strategies that promote transportation efficiency.

“The Research Office made valuable contributions to WSDOT’s climate change work over the past year by helping WSDOT meet the requirements for reducing green house gas emissions.”

—Anne Criss, Climate Change Team Lead, WSDOT, Public Transportation Office

We Do Research That Seizes Opportunities

We also partner with other organizations to conduct research. This collaboration leverages ten dollars of research for every dollar that WSDOT contributes.

Partners in Research

Transportation Research Board (TRB)

TRB is a division of the National Research Council — the principal operating agency of the National Academies. WSDOT participates in TRB technical committees, project and advisory panels, expert task groups, and policy study panels to influence the selection and conduct of national research projects to best meet our needs.

Washington State Transportation Center (TRAC)

TRAC is a cooperative transportation research partnership of the Washington State University (WSU), the University of Washington (UW), and the Washington State Department of Transportation (WSDOT). TRAC coordinates both state and commercial transportation research efforts and develops national research opportunities and quickly responds to research needs.

Transportation Northwest (TransNow)

TransNow, led by the University of Washington, is a Regional University Transportation Center (UTC) that fosters cooperative transportation research and education. Through our partnership we are able to leverage research funding to quickly achieve results and also foster a transportation workforce.

Border Policy Research Institute (BPRI)

The BRPI is a multi-disciplinary research institute at Western Washington University with a focus on policy research related to the Canada-U.S. border. Research priorities include trade and transportation, economics, environment, immigration and border security.

Region X Transportation Consortium

The Region X Transportation Consortium brings together four state departments of transportation and four university transportation centers (UTCs) in the states of Washington, Alaska, Idaho, and Oregon. The purpose of the consortium is to facilitate collaboration on transportation research and education projects of mutual interest.

Federal and State Agencies

WSDOT frequently partners with the Federal Highway Administration and other state DOTs to conduct research on specific projects and to improve knowledge transfer on specific topics.

“The Washington State Department of Transportation has a well deserved reputation as an innovative organization that is willing to make changes to improve the way it does business. WSDOT’s active research program leverages its resources through participation in national programs and research partnerships.”

—Robert Skinner, Executive Director, Transportation Research Board, National Research Council

What We Do

Research Office Functions:

• Fund Research Activities
• Direct and Manage Research Activities
• Manage Student Studies
• Assist with Research Study Design
• Contract with Universities
• Market Agency Research
• Support Implementation of Research
• Develop Synthesis Reports
• Conduct Surveys
• Connect Staff to Past and Ongoing Research

Who Uses Research

<table>
<thead>
<tr>
<th>Office</th>
<th>% of expenditure</th>
<th>RAC's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Urban Planning</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Community Design</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Ferries</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>Freight</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>Public Transportation</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Geo Services</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Data Office</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Traffic</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Bridge</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>Real Estate</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>29.2</td>
<td></td>
</tr>
</tbody>
</table>

The chart includes projects funded by the Research Office and by other WSDOT partners.

*Research Advisory Committees (RAC’s): WSDOT committees that provide input to the research program on needs and priorities and promote research.

MMT = Multimodal Transportation
I & F = Information and Finance
Ops = Operations
PD = Project Delivery

For more information contact:

Leni Oman
Director, Office of Research & Library
Washington State Department of Transportation
360-705-7974
OmanL@wsdot.wa.gov
Research Office Website:
http://www.wsdot.wa.gov/Research/

“Research plays a key role in keeping WSDOT efficient by developing and testing innovative approaches in all aspects of our work. Research has helped inform the Moving Washington initiative through studies on the causes of congestion, safety, signal timing, tolling strategies, rapid construction, construction timing, and strategies to support use of HOV/HOT lanes, and transit. Research results are also helping develop a sustainable transportation system by improving the life-cycle of our roadways and minimizing the impact of our work on the environment. Through research, we are able to look toward the future and prepare for changes in transportation management.”

—Jerry Lenzi, Chief Engineer
Assistant Secretary of Engineering and Regional Operations, WSDOT

Transportation research addresses specific problems and questions that improve the agency’s ability to deliver transportation projects and operate a safe and efficient transportation system.

