluation process and provides a project vicinity map. The projects are listed in priority order based on the consensus of the stakeholder committee, with the most important project listed first. The first project listed, complete seismic upgrades to area bridges, was the only maintenance priority project and was prioritized separately from the rest of the projects.

2 How were the project cost estimates derived?
Cost estimates for each of the top 10 projects include all costs from beginning to end. This includes initial project studies, preliminary engineering and design, environmental documentation, right-of-way acquisition, project construction and construction management, and sales tax. A contingency budget to cover unexpected costs that may occur during any phase of the project was also included in the total cost estimate. All project costs were estimated using 2006 dollars. Exhibit 3-1 summarizes the preliminary cost estimates for each project.

Where can I find more information about specific project-related costs?
Additional cost estimation information is provided in Appendix H, US 101 Regional Circulation Project Cost Estimate Report, which is located on the attached CD along with all other report appendices. This report provides a cost breakdown of each project into the following elements:
- Right-of-Way
- Roadway Construction
- Bridge Construction
- Preliminary Engineering
- Construction Management
- Contingencies
- Sales Tax
Exhibit 3-1
Preliminary Cost Estimates

<table>
<thead>
<tr>
<th>Project</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Seismic Upgrades to Area Bridges</td>
<td>$20,000,000</td>
</tr>
<tr>
<td>Full Truck Corridor</td>
<td>$386,000,000</td>
</tr>
<tr>
<td>Tri-City Operational Improvements</td>
<td>$9,887,000</td>
</tr>
<tr>
<td>Wishkah Mall Access Improvements</td>
<td>$4,000,000</td>
</tr>
<tr>
<td>Intelligent Transportation Systems (ITS)</td>
<td>$9,280,000</td>
</tr>
<tr>
<td>Improve Port Industrial Road</td>
<td>$3,598,000</td>
</tr>
<tr>
<td>Cosmopolis Downtown Revitalization</td>
<td>$1,329,000</td>
</tr>
<tr>
<td>Rail Car Storage East of Aberdeen</td>
<td>$4,300,000</td>
</tr>
<tr>
<td>Replace Existing Hoquiam Bridges</td>
<td>$141,000,000</td>
</tr>
<tr>
<td>Relocate Rail Line South of Port Industrial Road</td>
<td>$6,200,000</td>
</tr>
</tbody>
</table>
Complete Seismic Upgrades to Area Bridges

1 What is the project?
This project would provide seismic upgrades to two bridges in the tri-city area, the Chehalis River Bridge (built in 1951) and the Heron Street Bridge over the Wishkah River (built in 1949). The bridge locations are highlighted in Exhibit 3-2. Both bridges require stronger pier foundations to withstand a major earthquake.

The upgrades to the Chehalis River Bridge include strengthening the two-bascule pier foundations with drilled shafts. The upgrades to the Heron Street Bridge include strengthening the center pier foundation with drilled shafts.

2 What are the potential benefits and impacts of this project?
Seismic upgrades to these two bridges are vital to maintain access to regional health care facilities and provide fire and police protection in the event of a natural disaster. If these bridges were to fail during an earthquake, residents of South Aberdeen and Cosmopolis would be isolated from the rest of the community. The alternate route to the Chehalis River Bridge via SR 107 and US 12 is approximately 20 miles. This would add time and cost for moving people and goods through the region.

3 What is the estimated project cost?
Seismic upgrades to each bridge would cost approximately $10,000,000, resulting in a total project cost of $20,000,000.
Truck Route Alternative

1 What is the project?

The Truck Route Alternative project was initially identified in the early 1970s. This project would provide an alternate truck route corridor from the State Route (SR) 109/SR 109 Spur intersection in Hoquiam to the US 101/Chehalis Street intersection in Aberdeen, as shown in Exhibit 3-3. A new four- to five-lane (two lanes in each direction and left turn lanes) limited access truck route would parallel US 101 through South Hoquiam, the Port of Grays Harbor, and Aberdeen. Two new high-level, fixed span bridges over the Hoquiam River and Wishkah River would be provided. Other design features include a new alignment from Wishkah Street to State Street and completing grade-separated ramps at the US 12/US 101 interchange. The new corridor would be a designated truck route but would also provide an alternate route to US 101 for through and local traffic.

The truck route project could be constructed in phases, and four options were analyzed, including:

- Full Truck Corridor
- Half Truck Corridor
- East Quarter Truck Corridor
- West Quarter Truck Corridor

The full truck corridor option would consist of several smaller elements and could be constructed over several years as project funds become available. Before this project can move forward into design and construction, WSDOT would need to update the Final Environmental Impact Statement (EIS) (FHWA and WSDOT et al. 2000) completed in the late 1990’s.
New truck corridor alignment between State Street and Wishkah Street in Aberdeen.

2 What are the potential benefits and impacts of this project?

This project would greatly improve motorist travel times and circulation patterns on US 12, US 101, and SR 109 by removing some truck and through traffic. Areas with high congestion, particularly in downtown Aberdeen and downtown Hoquiam, would see improved traffic flow and intersections would operate more efficiently, as shown in Exhibit 3-4. Truck mobility and circulation into the Port of Grays Harbor would improve, and the majority of trucks would no longer compete with vehicular traffic on US 101 through Aberdeen and Hoquiam. Most importantly, the full truck route would provide additional crossings over the Hoquiam River and Wishkah River. The new bridges would provide additional access to emergency responders, would reduce vehicle traffic on the existing bridges, and would not open to vessel traffic.

<table>
<thead>
<tr>
<th>Exhibit 3-4 Intersection Level of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Level of Service A or B</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Number of Intersections (2006)</td>
</tr>
<tr>
<td>Number of Intersections (2030 without the Full Truck Corridor)</td>
</tr>
<tr>
<td>Number of Intersections (2030 with the Full Truck Corridor)</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>Level of Service C or D</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Level of Service E or F</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

1. The full truck corridor would eliminate one study intersection
3 What is the estimated project cost?

The project costs have been calculated separately for different project elements and segments and are shown in Exhibit 3-5. The full truck corridor, including a reevaluation of the National Environmental Policy Act (NEPA) EIS and construction of all the truck corridor elements, would cost approximately $386,000,000.

Exhibit 3-5

<table>
<thead>
<tr>
<th>Truck Route Cost Summary</th>
<th>West Quarter Truck Corridor</th>
<th>Half Truck Corridor</th>
<th>East Quarter Truck Corridor</th>
<th>Full Truck Corridor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reevaluation of the NEPA EIS; early engineering including phasing analysis</td>
<td>$5,000,000</td>
<td>$5,000,000</td>
<td>$5,000,000</td>
<td>$5,000,000</td>
</tr>
<tr>
<td>Environmental Documentation</td>
<td>$3,000,000</td>
<td>$3,000,000</td>
<td>$3,000,000</td>
<td>$3,000,000</td>
</tr>
<tr>
<td>SR 109 Spur Junction to SR 109 at Paulson Road</td>
<td>$3,600,000</td>
<td></td>
<td></td>
<td>$3,600,000</td>
</tr>
<tr>
<td>New Alignment from Paulson Road to 5th Street</td>
<td>$18,900,000</td>
<td></td>
<td></td>
<td>$18,900,000</td>
</tr>
<tr>
<td>New Alignment from 5th Street along the Railroad to 10th Street</td>
<td>$5,700,000</td>
<td></td>
<td>$5,700,000</td>
<td></td>
</tr>
<tr>
<td>New Hoquiam River Bridge</td>
<td>$136,000,000</td>
<td></td>
<td></td>
<td>$136,000,000</td>
</tr>
<tr>
<td>22nd/23rd Streets to 30th Street</td>
<td></td>
<td>$16,100,000</td>
<td>$16,100,000</td>
<td>$16,100,000</td>
</tr>
<tr>
<td>New Alignment from 30th Street to Port Industrial Road</td>
<td>$10,500,000</td>
<td>$8,000,000</td>
<td>$10,500,000</td>
<td></td>
</tr>
<tr>
<td>Port Industrial Road Improvements*</td>
<td></td>
<td></td>
<td></td>
<td>$3,600,000</td>
</tr>
<tr>
<td>Port Industrial Road to Wishkah Street</td>
<td></td>
<td>$900,000</td>
<td>$900,000</td>
<td>$900,000</td>
</tr>
<tr>
<td>New Alignment from Wishkah Street to State Street</td>
<td></td>
<td>$9,700,000</td>
<td>$9,700,000</td>
<td>$9,700,000</td>
</tr>
<tr>
<td>State Street from Park Street to South K Street</td>
<td>$2,600,000</td>
<td>$2,600,000</td>
<td>$2,600,000</td>
<td></td>
</tr>
<tr>
<td>US 101/US 12 Connection</td>
<td>$40,000,000</td>
<td>$40,000,000</td>
<td>$40,000,000</td>
<td></td>
</tr>
<tr>
<td>New Wishkah River Bridge</td>
<td>$134,000,000</td>
<td>$134,000,000</td>
<td>$134,000,000</td>
<td></td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>$175,800,000</td>
<td>$221,800,000</td>
<td>$198,800,000</td>
<td>$386,000,000</td>
</tr>
</tbody>
</table>
Tri-City Operational Improvements