Americans with Disabilities Act (ADA) Information: Materials can be provided in alternative formats (tape, or on computer disk for people with disabilities by calling the Office of Equal Opportunity (OEO) at (360) 705-7097. Persons who believe their Title VI protection has been violated, may file a complaint with WSDOT’s Office of Equal Opportunity (OEO). For Title VI complaint forms and advice, please contact OEO’s Title VI Coordinator at (360) 705-7096.
Bituminous Surface Treatment Protocol

With constrained budgets and the increased cost of paving materials, a fundamental issue is how to best allocate the available funding for preservation projects. Since there is a significant annualized cost difference between bituminous surface treatment (BST) and hot mix asphalt (HMA) resurfacing, this research examined the expanded use of BSTs on selected routes with high levels of traffic. The study also examined effects of alternating BST and HMA overlays and effects of BST use on system performance. The result was a modification to the traffic level and a change in WSDOT’s specifications.

“BST is one of the national leaders in the use of advanced traffic management strategies and continues to develop smarter highway systems that are making our highways more efficient, less congested, and safer for all. Research helps us stay on the cutting edge by improving our understanding of system dynamics and developing methods to use our system with increasing efficiency.”

—Ted Trepanier, WSDOT, Co-Director Maintenance and Operations, State Traffic Engineer

Storm-Related Closures of I-5 and I-90: Freight Transportation Economic Impact Assessment Report Winter 2007-08

WS DOT staff and WSU researchers designed and developed a new economic assessment methodology to provide a comprehensive analysis of the effects of the I-5 and I-90 closures on the state’s freight industry and economy. The total economic loss in one winter corridor closures is conservatively estimated at almost $75 million. This information helps us understand needs and priorities.

“We developed new methodology to accurately estimate the economic impacts of freight system disruptions after the I-5 and I-90 closures in the winter of 2007-08, and the Research Office’s quick response funds and expertise were invaluable. We wouldn’t have happened without them.”

—Barbara Ivanoff, WSDOT, Freight Systems Director

Environment

Research on environmental issues associated with transportation include evaluation impacts and mitigation strategies for stormwater, habitat connectivity, wetlands, species, air quality, fish passage and climate change. Recent examples are:

- Pile Driving Underwater Sound Impacts
- Environmental Investigation of Heavy Metals in Highway Runoff

Environmental investigation of heavy metals in highway runoff from highways is a growing concern. The Federal Highway Administration currently identifies cadmium, chromium, copper, iron, lead, nickel, and zinc as the heavy metals typically associated with highway stormwater runoff. The U.S. Environmental Protection Agency states that the primary sources of these metals are wear and tear of various vehicle components; tires, engine parts, and brake pads; auto body rusting lubricants; and fuel consumption. Although there is simply no way to stop highway stormwater runoff to average daily traffic (ADT) loads are considered, and the complex relationship between metals in highway stormwater runoff and levels of traffic is proven, simply treating stormwater runoff from roads with high ADT is not the answer. This research helped develop methodologies for testing highway stormwater runoff for metals so that we find appropriate treatments to protect any receiving bodies of water.

“Pile driving is one of the primary sources of underwater noise, and marine mammals and diving sea birds. Recent studies indicate the impact of sound is heavily influenced by the hammer operator’s procedures. WSDOT is testing various pile driving operational procedures to reduce noise levels and possible harmful impacts. Very little information exists to help WSDOT and regulatory agencies accurately predict impact levels and to determine methods to avoid or reduce impacts.”

—Barbara Ivanoff, WSDOT, Freight Systems Director

We Do Research That Solves Problems

The WSDOT research program helps achieve the state’s strategic goals for transportation. Each biennium we manage approximately 150 contracts totaling $10 million from federal, state and local government funding sources.

“The WSDOT Research Office has been a great help to our transportation pooled fund study which will provide measurable results and enhance the efficiency of our program.”