1 What is the project?

The Tri-City Operational Improvements project provides 17 needed and visible improvements that can be implemented in the short term. Most of these projects are small in nature and are limited to a single intersection or a few city blocks. Exhibit 3-6 illustrates the location of each tri-city operational improvement, and Exhibit 3-7 provides a brief description of each project.

2 What are the potential benefits and impacts of this project?

The Tri-City Operational Improvements would provide each city with several small but beneficial projects that would enhance the quality of the regional transportation system. Each project in the Tri-City Operational Improvements is relatively low cost and would provide a quick and immediate benefit to the region. Several projects, including constructing curb extensions, Americans with Disabilities Act (ADA) compliant ramps, and sidewalks, would provide non-motorized safety and accessibility improvements in the tri-city area.

3 What is the estimated project cost?

The full funding cost for all of the Tri-City Operational improvements would be approximately $10,000,000. The stakeholder committee has recommended full funding be allocated for this project.
Tri-City Operational Improvement Projects

<table>
<thead>
<tr>
<th>Map Location</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pedestrian and access improvements</td>
</tr>
<tr>
<td>B</td>
<td>Redesign or improve the intersection of Lincoln Street/6th Street to provide easier access to downtown Hoquiam</td>
</tr>
<tr>
<td>C</td>
<td>Improve signage, lighting, and sidewalk in the vicinity of the Riverside Bridge</td>
</tr>
<tr>
<td>D</td>
<td>Provide pedestrian safety, beautification, and economic development improvements</td>
</tr>
<tr>
<td>E</td>
<td>Approach improvements to the Simpson Avenue Bridge</td>
</tr>
<tr>
<td>F</td>
<td>Improve intersection operations to increase capacity and safety</td>
</tr>
<tr>
<td>G</td>
<td>Provide a right-turn pocket on westbound First Street</td>
</tr>
<tr>
<td>H</td>
<td>Replace the old span wire signal system</td>
</tr>
<tr>
<td>I</td>
<td>Increase right-turn radius from westbound Wishkah Street</td>
</tr>
<tr>
<td>J</td>
<td>Increase left-turn radius from southbound Park Street</td>
</tr>
<tr>
<td>K</td>
<td>Extend sidewalk bulb-out project (shown in green in Exhibit 3-6)</td>
</tr>
<tr>
<td>L</td>
<td>Intersection improvements and restriping at the South Aberdeen Fire Station</td>
</tr>
<tr>
<td>M</td>
<td>Install a left-turn pocket at the Mill Creek Pedestrian Link</td>
</tr>
<tr>
<td>N</td>
<td>Sidewalk Improvements in downtown Cosmopolis</td>
</tr>
<tr>
<td>O</td>
<td>Construct center left-turn lane</td>
</tr>
<tr>
<td>Downtown Hoquiam ADA Ramp Improvements in the Central Business District (Not shown on map)</td>
<td>Install 96 new Americans with Disabilities Act (ADA) accessible ramps, upgrade 144 existing ramps, and complete sidewalks along all state routes in Hoquiam.</td>
</tr>
<tr>
<td>Activate the Aberdeen Traffic Actuation System (Not shown on map)</td>
<td>Activate traffic loops along US 101 through downtown Aberdeen</td>
</tr>
</tbody>
</table>
Wishkah Mall Access Improvements

1 What is the project?

The Wishkah Mall Access Improvements project shown in Exhibit 3-8 would provide channelization improvements and access revisions to the Wishkah Mall in two phases. The first phase would fund a new emergency vehicle access, turning movement and access revisions, signal coordination between the two signals located along US 12, and re-stripping of the internal Wal-Mart and Top Foods parking area. The second phase would include analysis and construction of an alternate access road, located on the north side of US 12, and removal of several driveways along the highway.

2 What are the potential benefits and impacts of this project?

This project would improve access from US 12 to the Wishkah Mall. This includes reducing vehicle delays at site access driveways, improving safety by changing access control at some mall driveways, and providing a dedicated emergency vehicle access route that is not blocked by a train. This project would provide some public funds for improvements to private property; however, since Wal-Mart and adjacent businesses are critical to the economic vitality of the region, the stakeholder committee agreed full funding should be allocated for this project.

3 What is the estimated project cost?

The total project cost for both phases is approximately $4,000,000.

Exhibit 3-8
Phased Wishkah Mall Access Improvements

The primary access to the Wishkah Mall from Heron Street.
Intelligent Transportation Systems (ITS)

1 What is the project?
This project would install ITS infrastructure at strategic locations to alleviate congestion, improve safety, and provide driver information. ITS encompass a broad range of technologies, including:

- Variable Message Signs
- Closed Circuit Television Cameras
- Highway Advisory Radio (HAR)
- Data Stations
- Road/Weather Information Systems
- Photo Detection Cameras

The ITS project would also include a planning phase analysis to integrate these technologies into the region’s infrastructure. Final locations and configurations would be confirmed upon further analysis during this planning phase and final design. Examples of ITS are shown in Exhibit 3-9.

2 What are the potential benefits and impacts of this project?
The ITS technologies can have an immediate benefit to traffic operations during congested times, including:

- Warning motorists of bridge openings, train blockages, collisions, road construction, and severe traffic congestion; alerting them to alternative routes; and potentially reducing congestion and delays.
- Reducing red-light violations at high accident intersections.
- Providing information to local police and fire departments in the event of an accident or emergency in Aberdeen, Hoquiam, and Cosmopolis.

3 What is the estimated project cost?
The estimated cost of this project is $9,000,000.
Improve Port Industrial Road

1 What is the project?

This project would include several improvements to Port Industrial Road, such as intersection turn lanes, two traffic signals, sidewalks, storm drain facilities, proposed pavement overlay, and a center two-way left-turn lane. Exhibit 3-10 illustrates the improvements along the corridor.

2 What are the potential benefits and impacts of this project?

This project would improve traffic flow, roadway capacity, and pedestrian and vehicle safety along the entire corridor. The project would benefit local traffic destined for Port of Grays Harbor businesses and through traffic using Port Industrial Road to avoid traffic congestion on US 101. Construction of the two-way left-turn lane and other intersection turn lanes would remove turning vehicles from through lanes, improving traffic flow along the corridor. The new traffic signals would shorten wait times at two of the higher-volume intersections in the corridor. The new traffic signals would also create additional traffic flow gaps at stop-sign controlled intersections on Port Industrial Road. As a result, vehicle wait times at both of the new signalized intersections and at unsignalized intersections would improve.