—Cheryl Claybrooke, WSDOT, Safe Routes to School Coordinator, Highways and Local Programs

Safely

Safety research projects address design features, seismic safety, crash testing of barriers, analysis and treatment of pedestrian and bicycle accidents and wildlife hazards, work zone safety, and evaluation of system performance. Recent examples are:

- A New Approach for Two-Lane Rural Highway Safety
- Highway Safety: A New Approach for Two-Lane Rural Highways

Preservation

Research on preservation evaluates topics such as corrosion of materials from deicers, lifecycle analysis of pavements, testing of new materials and methods to improve performance. Recent examples are:

- Long-Term Corrosion Impacts for Highway Snow and Ice Control Chemicals
- Highway Snow and Ice Control Chemicals

Mobility (Corrosion Reaction)

Mobility research investigates causes of corrosion and methods to minimize those causes, improvements in intelligent transportation system data collection and delivery of that information to users, and factors that address transportation demand management. Recent examples are:

- A Self-Adaptive Toll Rate Algorithm for High Occupancy Toll (HOT) Lane Operations

“Highway construction can dramatically increase traffic delays and congestion, particularly in urban areas with heavy traffic volumes. Traffic disruption could be reduced significantly if the concrete columns and dowel beams could be prefcast off site, and then rapidly assembled together at the bridge site. Such systems have been used successfully in states with low seismic activity, but these systems are not suitable for the level of seismicity in western Washington. To take advantage of the benefits of precast components in bridges in Washington State, this research developed systems that can be constructed quickly and that will have good seismic performance.”

—Ted Trepanier, WSDOT, Co-Director Maintenance and Operations, State Traffic Engineer

Transportation Synthesis Reports

Transportation Synthesis Reports (TSRs) are brief summaries of currently available information on topics of interest to WSDOT staff. Online and print sources may include newspaper and periodical articles and research project reports as well as information about the practices of other state agencies. State of the practice information may include surveys of other state DOTs. Examples of recent synthesis reports include:

- Transportation’s Link to the Economy: Synthesis
- Transportation and Climate Change and the Miles Travelled Reduction: Synthesis

This synthesis documents the link between transportation and the economy. Highways, roads, and public transportation systems contribute to virtually everything of value in our economy and lives. The studies show that state and national investments in transportation have measurable benefits to the economy.

- Precast Systems for Rapid Construction of Bridges

Construction can dramatically increase traffic delays and congestion, particularly in urban areas with heavy traffic volumes. Traffic disruption could be reduced significantly if the concrete columns and dowel beams could be prefcast off site, and then rapidly assembled together at the bridge site. Such systems have been used successfully in states with low seismic activity, but these systems are not suitable for the level of seismicity in western Washington. To take advantage of the benefits of precast components in bridges in Washington State, this research developed systems that can be constructed quickly and that will have good seismic performance.

- Precast Systems for Rapid Construction of Bridges

Bridge construction can dramatically increase traffic delays and congestion, particularly in urban areas with heavy traffic volumes. Traffic disruption could be reduced significantly if the concrete columns and dowel beams could be prefcast off site, and then rapidly assembled together at the bridge site. Such systems have been used successfully in states with low seismic activity, but these systems are not suitable for the level of seismicity in western Washington. To take advantage of the benefits of precast components in bridges in Washington State, this research developed systems that can be constructed quickly and that will have good seismic performance.

- Precast Systems for Rapid Construction of Bridges

Bridge construction can dramatically increase traffic delays and congestion, particularly in urban areas with heavy traffic volumes. Traffic disruption could be reduced significantly if the concrete columns and dowel beams could be prefcast off site, and then rapidly assembled together at the bridge site. Such systems have been used successfully in states with low seismic activity, but these systems are not suitable for the level of seismicity in western Washington. To take advantage of the benefits of precast components in bridges in Washington State, this research developed systems that can be constructed quickly and that will have good seismic performance.

- Precast Systems for Rapid Construction of Bridges

Bridge construction can dramatically increase traffic delays and congestion, particularly in urban areas with heavy traffic volumes. Traffic disruption could be reduced significantly if the concrete columns and dowel beams could be prefcast off site, and then rapidly assembled together at the bridge site. Such systems have been used successfully in states with low seismic activity, but these systems are not suitable for the level of seismicity in western Washington. To take advantage of the benefits of precast components in bridges in Washington State, this research developed systems that can be constructed quickly and that will have good seismic performance.