3 What is the estimated project cost?

The total construction cost for all of the proposed improvements is approximately $3,600,000.
Cosmopolis Downtown Revitalization

1 What is the Project?

The Cosmopolis Downtown Revitalization project would improve the downtown area of Cosmopolis by constructing the following improvements between “C” Street and “F” Street on the west side of US 101, as shown in Exhibit 3-11:

▪ Replacing the aging sidewalks
▪ Improving street lighting and storm drainage facilities
▪ Reconstructing utilities underground
▪ Installing ADA compliant wheelchair ramps
▪ Retrofitting existing wheelchair ramps with truncated domes
▪ Adding landscaping
▪ Completing the Cosmopolis sidewalk project, along the west side of US 101 between “F” Street and “H” Street and a portion extending 300 feet to the south from “C” Street

2 What are the potential benefits and impacts of this project?

This project would revitalize Cosmopolis with improved pedestrian-friendly and aesthetically pleasing facilities. After Cosmopolis partially reconstructed the west side of US 101, many downtown businesses reinvested in their store frontage and eight new businesses opened creating 40 new fulltime jobs with a private investment of over $1 million. This resulted in a more attractive and economically viable business district.

3 What is the estimated project cost?

This project is expected to cost approximately $1,300,000.
Rail Car Storage
East of Aberdeen

1 What is the project?
This project includes the design and construction of a rail car storage yard east of Aberdeen to relieve rail conflicts in downtown Aberdeen from train switching movements across at-grade street crossings. Two new railroad sidings would be constructed to allow one train to pass another; the new sidings could also potentially be used for temporary rail car storage. Potential storage locations include Oakville, Aberdeen Junction, and other locations east of Aberdeen. These potential rail car storage locations are shown in Exhibit 3-12.

2 What are the potential benefits and impacts of this project?
This project would relieve rail congestion and minimize conflicts at rail/roadway crossings in the downtown Aberdeen area. Train cars are currently stored on the rail sidings south of State Street to allow larger trains to pass. Relocating the rail car storage area east of Aberdeen would greatly reduce trains blocking the Wishkah Mall access driveways. This would reduce traffic congestion caused by trains in the mall vicinity and along State Street.

3 What is the estimated project cost?
This project would cost approximately $4,300,000.

Exhibit 3-12
Future Rail Car Storage Locations East of Aberdeen
Replace Existing Hoquiam Bridges

1 What is the project?

This project would replace the two existing Hoquiam River Bridges, as shown in Exhibit 3-13. Two alternative alignment options for replacing these structures include two high-level, fixed-span bridges or replacing each bridge with low-level, moveable facilities at the same location. This project would likely require preparation of an environmental impact statement prior to constructing the two new bridges.

2 What are the potential benefits and impacts of this project?

The high-level fixed-span crossing footprint would be over half a mile long to obtain an adequate clearance over the Hoquiam River. As a result, existing businesses near the Hoquiam River could be displaced or affected. The new high-level bridges would benefit local and through traffic mobility by eliminating periodic congestion caused by bridge openings.

The two new low-level bridges would have lower impacts to existing businesses compared to a new high-level facility, but would continue to have long-term maintenance costs associated with the mechanical bridge opening system. The low-level bridges may also have greater environmental impacts to fish habitat areas and to vessel navigation requirements from the U.S. Coast Guard.

3 What is the estimated project cost?

This project is expected to cost approximately $141,000,000 for two low-level movable bridges and approximately $154,000,000 for two new high-level structures.
Relocate Rail Line South of Port Industrial Road

1 What is the project?

This project would relocate the existing Puget Sound and Pacific Railroad (PS&P) line between the vicinity of the Port Industrial Road/E. Terminal Way and 30th Street. The new rail alignment would traverse through the Port of Grays Harbor, as shown in Exhibit 3-14, and would eliminate the two existing at-grade railroad crossings along the corridor. The new railroad alignment would continue to operate within the existing and future industrial land uses.

2 What are the potential benefits and impacts of this project?

This project would eliminate all vehicle delays associated with trains crossing Port Industrial Road and greatly improve roadway operations through the Port. The project would also benefit residential property adjacent to the existing railroad alignment by reducing noise and other impacts from the rail line.

3 What is the estimated project cost?

The project is expected to cost approximately $6,200,000.
Chapter 4 Next Steps

1 What are the next steps in the process?

The prioritized transportation improvement project list will be circulated to the stakeholder committee, the Coastal Caucus, the Southwest Washington Regional Transportation Planning Organization, and community members of the cities of Aberdeen, Hoquiam, and Cosmopolis. The list will provide direction to local elected officials and other community leaders and will provide a blueprint for transportation improvements over the next several years. The list has also been provided to the Washington State House and Senate members representing Grays Harbor County for the upcoming year 2007 legislative session. A copy of the letter that supplies the prioritized list to the Legislator is provided as Exhibit 2-4 in Chapter 2 of this document.

While the recommended project list was identified as the top priority for the region at this time, it should not be considered a static list. The stakeholder committee members, with direction and involvement from GHCOG and WSDOT, agreed to reevaluate the prioritized list every couple of years to ensure the project cost estimates have not significantly changed, to add or delete projects from the list, and to continue to seek funding for each of the top projects.

2 Who can I contact for more information?

<table>
<thead>
<tr>
<th>Nazmul Alam, Project Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSDOT Olympic Region Planning Office</td>
</tr>
<tr>
<td>PO Box 47440</td>
</tr>
<tr>
<td>Olympia, WA 98504-7440</td>
</tr>
<tr>
<td>Phone: (360) 357-2722</td>
</tr>
<tr>
<td>E-mail: alamn@wsdot.wa.gov</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vicki Cummings, Executive Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grays Harbor Council of Governments</td>
</tr>
<tr>
<td>115 South Wooding Street</td>
</tr>
<tr>
<td>Aberdeen, WA 98520</td>
</tr>
<tr>
<td>Phone: (360) 537-4386</td>
</tr>
<tr>
<td>E-mail: vcummings@techline.com</td>
</tr>
</tbody>
</table>
References

Washington State Department of Transportation Olympic Region Aberdeen Project Engineer Office. August 7, 2006. Personal communication (meeting with John Hart, Project Engineer, regarding the history and current issues involving the Aberdeen-Hoquiam Corridor Project EIS).

Washington State Department of Transportation Real Estate Services. August 2006. Personal communication (conversation regarding real estate market inflation in Grays Harbor County).
List of Preparers

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Perlic</td>
<td>Parametrix</td>
<td>Quality Control</td>
</tr>
<tr>
<td>Josh Johnson</td>
<td>Parametrix</td>
<td>Traffic Analysis</td>
</tr>
<tr>
<td>Nazmul Alam</td>
<td>WSDOT</td>
<td>Guidance Review/Project Manager</td>
</tr>
<tr>
<td>Yvette Liufau</td>
<td>WSDOT</td>
<td>Highway Collision Analysis</td>
</tr>
<tr>
<td>Theressa Julius</td>
<td>GHCOG</td>
<td>Local Street Collision Analysis</td>
</tr>
<tr>
<td>Bernie Chaplin</td>
<td>Exeltech</td>
<td>Quality Control</td>
</tr>
<tr>
<td>Leroy Slemmer</td>
<td>Exeltech</td>
<td>Cost Estimation</td>
</tr>
<tr>
<td>Chris Runner</td>
<td>Exeltech</td>
<td>Cost Estimation</td>
</tr>
<tr>
<td>Vicki Steigner</td>
<td>WSDOT</td>
<td>Guidance & Review</td>
</tr>
<tr>
<td>Vicki Cummings</td>
<td>GHCOG</td>
<td>Guidance & Review</td>
</tr>
</tbody>
</table>
List of Appendices

Appendix A – Steering Committee and Open House Meeting Summaries

Appendix B – Newspaper Articles

Appendix C – Bridge Openings and Rail Crossing Information

Appendix D – Future Planned Development

Appendix E – Traffic Analysis Report

Appendix F – US 101 Regional Circulation Project Collision Analysis

Appendix G – Past Study Summary Sheets

Appendix H – Cost Estimate Report

Appendix I – Project Summary Descriptions